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Abstract
Cellular automata are discrete dynamical systems that provide a mathematical framework for modelling, studying and
predicting the behaviour and response of systems across many different disciplines and domains, ranging from physical
and biological to computational and social models. Cell-DEVS is a formalism that provides a discrete event approach to
define cellular models with timing delay constructions and using simple definition of complex timing. It has been shown
that the application of the Cell-DEVS paradigm produces a significant reduction in the development times of cell-shaped
models and a wide variety of complex models has been developed using this approach. In this work we present the defi-
nition of complex cellular automata models using the Cell-DEVS paradigm, we use the CD++ tool to obtain executable
models and study their behaviour through computer simulation.
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1. Introduction

Cellular automata (CA) are discrete dynamical systems that

provide a mathematical framework for modelling, studying

and predicting the behaviour and response of systems across

many different disciplines and domains, ranging from physi-

cal and biological to computational and social models.

CA are defined as a lattice of cells, where each cell

takes on a finite set of possible values that are updated at

discrete time steps in a synchronous way according to a

set of rules that depends on the state of some nearby cells

(the neighbourhood). The state of the lattice at time zero

t= 0 is referred to as the initial configuration. In subse-

quent time steps t+ 1, t+ 2, t+ 3, . . . , t+ nð Þ the state

of each cell can be determined by the current state of the

cell and its neighbours. The resulting configuration of the

cell values defines the state of the system in the next time

step. In this way, the configurations at different points in

time describes the discrete evolution of many identical

cells and despite their simple construction, they are shown

to be capable of complex behaviour and to generate com-

plex patterns with universal features.1

CA were originally introduced by John von Neumann

as ideal structures for the construction of a self-replicating

machine; in his work, he was able to describe the first CA

capable of self-reproduction. A condition required by von

Neumann for self-reproduction was the capacity for uni-

versal construction (i.e., the CA was designed to construct

any machine described as input) to exclude passive or tri-

vial replication, as a consequence the design of his

machine was very complex. The model presented by von

Neumann consists of a two-dimensional array with an ini-

tial configuration of thousands of cells and 29 possible

states for each cell. This model was revised and simplified

by Codd2 where he was able to describe a self-reproducing

CA using only eight states per cell but the initial config-

uration of the machine still requires thousands of cells.

The concept of self-reproduction in CA was revised by

Langton3 where he stated that although the capacity for

universal construction is a sufficient condition for self-

reproduction, it is not a necessary condition. Following

this idea he demonstrated the existence of simple self-

reproducing structures that can be embedded in CA using
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only a rectangular area of just 103 15 cells without

requiring the capacity of universal construction.

On the other hand, Weisstein4 presented the simplest

class of one-dimensional CA is presented. These elemen-

tary CA consist of two possible state values for each cell

and the evolution rules depends on the current state of

each cell and the values of the nearest neighbours. A total

of 256 elementary CA can be defined that exhibit differ-

ent kinds of output behaviour, in particular, the elemen-

tary CA called Rule 110 (due to the Wolfram numbering

scheme5) although trivial to define, has been proven to

be capable of universal computation,6 emulating the

activity of a Turing machine by encoding the Turing

machine and its tape into a repeating left pattern, a cen-

tral pattern and a repeating right pattern on which Rule

110 then acts on.

In order to be able to study, analyse and predict the

behaviour of these theoretical CA models computer simu-

lation of executable models is required. The use of a mod-

elling formalism improves the development times of

executable models. A formal paradigm can make the defi-

nition of models for the development of simulations easier.

The Cell-DEVS7 formalism is based on the discrete

event systems specification (DEVS) paradigm8 and pro-

vides a discrete event approach to define cellular models

with timing delay constructions and using simple definition

of complex timing. Cell-DEVS models are defined as a

space composed of individual cells that can be coupled to

form a complete cell space where each cell is a continuous

time model defined by simple rules and a few parameters.

It has been shown that the application of the Cell-DEVS

paradigm produces a significant reduction in the development

times of cell-shaped models7 and a wide variety of complex

models has been developed using this approach.9–12

The Cell-DEVS specification was used to develop the

CD++ modelling and simulation tool13 that allows the def-

inition of executable models providing a high-level speci-

fication language where local transition rules can be easily

defined and extended.

In this work we present the definition of complex CA

models using the Cell-DEVS paradigm, we use the CD++

tool to obtain executable models and study their behaviour

through computer simulation. We apply this approach to

show that different kinds of applications can be easily

faced. Towards this end, we present executable models for

the elementary Rule 110 CA mentioned above, a three-

state two-colour Turing machine presented by Weisstein14

and a simple self-reproducing CA with shape encoding

mechanism presented by Morita and Imai.15

2. Background

Cellular automata are discrete dynamical systems, they are

defined as an infinite regular n-dimensional lattice whose

cells can take finite value. The states in the lattice are

updated according to a local rule in a simultaneous and

synchronous way. The cell states change in discrete time

steps as dictated by the local transition function using the

present cell state and a finite set of nearby cells called the

neighbourhood of the cell (Figure 1).

The evolution of a CA at successive time steps gener-

ates different output patterns and although they have sim-

ple construction, some CA are capable of complex

behaviour. Based on the output behaviour, the CA evolu-

tion can be characterized into four different classes:1,16

1. evolution leads to a homogeneous state;

2. evolution leads to set of separated stable or peri-

odic structures;

3. evolution leads to a chaotic pattern;

4. evolution leads to complex localized structures.

A wide range of complex systems can be modelled

using CA from biological processes17,18 to physical and

computational systems19–21 where sufficiently compli-

cated CA have been shown to be computationally ‘‘uni-

versal’’, as they behave as a general-purpose computer.22

Figure 1. Possible neighbourhood definition for a cell in a one-dimensional and a two-dimensional CA, respectively.
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The Cell-DEVS7 formalism is based on the DEVS8

formalism, a continuous time technique. The main goal of

Cell-DEVS is to build discrete-event cell spaces.

DEVS is a system specification formalism that provides

a framework for the construction of hierarchical and mod-

ular models allowing model reuse. A DEVS model is com-

posed of atomic sub-models that can be combined into

coupled models. Formally, an atomic DEVS model is

defined by the following structure:

M =(X,S,Y, dint, dext, l,D)

where X is the set of input event values, i.e., the set of all

possible values that an input event can adopt, S is the set

of state values, Y is the set of output event values and l is

the output function. For each DEVS atomic model, the

external transition function dext, the internal transition

function dint and the state time advance function D define

the system dynamics that can be described in the follow-

ing way.

� When an input event arrives, the external transition

function is executed and the state changes instanta-

neously. The new state value depends not only on

the input event value but also on the previous state

value and the elapsed time since the last transition.
� The time advance function returns a non-negative

real number saying how long the system remains in

a given state in the absence of input events.
� When the time units dictated by the time advance

function are consumed, the output function is exe-

cuted producing an output event that depends on

the current state of the model. In addition, the inter-

nal transition function is executed and it can change

the state of the model. The new value depends on

the current state.

Atomic DEVS models can be coupled and DEVS theory

guarantees that the coupling of atomic DEVS models

defines new DEVS models (i.e., DEVS is closed under cou-

pling).8 Coupling in DEVS is usually represented through

the use of input and output ports. With these ports, the cou-

pling of DEVS models becomes a simple blockdiagram

construction. Formally, these models are defined as

CM = hX,Y,D,Mi, Ii, Zij, selecti

where X is the set of input events, and Y is the set of output

events. Here D is the set of indexes of the components, and

for each i 2 D, Mi is a basic DEVS model, Ii is the set of

influences of model i and select is the tie-breaking selector.

Finally, for each i 2 D _ j 2 Ii, Zij is the i to j translation

function. The translation function defines which output of

model Mi are connected to the inputs of model Mj.

Cell-DEVS combines CA and DEVS allowing the defi-

nition of models as a space composed of individual cells

that can be coupled. Each cell in the cell space is defined

as an atomic model using timing delays with the following

definition:

TDC= hX,Y, I,Y,N, delay, d, dint, dext, t, l,Di

where X defines the set of external input events, Y is the

set of external output events, I represents the interface of

the model,Y is the set of states for the cell, N is the neigh-

bourhood set for the cell, delay defines the kind of delay

used and d defines the delay duration, t is the local com-

putation function and, finally, dint, dext, l and D have the

same semantics of a DEVS atomic model.

A cell uses a set of input values N to compute its future

state, which is obtained by applying the local computation

function t. A delay function is associated with each cell,

deferring the output of the new state to the neighbour cells.

There are various types of delays, for instance, inertial and

transport delays. When a transport delayed is used, the

future value will be added to a queue sorted by output

time. Therefore, all previous values that were scheduled

for output but that have not yet been sent, will be kept. In

contrast, inertial delays use a preemptive policy: any pre-

vious scheduled output value, unless the same as the new

computed one, will be deleted and the new one will be

scheduled. This activation of the local computation is car-

ried by the dext function.

After the basic behaviour for a cell is defined, the com-

plete cell space is constructed by building a coupled Cell-

DEVS model:

GCC= hXlist,Ylist, I ,X,Y, n, ft1, . . . , tng,N,C,B, Zi

where Xlist/Ylist are the input/output coupling lists, I repre-

sents the definition of the interface for the model, X and Y

are the set of external input/output events, n is the dimen-

sion of the cell space, ft1, . . . , tng is the number of cells

on each of the dimensions, N is the neighbourhood set, C

is the cell space, B is the set of border cells and Z is the

translation function.

This specification defines a coupled model composed

of an array of atomic cells. Each cell is connected to the

cells defined in the neighbourhood, but as the cell space is

finite, either the borders are provided with a different

neighbourhood than the rest of the space, or they are

wrapped, meaning that cells in one border are connected

with those in the opposite one. Finally, the Z function

defines the internal and external coupling of cells in the

model.

The Cell-DEVS specification was used to develop the

CD++ modelling and simulation tool.13 In this tool the

behaviour of atomic models are defined as C++ functions

while a specification language is used to define coupled

models. The language allows the definitions of size, influ-

ences, neighbourhood and borders according to the defini-

tion given above. In this way, we can construct the
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complete cell space. The behaviour of the local computing

function is defined using a set of rules, with the following

syntax:

VALUE DELAY {CONDITION}

According to this definition, when the CONDITION is

satisfied the new state of the cell is set to VALUE after

DELAY units of time.

2.1. Related work

An implementation of the Rule 110 CA can be found in

Martı́nez et al.23 where the different periodic structures

(known as gliders), their properties and production due to

collision found in the evolution space of the CA are exten-

sively studied using executable models generated by the

OSXLCAU21 and NXLCAU21 computational systems.

The OSXLCAU21 system is specifically developed in

order to satisfy the necessity of a detailed study in the evo-

lution space of Rule 110 and the NXLCAU21 system is

developed for the study of the evolution of two-

dimensional CA.

Vukašinovic et al.24 presented executable models for

deterministic and non-deterministic Turing machines.

These models are implemented using the symbolic pro-

cessing and functional programming primitives of the

Mathematica package. Mathematica is a commercial soft-

ware program used in scientific, engineering, mathemati-

cal and computing fields, based on symbolic mathematics.

Finally, following the line of work introduced by

Langton3 as to what constitutes genuine self-reproduction,

Byl25 presents a simplified theoretical model of a small

self-reproducing CA where he describes a six-state CA

model in which the minimal configuration needed for self-

reproduction consists of only 10 cells. Following this

ideas, different theoretical self-reproduction CA models

are found in Morita and Imai26 and Reggia et al.27

This research shows how to define a generic and sys-

tematic approach to obtain executable models of theoreti-

cal CA. All of the models described in this work are

classic synchronous CA (which implies that the timing

definition for this models is simple and they do not take

advantage of the Cell-DEVS asynchronous nature, thus,

the type of delay used will not affect the output behaviour

and for this reason in the specifications presented in this

work the transport and inertial delays can be used without

affecting the simulation results). Our goal is to show the

advantages of using a modelling formalism and how this

approach facilitates the model development for the end

user while providing the means to define more advanced

models (which could include asynchronous behaviour for

different delay functions). Towards this end, the following

sections are devoted to the application of the Cell-DEVS

paradigm and related tools to these kind of models.

3. Rule 110 model

In this section we present a Cell-DEVS definition of the

theoretical Rule 110 CA presented by Wolfram.22 Rule

110 is defined as an elementary CA, where a cell can be

active (1) or inactive (0) depending on the states of the

immediate left, centre and right cells (the neighbourhood).

Since there are 2 � 2 � 2= 8 possible combinations for the

cells in the neighbourhood, total of 256 elementary CA

can be defined by a table specifying the new state for a

cell according to the value of the left neighbour, the actual

state of the cell and the right neighbour. Each elementary

CA is indexed using an 8-bit binary number according to

all the possible output states. Table 1 shows the specifica-

tion for the Rule 110 (110= 011011102) CA.

Rule 110 has been described as capable of universal

computation. At its simplest, Rule 110 is a simple Turing

machine (capable of universality which means that many

of their properties will be non-decidable, and not amenable

to closed-form mathematical solutions). The function of

the universal machine in Rule 110 requires an infinite

number of localized patterns to be embedded within an

infinitely repeating background pattern. The background

pattern is 14 cells wide and repeats itself exactly every

seven iterations (the pattern is 00010011011111). It has

been shown that this CA generates a class 4 behaviour

(that is neither stable nor chaotic).

The evolution over time of the execution of Rule 110

(which is an elementary one-dimensional CA) can be

visualized using a two-dimensional representation where

each row develops from the previous row with the number

of rows representing the desired time units. Figure 2 shows

an example of the execution of the Rule 110 CA for 600

units of time where the active cells (1) are represented by

the black colour and inactive cells (0) are represented by

the white colour.

Figure 2 shows three localized patterns of particular

importance in the Rule 110 universal machine, surrounded

Table 1. State transition.

Neighbourhood 111 110 101 100 011 010 001 000
New state 0 1 1 0 1 1 1 0
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by a repeating background pattern. The leftmost structure

shifts two cells to the right and repeats every three genera-

tions. It comprises the sequence 0001110111 surrounded

by the background pattern given above, as well as two dif-

ferent evolutions of this sequence. These patterns are pres-

ent and highlighted by the circles labelled A and B

respectively. The circle labelled C represents the interac-

tion of these two structures as they pass through each other

without interference to produce a third unique structure,

deemed as self-reproduction.

In the following, we show a model specification for

Rule 110 implemented on CD++ presented in Figure 3

as a coupled Cell-DEVS model with a 75 3 75 cellular

space, using nonwrapped border, a transport delay and

the neighbourhood described in Table 1. As previously

stated, the two-dimensional representation of this one-

dimensional CA allow us to observe how the model

evolves over time, thus, in this model specification we

will be able to see the evolution of the CA for the first

75 units of time.

For the transition rules implementation, taking into

account that Rule 110 is a binary combination of the previ-

ous neighbour’s data value, the Rule 110 logic can be

described as a sum of products:

Rule110(A,B,C)= (AB�C)+ (A�BC)

+ (�ABC)+ (�AB�C)+ (�A�BC)
ð1Þ

where:

� A represents the left neighbour;
� B represents the centre neighbour;
� C represents the right neighbour.

Then, we use a Karnaugh Map to reduce Equation (1) to

its simplest representation:

Rule110(A,B,C)= (A�B)+ (B�C)+ (�BC) ð2Þ

As we mentioned above, Rule 110’s state is either a 1

or a 0. In order to be able to visualize the execution of this

model, this 1-D CA was represented using a two-

dimensional Cell-DEVS. Figure 4 shows the CD++ imple-

mentation of these rules.

The first rule implements Equation (2). The second

transition rule is used to retain the current value of the cell

if the precondition for (2) does not hold.

The results of the CD++ model execution for a 75 3

75 cell space using the Cell-DEVS Animation tool are pre-

sented in Figure 5. The opening row has the initial condi-

tion that all data values are 0 except for the rightmost digit

which is a 1. With these initial values, the data evolves

into the pattern shown in Figure 5a. The initial values of

the execution of the model are shown in Figure 5b. We

can see that for the last cell of the second row, the centre

neighbour has its state set to 1 and the left neighbour has

its state set to 0 ((�1, 0) and (�1, �1) in the CD++ neigh-

bourhood description of the model respectively), thus,

transition rule number 1 holds and the new state of the cell

is set to 1. Similarly, for the next to last cell of the second

row the centre neighbour has its state set to 0 and the right

neighbour has its state set to 1, therefore, we can apply

transition rule number 1 and the new cell state is set to 1.

The evolution from the second to the third row and from

the third to the fourth row can be obtained following the

same reasoning and is shown in Figures 5b and 5e.

The executable model presented in this section allows

the study of different periodic structures that appear in the

Figure 2. Sequential execution of the Rule 110 CA, each row
of the two-dimensional representation reflects the current state
of the CA for 600 units of time (600 × 600 cell space).

Figure 3. Rule 110 CD++ coupled model definition.

Figure 4. Rule 110 transition rules.
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evolution of the Rule 110 CA as well as the complex beha-

viour that emerges from the execution.

4. Three-state two-colour Turing machine

Weisstein14 specified a CA template for a three-state, two-

colour Turing machine. In this template the state of each

cell is characterized by a square that contains:

� a pointer indicating the direction, {", ↘, ↙};
� the colour of the cell, {‘‘black’’,

‘‘white’’}

In order to be able to define the machine behaviour the

template defines an instruction that is represented by three

squares, with the top one representing a possible direction

and colour of the active cell and the bottom ones giving

the new colour the active cell and the direction in which

the tape should be moved. The special state 0 (with no

pointer) indicates a state at which the Turing machine

should halt (i.e., cease computation).

Figure 6 shows a possible definition of an instruction.

This instruction indicates that if the direction of the active

cell is set to " and its colour is set to ‘‘black’’, then the

new colour of the cell is set to ‘‘white’’ and the direction

of the tape should be set to ↘, where the active cell state

is represented by the top square and the new colour of the

cell and its direction are represented by the left and right

bottom squares, respectively.

Thus, for a concrete implementation of the template, a

total of 3H2= 6 instructions that define the behaviour of

the machine for all possible states has to be provided. In

addition, taking into account the empty square state (with

no pointer), each cell has eight possible states. We can see

that in the general case of a k-state n-colour Turing

machine we need kHn rules to define the behaviour of the

machine and each cell will have (k+ 1)Hn possible

states.

The model implemented in this section derives from the

one originally presented by Wolfram22, and it represents

an example of a concrete implementation of the CA tem-

plate for a three-state two-colour Turing machine. The cor-

responding set of rules are shown in Figure 7.

In this model, the semantics of the first instruction rep-

resented in Figure 7a were explained previously, the sec-

ond instruction, depicted in Figure 7b, states that if the

direction of the active cell is set to " and its colour is set to

‘‘white’’, then the new colour of the cell is set to ‘‘black’’

and the direction of the tape should be set to ↙. In this

way, we can interpret each of the instructions of the tem-

plate and we can use a two-dimensional representation of

this CA in order to be able to visualize the evolution over

time as we did with the Rule 110 model in the previous

section.

The complete set of instructions defined in Figure 7

was implemented in CD++ as a coupled Cell-DEVS

model. The coupled model consist of a 15 3 31 cellular

space, which means that in this model we will visualize

the evolution of the CA for 31 units of time, an unwrapped

border and a transport delay. The model uses Moore’s

neighbourhood (i.e., the nine nearest neighbours of the

Figure 5. Rule 110 simulation results.

Figure 6. Three-state two-colour Turing machine template
instruction example.
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cell), the state mapping for the machine is depicted in

Table 2 while Figure 8 shows the specification for this

model.

Once the coupled model is defined, we need to imple-

ment the rules that represent the behaviour of the machine

from the instructions in Figure 7, and they can be easily

translated into CD++ transition rules. For example, in

order to translate the first rule (Figure 7a) we need to

recognize two configurations.

1. If the neighbour located in the north-west has its

colour property set to ‘‘black’’ and the direction is

set to " and the west neighbour has no direction

set, the new colour of the cell is set to the colour of

the west neighbour and the direction is set to ↘.

2. If the neighbour located in the north has its colour

property set to ‘‘black’’ and the direction set to ",
then the new colour of the cell is ‘‘white’’.

Figure 9 shows the CD++ rules that implement the con-

ditions described above using the state mapping from

Table 2. Rules 1 and 2 implement first configuration while

the last rule represents the second possible configuration.

In this way, any specification given for a concrete

implementation of a three-state two-colour Turing machine

can be easily represented using Cell-DEVS. The complete

CD++ implementation is depicted in Figure 10.

Finally, Figure 11 shows the results of simulating the

CD++ model with three different initial conditions. The

first row indicates the initial condition of the machine and

the evolution from one row to the next is determined by

the instructions that can be applied and represents the

changes of the CA over time. For example, in Figure 11a,

Figure 10. Three-state two-colour Turing machine transition
rules.

Figure 8. Three-state two-colour Turing machine CD++ specification.

Figure 7. Three-state two-colour Turing machine instruction concrete implementation.

Figure 9. Three-state two-colour Turing machine transition
rules.

Table 2. Turing machine state mapping.

State ↑ ↑ ↘ ↘ ↙ ↙
Number 0 1 2 3 4 5 6 7
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at time 0 the fifth column has the value 2 and the rest

of the cell space is set to 0. With these initial conditions

we can apply the instruction described in Figure 7b as

follows:

� The cell located at the fourth column has its north-

east neighbour direction set to " and the colour set

to ‘‘white’’, also the neighbour located at the west

has no direction set and its colour set to ‘‘white’’,

as a consequence the new cell direction is set to ↙
and the colour is set to ‘‘white’’ (state number 6).

� The cell located at the fifth column has its north

neighbour direction set to " and the colour set to

‘‘white’’, thus the new cell colour is set to ‘‘black’’

and no direction is set (state number 1).

Similarly, for the initial conditions given in Figure 11b

we can apply the instruction from Figure 7f and for Figure

11c we can apply the instruction from Figure 7d. In this

way starting from the given initial conditions we can

obtain the corresponding values for each row in the model

execution shown in Figure 11.

The Cell-DEVS executable model described in this sec-

tion can be easily modified in order to obtain a different

three-state two-colour Turing machine concrete implemen-

tation to study the behaviour of this kind of complex CA

models.

5. Self-reproducing CA

In this section we introduce a model of a self-reproducing

CA, originally introduced by Morita and Imai15 where a

model of a 12-state CA SR12 is defined. In this CA, signal

transmission lines called Worms and Loops can self-

reproduce using a shape-encoding method (the minimum

number of cells needed for self-reproduction are four for

the Worms and eight for the Loops). SR12 is a CA with

von Neumann neighbourhood (i.e., top, down, left and

right cells) and the following state set:

Q= f#, " , # , ! ,  ,S,R,L,B,H, � , + g

which can be organized into three groups as follows:

1. ‘‘Signal transmission’’ states {", #,!, }, used to

define signal movements in the direction indicated

by the arrow.

2. ‘‘Signal encoding’’ states fS,R,L,Bg, used to

define the shape of the object; the meaning of each

of them will be defined in the following paragraphs.

3. Finally, {#, H, �, + } are control states, where:

(a) # is the quiescent state;

(b) H is used in Worms and Loops reproduction

rules;

(c) � is used in Loops reproduction rules;

(d) + is used in Worms reproduction rules.

Figure 11. Three-state two-colour Turing machine simulation results with different initial configurations.
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In this CA, signal transmission lines are formed by pla-

cing ‘‘signal transmission’’ and signal ‘‘encoding states’’

alternately. As we mentioned above, we can define two

signal transmission line configurations.

� Worms which are simple transmission lines with

open ends. Thus, they have a head (an end cell to

which signals flow) and a tail (an end cell from

which signals flow).
� Loops which are closed transmission lines.

For both configurations, the signal encoding states act

as commands with the following associated operations:

1. S advance the head of the transmission line straight

ahead;

2. L advance the head of the transmission line to the

left;

3. R advance the head of the transmission line to the

right;

4. B branch the head of the transmission line in three

ways.

In the case of Worms configurations, the ‘‘signal encod-

ing’’ states S,R,L and B are decoded and executed at the

head of the transmission line. It is worth mentioning that

if a B signal is found, the self-reproduction process begins

by creating a three-way branch at the head of the transmis-

sion line. After this step, signals coming to this point are

copied and propagated in three ways until the tail of the

transmission line is processed. On the other hand, the

encoding process of ‘‘signal transmission’’ states is the

reverse of decoding and takes place in the tail of the trans-

mission line.

For the Loops, if the configuration consist only of S, L,

R or B encoding states, the transmission line simply

rotates, and self-reproduction does not occur (simple

Loops). However if a � control state is found at some

appropriate position self-reproduction begins. The process

can be summarized as follows:

1. When the state � reaches a corner, it first makes an

‘‘arm’’ and it constructs a daughter Loop.

2. Then the shape of the mother Loop is encoded into

a sequence of advance commands. This process is

controlled by the states H and � which are gener-

ated when the arm is created. These states go

through all of the cells of the mother Loop, and

they return back to the branching point. Then, the

‘‘arm’’ is cut off.

3. Finally, the daughter Loop acts like a Worm until

the head meets the tail of the transmission line.

After the self-reproduction process ends, the property is

inherited by the daughter Loop.

This model description is implemented in CD++ as a

coupled Cell-DEVS model. The coupled model consists of

a 603 60 cellular space, a wrapped border, transport delay

and a von Neuman neighbourhood. Figure 12 shows the

CD++ specification. In addition, the state mapping for the

CA is depicted in Table 3.

Once an initial configuration is given, the model will

behave according to the local transition rules defined in

TransmissionLine.
In the case of Worms and simple Loops configurations,

we have to define rules for decoding and encoding the state

signals as well as the rules in charge of the movement of

the body.

As described by Morita and Imai15, signal decoding

requires three steps.

1. If only one ‘‘signal encoding’’ state is detected in

the neighbourhood of the cell, and the cell is

empty then the cell can potentially become the

head of the transmission line. Thus, it must wait in

the quiescent state (#) for the new values of the

neighbours.

2. Of all of the candidate cells, if only one ‘‘signal

transmission’’ state (an arrow) is detected that

points in the direction of the cell, then the cell

becomes active (H). It is worth mentioning that in

this step more than one cell can be active if a

branch B command is being processed.

3. Finally, for all of the active cells in the previous

step, the only ‘‘signal encoding’’ state present in the

neighbourhood becomes the new state for the cell.

Figure 12. The SR12 CD++ model definition.

Table 3. The SR12 state mapping.

State 1 " !  # S L R B H • + #
Number 0 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 13 shows the transition rules implemented for

signal decoding at the head of a Worm configuration. For

example, the first rule corresponds to step number 1, the

second rule corresponds to step number 2 and rules 3–6

correspond to step number 3. The macros isHeadS1,
isHeadS2 and isHeadS3 are in charge of detecting the

three scenarios described above.

Similarly, signal encoding at the tail of the transmission

line takes three steps that involve:

� detecting the tail of the transmission line (only one

cell can be the tail);
� retracting the tail by one cell;
� generating the corresponding signal encoding state.

For the movement of the body of transmission lines,

we have two scenarios. If the current cell state is a ‘‘sig-

nal transmission’’ state, the new cell state corresponds to

the ‘‘signal encoding’’ state in the neighbourhood that

appears in the opposite direction of the current state (i.e.,

the opposite direction of the ‘‘arrow’’). On the other

hand, if the current cell state is a ‘‘signal encoding’’

state, we have to take into account the location of the

signal transition states present in the neighbourhood and

their direction.

Figures 14–15 present different examples showing the

CD++ model execution of different Worm configurations.

Figure 14 illustrates the simulation results obtained

from executing the smallest self-reproducingWorm config-

uration at different points in time. The initial configuration

is depicted in Figure 14a where the head is highlighted and

contains a B (state number 8) ‘‘signal encoding’’ state. As

a consequence, at time t= 1 the control state + (state

number 11) that is in charge of controlling the three-way

branching process becomes the head of the transmission

line and the self-reproduction procedure begins, as illu-

strated in Figure 14b. As we mentioned above, signals

coming to the branching point (highlighted in Figure 14b)

are copied and propagated in the directions indicated by

cells with state # (state number 12) located in the

Figure 13. Transition rules for decoding head signals.
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neighbourhood of the head of the transmission line. This

procedure is illustrated in Figures 14c and 14d, where we

can see that at time t= 2 the S (state number 5) ‘‘signal

encoding’’ state reaches the branching point and the con-

trol states H indicates the directions where the signal has

to be propagated, then at time t= 3 the signal is effec-

tively copied. This process continues until time t= 12

where the tail of the mother Worm is processed, this is

reflected in Figure 14e where we can see the original

mother Worm and the two children configurations that

reproduce the mother shape. After this point, the two chil-

dren configurations will behave like ‘‘normal’’Worms (i.e.,

the self-reproduction property is not inherited) and the

self-reproduction process of the motherWorm begins again

as we can see in Figure 14f.

Another example of a self-reproducing Worm is pre-

sented in Figure 15a, the initial configuration that contains

a B‘‘signal encoding’’ state is highlighted in Figure 15a.

This ‘‘encoding signal’’ reaches the head of the transmis-

sion line at time t= 7 as depicted in Figure 15b. After this

point, the three-way branching procedure mentioned above

takes place which is reflected in Figures 15c and 15d.

Figure 15e shows the end of the self-reproduction process

at time t= 48. Finally, the self-reproduction cycle is

repeated after 48 units of time, as we can see in Figure 15f

at time t= 96.

So far, we have discussed the transition rules implemen-

ted for the Worms and simple Loops configurations. Now

we will partially describe the configurations that need to

be recognized for self-reproduction of Loops. In order to

do this, we need to extend the transition rules, which can

be easily done using the Cell-DEVS formalism.

As we mentioned above, in the self-reproduction pro-

cess of Loops can be characterized by three sets of rules.

The beginning of the reproduction itself, the encoding of

the mother shape and the rules needed to generate the

daughter Loop. For example, as part of the beginning of

the self-reproduction process, the H encoding signal has

to be generated to differentiate the beginning of the

daughter ‘‘arm’’ from the mother’s shape encoding itself.

This rule can be implemented in CD++ as shown in

Figure 16.

The first rule says that when a cell is empty and there is

only one transition signal state (an arrow) pointing to the

cell, then the cell must be marked as the beginning of the

daughter Loop and the new cell state is H. On the other

hand, rules 2–5 say that if the cell state is an arrow point-

ing to an empty cell and there is a � in the neighbourhood,

then the cell becomes the ‘‘last’’ cell of the mother and the

new state is also H.

In this way, we can extend our set of rules in a very

simple manner, increasing the complexity of the modelled

behaviour.

As another example, the generation of the daughter

Loop requires that when the cell state is the � control state
and the neighbourhood consist of � and a signal encoding

state, then the new cell state is the H control state. This

rule is implemented in CD++, as shown in Figure 17.

Figure 14. CDA animation results for the smallest self-reproducing Worm configuration at different simulation times.
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As we did for simple Loops and Worms, we present

examples that shows the CD++ model execution of differ-

ent Loop configurations.

Figure 18 shows the model execution obtained when

running the implemented model in CD++ for the smallest

self-reproducing Loop. Figure 18a shows the initial config-

uration at time t= 0, it contains a � control state (state

number 10) located in the bottom left corner. The self-

reproduction process begins when the � control state

reaches the opposite corner at time t= 5 as depicted in

Figure 15. CDA animation for a complex self-reproducing Worm configuration at different simulation times.

Figure 16. The SR12 CD++ self-reproduction of Loops rules.
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Figure 18b, there we can see that 2 H control states are

generated, indicating that an ‘‘arm’’ of the mother Loop

has to be created. The control states � and H are in charge

of handling the different configuration possibilities that

appear during the self-reproduction process, as depicted in

Figures 18c and 18d. As we mentioned before, when these

states return back to the branching point, the ‘‘arm’’ is cut

off, this is reflected in Figure 18e, after this point the

daughter configuration will behave as a Worm until the

head (highlighted in Figure 18e) joins the tail. This is

reflected at time t= 32, when the daughter Loop is cre-

ated, it can be noted in Figure 18f that the daughter Loop

has inherited the self-reproduction property (i.e., a � con-
trol state in the bottom left corner of the configuration).

Finally, Figure 19 shows the model execution obtained

when running the implemented model in CD++ for a com-

plex self-reproducing Loop. The initial configuration is

presented in Figure 19a. Then, Figures 19b and 19c shows

the state of the self-reproduction procedure at two differ-

ent point in time. The first figure shows the state at time

t= 60, there we can see the control states � and H travel-

ing through the mother Loop and signals been processed at

the branching point and at the head of the daughter config-

uration (the three situations are highlighted in Figure 19b).

Figure 19. CDA animation for a complex self-reproducing Loop configuration at different simulation times.

Figure 18. CDA animation for the smallest self-reproducing Loop configuration at different simulation times.

Figure 17. The SR12 CD++ self-reproduction of Loops rules.
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The second figure shows the state at time t= 120 where

we can see that the daughter Loop behaves like a Worm

with signals been processed at the tail and the head of the

configuration. Figure 19d illustrates the end of the self-

reproduction process at time t= 158 once the daughter

Loop has been created.

6. Conclusions

We have presented the definition of three complex CA

models using the Cell-DEVS paradigm using the CD++

tool to obtain executable models. These examples allow us

to show the potential application of the formalism and

related tools to attack different problems in a generic and

systematic fashion, allowing the definition of complex

transition rules for cell-shaped models.

We show how models that present complex output beha-

viour can be easily defined in order to study and predict the

behaviour and response of systems modelled, facilitating

the model development and testing for the end user.
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