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ABSTRACT 

Model-Driven Development is a promising solution to han-

dle the complexity of embedded systems development. This 

approach uses models as principal artifacts throughout the 

entire development cycle. In this paper, we present a bare-

metal kernel that executes DEVS models on hardware. Our 

solution uses the Boost library, and can be interfaced with 

diverse hardware libraries. We detail the internal architec-

ture as well as the DEVS execution mechanism at the core 

of the kernel. We also demonstrate the usability with a case 

study that shows how models become the real controllers.  

1. INTRODUCTION 

The embedded systems industry is facing an increasing 

complexity of the systems’ functionality and shorter time-

to-market expectations. The demand of more contents and 

new intelligent capabilities is a mismatch with the request 

for a reduced product development time, increased robust-

ness, and future extensibility. Moreover, traditional design 

methods where systems are designed directly at the low 

hardware and software levels are fast becoming infeasible 

due to the increasing complexity and market demands.  

Model-based techniques, where models drive the develop-

ment, are a promising solution to lessen the productivity 

gap and deal with the current challenges [1]. We are inter-

ested in investigating a model-driven approach called the 

Discrete Event Methodology for Embedded Systems 

(DEMES). In DEMES, DEVS (Discrete Event System 

Specification) [2] models are used consistently through the 

development cycle until they are deployed on the target 

hardware. One of the key aspects of this process is a real-

time (RT) executive that runs the models on the chosen 

hardware, which must be efficient and have small memory 

footprint. In this context we introduce a new RT executive 

named Embedded-CDBoost (E-CDBoost).  

Here, we present an overview of the DEMES development 

cycle and then explain the design of E-CDBoost. Finally, 

we will illustrate its application with a case study and com-

pare the new kernel’s performance against an existing one. 

2. BACKGROUND 

E-CDBoost is based on DEVS, which is suitable for RT 

embedded systems as it provides a rich structural represen-

tation of components, and formal means for explicitly spec-

ifying their timing, which is central for RT systems. 

DEMES uses formal models in order to analyze real-time 

embedded systems and study their interaction with the 

physical environment while enabling original models to be 

part of the final product. This is done by replacing models 

incrementally with hardware surrogates and new software 

components without altering the original models. The tran-

sition can be done in incremental steps; models are incorpo-

rated in the target environment after extensive testing, and 

reused throughout the entire development process. 

 

Figure 1. Discrete-Event Methodology for Embedded Systems [3] 

The DEMES development cycle involves different steps. 

The system of interest is first defined in terms of its re-

quirements and the relation with the physical environment. 

These latter are then formally specified with DEVS. DEVS 

models can be used to perform formal verification and run 

simulations under different environmental settings. Once 

the models have been tested and verified, they are deployed 

onto the target platform where a RT executive runs them.  

The RT executive is based on the DEVS execution seman-

tics. In the model specification phase, the formalism de-

composes complex designs into basic (behavioral) models 

called atomic, and composite (structural) models called 

coupled [8]. It follows a precise rule set to define state 

changes of the modeled systems depending on input events 

or time delay triggers. With its abstract simulator, two kinds 

of components or processors are defined: Simulators (in 

charge of atomic models), and Coordinators (in charge of 

coupled models). Simulators are the engines that invoke the 

model transition functions (int, ext, conf, ta, ) and Co-

ordinators in charge of event routing and hierarchical 

scheduling. Parent and children models communicate via 

message passing mechanism in order to render DEVS mod-

el behavior. The abstract simulator also provides a set of al-

SpringSim-TMS/DEVS 2016 April 3-6 Pasadena, CA, USA 

Copyright 2015 Society for Modeling & Simulation International (SCS) 



gorithms for coordinators and simulators that specify how 

each engine reacts upon the reception of each message.  

DEVS tools use the previously described execution mecha-

nisms by implementing message passing and algorithms 

provided with the abstract simulator. Some researchers have 

particularly looked at low-level applications. These include 

DEVSJAVA [5], a Java-based DEVS simulator that sup-

ports high-level modeling; RTDEVS/CORBA [6] [12], a 

DEVS implementation based on real time CORBA; and 

PowerDEVS [13], a tool for hybrid system modeling and 

RT simulation. Most of these solutions, however, use an 

operating system. For instance, E-CD++ uses a variant of 

the Linux kernel [10]. In [14] the authors use a TINI chip, 

which requires Java Virtual Memory and Java class librar-

ies on the chip. PowerDEVS uses Linux RTAI [13]. In-

stead, we built a bare-metal version of E-CD++ that can run 

on microcontrollers with limited memory resources [15]. 

We needed to remove existing OS dependencies and adding 

new components to enable standalone execution.  

E-CDBoost, the new bare-metal RT executive, is extended 

from CDBoost [16], a DEVS simulator built around a se-

quential PDEVS architecture [16]. Figure 2 shows the ar-

chitecture overview. As with DEVS, it separates the model 

construction logic from the simulation mechanism.  

 

Figure 2. CDBoost, Software Components Overview [13] 

Model classes provide the former while execution classes 

implement the latter. Utility classes provide useful func-

tions such as time classes, message classes, input stream for 

external events and a future event list. Model classes con-

tain three main classes: Model that offers a common inter-

face to atomic and coupled models, PDEVSAtomic can be 

extended to implement user defined atomic models, and 

PDEVSCoupled provides an interface to specify the struc-

ture of a model. Execution classes, on the other hand, group 

PDEVSSimulator to define atomic models, PDEVSCoordi-

nator to execute coupled models, and PDEVSRunner, simi-

lar to the Root Coordinator.  

CDBoost replaces top-down messages by function calls and 

bottom-up messages with returns. In other DEVS simula-

tors, nodes in the Processor hierarchy communicate by 

sending messages and executing actions locally; in 

CDBoost, functions of lower nodes are called and values re-

turned (i.e. advance_simulation() and collect_outputs()). 

3. EMBEDDED CD-BOOST  

To allow model execution directly on hardware, we used a 

DEVS bare-metal kernel that includes the E-CDBoost RT 

executive. Other components of the kernel include a mi-

crokernel - handling system calls related to file, memory 

and input/output management – and a hardware abstract 

layer that interfaces with multiple hardware peripheral li-

braries – as show in Figure 3. We will particularly focus on 

the RT executive derived from CDBoost.  

 

Figure 3. DEVS Model Execution on Bare-Metal 

Before deployment on the target platform, modelers imple-

ment their models using an integrated development envi-

ronment (in our case, Eclipse), which is also used for simu-

lation and debugging. The resulting model files are linked 

with RT executive components, microkernel elements and 

peripheral libraries. The resulting firmware is then deployed 

onto the microcontroller where models act as controllers. 

The RT executive is responsible of routing hardware events 

from the environment to the models and vice-versa. 

3.1. Architecture Overview 

Embedded CDBoost (E-CDBoost) is designed to execute 

models on embedded hardware; this needs real-time execu-

tion and interaction with the environment. E-CDBoost can 

read inputs from hardware components (sensors, timers, 

etc.), and actuate motors, valves, gears etc. It supports the 

integration of both simulated and real components for 

hardware-software co-design. Since E-CDBoost is designed 

to execute in RT, it includes a wall-clock time (with a mi-

crosecond precision) interfaced with a hardware timer.  

E-CDBoost adds a Port component to the modelling sub-

system in Figure 2, a Driver and a new Runner (ERunner) 

to interface model implementation and hardware platform. 

These elements are shown in Figure 4, and they were added 

in order to allow communication with the environment, re-

trieve values from sensors and send commands to actuators. 

The physical time management is handled by a special 

Time class. The message structure is also adapted to the RT 

environment and carries port and value information.



 

Figure 4. E-CDBoost Software Architecture Overview. 

3.2. Subsystems Overview 

We preserved the construction and execution in DEVS, us-

ing three subsystems or categories of classes, as described 

in Section 2.4. Ancillary classes contain structures and oth-

er components needed for the execution process. With the 

above additions, hardware-in-the-loop simulation is now 

possible. If the hardware components (e.g. sensors) are not 

available, a model can be used and tested along with the 

available components. This allows us to combine both 

hardware and simulated units and start testing early in the 

development process. When all the components are availa-

ble, control models interact directly with the hardware de-

vices through the defined ports. 

4. SUBSYSTEMS IMPLEMENTATION  

Coupled models are defined using the PDEVSCoupled 

class. This class constructor receives four parameters:  

• the list of pointers of the components; 

• the External Input Couplings (EIC) pointers list;  

• the Internal Couplings (IC) pointers list;  

• the External Output Couplings (EOC) pointers list.  

Both PDEVSAtomic and PDEVSCoupled inherit the model 

class that allows coupled and atomic models to be connect-

ed easily through couplings that can be debugged with ease 

since they share a common model interface. 

PDEVSAtomic and PDEVSCoupled are common to both 

CDBoost and E-CDBoost. E-CDBoost adds “Port” to its 

modeling subsystem. This represents the logical connection 

between models and hardware devices. The user must pro-

vide ports implementation by extending a Port base class, 

and specifying a “pDriver” or port driver function to trans-

late model output values to specific hardware components.  

When defining a top port, the user specifies the name, relat-

ed EIC/EOC, and a polling period. This can be useful to 

customize the polling frequency of input devices as sensors.  

The link between DEVS logic and the hardware peripheral 

libraries is established by pDriver, which either receives a 

value to be translated onto commands, or it returns a value 

depending on the state of input devices. For an input port, 

pDriver could provide which GPIO (General Purpose Input 

Output) pin to read, and set the port value. For an output 

port, it receives a value that is translated into actions. 

Execution classes, illustrated in Figure 4, implement the ab-

stract simulator algorithms and execute models. The 

PDEVSCoordinator class, in charge of managing coupled 

models, requires three template parameters: Time, Message 

and Future Event List (FEL). These parameters will be de-

tailed in the ancillary subsystem with utility classes.  

The Processor hierarchy is constructed by the invocation of 

a constructor. Constructing coordinator objects requires the 

coupled model components to be extracted and embedded 

in the coordinator. For instance, when the Coordinator is 

built, all the children are constructed, and the couplings be-

tween components are saved. The algorithms described 

previously – collect_outputs and advance_simulation (here 

advance_execution) are implemented in these classes. 

The PDEVSSimulator class implements the simulator’s al-

gorithms introduced in section 3. This class calls the state 

transition functions and returns the outputs of the atomic 

models to their Coordinators. E-CDBoost uses a flat coor-

dinator and adds a global driver (“Driver”) that manages 

ports. Simulators are linked to a top flat coordinator. 

Root Coordinator 

It is created and driven by the eRunner class, manages the 

global execution and defines the end time of the simulation.  



run(): 

while curentTime < stopTime  

  wait for is signals from environment  

    or internal time out(tN) 

   if external event then 

        Message in = DX(is) 

        topCoordinator.postEvent(in)  

        topCoordinator.advance_execution() 

    else if internal time out then 

        topCoordinator.collect_outputs() 

        if output messages out received then 

            os = DY(out) 

            send os signal to hardware 

        end if 

        topCoordinator.advance_execution() 

    end if 

    tN = topCoordinator.next() 

end while 

The default stop time is infinity as in typical embedded sys-

tems a program is set to run forever. It waits for an internal 

or external event in order to advance execution. In the first 

case, outputs are collected and advance_execution. When 

an external event occurs, the event value is added to the top 

coordinator and advance_execution is called to process it. 

When the runner receives an output message, it is processed 

by the driver, and a corresponding value is sent to the port. 

Input event values are retrieved from the global driver.  

Global Driver Object 

The Driver is responsible for initializing hardware, retriev-

ing inputs from hardware components connected to input 

ports (calling pDriver), and sending commands to hardware 

components connected to the output ports. 

When a signal is detected on an input port, a message is 

generated and added to the top coordinator inbox. The input 

event retrieving mechanism is based on polling interrupts. 

The user may also choose to use interrupts for signal detec-

tion. One of the advantages of our approach (especially for 

experienced embedded systems developers), is that they can 

use hardware or software interrupts to detect changes on the 

hardware components directly and generate input messages. 

Indeed, specific hardware interrupts associated with each 

hardware device can be used to signal an input event while 

software interrupts can be programmed based on a division 

of the base clock to provide periodic polling. Interrupt ser-

vice routines are then set to post a port value that is then 

used by the port driver to generate a PDEVS message. 

In the case of output message, the driver will call the related 

output port pDriver - in charge of converting the received 

message into commands - with the received output data.  

The utility classes provide essential data structures in order 

to run the model. The first class in the utility category is 

called Message. Boost::any is used by default in CDBoost, 

as it allows the exchange of any type of messages in our 

models. In E-CDBoost, we have defined a special message 

type that includes time, port, and value parameters. The 

Time component is associated with the physical time and 

provides a RT clock with microsecond precision. It is inter-

faced with a 32-bit hardware timer. The Future Event List 

(FEL) is provided as part of the utility classes. Using an ef-

fective FEL is essential in order to achieve good perfor-

mance. For the FEL type, any structure that matches the 

priority queue signature is allowed. Consequently, the user 

can define personalized schedulers and increase perfor-

mance if needed. The default FEL we provided is a stand-

ard priority queue. This is part of the C++ language and is 

suited to store and retrieve timed events.  

4.1. Execution on the target platform 

E-CDBoost runs on top of the microkernel introduced in 

section 3. This latter handles system calls and provides re-

quested services to the RT executive. The RT executive 

communicates with hardware via ports and drivers.  

A hardware abstraction layer that invokes MBED - a devel-

opment platform for ARM microcontrollers and connects 

the application with the underlying hardware - is used to 

streamline the development and ease applications porting. 

5. A LINE TRACKING ROBOT  

We have followed the DEMES approach to build several 

applications, and executed them on the target platform us-

ing the new kernel. In this section, we will particularly fo-

cus on one application and present how it evolved progres-

sively from its system of interest definition, to formal mod-

el, to the real system. We will see how model-driven practi-

cally work and how we can construct a model of a system 

that we can then transform into the real thing. 

5.1. System Description 

The first step is to define a system of interest. Ours is a line-

tracking robot designed to follow a path identified by a 

black line and get back on track if the trail is not detected. 

The system requirements are as follows: the robot shall be 

equipped with a light sensor that faces the ground and 

measures the amount of light reflected off a small ground 

surface. The controller should consider a medium percent-

age of reflected light as a detected path and initiate the ro-

bot to move forward. When the robot goes off track, i.e. 

does not sense a path trail; it stops, turns slightly, and then 

tries to detect a trail again. If a path is detected, the robot 

moves forward again; otherwise, it continues to turn until it 

finds a path to follow. The robot should also be able to re-

ceive manual signals to start and stop. 

Model Components 

Once the system of interest is defined, the following step is 

to model the system using DEVS. This formalism, as intro-

duced in section 2, decomposes complex system designs in-

to basic/behavioral models (atomic models) and compo-

site/structural models (coupled models). We take a top 

down approach and first define the structure of the line 

tracking robot system. Multiple iterations are usually re-

quired to capture the requirements into an appropriate hier-



archical structure. Note that we use the same example and 

hierarchy as in [15] for comparison purposes. 

 

The system is partitioned into three main units: a Sensor 

Unit, a Control unit, and a Movement Unit. To communi-

cate with the environment, we use two input ports 

(LIGHT_IN and START_IN), and two output ports 

(MOVEL_OUT and MOVER_OUT). LIGHT_IN is the in-

put port through which reflected light is measured. START 

_IN is for the manual start/stop commands. The output 

ports are for the robot’s left and right motors movements.  

In terms of components, the sensor unit contains input de-

vices. In this case, it contains an atomic model (light sen-

sor), which reads the amount of light reflected and transmits 

those readings to the control unit. This latter has a sensor 

controller and the movement controller. The sensor control-

ler activates or stops the light sensor, receives the sensor 

readings, and sends messages to the movement controller, 

specifying whether the robot is on track, off track, or has 

reached the destination. When the robot arrives at its desti-

nation—i.e. the light sensor reads an all-dark surface—the 

sensor controller sends a “stop reading” command to the 

light sensor and a stop signal to the movement controller. 

The movement controller also receives on/off track and stop 

signals from the sensor controller, and it sends appropriate 

commands to the motors. The movement unit is made of 

motor left and motor right. It groups the robot’s actuators 

that move in response to commands received from the con-

trol unit. The motor models control the robot movements: 

they can spin clockwise, anticlockwise, or stop according to 

the signals they receive from the control unit.  

These models can be formally specified and used for mod-

el-checking,or formal verification. The DEVS model speci-

fication is also preserved as much as possible throughout 

the development cycle. 

Model Specification 

The specification of the control unit is shown below as an 

example. As mentioned earlier, the control unit has two 

atomic models, the sensor and movement controllers. The 

control unit can be formally defined as: 

CM = < X, Y, D, {Md}, EIC, EOC, IC >, 

X={(CU_START_IN_TOP, N) ; (CU_LIGHT_IN_SU, N)} 

Y={(CU_START_OUT_SU, N); (CU_MOVEL_OUT 

_MU, N); (CU_MOVER_OUT_MU, N)} 

D = {Sensor Ctl, Movement Ctl}.  

Md = {M(sensor Ctl), M(movement Ctl)} 

EIC = {((Self, CU_START_IN_TOP), (Sensor Ctl, 

sctrl_start_in) );((Self, CU_LIGHT_IN_SU), (Sensor Ctl, 

sctrl_light_in))} 

EOC={((Sensor Ctl, sctrl_start_out), (Self, CU_ 

START_OUT_SU)); ((Movement Ctl, mctrl_movel _out), 

(Self, CU_MOVEL_OUT_MU)); ((Movement Ctl, 

mctrl_mover_out), (Self, CU_MOVER_OUT_ MU))} 

IC = { (Sensor Ctl, sctrl_mctrl_out); (Movement Ctl, 

mctrl_sctrl_in) } 

 

Figure 5 illustrates a DEVS Graph representing the sensor 

controller’s behavior.  

 
Figure 5. Sensor Controller State Diagram 

The Sensor Controller is IDLE until a start command is is-

sued. Then, an external transition is triggered and the Sen-

sor Controller state changes to PREP_RX. At this point, it 

waits for ta=scRxPrepTime, after which a ‘start’ output is 

sent to the Light Sensor and an internal transition changes 

state to WAIT_DATA. It waits in this state until it receives 

a signal from the Light Sensor. If the signal indicates that 

the robot reached the destination (ALL_DARK), the exter-

nal transition causes a switch to PREP_STOP, where it will 

immediately send a stop signal to the Light Sensor and the 

Movement Controller, and it will transition back to IDLE. 

However, if the signal is different, the Sensor Controller 

will go to TX_DATA, will wait for ta=scTxTime, after 

which it will send an output to the Movement Controller in-

dicating whether the robot is on track or not. If the Sensor 

Controller receives a manual stop signal (STOP_PROC), it 

will transition to the PREP_STOP to stop all activities. 

5.2. Implementation with E-CDBoost 

The user implements atomic models in E-CDBoost by ex-

tending a basic model class and providing state transition 

and output functions. This case study was built in E-CD++ 

[15]; here, we show the implementation differences. The 

code below shows an example for the sensor controller 

functions. We can see that it includes the state transition 

and output functions that corresponds to the original DEVS 

specification/graph. In this way, it is similar to [15] except 

that the time advance is clearly separated. The message 

structure is constructed using the port and the value to be 

sent. This structure is specific to E-CDBoost and is not 

available per default in CDBoost. The TIME parameter re-

turned by the time advance function is defined using real 

time units, an addition of E-CDBoost too.  



void internal() noexcept { 
    switch (_state){   
        case PREP_STOP: 
            _state = IDLE;   _next = infinity; 
            break; 
        case PREP_RX: 
        case TX_DATA: 
            _state = WAIT_DATA; _next = infinity; 
            break;       } 
} 
 
/* @return Time until next internal event.  */ 
TIME advance() const noexcept { return _next; } 
 
/* @return a bag of output messages */ 
std::vector<MSG> out() const noexcept { 
    //… 
 switch (_state){ 
   case PREP_STOP:  
   //Send stop through sctrl_start_out and mctrl 
   _outputMessage1 = MSG(portName[sctrl_start_out], 
               STOP_PROC);  
   _outputMessage2 = MSG(portName[sctrl_mctrl_out],  

       STOP_PROC);  
   std::vector<MSG>{_outputMessage1, _outputMessage2}; 
 
   case PREP_RX: //Send Start through sctrl_start_out 
     _outputMessage1 = MSG(portName[sctrl_start_out],  

         START_PROC);  
    return std::vector<MSG>{_outputMessage1}; 
 
  case TX_DATA: {  
  //Send on/off track signals sctrl_mctrl_out 
     int output_val; 
 
  if(sensor_input == DARK) output_val = ON_TRACK; 
      else if (sensor_input == BRIGHT)  
              output_val = OFF_TRACK; 
             
  _outputMessage1 = MSG(portName[sctrl_mctrl_out],  

       output_val);                           
  return std::vector<MSG>{_outputMessage1}; 
        } 
     }; 
   return std::vector<MSG>{}; //Default: empty output 
} 

To implement coupled models, input, internal and output 

links have to be provided. The following snippet shows 

how the control unit model is described in E-CDBoost. 

1. // Atomic models definition 

2. auto sctrl = make_atomic_ptr <SensorControl-

ler<Time, Message>>(); 

3. auto mctrl = make_atomic_ptr <MovementControl-

ler<Time, Message>>(); 

4. //Coupled model definition 

5. shared_ptr<flattened_coupled<Time, Message>> 

ControlUnit( new flattened_coupled<Time, Mes-

sage>{{sctrl,mctrl}, {sctrl}, {{sctrl,mctrl}}, 

{mctrl}}); 

The sensor controller (sctrl at line 2) and movement con-

troller (mctrl at line 3) are the two components of the con-

trol unit. The model is created on line 5 by respectively 

providing its components ({sctrl,mctrl}), then its EIC (sig-

nals from hardware components; sctrl is connected to the 

light sensor and push button), its IC (sctrl is connected to 

mctrl internally), and finally its EOC (components sending 

output signal to hardware: mctrl to the two motors). One of 

the advantages of this approach is that no file needs to be 

embedded onto the target platform or converted beforehand. 

It also offers a lightweight mechanism for specifying links. 

Once satisfied with the simulation results, hardware com-

ponents and DEVS controller are integrated. To interface 

models with hardware components, EIC and EOC compo-

nents are linked to top ports, as follows: 

1. // Input ports 

2. auto start = make_port_ptr<START_IN 

 <Time, Message>>(); 

3. auto light = make_port_ptr<LIGHT_IN

 <Time, Message>>(); 

4. // Output ports 

5. auto motorleft = make_port_ptr<MOVEL_OUT

 <Time, Message>>(); 

6. auto motorright = 

make_port_ptr<MOVER_OUT<Time, Message>>(); 

7. // Execution parameter definition 

8. erunner<Time, Message> root{ControlUnit, 

{{start,sctrl},{light,sctrl}} , {{mo-

torleft,mctrl},{motorright,mctrl}} };//link 

top ports to EIC and EOC components 

Lines 2 and 3 create the two input ports respectively con-

nected to the start button and the light sensor. Line 5 and 6 

show the two output ports linked to the motors. Links be-

tween ports and the model they are connected to are passed 

along with the top model to the erunner (defined in section 

4) that executes models on the target platform. 

For hardware integration, we use a Seeed Studio Shield bot 

and a Nucleo development board. One of the onboard re-

flectance sensors is used as the input for our light readings, 

a push button on the Nucleo and the two motors of the 

Seeed Shield Bot to move the robot. 

template<class TIME, class MSG> 

class LIGHT_IN : public port<TIME, MSG>  { 

public: 

    /* @param n Name assigned to the port. 

       @param polling Polling for the port  */ 

  

  explicit LIGHT_IN(const std::string &n =  

      "light_in", const TIME &polling =  

        TIME(0,0,0,200)) noexcept : port<TIME,  

          MSG>(n,polling) {} 

  bool pDriver(Value &v) const noexcept;        }; 

Top ports connected to hardware sensors/actuators have to 

be specified to interface the model with the previous hard-

ware components. These ports are specified as extension of 

a basic port class. The LIGHT_IN port is derived from the 

port class and provides a default polling time (200 ms here) 

when interrupts are not used by the user. In its pDriver im-

plementation (shown below), we call a function of the 

Seeed Shield Bot MBED library that returns the value of 

the onboard sensor used to track the line. 

template<class TIME, class MSG> 
bool LIGHT_IN<TIME, MSG>::pDriver(Value &v) const  
noexcept {    v = bot.getCentreSensor(); 
              return true;                     } 



Bot is defined during the hardware initialization process 

and it contains the hardware pins connected to the hardware 

bot. In this case, the centre sensor is connected to A2. 

SeeedStudioShieldBot bot( 
    D8, D9, D11,              // Left motor pins 
    D12, D10, D13,            // Right motor pins 
    A0, A1, A2, A3, D4        // Sensors pins       ); 

6. RESULTS 

We will illustrate the execution mechanism using trace logs 

collected during the execution of the line tracking robot. It 

illustrates the advance_simulation/execution() and col-

lect_ouputs() function calls explained earlier. The flat coor-

dinator forwards the function call to the appropriate simula-

tor which, in turn returns outputs or calls its state transition 

functions. Two examples are provided to illustrate internal 

execution mechanism are shown below. 

DRIVER: INPUT MESSAGE     Time: 00:00:02:517:459 

 Port: start_in Value: 10  
 - advance_execution()::flattop  

 - advance_execution()::sctrl 

  model->external() model->advance(): 00:00:00:040:000  
 - collect_outputs()::flattop  

 - advance_execution()::flattop  

 - collect_outputs()::sctrl         model->out()  
 - advance_execution()::sctrl   model->internal() model->advance(): ...  

 - advance_execution()::mctrl   model->external() model->advance(): ...  

DRIVER: INPUT MESSAGE  Time: 00:00:02:600:697 
 Port: light_in Value: 1  

 - advance_execution()::flattop  

 - advance_execution()::sctrl 
  model->external() model->advance(): 00:00:00:040:000  

 - collect_outputs()::flattop  

 - advance_execution()::flattop  
 - collect_outputs()::sctrl      model->out()  

 - advance_execution()::sctrl  model->internal() model->advance(): ...  

 - advance_execution()::mctrl  
  model->external() model->advance(): 00:00:00:040:000  

 - collect_outputs()::flattop  

 - collect_outputs()::mctrl    model->out()  
DRIVER: OUTPUT MESSAGE  Time: 00:00:02:680:850 

 Port: motor1 Value: 1  

DRIVER: OUTPUT MESSAGE   Time: 00:00:02:680:834 
 Port: motor2 Value: 1 

 

The listing above shows the sequence that follows a start 

button press at time 00:00:02:517:459. The driver con-

structs an input message that triggers the call of the external 

function of the sensor controller model. An input message 

indicating a line detection is then sent by the driver and 

causes the sensor and movement controller external func-

tions to be called. Two outputs are generated, commanding 

the motors to go forward (Value 1 sent to both motors). 

The listing below shows the case corresponding to a manual 

stop that causes stop commands (0 sent to motor1 and mo-

tor2) to be sent to the motors. 

DRIVER: INPUT MESSAGE  Time: 00:02:10:403:002 
 Port: start_in Value: 11  

 - advance_execution()::flattop  

 - advance_execution()::sctrl 
  model->external() model->advance(): 00:00:00:000:000  

 - collect_outputs()::flattop  

 - advance_execution()::flattop  
 - collect_outputs()::sctrl  model->out()  

 - advance_execution()::sctrl  model->internal() model->advance(): ...  

 - advance_execution()::mctrl 
  model->external() model->advance(): 00:00:00:000:000  

 - collect_outputs()::flattop  

 - collect_outputs()::mctrl  model->out()  
DRIVER: OUTPUT MESSAGE  Time: 00:02:10:403:559 

 Port: motor1 Value: 0  

DRIVER: OUTPUT MESSAGE  Time: 00:02:10:403:543 
 Port: motor2 Value: 0 

Once the tests are done, the controller model is deployed 

onto the Nucleo board to autonomously control the robot. A 

video showing the result on the target platform is available 

here [18].    

Two of the desired outcomes of E-CDBoost were a smaller 

kernel footprint and a decreased overhead. In terms of code 

size, some kernel design decisions, such as the inclusion of 

the nanolib – an optimized library for microcontrollers -, al-

lowed us to reduce the code size by more than 50%. We al-

so compared the code size of E-CD++ and E-CDBoost. The 

latter is smaller. For the line tracking robot application, E-

CDBoost occupies 131 KB of flash memory and 448 bytes 

of data memory while the E-CD++ takes 240 KB of flash 

memory and 608 bytes of data memory. 

We compared the performance of both techniques for this 

line tracking robot application. We particularly measured 

the time it takes for an external event to trigger the external 

function of a model, i.e. the time it takes from the root to 

the simulator (EXT: Root to Simulator in Table 1). We also 

assessed the time it takes from the external function to re-

turn control to the root (EXT: Simulator to Root in Table 

1). The other aspect that we examined was the output col-

lection, specifically the time it takes from the root collect 

outputs command to the output function call (OUT: Root to 

Simulator) and for the outputs to be received by the driver 

object (OUT: Simulator to Root). The following table 

summarizes the results. 

 E-CD++ E-CDBoost 

EXT: Root to Simulator 155 us 53 us 

EXT: Simulator to Root 159 us 43 us 

OUT: Root to Simulator 68 us 25 us 

OUT: Simulator to Root 97 us 31 us 

Table 1. Overhead Evaluation 

The overhead was reduced by more than 60% in all cases. 

In order to take the above measurements, we used a soft-

ware instrumentation method. For EXT: Root to Simulator 

for example, we read the value of a hardware timer when an 

external event (e.g. new reflected light value) is detected.  

Indeed, more messages are exchanged with E-CD++. If we 

examine more closely the first case - EXT : Root to Simula-

tor - for example, E-CD++ will first add a X message and 

then a * message through the message admin that then pro-

cesses them and send them to the flattened coordinator. 

This generates an X and * message to be sent to the simula-



tor. Upon reception, the simulator calls the external method. 

In E-CDBoost, the runner adds the input message to the in-

box of the flattened coordinator, calls the ad-

vance_execution() method, that leads to the simulator ad-

vance_execution() call that finally calls the external func-

tion of the concerned model. There are less generated mes-

sages in this case, and less storage/retrieval of messages in-

volved. The future event list is more effective in E-

CDBoost. For the output related events, we can observe that 

the overhead is less since less messages are involved (@ 

and Y) and no next event time computation is required. 

Another set of tests, not related to this application and that 

would prove useful, is the case where multiple events are 

received in a short period. This is because CDBoost has 

proved to be very effective and achieved results comparable 

and sometimes better [16] than adevs, the fastest DEVS 

simulator according to a recent survey [19].  

7. CONCLUSION 

Using model-driven development for embedded systems is 

certainly a promising solution since the complexity and het-

erogeneity of the system are handled earlier in the devel-

opment cycle. DEVS, in particular, with its formal nature 

and integrated time concept captures the essential character-

istics of embedded systems. 

We presented E-CDBoost used to build DEVS-based em-

bedded applications. E-CDBoost is OS independent; it con-

trols model execution on the target platform and interacts 

with the surrounding environment. It allows models to be-

come controllers running on the execution platform. The in-

ternal structure of the RT executive separates the construc-

tion from the execution mechanism. It provides classes to 

the user in order to implement DEVS models easily. The 

execution mechanism, hidden from the user, renders the 

models behavior. 

A case study was presented to provide a practical view of 

the development cycle and the usability of the new bare-

metal kernel. The line tracking robot application was devel-

opped using E-CDBoost and the resulting binaries deployed 

on a Nucleo board mounted on the Seeed Studio Shield Bot. 

E-CDBoost allowed us to have a small footprint and reduce 

the message processing overhead by more than 60%. 
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