
A Kernel for Embedded Systems Development and
Simulation using the Boost Library

Daniella Niyonkuru Gabriel Wainer

Dept. of Systems and Computer Engineering, Carleton University

1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6

{daniella.niyonkuru, gabriel.wainer}@carleton.ca

ABSTRACT

Model-Driven Development is a promising solution to han-

dle the complexity of embedded systems development. This

approach uses models as principal artifacts throughout the

entire development cycle. In this paper, we present a bare-

metal kernel that executes DEVS models on hardware. Our

solution uses the Boost library, and can be interfaced with

diverse hardware libraries. We detail the internal architec-

ture as well as the DEVS execution mechanism at the core

of the kernel. We also demonstrate the usability with a case

study that shows how models become the real controllers.

1. INTRODUCTION

The embedded systems industry is facing an increasing

complexity of the systems’ functionality and shorter time-

to-market expectations. The demand of more contents and

new intelligent capabilities is a mismatch with the request

for a reduced product development time, increased robust-

ness, and future extensibility. Moreover, traditional design

methods where systems are designed directly at the low

hardware and software levels are fast becoming infeasible

due to the increasing complexity and market demands.

Model-based techniques, where models drive the develop-

ment, are a promising solution to lessen the productivity

gap and deal with the current challenges [1]. We are inter-

ested in investigating a model-driven approach called the

Discrete Event Methodology for Embedded Systems

(DEMES). In DEMES, DEVS (Discrete Event System

Specification) [2] models are used consistently through the

development cycle until they are deployed on the target

hardware. One of the key aspects of this process is a real-

time (RT) executive that runs the models on the chosen

hardware, which must be efficient and have small memory

footprint. In this context we introduce a new RT executive

named Embedded-CDBoost (E-CDBoost).

Here, we present an overview of the DEMES development

cycle and then explain the design of E-CDBoost. Finally,

we will illustrate its application with a case study and com-

pare the new kernel’s performance against an existing one.

2. BACKGROUND

E-CDBoost is based on DEVS, which is suitable for RT

embedded systems as it provides a rich structural represen-

tation of components, and formal means for explicitly spec-

ifying their timing, which is central for RT systems.

DEMES uses formal models in order to analyze real-time

embedded systems and study their interaction with the

physical environment while enabling original models to be

part of the final product. This is done by replacing models

incrementally with hardware surrogates and new software

components without altering the original models. The tran-

sition can be done in incremental steps; models are incorpo-

rated in the target environment after extensive testing, and

reused throughout the entire development process.

Figure 1. Discrete-Event Methodology for Embedded Systems [3]

The DEMES development cycle involves different steps.

The system of interest is first defined in terms of its re-

quirements and the relation with the physical environment.

These latter are then formally specified with DEVS. DEVS

models can be used to perform formal verification and run

simulations under different environmental settings. Once

the models have been tested and verified, they are deployed

onto the target platform where a RT executive runs them.

The RT executive is based on the DEVS execution seman-

tics. In the model specification phase, the formalism de-

composes complex designs into basic (behavioral) models

called atomic, and composite (structural) models called

coupled [8]. It follows a precise rule set to define state

changes of the modeled systems depending on input events

or time delay triggers. With its abstract simulator, two kinds

of components or processors are defined: Simulators (in

charge of atomic models), and Coordinators (in charge of

coupled models). Simulators are the engines that invoke the

model transition functions (int, ext, conf, ta,) and Co-

ordinators in charge of event routing and hierarchical

scheduling. Parent and children models communicate via

message passing mechanism in order to render DEVS mod-

el behavior. The abstract simulator also provides a set of al-

SpringSim-TMS/DEVS 2016 April 3-6 Pasadena, CA, USA

Copyright 2015 Society for Modeling & Simulation International (SCS)

gorithms for coordinators and simulators that specify how

each engine reacts upon the reception of each message.

DEVS tools use the previously described execution mecha-

nisms by implementing message passing and algorithms

provided with the abstract simulator. Some researchers have

particularly looked at low-level applications. These include

DEVSJAVA [5], a Java-based DEVS simulator that sup-

ports high-level modeling; RTDEVS/CORBA [6] [12], a

DEVS implementation based on real time CORBA; and

PowerDEVS [13], a tool for hybrid system modeling and

RT simulation. Most of these solutions, however, use an

operating system. For instance, E-CD++ uses a variant of

the Linux kernel [10]. In [14] the authors use a TINI chip,

which requires Java Virtual Memory and Java class librar-

ies on the chip. PowerDEVS uses Linux RTAI [13]. In-

stead, we built a bare-metal version of E-CD++ that can run

on microcontrollers with limited memory resources [15].

We needed to remove existing OS dependencies and adding

new components to enable standalone execution.

E-CDBoost, the new bare-metal RT executive, is extended

from CDBoost [16], a DEVS simulator built around a se-

quential PDEVS architecture [16]. Figure 2 shows the ar-

chitecture overview. As with DEVS, it separates the model

construction logic from the simulation mechanism.

Figure 2. CDBoost, Software Components Overview [13]

Model classes provide the former while execution classes

implement the latter. Utility classes provide useful func-

tions such as time classes, message classes, input stream for

external events and a future event list. Model classes con-

tain three main classes: Model that offers a common inter-

face to atomic and coupled models, PDEVSAtomic can be

extended to implement user defined atomic models, and

PDEVSCoupled provides an interface to specify the struc-

ture of a model. Execution classes, on the other hand, group

PDEVSSimulator to define atomic models, PDEVSCoordi-

nator to execute coupled models, and PDEVSRunner, simi-

lar to the Root Coordinator.

CDBoost replaces top-down messages by function calls and

bottom-up messages with returns. In other DEVS simula-

tors, nodes in the Processor hierarchy communicate by

sending messages and executing actions locally; in

CDBoost, functions of lower nodes are called and values re-

turned (i.e. advance_simulation() and collect_outputs()).

3. EMBEDDED CD-BOOST

To allow model execution directly on hardware, we used a

DEVS bare-metal kernel that includes the E-CDBoost RT

executive. Other components of the kernel include a mi-

crokernel - handling system calls related to file, memory

and input/output management – and a hardware abstract

layer that interfaces with multiple hardware peripheral li-

braries – as show in Figure 3. We will particularly focus on

the RT executive derived from CDBoost.

Figure 3. DEVS Model Execution on Bare-Metal

Before deployment on the target platform, modelers imple-

ment their models using an integrated development envi-

ronment (in our case, Eclipse), which is also used for simu-

lation and debugging. The resulting model files are linked

with RT executive components, microkernel elements and

peripheral libraries. The resulting firmware is then deployed

onto the microcontroller where models act as controllers.

The RT executive is responsible of routing hardware events

from the environment to the models and vice-versa.

3.1. Architecture Overview

Embedded CDBoost (E-CDBoost) is designed to execute

models on embedded hardware; this needs real-time execu-

tion and interaction with the environment. E-CDBoost can

read inputs from hardware components (sensors, timers,

etc.), and actuate motors, valves, gears etc. It supports the

integration of both simulated and real components for

hardware-software co-design. Since E-CDBoost is designed

to execute in RT, it includes a wall-clock time (with a mi-

crosecond precision) interfaced with a hardware timer.

E-CDBoost adds a Port component to the modelling sub-

system in Figure 2, a Driver and a new Runner (ERunner)

to interface model implementation and hardware platform.

These elements are shown in Figure 4, and they were added

in order to allow communication with the environment, re-

trieve values from sensors and send commands to actuators.

The physical time management is handled by a special

Time class. The message structure is also adapted to the RT

environment and carries port and value information.

Figure 4. E-CDBoost Software Architecture Overview.

3.2. Subsystems Overview

We preserved the construction and execution in DEVS, us-

ing three subsystems or categories of classes, as described

in Section 2.4. Ancillary classes contain structures and oth-

er components needed for the execution process. With the

above additions, hardware-in-the-loop simulation is now

possible. If the hardware components (e.g. sensors) are not

available, a model can be used and tested along with the

available components. This allows us to combine both

hardware and simulated units and start testing early in the

development process. When all the components are availa-

ble, control models interact directly with the hardware de-

vices through the defined ports.

4. SUBSYSTEMS IMPLEMENTATION

Coupled models are defined using the PDEVSCoupled

class. This class constructor receives four parameters:

• the list of pointers of the components;

• the External Input Couplings (EIC) pointers list;

• the Internal Couplings (IC) pointers list;

• the External Output Couplings (EOC) pointers list.

Both PDEVSAtomic and PDEVSCoupled inherit the model

class that allows coupled and atomic models to be connect-

ed easily through couplings that can be debugged with ease

since they share a common model interface.

PDEVSAtomic and PDEVSCoupled are common to both

CDBoost and E-CDBoost. E-CDBoost adds “Port” to its

modeling subsystem. This represents the logical connection

between models and hardware devices. The user must pro-

vide ports implementation by extending a Port base class,

and specifying a “pDriver” or port driver function to trans-

late model output values to specific hardware components.

When defining a top port, the user specifies the name, relat-

ed EIC/EOC, and a polling period. This can be useful to

customize the polling frequency of input devices as sensors.

The link between DEVS logic and the hardware peripheral

libraries is established by pDriver, which either receives a

value to be translated onto commands, or it returns a value

depending on the state of input devices. For an input port,

pDriver could provide which GPIO (General Purpose Input

Output) pin to read, and set the port value. For an output

port, it receives a value that is translated into actions.

Execution classes, illustrated in Figure 4, implement the ab-

stract simulator algorithms and execute models. The

PDEVSCoordinator class, in charge of managing coupled

models, requires three template parameters: Time, Message

and Future Event List (FEL). These parameters will be de-

tailed in the ancillary subsystem with utility classes.

The Processor hierarchy is constructed by the invocation of

a constructor. Constructing coordinator objects requires the

coupled model components to be extracted and embedded

in the coordinator. For instance, when the Coordinator is

built, all the children are constructed, and the couplings be-

tween components are saved. The algorithms described

previously – collect_outputs and advance_simulation (here

advance_execution) are implemented in these classes.

The PDEVSSimulator class implements the simulator’s al-

gorithms introduced in section 3. This class calls the state

transition functions and returns the outputs of the atomic

models to their Coordinators. E-CDBoost uses a flat coor-

dinator and adds a global driver (“Driver”) that manages

ports. Simulators are linked to a top flat coordinator.

Root Coordinator

It is created and driven by the eRunner class, manages the

global execution and defines the end time of the simulation.

run():

while curentTime < stopTime

 wait for is signals from environment

 or internal time out(tN)

 if external event then

 Message in = DX(is)

 topCoordinator.postEvent(in)

 topCoordinator.advance_execution()

 else if internal time out then

 topCoordinator.collect_outputs()

 if output messages out received then

 os = DY(out)

 send os signal to hardware

 end if

 topCoordinator.advance_execution()

 end if

 tN = topCoordinator.next()

end while

The default stop time is infinity as in typical embedded sys-

tems a program is set to run forever. It waits for an internal

or external event in order to advance execution. In the first

case, outputs are collected and advance_execution. When

an external event occurs, the event value is added to the top

coordinator and advance_execution is called to process it.

When the runner receives an output message, it is processed

by the driver, and a corresponding value is sent to the port.

Input event values are retrieved from the global driver.

Global Driver Object

The Driver is responsible for initializing hardware, retriev-

ing inputs from hardware components connected to input

ports (calling pDriver), and sending commands to hardware

components connected to the output ports.

When a signal is detected on an input port, a message is

generated and added to the top coordinator inbox. The input

event retrieving mechanism is based on polling interrupts.

The user may also choose to use interrupts for signal detec-

tion. One of the advantages of our approach (especially for

experienced embedded systems developers), is that they can

use hardware or software interrupts to detect changes on the

hardware components directly and generate input messages.

Indeed, specific hardware interrupts associated with each

hardware device can be used to signal an input event while

software interrupts can be programmed based on a division

of the base clock to provide periodic polling. Interrupt ser-

vice routines are then set to post a port value that is then

used by the port driver to generate a PDEVS message.

In the case of output message, the driver will call the related

output port pDriver - in charge of converting the received

message into commands - with the received output data.

The utility classes provide essential data structures in order

to run the model. The first class in the utility category is

called Message. Boost::any is used by default in CDBoost,

as it allows the exchange of any type of messages in our

models. In E-CDBoost, we have defined a special message

type that includes time, port, and value parameters. The

Time component is associated with the physical time and

provides a RT clock with microsecond precision. It is inter-

faced with a 32-bit hardware timer. The Future Event List

(FEL) is provided as part of the utility classes. Using an ef-

fective FEL is essential in order to achieve good perfor-

mance. For the FEL type, any structure that matches the

priority queue signature is allowed. Consequently, the user

can define personalized schedulers and increase perfor-

mance if needed. The default FEL we provided is a stand-

ard priority queue. This is part of the C++ language and is

suited to store and retrieve timed events.

4.1. Execution on the target platform

E-CDBoost runs on top of the microkernel introduced in

section 3. This latter handles system calls and provides re-

quested services to the RT executive. The RT executive

communicates with hardware via ports and drivers.

A hardware abstraction layer that invokes MBED - a devel-

opment platform for ARM microcontrollers and connects

the application with the underlying hardware - is used to

streamline the development and ease applications porting.

5. A LINE TRACKING ROBOT

We have followed the DEMES approach to build several

applications, and executed them on the target platform us-

ing the new kernel. In this section, we will particularly fo-

cus on one application and present how it evolved progres-

sively from its system of interest definition, to formal mod-

el, to the real system. We will see how model-driven practi-

cally work and how we can construct a model of a system

that we can then transform into the real thing.

5.1. System Description

The first step is to define a system of interest. Ours is a line-

tracking robot designed to follow a path identified by a

black line and get back on track if the trail is not detected.

The system requirements are as follows: the robot shall be

equipped with a light sensor that faces the ground and

measures the amount of light reflected off a small ground

surface. The controller should consider a medium percent-

age of reflected light as a detected path and initiate the ro-

bot to move forward. When the robot goes off track, i.e.

does not sense a path trail; it stops, turns slightly, and then

tries to detect a trail again. If a path is detected, the robot

moves forward again; otherwise, it continues to turn until it

finds a path to follow. The robot should also be able to re-

ceive manual signals to start and stop.

Model Components

Once the system of interest is defined, the following step is

to model the system using DEVS. This formalism, as intro-

duced in section 2, decomposes complex system designs in-

to basic/behavioral models (atomic models) and compo-

site/structural models (coupled models). We take a top

down approach and first define the structure of the line

tracking robot system. Multiple iterations are usually re-

quired to capture the requirements into an appropriate hier-

archical structure. Note that we use the same example and

hierarchy as in [15] for comparison purposes.

The system is partitioned into three main units: a Sensor

Unit, a Control unit, and a Movement Unit. To communi-

cate with the environment, we use two input ports

(LIGHT_IN and START_IN), and two output ports

(MOVEL_OUT and MOVER_OUT). LIGHT_IN is the in-

put port through which reflected light is measured. START

_IN is for the manual start/stop commands. The output

ports are for the robot’s left and right motors movements.

In terms of components, the sensor unit contains input de-

vices. In this case, it contains an atomic model (light sen-

sor), which reads the amount of light reflected and transmits

those readings to the control unit. This latter has a sensor

controller and the movement controller. The sensor control-

ler activates or stops the light sensor, receives the sensor

readings, and sends messages to the movement controller,

specifying whether the robot is on track, off track, or has

reached the destination. When the robot arrives at its desti-

nation—i.e. the light sensor reads an all-dark surface—the

sensor controller sends a “stop reading” command to the

light sensor and a stop signal to the movement controller.

The movement controller also receives on/off track and stop

signals from the sensor controller, and it sends appropriate

commands to the motors. The movement unit is made of

motor left and motor right. It groups the robot’s actuators

that move in response to commands received from the con-

trol unit. The motor models control the robot movements:

they can spin clockwise, anticlockwise, or stop according to

the signals they receive from the control unit.

These models can be formally specified and used for mod-

el-checking,or formal verification. The DEVS model speci-

fication is also preserved as much as possible throughout

the development cycle.

Model Specification

The specification of the control unit is shown below as an

example. As mentioned earlier, the control unit has two

atomic models, the sensor and movement controllers. The

control unit can be formally defined as:

CM = < X, Y, D, {Md}, EIC, EOC, IC >,

X={(CU_START_IN_TOP, N) ; (CU_LIGHT_IN_SU, N)}

Y={(CU_START_OUT_SU, N); (CU_MOVEL_OUT

_MU, N); (CU_MOVER_OUT_MU, N)}

D = {Sensor Ctl, Movement Ctl}.

Md = {M(sensor Ctl), M(movement Ctl)}

EIC = {((Self, CU_START_IN_TOP), (Sensor Ctl,

sctrl_start_in));((Self, CU_LIGHT_IN_SU), (Sensor Ctl,

sctrl_light_in))}

EOC={((Sensor Ctl, sctrl_start_out), (Self, CU_

START_OUT_SU)); ((Movement Ctl, mctrl_movel _out),

(Self, CU_MOVEL_OUT_MU)); ((Movement Ctl,

mctrl_mover_out), (Self, CU_MOVER_OUT_ MU))}

IC = { (Sensor Ctl, sctrl_mctrl_out); (Movement Ctl,

mctrl_sctrl_in) }

Figure 5 illustrates a DEVS Graph representing the sensor

controller’s behavior.

Figure 5. Sensor Controller State Diagram

The Sensor Controller is IDLE until a start command is is-

sued. Then, an external transition is triggered and the Sen-

sor Controller state changes to PREP_RX. At this point, it

waits for ta=scRxPrepTime, after which a ‘start’ output is

sent to the Light Sensor and an internal transition changes

state to WAIT_DATA. It waits in this state until it receives

a signal from the Light Sensor. If the signal indicates that

the robot reached the destination (ALL_DARK), the exter-

nal transition causes a switch to PREP_STOP, where it will

immediately send a stop signal to the Light Sensor and the

Movement Controller, and it will transition back to IDLE.

However, if the signal is different, the Sensor Controller

will go to TX_DATA, will wait for ta=scTxTime, after

which it will send an output to the Movement Controller in-

dicating whether the robot is on track or not. If the Sensor

Controller receives a manual stop signal (STOP_PROC), it

will transition to the PREP_STOP to stop all activities.

5.2. Implementation with E-CDBoost

The user implements atomic models in E-CDBoost by ex-

tending a basic model class and providing state transition

and output functions. This case study was built in E-CD++

[15]; here, we show the implementation differences. The

code below shows an example for the sensor controller

functions. We can see that it includes the state transition

and output functions that corresponds to the original DEVS

specification/graph. In this way, it is similar to [15] except

that the time advance is clearly separated. The message

structure is constructed using the port and the value to be

sent. This structure is specific to E-CDBoost and is not

available per default in CDBoost. The TIME parameter re-

turned by the time advance function is defined using real

time units, an addition of E-CDBoost too.

void internal() noexcept {
 switch (_state){
 case PREP_STOP:
 _state = IDLE; _next = infinity;
 break;
 case PREP_RX:
 case TX_DATA:
 _state = WAIT_DATA; _next = infinity;
 break; }
}

/* @return Time until next internal event. */
TIME advance() const noexcept { return _next; }

/* @return a bag of output messages */
std::vector<MSG> out() const noexcept {
 //…
 switch (_state){
 case PREP_STOP:
 //Send stop through sctrl_start_out and mctrl
 _outputMessage1 = MSG(portName[sctrl_start_out],
 STOP_PROC);
 _outputMessage2 = MSG(portName[sctrl_mctrl_out],

 STOP_PROC);
 std::vector<MSG>{_outputMessage1, _outputMessage2};

 case PREP_RX: //Send Start through sctrl_start_out
 _outputMessage1 = MSG(portName[sctrl_start_out],

 START_PROC);
 return std::vector<MSG>{_outputMessage1};

 case TX_DATA: {
 //Send on/off track signals sctrl_mctrl_out
 int output_val;

 if(sensor_input == DARK) output_val = ON_TRACK;
 else if (sensor_input == BRIGHT)
 output_val = OFF_TRACK;

 _outputMessage1 = MSG(portName[sctrl_mctrl_out],

 output_val);
 return std::vector<MSG>{_outputMessage1};
 }
 };
 return std::vector<MSG>{}; //Default: empty output
}

To implement coupled models, input, internal and output

links have to be provided. The following snippet shows

how the control unit model is described in E-CDBoost.

1. // Atomic models definition

2. auto sctrl = make_atomic_ptr <SensorControl-

ler<Time, Message>>();

3. auto mctrl = make_atomic_ptr <MovementControl-

ler<Time, Message>>();

4. //Coupled model definition

5. shared_ptr<flattened_coupled<Time, Message>>

ControlUnit(new flattened_coupled<Time, Mes-

sage>{{sctrl,mctrl}, {sctrl}, {{sctrl,mctrl}},

{mctrl}});

The sensor controller (sctrl at line 2) and movement con-

troller (mctrl at line 3) are the two components of the con-

trol unit. The model is created on line 5 by respectively

providing its components ({sctrl,mctrl}), then its EIC (sig-

nals from hardware components; sctrl is connected to the

light sensor and push button), its IC (sctrl is connected to

mctrl internally), and finally its EOC (components sending

output signal to hardware: mctrl to the two motors). One of

the advantages of this approach is that no file needs to be

embedded onto the target platform or converted beforehand.

It also offers a lightweight mechanism for specifying links.

Once satisfied with the simulation results, hardware com-

ponents and DEVS controller are integrated. To interface

models with hardware components, EIC and EOC compo-

nents are linked to top ports, as follows:

1. // Input ports

2. auto start = make_port_ptr<START_IN

 <Time, Message>>();

3. auto light = make_port_ptr<LIGHT_IN

 <Time, Message>>();

4. // Output ports

5. auto motorleft = make_port_ptr<MOVEL_OUT

 <Time, Message>>();

6. auto motorright =

make_port_ptr<MOVER_OUT<Time, Message>>();

7. // Execution parameter definition

8. erunner<Time, Message> root{ControlUnit,

{{start,sctrl},{light,sctrl}} , {{mo-

torleft,mctrl},{motorright,mctrl}} };//link

top ports to EIC and EOC components

Lines 2 and 3 create the two input ports respectively con-

nected to the start button and the light sensor. Line 5 and 6

show the two output ports linked to the motors. Links be-

tween ports and the model they are connected to are passed

along with the top model to the erunner (defined in section

4) that executes models on the target platform.

For hardware integration, we use a Seeed Studio Shield bot

and a Nucleo development board. One of the onboard re-

flectance sensors is used as the input for our light readings,

a push button on the Nucleo and the two motors of the

Seeed Shield Bot to move the robot.

template<class TIME, class MSG>

class LIGHT_IN : public port<TIME, MSG> {

public:

 /* @param n Name assigned to the port.

 @param polling Polling for the port */

 explicit LIGHT_IN(const std::string &n =

 "light_in", const TIME &polling =

 TIME(0,0,0,200)) noexcept : port<TIME,

 MSG>(n,polling) {}

 bool pDriver(Value &v) const noexcept; };

Top ports connected to hardware sensors/actuators have to

be specified to interface the model with the previous hard-

ware components. These ports are specified as extension of

a basic port class. The LIGHT_IN port is derived from the

port class and provides a default polling time (200 ms here)

when interrupts are not used by the user. In its pDriver im-

plementation (shown below), we call a function of the

Seeed Shield Bot MBED library that returns the value of

the onboard sensor used to track the line.

template<class TIME, class MSG>
bool LIGHT_IN<TIME, MSG>::pDriver(Value &v) const
noexcept { v = bot.getCentreSensor();
 return true; }

Bot is defined during the hardware initialization process

and it contains the hardware pins connected to the hardware

bot. In this case, the centre sensor is connected to A2.

SeeedStudioShieldBot bot(
 D8, D9, D11, // Left motor pins
 D12, D10, D13, // Right motor pins
 A0, A1, A2, A3, D4 // Sensors pins);

6. RESULTS

We will illustrate the execution mechanism using trace logs

collected during the execution of the line tracking robot. It

illustrates the advance_simulation/execution() and col-

lect_ouputs() function calls explained earlier. The flat coor-

dinator forwards the function call to the appropriate simula-

tor which, in turn returns outputs or calls its state transition

functions. Two examples are provided to illustrate internal

execution mechanism are shown below.

DRIVER: INPUT MESSAGE Time: 00:00:02:517:459

 Port: start_in Value: 10
 - advance_execution()::flattop

 - advance_execution()::sctrl

 model->external() model->advance(): 00:00:00:040:000
 - collect_outputs()::flattop

 - advance_execution()::flattop

 - collect_outputs()::sctrl model->out()
 - advance_execution()::sctrl model->internal() model->advance(): ...

 - advance_execution()::mctrl model->external() model->advance(): ...

DRIVER: INPUT MESSAGE Time: 00:00:02:600:697
 Port: light_in Value: 1

 - advance_execution()::flattop

 - advance_execution()::sctrl
 model->external() model->advance(): 00:00:00:040:000

 - collect_outputs()::flattop

 - advance_execution()::flattop
 - collect_outputs()::sctrl model->out()

 - advance_execution()::sctrl model->internal() model->advance(): ...

 - advance_execution()::mctrl
 model->external() model->advance(): 00:00:00:040:000

 - collect_outputs()::flattop

 - collect_outputs()::mctrl model->out()
DRIVER: OUTPUT MESSAGE Time: 00:00:02:680:850

 Port: motor1 Value: 1

DRIVER: OUTPUT MESSAGE Time: 00:00:02:680:834
 Port: motor2 Value: 1

The listing above shows the sequence that follows a start

button press at time 00:00:02:517:459. The driver con-

structs an input message that triggers the call of the external

function of the sensor controller model. An input message

indicating a line detection is then sent by the driver and

causes the sensor and movement controller external func-

tions to be called. Two outputs are generated, commanding

the motors to go forward (Value 1 sent to both motors).

The listing below shows the case corresponding to a manual

stop that causes stop commands (0 sent to motor1 and mo-

tor2) to be sent to the motors.

DRIVER: INPUT MESSAGE Time: 00:02:10:403:002
 Port: start_in Value: 11

 - advance_execution()::flattop

 - advance_execution()::sctrl
 model->external() model->advance(): 00:00:00:000:000

 - collect_outputs()::flattop

 - advance_execution()::flattop
 - collect_outputs()::sctrl model->out()

 - advance_execution()::sctrl model->internal() model->advance(): ...

 - advance_execution()::mctrl
 model->external() model->advance(): 00:00:00:000:000

 - collect_outputs()::flattop

 - collect_outputs()::mctrl model->out()
DRIVER: OUTPUT MESSAGE Time: 00:02:10:403:559

 Port: motor1 Value: 0

DRIVER: OUTPUT MESSAGE Time: 00:02:10:403:543
 Port: motor2 Value: 0

Once the tests are done, the controller model is deployed

onto the Nucleo board to autonomously control the robot. A

video showing the result on the target platform is available

here [18].

Two of the desired outcomes of E-CDBoost were a smaller

kernel footprint and a decreased overhead. In terms of code

size, some kernel design decisions, such as the inclusion of

the nanolib – an optimized library for microcontrollers -, al-

lowed us to reduce the code size by more than 50%. We al-

so compared the code size of E-CD++ and E-CDBoost. The

latter is smaller. For the line tracking robot application, E-

CDBoost occupies 131 KB of flash memory and 448 bytes

of data memory while the E-CD++ takes 240 KB of flash

memory and 608 bytes of data memory.

We compared the performance of both techniques for this

line tracking robot application. We particularly measured

the time it takes for an external event to trigger the external

function of a model, i.e. the time it takes from the root to

the simulator (EXT: Root to Simulator in Table 1). We also

assessed the time it takes from the external function to re-

turn control to the root (EXT: Simulator to Root in Table

1). The other aspect that we examined was the output col-

lection, specifically the time it takes from the root collect

outputs command to the output function call (OUT: Root to

Simulator) and for the outputs to be received by the driver

object (OUT: Simulator to Root). The following table

summarizes the results.

 E-CD++ E-CDBoost

EXT: Root to Simulator 155 us 53 us

EXT: Simulator to Root 159 us 43 us

OUT: Root to Simulator 68 us 25 us

OUT: Simulator to Root 97 us 31 us

Table 1. Overhead Evaluation

The overhead was reduced by more than 60% in all cases.

In order to take the above measurements, we used a soft-

ware instrumentation method. For EXT: Root to Simulator

for example, we read the value of a hardware timer when an

external event (e.g. new reflected light value) is detected.

Indeed, more messages are exchanged with E-CD++. If we

examine more closely the first case - EXT : Root to Simula-

tor - for example, E-CD++ will first add a X message and

then a * message through the message admin that then pro-

cesses them and send them to the flattened coordinator.

This generates an X and * message to be sent to the simula-

tor. Upon reception, the simulator calls the external method.

In E-CDBoost, the runner adds the input message to the in-

box of the flattened coordinator, calls the ad-

vance_execution() method, that leads to the simulator ad-

vance_execution() call that finally calls the external func-

tion of the concerned model. There are less generated mes-

sages in this case, and less storage/retrieval of messages in-

volved. The future event list is more effective in E-

CDBoost. For the output related events, we can observe that

the overhead is less since less messages are involved (@

and Y) and no next event time computation is required.

Another set of tests, not related to this application and that

would prove useful, is the case where multiple events are

received in a short period. This is because CDBoost has

proved to be very effective and achieved results comparable

and sometimes better [16] than adevs, the fastest DEVS

simulator according to a recent survey [19].

7. CONCLUSION

Using model-driven development for embedded systems is

certainly a promising solution since the complexity and het-

erogeneity of the system are handled earlier in the devel-

opment cycle. DEVS, in particular, with its formal nature

and integrated time concept captures the essential character-

istics of embedded systems.

We presented E-CDBoost used to build DEVS-based em-

bedded applications. E-CDBoost is OS independent; it con-

trols model execution on the target platform and interacts

with the surrounding environment. It allows models to be-

come controllers running on the execution platform. The in-

ternal structure of the RT executive separates the construc-

tion from the execution mechanism. It provides classes to

the user in order to implement DEVS models easily. The

execution mechanism, hidden from the user, renders the

models behavior.

A case study was presented to provide a practical view of

the development cycle and the usability of the new bare-

metal kernel. The line tracking robot application was devel-

opped using E-CDBoost and the resulting binaries deployed

on a Nucleo board mounted on the Seeed Studio Shield Bot.

E-CDBoost allowed us to have a small footprint and reduce

the message processing overhead by more than 60%.

REFERENCES

1. S. J. Mellor, T. Clark, and T. Futagami, “Model-driven

development: guest editors' introduction.” IEEE software,

vol. 20, no. 5, pp. 14-18, 2003.

2. B. P. Zeigler, H. Praehofer and T. G. Kim, Theory of

modeling and simulation, Academic press, 2000

3. D. Niyonkuru and G. Wainer, "Discrete Event Method-

ology for Embedded Systems." Computing in Science &

Engineering vol.17, no.5, pp.52-63, Sept-Oct. 2015.

4. M. Moallemi, G. Wainer, A. Awad, D. A. Tall “Applica-

tion of RT-DEVS in military”. Proceedings of the 2010

Spring Simulation Multiconference, Orlando, FL, 2010.

5. A. Furfaro and L. Nigro, “A development methodology

for embedded systems based on RT-DEVS” Innovations

in Systems and Software Engineering, vol. 5, no. 2, pp.

117–127, 2009.

6. X. Hu and B. P. Zeigler, “Model continuity to support

software development for distributed robotic systems: A

team formation example” Journal of Intelligent and Ro-

botic Systems, vol. 39, no. 1, pp. 71–87, 2004.

7. A. Furfaro and L. Nigro, “Embedded control systems

design based on RT-DEVS and temporal analysis using

UPPAAL” International Multiconference on Computer

Science and IT, Wisla, Poland, 2008.
8. G. A. Wainer, Discrete-event modeling and simulation: a

practitioner’s approach. CRC Press, 2009.

9. A. C. Chow, “Parallel DEVS: A parallel, hierarchical,

modular modeling formalism and its distributed simula-

tor” Transactions of the SCS, vol. 13, no. 2, 55–68, 1996.

10. Y. H. Yu and G. Wainer, “ecd++: an engine for execut-

ing DEVS models in embedded platforms” in Proceedings

of SCSC, San Diego, CA, 2007.

11. A. C. Chow, "Parallel DEVS: A parallel, hierarchical,

modular modeling formalism and its distributed simula-

tor” Transactions of the SCS, vol. 13, no. 2, 55-68, 1996.

12. Y. K. Cho, X. Hu, and B. P. Zeigler, “The

RTDEVS/CORBA environment for simulation-based de-

sign of distributed real-time systems” Simulation, vol. 79,

no. 4, pp. 197–210, 2003.
13. F. Bergero and E. Kofman, “PowerDEVS: a tool for

hybrid system modeling and real-time simulation” Simu-

lation, vol. 87, no. 1-2, pp. 113–132, 2011.

14. X. Hu, B. Zeigler, and J. Couretas, “Devs-on-a-chip:

implementing DEVS in embedded java on a tiny internet

interface for scalable factory automation” in Proceedings

of the 2001 IEEE SMC, Tucson, AZ 3051–3056, 2001.

15. D. Niyonkuru and G. Wainer, "Towards a DEVS-based

Operating System”. Proceedings of the 3rd ACM Confer-

ence on SIGSIM-PADS, London, UK, 101-112, 2015.

16. D. Vicino, D. Niyonkuru, G. Wainer, and O. Dalle,

"Sequential PDEVS Architecture” Proc. TMS/DEVS

2015. Alexandria, VA, 2015.

17. Shield Bot V1.2. 2016. Retrieved February 26, 2016

from http://www.seeedstudio.com/wiki/Shield_Bot_V1.2

18. Advanced RealTime Simulation Laboratory. 2015. Line

Tracking Robot on Embedded CDBoost. Video. Retrieved

August 1,2015 from http://youtu.be/BZzzeJAa-cA

19. R. Franceschini, P.-A. Bisgambiglia, L. Touraille, P.

Bisgambiglia, D. Hill, R. Neykova and N. Ng "A survey

of modelling and simulation software frameworks using

Discrete Event System Specification” in Imperial College

Computing Student Workshop, London, UK, 2014.

http://www.seeedstudio.com/wiki/Shield_Bot_V1.2
http://youtu.be/BZzzeJAa-cA

