
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2018, Vol. 94(6) 519–558

� The Author(s) 2017

DOI: 10.1177/0037549717726868

journals.sagepub.com/home/sim

Multiscale representation of
simulated time

Rhys Goldstein1, Azam Khan1, Olivier Dalle2 and Gabriel Wainer3

Abstract
To better support multiscale modeling and simulation, we present a multiscale time representation consisting of data
types, data structures, and algorithms that collectively support the recording of past events and scheduling of future
events in a discrete event simulation. Our approach addresses the drawbacks of conventional time representations: lim-
ited range in the case of 32- or 64-bit fixed-point time values; problematic rounding errors in the case of floating-point
numbers; and the lack of a universally acceptable precision level in the case of brute force approaches. The proposed
representation provides both extensive range and fine resolution in the timing of events, yet it stores and manipulates
the majority of event times as standard 64-bit numbers. When adopted for simulation purposes, the representation
allows a domain expert to choose a precision level for his/her model. This time precision is honored by the simulator
even when the model is integrated with other models of vastly different time scales. Making use of C++11 programming
language features and the Discrete Event System Specification formalism, we implemented a simulator to test the time
representation and inform a discussion on its implications for collaborative multiscale modeling efforts.

Keywords
Multiscale simulation, time scale, floating-point arithmetic, rounding error, collaborative modeling

1 Introduction

Multiscale modeling and simulation has attracted consider-

able attention in a number of fields, notably computational

biology and materials research, where macroscopic trans-

formations routinely emerge from interactions between

atoms and molecules. The fact is that most real-world sys-

tems have the potential to be studied over a spectrum of

scales. Artificial systems, for example, can be viewed as

hierarchies of components, and the smallest of these com-

ponents can be investigated based on their physical and

chemical structures. Even if a domain expert’s goal is to

obtain a simplified single-scale model of the system of

interest, multiscale approaches are useful for ensuring the

simple model is valid.

A look at past and present multiscale modeling efforts

reveals successes and shortcomings, both of which are

expressed in a position paper by Hoekstra et al.1:

Multiscale modelling is an actively pursued approach to make

sense of wide ranges of phenomena, both natural and anthro-

pogenic. In many different communities, impressive results

can be presented. [...] However, in most if not all cases of con-

cern, the research and associated funding to pursue such stud-

ies are confined within the boundaries of individual scientific

and engineering disciplines. In our view, this renders the field

unnecessarily disparate and fragmented. Indeed, it has already

led to a slowing down and even stagnation in many relevant

topics, to reinventing the wheel, to confusion with respect to

terminology and concepts, and to sub-optimal solutions for

the implementation of production mode multiscale models

running on state-of-the-art computing infrastructures.

According to Hoekstra et al., a single advancement in

multiscale modeling is typically confined to a single com-

munity working in isolation. The lack of coordination

between disciplines leads to the re-invention of similar

approaches rather than the enhancement of those

approaches. The emergence of inconsistent terminology

further complicates the sharing of ideas, making collabora-

tion all the more difficult.

The popularity of multiscale approaches, combined

with the fragmented manner in which they are pursued,

1Autodesk Research, Canada
2University of Nice Sophia Antipolis, France
3Carleton University, Canada

Corresponding author:

Rhys Goldstein, Autodesk Research, 210 King Street East, Suite 500,

Toronto, Ontario, M5A 1J7, Canada.

Email: rhys.goldstein@autodesk.com

https://doi.dox.org/10.1177/0037549717726868
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0037549717726868&domain=pdf&date_stamp=2017-09-28

produces a need for general solutions that can be adopted

by researchers across a broad range of disciplines. The

idea is to focus on scale-related challenges that re-appear

in many fields, and address these challenges in an optimal

manner. This paper contributes a general solution to a

foundational problem: a flexible computer representation

of simulated time. While the representation accommodates

nearly all simulations, its distinguishing features specifi-

cally target the demands of collaborative, multiscale mod-

eling efforts.

Commonly used computer representations of simulated

time, those based on standard 32- or 64-bit fixed-point

decimal numbers or binary floating-point numbers, are

problematic for multiscale simulation due to the increased

potential for numerical errors to alter simulation results.

Even with a single scale, the rounding of time values may

affect the timing of events to a degree. In some cases,

rounding errors may cause events to be reordered.2

However, as we observe in Section 3, the presence of mul-

tiple time scales dramatically increases the likelihood and

severity of time-related inaccuracies. The underlying issue

is that the magnitude of the largest temporal rounding

errors is determined by the longest time scales, whereas

the tolerance of the simulation to these errors is con-

strained by the shortest time scales. If the longest and

shortest time scales differ greatly, significant distortions in

small-scale behavioral patterns are likely to occur.

The multiscale time representation presented in this

paper handles rounding errors in a controlled fashion, alle-

viating many of the unexpected problems that can arise

when models featuring different time scales are integrated.

The representation takes the form of data types, data struc-

tures, and algorithms that collectively support the record-

ing of past events and the scheduling of future events in a

discrete event simulation. The overall approach provides

the following benefits:

� SI time units (i.e., seconds, milliseconds, microse-

conds, etc.) can be represented exactly;
� time durations, used for modeling, exploit efficient

64-bit operations;
� time points, used by simulators, provide both exten-

sive range and fine resolution where needed;
� event handling algorithms introduce no rounding

errors despite using mostly 64-bit operations.

When integrating models of vastly different scales, the

proposed representation is capable of honoring the speci-

fied precision of each model while storing and manipulat-

ing the majority of event times as standard 64-bit numbers.

To realize these benefits, we embrace the well-established

use of composite models to define modular or hierarchical

structures containing instances of indivisible atomic mod-

els. We also rely on a core convention of the Discrete

Event System Specification (DEVS) formalism,3 the fact

that atomic models measure durations relative to the cur-

rent point in simulated time. Furthermore, each atomic

model should be sufficiently focused in scale that its time

durations can be represented as m � dt, where m is any inte-

ger less than 1015 in magnitude and dt is a unit of time pre-

cision assigned to the atomic model. The end result is that

each atomic model has essentially one time scale, whereas

a composite model may span a range of time scales if its

component models have different precision levels.

As described in Section 4, our approach exhibits novel

features such as the notion of ‘‘perceived time,’’ an opera-

tion called ‘‘multiscale time advancement,’’ and the use of

epochs as part of the event scheduling process.

Importantly, a typical modeler should be able to enjoy the

benefits of the proposed approach without acquiring

detailed knowledge of these underlying concepts.

Section 5 examines the implications of the multiscale time

representation from the modeler’s perspective, discusses

its implementation in a prototype simulator, and compares

experimental results to those obtained with conventional

time representations.

One aim of this work is to support modelers who

actively pursue multiscale approaches, particularly for

applications that involve extremely disparate time scales.

Examples of such applications include laser micromachin-

ing4 and the study of protein structural rearrangements.5

Yet even if domain experts contribute only single-scale

models to their respective communities, multiscale issues

will emerge from (a) inevitable differences in scale among

models and (b) attempts to integrate the models. Efforts to

collaborate in the modeling of complex systems will there-

fore lead communities toward multiscale simulation, creat-

ing a demand for general solutions including a common,

effective, and complete representation of time.

2 Multiscale modeling and simulation

The 2013 Nobel Prize in Chemistry, awarded for the

‘‘development of multiscale models for complex chemical

systems,’’6 draws attention to the importance of account-

ing for multiple scales. However, while publications on

multiscale approaches are often specific to one small-scale

and one large-scale system within a particular field of

study, here multiscale issues are considered from a broader

interdisciplinary perspective.

2.1 Scale

Experts often associate a model with an approximate

length or time measure referred to as the model’s ‘‘scale.’’

Some models are considered to have a time scale but no

length scale, some have a length scale but no time scale,

some have both length and time scales, and some models

are described as having multiple scales in either space or

time. Despite the widespread practice of associating

520 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

models with scales,7 the literature provides little guidance

on how a model’s scale should be assessed.

We assert that scale is not simply an aggregation of the

prominent distances or durations that appear in a model or

simulation. Rather, scale is an approximation of the degree

to which distances or durations must be altered to have an

appreciable effect on the implications of a model or the

results of a simulation. Suppose that a distance Dx or dura-

tion Dt appears somewhere in a modeling project. Perhaps

Dx is a model parameter. Perhaps Dt is a duration that

tends to re-occur during a simulation. This does not mean

Dx or Dt are representative of scale. The question is

whether changing distances by roughly Dx, or changing

durations by roughly Dt, will effect the outcome of a digi-

tal experiment based on the model.

2.1.1 One scale versus multiple scales. Consider the models

illustrated in Figure 1, which involve one or two moving

particles of radius r trapped within a compartment of

radius R. We assume the particles travel at a constant

speed, and that the reflection angle after each inward

bounce is random.

Let us suppose the illustrations in Figure 1 are not to

scale, as r is actually a few orders of magnitude shorter

than R. Each model therefore features two vastly different

distance measurements. Nevertheless, it could be argued

that only the model on the right has multiple scales. The

reasoning is as follows. The single-particle model on the

left of Figure 1 can predict, for example, the average dura-

tion between events at which the particle bounces inward

off the compartment wall. Although technically this inter-

bounce duration depends on both R and r, the particle

radius r has a negligible effect on the distance the particle

must travel between bounces. (The travel distance will be

between R and 2 � R for most reflection angles. The parti-

cle size reduces this distance by 2 � r, but we have assumed

r � R.) Were we to increase r by some Dr, then Dr would

have to be within roughly an order of magnitude of R to

significantly affect the model’s predictions. Thus, we

claim the left-hand model has only a single length scale of

approximately the compartment radius. By contrast, the

model on the right has an additional ability in that it can

predict the frequency of particle–particle collisions. This

prediction is affected by changes in r within an order of

magnitude of r. Hence, the two-particle model has two

scales: one associated with the compartment radius and

another associated with the particle radii.

The Figure 1 models focus on length scales, but the

same line of reasoning applies to time. If a model exhibits

a duration Dt, we assess its time scale by asking how much

Dt would have to be varied to significantly impact the

results. If a model features disparate duration values, it

may or may not have multiple time scales.

2.1.2 Time steps versus time quanta. Time steps and time

quanta are of particular importance in the context of simu-

lation models and their scales. These measures relate to the

fact that certain instants of simulated time are associated

with self-contained computations known as events. The

fact that certain time points play a prominent role is the

basis of a concept called time granularity.8–10 For our pur-

poses, it suffices to focus on two specific concepts related

to granularity: time resolution and time precision.11

Time resolution characterizes the frequency of time

points at which similar types of events occur. In discrete-

time simulation, time resolution may be expressed using a

fixed time step that separates consecutive event times. The

longer the time step, the coarser the resolution and the

larger the discretization errors.

Time precision characterizes the frequency of time

points to which event times are rounded. In discrete event

simulation, time precision may be expressed using a fixed

time quantum that evenly divides all event times. The lon-

ger the time quantum, the coarser the precision and the

larger the rounding errors.

The scale of a simulation model has important implica-

tions pertaining to time resolution and precision. If a mod-

el’s time resolution is tied to a time step, then lengthening

the time step toward the model’s time scale will tend to

produce noticeable discretization errors that affect the

quality of simulation results. Similarly, if a model’s time

precision is tied to a time quantum, then lengthening the

quantum toward the model’s time scale will produce sig-

nificant rounding errors that also impact the quality of the

results.

Fortunately, in the case of time precision, it is typically

not costly to choose a quantum significantly shorter than

the model’s time scale. Choosing a fine precision level

means allocating more memory to each computed time

point, but it should not increase the number of events, since

event frequency is tied to resolution. Nevertheless, mode-

lers may feel compelled to choose excessively coarse pre-

cision levels when faced with multiple time scales. It is

Figure 1. Models featuring one or two small particles of radius
r inside a larger compartment of radius R. Both models involve
both long and short distance measures (i.e., compartment and
particle radii), but not necessarily two distinct scales.

Goldstein et al. 521

possible that a long time quantum selected to accommo-

date a large-scale model could approach the time scale

associated with a short-scale model. Such a scenario might

lead to rounding errors that adversely affect a modeler’s

digital experiments.

2.1.3 Scale versus fidelity. One final observation about our

definition of scale is that it excludes the distinct yet impor-

tant concept of fidelity, meaning ‘‘level of detail.’’ To

illustrate, consider two models of the same electronic cir-

cuit. The high-fidelity model includes every resistor, capa-

citor, transistor, and basic component. The low-fidelity

model treats various sections of the circuit as higher-level

components, abstracting away the lower-level details. Now

assume both models neglect the physical layout of compo-

nents, so there is no length scale, and both neglect delays

in the propagation of voltage changes, so there is no time

scale. Combining these models would yield multiple levels

of detail, but not multiple scales.

Our interpretation of ‘‘scale’’ and ‘‘multiscale’’ is con-

sistent with the majority of the literature on multiscale

approaches, which we review in Section 2.2. It is also a

useful interpretation in that discrepancies in continuous

quantities of space and time give rise to the issues

addressed in this paper. Nevertheless, modeling

approaches that address the presence of multiple levels of

detail are both relevant and complementary to multiscale

modeling. One problem common to both classes of

approaches is the introduction of error through the aggre-

gation and disaggregation of data.12 Whereas this paper

focuses strictly on scale, discrepancies in both scale and

fidelity are often explored hand-in-hand.13,14

2.2 Multiscale modeling approaches

Imagine that computational resources were essentially

unlimited, and one could therefore perform unfathomably

complex molecular dynamics (MD) simulations such as

one that tracks the location of every atom in a human body.

The information provided by such a model might well span

close to a dozen orders of magnitude. However, we would

not necessarily consider this a ‘‘multiscale approach’’ to

modeling, since the entire simulation is based on a single

small-scale method.

A multiscale approach implies that some form of het-

erogeneity in the representation of a system is based on a

discrepancy in scale. More specifically, the model is inten-

tionally designed to exploit some scale-related observation

about the represented system, and some benefit is desired

as a result. In many cases, the observation involves a

small-scale behavior arising only within small regions of

space, as in Figure 2(a), or during short periods of time, as

in Figure 2(b); these regions or time periods can be mod-

eled differently from all other regions or time periods. The

desired benefits of a multiscale approach may include ease

of inputting data or interpreting results, although in most

cases the primary reason for adopting such an approach is

to make more effective use of computational resources.

It is theoretically possible to simulate a wide range of

large-scale systems using a brute force application of a

small-scale method. The hypothetical application of MD to

an entire human body is one example. However, many

such simulations would remain beyond the capabilities of

modern computing technology even if the world’s digital

infrastructure could be commandeered to execute them.

Brute force approaches are limited by two seemingly ines-

capable trends. Firstly, extending a simulation by a factor

of 10 in either time (t) or a single dimension of space (x, y,

or z) typically increases the number of operations and pos-

sibly also the memory requirements by an order of magni-

tude or more. Secondly, one is generally compelled to

extend multiple dimensions (e.g., x and y, or x and z and t),

as opposed to extending just one dimension by itself (e.g.,

just x or just t). Thus, the computational requirements asso-

ciated with brute force approaches can be expected to

increase by multiple orders of magnitude for every desired

10-fold increase in scale.

Fortunately, complex real-world systems tend to exhibit

scale-related characteristics that can be exploited when

allocating computational resources. In fact, multiscale

Figure 2. Strategies for focusing intensive small-scale computations on subregions (shown as dark, speckled areas) of a large-scale
spatiotemporal domain. The domains shown feature one dimension of space on the vertical axis, and time on the horizontal axis.

522 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

approaches are sufficiently popular that three journals are

largely dedicated to them: the Journal of Multiscale

Modeling (World Scientific), the Journal of Multiscale

Modeling and Simulation (SIAM), and the Journal of

Coupled Systems and Multiscale Dynamics (American

Scientific Publishers). Moreover, any journal related to

modeling might feature a few if not many papers describ-

ing multiscale modeling efforts. Three specific disciplines

feature particularly wide arrays of multiscale approaches:

computational biology,15,16 materials science,17 and

applied mathematics.18,19 We list some of the best-known

examples from these fields.

2.2.1 Computational biology. Popular among researchers in

computational biology, coarse-graining (CG) methods

reduce the complexity of all-atom resolution protein mod-

els by treating groups of atoms as elementary particles.

The exploited observation about real-world proteins is that

certain configurations of nearby atoms undergo compara-

tively little deformation on the scale of the entire protein

molecule. Saunders and Voth20 emphasize the importance

of a formal connection between a CG representation and

the corresponding all-atom resolution MD model.

Although most applications of coarse-graining pertain

to MD at extremely small scales, the underlying idea of

treating several entities as one has been applied to some-

what larger-scale biological processes. Examples include

multiscale models of blood clot formation developed using

machine learning21 or graph dynamical systems.22

2.2.2 Materials science. In materials science, a canonical

example of a multiscale approach is the simulation of

crack propagation, where the deformation rate is dramati-

cally higher near the crack tip than elsewhere. Abraham

et al.23 model a silicon slab using a coarse finite-element

(FE) region, which surrounds a more detailed MD region,

which in turn encompasses a growing crack, which in turn

features small but highly detailed quantum tight-binding

(TB) regions near either end of the crack. Two additional

‘‘hand-shaking’’ regions line the FE–MD and MD–TB

interfaces.

Whereas crack propagation simulations are similar to

Figure 2(a) in that they dedicate intensive small-scale

computations to particular regions of a spatiotemporal

domain, Figure 2(c) illustrates multiscale approaches

based on repetition. Models may have recurring transitions

that can be computed once at a small scale, then reapplied

as needed in a large-scale simulation. Brereton et al.24

offer an example. To predict how electrons traverse

organic semiconductor materials, matrix calculations pro-

duce transition probabilities specific to low-energy regions

where the electrons become temporarily trapped. These

probabilities inform a larger-scale simulation. Note that

instead of focusing on temporal transitions, as in Figure

2(c), one may exploit repetition over space using represen-

tative volumes.25

2.2.3 Applied mathematics. Multiscale approaches in

applied mathematics tend to focus on numerical integration

involving vastly disparate rates of change. Equation-free

approaches recognize that while the Euler, Runge–Kutta,

and other numerical integration methods appear to require

a closed-form expression for the derivative of a function,

other means of evaluating the derivative may suffice. In

particular, the slope of a slowly varying quantity can be

approximated at various points through small-scale simula-

tions, alleviating the need for a differential equation.26 The

Heterogeneous Multiscale Method also uses small-scale

computations where needed, but differential equations are

closely scrutinized to develop problem-specific integration

procedures. Emphasis is placed on the properties of large-

scale dynamics that emerge when small-scale fluctuations

are averaged out.27

When classifying an approach as multiscale, an impor-

tant caveat is that the strategy for exploiting a scale-related

observation does not entail the elimination of all but one

scale from a modeling effort. For example, a purely CG

protein simulation does not constitute a multiscale

approach if the atom scale is neglected; rather, the CG

simulation must be informed in some way by all-atom

models. In light of this caveat, multiscale approaches gen-

erally retain each relevant scale in one form or another.

An exception to this rule is the seamless multiscale

method, where for favorable differential equations the

smaller of two time scales is effectively replaced with an

intermediate scale.28 In this case the two original scales

are not both retained, but the model resulting from the

transformation still features two distinct scales. The seam-

less method has been generalized to address three or more

relevant scales.29

2.3 Collaborative multiscale modeling

As mentioned, a multiscale approach to modeling implies

that heterogeneity in the representation of a system is

based on a discrepancy in scale. Generalizing the concept,

we suggest that systems science arises from the introduc-

tion of any kind of heterogeneity into the representation of

any system. The presence of multiple scales is one aspect

of a system that may serve as a fundamental basis for het-

erogeneity,1 although there are complementary aspects that

may deserve equal or greater attention depending on the

challenge at hand. In the case of multi-domain modeling,30

heterogeneity in representation is based on the relevance

of multiple domains, as in multiple types of systems.

Similarly, multi-paradigm modeling31 implies heterogene-

ity based on the utility of multiple paradigms, as in

Goldstein et al. 523

multiple sets of techniques and conventions for defining

models.

The fact that a diverse set of modeling efforts may

incorporate multiple domains, multiple paradigms, and/or

multiple scales leads to the classification scheme illu-

strated in Figure 3. The idea is that any such effort can be

categorized into one of the eight sections formed by the

overlapping circles. There are separate sections for purely

multi-domain, purely multi-paradigm, and purely multi-

scale efforts, and one outer section for efforts involving a

single domain, paradigm, and scale.

Multi-domain, multi-paradigm, and multiscale model-

ing often coexist. In fact, a single form of heterogeneity in

representation can be associated with more than one of

these aspects. The intersection of two or three of these

aspects is emphasized by the inner regions of Figure 3

where the circles overlap. If two domains are relevant, for

example (a) the behavior of humans and (b) their impact

on food and water resources, they may be modeled using

distinct paradigms such as (a) agent-based simulation and

(b) system dynamics; such scenarios fall into the

MD+MP category. Groen et al.32 highlight the

MD+MS category by reviewing multiscale modeling in

conjunction with multiphysics applications, a subcategory

of multi-domain modeling. A focus on MP+MS can be

found in Vangheluwe et al.31 They list levels of abstrac-

tion, which overlap with multiscale modeling, alongside

multi-formalism modeling and meta-modeling as key

research directions in multi-paradigm modeling. The close

relationships among the three aspects of modeling are evi-

dent in titles such as ‘‘Multi-scale and multi-domain com-

putational astrophysics,’’33 ‘‘Multi-paradigm multi-scale

simulations for fuel cell catalysts and membranes,’’34 and

‘‘Multiscale coupling and multiphysics approaches in

earth sciences.’’35

Collaborative modeling can be promoted by supporting

the integration of models that differ in domain, paradigm,

and/or scale. Such efforts naturally lead to multi-domain,

multi-paradigm, and/or multiscale models, creating a need

for general modeling solutions. For multiple domains, one

general solution is provided by equation-based modeling,

exemplified by the Modelica language.30 For multiple

paradigms, a core technique is the transformation of vari-

ous formalisms onto a single formalism, such as DEVS.31

For multiple scales, progress has been made in the form of

a multiscale modeling language and framework by

Chopard et al.,36 which emphasizes scale-related strategies

comparable to those shown in Figure 2. There are also

formalism extensions, such as Multi-Level DEVS37 and

downward/upward atomic models,38 which facilitate the

transformation of data and time granularity among levels

in a model hierarchy. Yet, little attention is given to multi-

scale computer representations of space and time. Whereas

the three dimensions of space give rise to a multitude of

possible representations, the single dimension of time pre-

sents its own challenges and opportunities. As mentioned

in Section 2.1, a modeler may choose an excessively

coarse precision level to accommodate the longest of sev-

eral time scales. Temporal rounding errors may then

approach the shortest time scale, affecting simulation

results. We address this challenge, aiming to remove a bar-

rier to collaboration on multiscale modeling efforts.

3 Conventional time representations

Collaborative model development currently entails the fol-

lowing dilemma: the larger the community of modelers,

the greater the need for all modelers to adhere to the same

modeling conventions, but the harder the task of choosing

conventions that meet all modelers’ needs. Here we

explain why the most commonly used representations of

simulated time may fail to meet the needs of large com-

munities of collaborating modelers, particularly if their

models differ significantly in scale.

3.1 Fixed-point time representation

A fixed-point time representation implies that some time

quantum dt is common to an entire computational process,

such as a simulation run, and any finite time value in the

process can be expressed as m � dt for some integer m. This

is an extremely common representation of time in com-

puter applications, particularly if dt is 1s, 1ms, 1ms, or
1ns. Discrete-time simulations often adopt this approach

with dt being the time step and m being the number of pro-

cessed iterations. When discrete event simulations use

fixed-point time values, the time quantum serves as a com-

mon factor of all durations between events. A suitable

common factor can often be derived from a model specifi-

cation,11 although in practice it is usually chosen

Figure 3. Intersecting of multi-domain, multi-paradigm, and
multiscale modeling.

524 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

arbitrarily. Let us limit our discussion to fixed-point deci-

mal representations, such that dt is 10d seconds for some

potentially negative integer d. This measure is also known

as time precision; a larger dt is associated with a coarser

level of precision. We assume m is represented as a 32- or

64-bit two’s complement number, which means that its

range is either �231 4m\ 231 or �263 4m\ 263.

The first problem with 32- or 64-bit fixed-point deci-

mal representations of time is the limited range they pro-

vide. This is not typically a problem for discrete-time

simulation, as even the 32-bit option accommodates over

2 billion iterations. For discrete event simulation, however,

convention suggests that many of these bits would be dedi-

cated to achieving a precision level much finer than the

time scale of the model. Part of the motivation behind dis-

crete event simulation is to treat time as a continuous

quantity. Rounding all time values to a coarse precision

level would undermine this benefit.

To illustrate range limitations, consider the simulation

of a laser micromachining process. As indicated by

Gattass and Mazur,4 the duration of each laser pulse can

be as short as 10fs whereas the resolidification period that

follows can persist beyond a microsecond. If time is repre-

sented using 32-bit fixed-point time values and a 1fs time

quantum, simulations are limited to just over 231fs, or 2ms.
This is barely sufficient for a single pulse/resolidication

cycle. Furthermore, one must verify that temporal round-

ing errors of the order of a femtosecond will not invalidate

the simulation of small-scale effects during the pulse.

However, 64-bit time values allow one to use a 1ys time

quantum, improving precision by a factor of 1,000,000

and permitting 10ms simulation runs that accommodate

many pulses. It is clear that only the most ambitious multi-

scale models would challenge the range of a 64-bit integer.

Unfortunately, limited range is not the only problem with

fixed-point time values.

A fixed-point representation of time raises the issue of

how a common precision level is selected, and by whom.

The simplest and most computationally efficient option is

to hardwire the precision, ensuring consistency. One of

many examples of this approach can be found in the time

package of the Go programming language. The Duration

type is a 64-bit fixed-point time representation with a

1-nanosecond time quantum, which limits the maximum

duration to roughly 290 years.39 One expects this data type

to be reasonable for most human-scale simulations, but

inappropriate for small-scale MD simulations or large-

scale computational astrophysics simulations. Another

option is to allow users to select the precision level prior

to a simulation run. The OMNeT++ simulation framework

provides a global configuration variable that specifies 1s,
1ms, 1ms, 1ns, 1ps, 1fs, or 1as precision.40 The ns-3 simu-

lator uses a similar approach, adding 1min, 1h, 1day, and
1yr to the list of allowable precision levels.41

Even if the common time precision is customizable, as

it is in OMNeT++ and ns-3, a problem remains in that a

model’s behavior may unexpectedly change when a differ-

ent precision level is chosen for the encompassing simula-

tion. For example, consider a model featuring a (1=3)s
delay. Suppose that temporal errors of around a microse-

cond are tolerable, so the model requires a time quantum

of 1ms or shorter. If one simulates this model with a 1ms
time quantum, the delay is 333, 333ms. However, if the

time quantum is later changed to 1ns, the delay becomes

333, 333, 333ns leading to slightly different results, which

may be unexpected.

In summary, the limited range of fixed-point time repre-

sentations can make it difficult to choose an appropriately

fine precision level while allowing for sufficiently long

simulation runs. A 64-bit multiplier offers a fair degree of

flexibility in this regard, but challenges arise in selecting a

time quantum common to a set of integrated models. A

final drawback with the fixed-point option is the lack of a

convenient way to represent positive and negative infinity,

although this is addressed by an implementation strategy

discussed in Section 3.4.

3.2 Floating-point time representation

A floating-point time representation implies that the dura-

tion between a representable time point t and the next larg-

est representable time point t0 is not a fixed time quantum

but rather scales with t. Thus, while the relative error may

be bounded, the absolute error from operating on a time

value will tend to be proportional to the value itself.

Conceptually, floating-point numbers consist of a common

positive integer base b, a value-specific integer coefficient

c, and a value-specific integer exponent g such that the

represented quantity is the real number c � bg. Smaller

bases are associated with smaller rounding errors,42 so bin-

ary floating-point numbers with b= 2 prevail. Unless oth-

erwise stated, we associate ‘‘floating point’’ with the IEEE

754 double precision standard, a 64-bit binary floating-

point representation that allocates 11 bits to the exponent

and 53 bits to the coefficient including its sign. IEEE 754

dedicates certain 64-bit sequences to special values, such

as infinity and NaN (Not a Number), and incorporates

these values into its rules for mathematical operations.

The obvious advantage of floating-point time values is

the extraordinary range they provide. To fully appreciate

this range, let us consider the most extreme time scales

under scientific investigation.

At the smaller end of the spectrum, MD is among the

more popular classes of simulation techniques. MD mod-

els generally rely on time steps on the order of 10 femtose-

conds.43 For example, 2:5fs time steps were used for a

number of state-of-the-art all-atom MD simulations per-

formed on the special-purpose Anton 2 supercomputer.44

In the lesser known field of quantum chromodynamics,

Goldstein et al. 525

time is often measured in fm=c, or roughly 3:34 � 10�24s,
the time required for light to travel 1 femtometer.45 One of

the shortest durations in the literature is known as the

Planck time. A theory has been proposed that physical

time does not advance continuously but rather ‘‘ticks’’ for-

ward by this quantum-like duration.46 The Planck time is

just under 10�43 seconds, which does not even approach

the lower limit of a floating-point number. Double preci-

sion values can be smaller than 10�307, or less than 10�323

if one considers subnormal values that become available

when the 11-bit exponent reaches its most negative value.

At longer time scales, the Illustris Project is a note-

worthy effort in which a 13-billion-year simulation tracks

the cosmic evolution of the universe from shortly after the

Big Bang until roughly the present day.47 If we turn our

attention from the origins of the universe to astrophysi-

cists’ predictions of its fate, even longer time scales are

discussed. After 1038 years, the only remaining ‘‘stellar-

like objects’’ will be black holes, and around 10100 years

all protons in the universe will have decayed and all black

holes will have ‘‘evaporated.’’48 To simulate the demise

of all black holes in the universe, one would require a time

representation with an upper limit of around 10108 s or

higher. Double precision time values meet this require-

ment with ease, as they can reach just over 10308s.
It is difficult to imagine a useful simulation that would

challenge a 64-bit floating-point time value’s range.

Precision, however, is a different matter. The 53-bit coeffi-

cient offers 53 bits of precision, after one first subtracts the

sign bit and then adds the hidden bit that is assumed to be

1 for normalized numbers. These 53 bits translate to about

16 decimal digits, which may seem decent. However, the

practical consequence is that models should only be

coupled, arguably, if they differ by no more than six orders

of magnitude in time scale. For example, a nanosecond-

scale model can be integrated with a millisecond-scale

model, but not a second-scale model. The reason why we

start with 16 orders of magnitude, but end up with six, is

that six orders are lost if one wishes to keep rounding

errors below one millionth of the shorter time scale, and

another four are lost if the simulation is to progress 10,000

times the longer time scale. A desire for longer simulation

runs would further detract from the allowable difference

between the two scales.

A lack of precision is cited as one of the reasons that

floating-point time values were factored out of OMNeT++.

The following is from Varga40:

Why did OMNeT++ switch to int64-based simulation time?

double’s mantissa [the coefficient, excluding the sign and

hidden bits] is only 52 bits long, and this caused problems in

long simulations that relied on fine-grained timing, for example

MAC [media access control] protocols. Other problems were

the accumulation of rounding errors, and non-associativity

(often (x+ y)+ z 6¼ x+(y+ z), see Goldberg42) which meant

that two double [64-bit floating-point number] simulation times

could not be reliably compared for equality.

The latter half of Varga’s quote highlights another sig-

nificant problem with floating-point time values: the fact

that rounding error is introduced as a result of addition and

subtraction operations. Both fixed- and floating-point

representations incur rounding errors for other operations,

such as multiplication and division. Yet, addition and sub-

traction errors are particularly problematic in the case of

simulated time, for several reasons. Firstly, the addition

and subtraction of time values are extremely common

operations in model code, so these types of rounding errors

will accumulate quickly. Secondly, simulation develop-

ment frameworks such as OMNeT++ separate user-defined

models from a common model-independent simulator; a

typical simulator adds and/or subtracts time values, and

will therefore impose unavoidable errors on the user if

these operations are not exact. Note that general-purpose

simulators rarely multiply or divide time values as part of

the simulation process. Thirdly, a modeler with a basic

understanding of digital technology should expect round-

ing errors in multiplication and division, but he/she might

expect addition and subtraction to yield exact results.

There is yet another unfortunate side effect of floating-

point time representations, one particularly relevant to dis-

crete event simulation. Simulations typically feature a cur-

rent time variable t that repeatedly advances, mimicking

the progression of physical time. Strangely, if t is repre-

sented as a floating-point number, then rounding errors

will tend to increase as the simulation progresses. To

understand why this happens, consider the common opera-

tion in (1), where Dt is any positive duration added to the

current time t to yield a future time t0:

t0= t+Dt ð1Þ

The Dt values produced by a model often vary over

simulated time, but rarely trend upward or downward.

Hence, they become progressively shorter relative to the

advancing t, and therefore temporal rounding errors result-

ing from t+Dt operations tend to worsen as a simulation

progresses. Particularly troublesome are situations in

which t and Dt become so disparate that t0 is rounded

down to t, and events that should have been scheduled for

different time points instead occur at a common instant.

Effectively, the duration Dt is rounded to zero.

Multiscale approaches dramatically increase the risk of

positive durations being rounded to zero. Imagine a case

where two separate teams develop two distinct models,

both relying on floating-point time values. The first team

produces a large-scale model, which performs accurately

because Dt is never short. The second team works on a

small-scale model, which also proves accurate because t

never grows long. The models are integrated and tested

526 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

for a short duration of simulated time. Now t progresses

quickly due to the large-scale model, causing some round-

ing error to emerge in the small-scale model’s durations.

However, the errors are small and go unnoticed. The mul-

tiscale model, considered valid, is then deployed for scien-

tific investigation. Longer simulations are conducted in

which t becomes very large relative to the small-scale

model’s Dt values. At some point these durations round to

zero and severely undermine the quality of the results.

It is worth acknowledging that there is a well-known

technique for coping with floating-point rounding errors.

Instead of comparing two values x and y for equality (i.e.,

x= y), one tests whether their difference lies within some

small, arbitrary epsilon value e. If jx� yj\ e, the assump-

tion is made that rounding error alone is responsible for the

difference between x and y, and hence the values should be

treated as equal. In the context of simulated time, the inter-

pretation is that two or more events with slightly different

time points should be treated as occurring at the same

instant. Unfortunately, it is difficult to ensure that every

simulation-based experiment uses an appropriate e, partic-

ularly if multiple scales are involved. Furthermore, the

effect of any e will change over the course of a simulation

run as t increases relative to the Dt values. Finally, a choice

of e will typically be based on assumptions, and it is diffi-

cult to ensure every assumption remains valid when a

model is modified or reused by other developers.

A number of parameters similar to epsilon values have

been proposed in a simulation context for specific pur-

poses. Wieland’s49 threshold of simultaneity d can be

viewed as an epsilon value that provides an upper limit on

randomly generated event time offsets. The purpose of

these offsets is to avoid any arbitrary ordering of simulta-

neous events. Zeigler et al.50 propose a time granule d that

improves the performance of synchronous parallel simula-

tion algorithms by treating nearly simultaneous events as

simultaneous. Although Wieland’s d and Zeigler’s d offer

statistical and performance-related benefits for certain

applications, they do not provide a general solution to the

drawbacks of floating-point time representations. Even

with d or d, one may still encounter the above-stated prob-

lems associated with epsilon values.

To summarize, the excellent range of a floating-point

time value is counterbalanced by its limited precision, while

serious problems result from rounding errors introduced by

addition and subtraction. The fact that rounding errors

increase as a simulation progresses means that harmful

effects may not surface until a model has been tested and

put to use. Another disadvantage of binary floating-point

time values is that fractional SI time units, such as millise-

conds or microseconds, cannot be exactly represented.

These units are important due to their popularity as a means

of specifying duration parameters. Most of these drawbacks

have previously been identified.2 The implications we most

wish to emphasize are those pertaining to multiple time

scales, which dramatically increase the chance that floating-

point rounding errors will approach the smallest time scale

in magnitude. The potential impact of these scale-related

effects is revealed in the following section.

3.3 Experimentally observed impact of fixed- and
floating-point time representations

To investigate time representations, we introduce a multi-

scale model inspired by earthquake warning systems used

in Japan, Mexico, and California.51 By detecting P waves,

such systems predict the arrival of the subsequent S waves,

which cause most of the devastation. Although the P waves

may precede S waves by only tens of seconds, this advance

notice can be used to decelerate trains in anticipation of a

possible derailment, or to encourage individuals to seek

protection from potential falling objects. One plausible rea-

son to simulate earthquake warning systems is to evaluate

their performance and choose the best possible design.

However, our interest lies not in the application but rather

in the discrepancy among its relevant time scales: the

multi-year periods between earthquakes, the tens of sec-

onds between P and S waves, and the much shorter time

durations associated with seismic noise.

We note that our model is only loosely inspired by

earthquake warning systems. The signal processing

involved in the detection system is greatly simplified. We

also generalize the model to dissociate it from any particu-

lar time scale. In place of earthquakes, our model involves

a more general type of undesirable event called an inci-

dent. Each incident is preceded not by a P wave, but by a

general type of informative event called an occurrence.

We model a prediction system that detects an occurrence

and predicts whether the subsequent incident is life-

threatening or benign. The performance of the system is

intended to improve over time, since it learns from past

occurrences and their associated incidents. The key ele-

ments of the prediction system are illustrated at multiple

scales in Figure 4.

The upper plot in Figure 4 focuses on a single occur-

rence and its subsequent incident. As shown at the top of

this plot, an occurrence is associated with an instantly

appearing and rapidly decaying pulse. Larger pulses sug-

gest life-threatening incidents. The magnitude of each

pulse is obscured by a low-frequency drift represented as a

constant offset, as well as high-frequency noise. The wave-

form at the bottom is the superposition of the pulse, drift,

and noise, sampled at 12 measurement points. Note that

the drift and noise are assumed to be present at all times,

but are only simulated over periods encompassing these

measurements.

Taking a closer look at the top of Figure 4, the 12 mea-

surements include six at a high sampling rate followed by

another six at a low rate. The first six are averaged to filter

Goldstein et al. 527

out noise and aggregate the pulse in combination with the

drift. The next six, which are also averaged to reduce

noise, aggregate the drift alone. By subtracting the average

of the latter six measurements from the average of the first

six, one obtains a feature value that can be used to predict

whether the impending incident is life-threatening or

benign. The feature is compared with a threshold, which is

always the midpoint of two averages: the average feature

values of past life-threatening and benign incidents. The

system learns by simply recalculating this threshold after

every incident.

To evaluate the accuracy of the prediction system, we

categorize each prediction as follows.

� True positive: the incident is predicted to be life-

threatening, which turned out to be correct.
� True negative: the incident is predicted to be

benign, which turned out to be correct.
� False positive: the incident is predicted to be life-

threatening, which turned out to be wrong.
� False negative: the incident is predicted to be

benign, which turned out to be wrong.

The middle plot in Figure 4 expands the view to encom-

pass four predictions, one of each type. A true positive,

such as the first prediction, is shown using a faint green

line to mark the incident. A true negative, such as the sec-

ond prediction, is indicated by a light green color. The

third prediction is a false negative, shown using dark red.

The last of the four predictions is a false positive, indicated

by a gold-colored incident.

The lower plot in Figure 4 covers the full time period of

the simulation run, which encompasses exactly 100 predic-

tions. Because the prediction system learns over time, the

likelihood of a true prediction should gradually increase.

This trend of increasing accuracy can be seen in the plot,

notwithstanding a couple of prominent clusters of false

predictions toward the end of the simulation.

Instead of using time scales associated with earth-

quakes, we test a variety of relatively long average occur-

rence durations (D�toccurrence) between occurrences and

relatively short average incident durations (D�tincident)
between occurrences and their subsequent incidents. These

two duration parameters are each varied by several orders

of magnitude. For every combination of D�toccurrence and

D�tincident, the simulation is repeated 1000 times and the

average accuracy of the system is reported as the ratio of

true predictions (true positives plus true negatives) to total

predictions. It should be noted that for this experiment, the

purpose of the model is not to maximize the reported

accuracy. Rather, the goal is to simply report accuracy val-

ues that reliably capture the performance of the system

being modeled.

The prediction system is modeled as a composition of

eight submodels, connected as shown in Figure 5. At

intervals averaging D�toccurrence in duration, the occurrence

instance randomly generates positive (k= 1) or negative

Figure 4. A simulation of a prediction system that learns over
time, plotted at different time scales. The upper plot shows one
prediction, revealing measurements of an informative pulse
obscured by a drift and noise. The middle plot shows four of these
predictions. The lower plot covers the full simulation period. Dark
vertical lines (red and gold) indicate false predictions, several of
which are emphasized at the bottom. (Color online only.)

528 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

(k= 0) messages with equal probability. These messages

trigger a succession of events in the downstream compo-

nents. The pulse, drift, and noise instances each randomly

generate y-values, which are superimposed in waveform to

produce the 12 measurements. Each measurement is com-

municated as a separate ywaveform message. All 12 such

messages are processed by feature to produce yfeature, the

average of the first six measurements minus the average of

the latter six. The predictor instance receives this feature

value and immediately predicts the class k. The prediction

is either confirmed or contradicted some time later, when

incident finally outputs the same message it received ear-

lier from occurrence.

The model is simulated for 100 combinations of two

duration parameters: 10 values for each parameter, with a

10-fold gap between successive values. The large-scale

average duration between occurrences is varied from 10 to

1010 seconds (’317 years). The small-scale average dura-

tion between an occurrence and its subsequent incident is

varied from 1 second to 1 nanosecond:

D�toccurrence 2 f101s, 102s, . . . , 1010sg
D�tincident 2 f100s, 10�1s, . . . , 10�9sg

The actual occurrence and incident durations are ran-

domly generated from uniform probability distributions

according to the formulas below:

Dtoccurrence;U(
1

2
,
3

2
) � D�toccurrence

Dtincident;U(
1

2
,
3

2
) � D�tincident

A number of shorter durations are defined below. All

are constants, except for the actual noise segment duration

which is sampled from an exponential distribution. The

use of fractions 1
3
and 1

7
is based on a concern that factors

of 1
2
or 1

10
might be seen as favoring, respectively, binary

floating-point time values or fixed-point decimal time

values:

Dtpredictor =
1

3
� D�tincident

encompasses all

measurements

�

Dtsparse=
1

7
� Dtpredictor

separates sparse

measurements

�

Dtdecay =
1

3
� Dtsparse

pulse decay

time constant

�

Dtdense =
1

7
� Dtsparse

separates dense

measurements

�

D�tnoise =
1

3
� Dtdense

average noise

segment duration

�

Dtnoise;Exp(D�tnoise)
actual noise

segment duration

�

Observe that Dtpredictor deliberately encompasses all 12

measurements with time to spare. The six high- and six

low-frequency measurements require a total duration of

6 � Dtdense + 6 � Dtsparse, which is equal to

7 � Dtsparse � Dtdense, which equals Dtpredictor � Dtdense.

Thus, the multiscale modeling technique of simulating the

drift and noise for durations of only Dtpredictor should have

no effect on the results of interest.

The experiment is conducted using a general-purpose

discrete event simulation library modified to support both

fixed- and floating-point time representations. For each

representation, 1000 repetitions are performed for all 100

combinations of D�toccurrence and D�tincident.
For 32- and 64-bit fixed-point time representations, the

simulations use the shortest base-1000 SI time unit dt that

can accommodate the maximum duration of each simula-

tion run, roughly 101 � D�toccurrence. The formula for dt is

given in (2), where nbits is either 32 or 64:

dt= 1000dlog1000(101�D
�toccurrence=2

nbits�1)e ð2Þ

The use of base-1000 SI time units is intuitive to modelers

and consistent with OMNeT++ and ns-3. A simulation run is

considered to have failed if its shortest duration constant, the

average width of a noise segment D�tnoise, rounds to zero.

Figure 5. Composition of the prediction system model. The pulse height for benign (hypulseik= 0) and life-threatening (hypulseik= 1)
incidents, the drift height (ydrift), and the noise height (ynoise) are sampled from the uniform distributions at the top right.

Goldstein et al. 529

Figure 6 shows the results of the 10 by 10 configura-

tions simulated using 32-bit fixed-point time values. The

accuracy values of roughly 76 or 77 are the averages over

1000 repetitions of the number of true predictions out of

100 in each repetition. Based on results obtained from two

different simulators and four different time representa-

tions, we consider the prediction system’s inherent accu-

racy to be slightly over 76%. Our model is designed such

that the system’s accuracy does not depend on the times

scales used. This characteristic allows us to attribute any

variability in the results to errors caused by the time repre-

sentation. In the case of a 32-bit fixed-point representation,

only three out of 100 configurations yield the desired

value, and only seven of 100 permit the simulation to com-

plete. In the modern era of 64-bit computing, one has little

need to restrict a time value to 32 bits. Yet, we include

these results to highlight the severely limited range of this

representation.

Figure 7 provides the accuracy results for 64-bit fixed-

point time values. Doubling the number of bits, a consider-

ably greater fraction of the test cases complete. The mean

accuracy is roughly 76%. The variability is consistent with

the standard error values we obtained, which were slightly

under 0.14 for all 73 successfully simulated configura-

tions. However, nine particular configurations result in

mean accuracies between 76.9% and 77.5%. These out-

liers are conspicuously situated adjacent to failed config-

urations, suggesting that computational problems emerge

when a simulation approaches the upper limit of a fixed-

point time representation.

As mentioned in Section 3.2, a floating-point time rep-

resentation alleviates the need for a time quantum and

practically eliminates restrictions on range. However, as

evident from the accuracy values in Figure 8, floating-

point time values can have a severe and seemingly erratic

effect on simulation results. The general trend in Figure 8

can be summarized as follows. The lower left majority of

the configurations feature a relatively small range of time

scales, and their reported accuracies of around 76% are

consistent with one another and with the fixed-point

results. Approaching the top right-hand corner of the plot,

time scales grow further apart and accuracy values begin

to decrease. The accuracies dip below 60% in some cases

before dramatically increasing toward a plateau of about

96:5%. Aside from this trend of decline and increase

toward the top right-hand corner, no definitive patterns

can be found. This suggests that many factors contribute

to the overall impact of floating-point time computations.

As one scans Figure 8 from bottom left to top right, the

first statistically significant sign of error is the accuracy

value of 73:0% near the center of the plot. To understand

why the accuracy is underestimated here, we examine a

single simulation run. Figure 9 reveals two issues in the

last of the run’s 100 predictions. Recall that noise and drift

are simulated over a duration of Dtpredictor, which

theoretically encompasses all measurements with time to

spare. Yet, here the noise signal ends noticeably early, and

on close examination the drift signal ends just slightly

before the last measurement. The reason why these signals

end prematurely relates to the discrepancy between the

increasing current time t and the comparatively stable

durations Dt added to it. Rounding errors in t+Dt

Figure 6. Mean accuracy results using 32-bit fixed-point time
values. A value near 76 is considered an acceptable result. An F
indicates a failed simulation.

Figure 7. Mean accuracy results using 64-bit fixed-point time
values. With 64 bits instead of 32, a far greater separation
between scales is accommodated. Yet, extremely diverse scales
still lead to failure.

530 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

expressions grow with t, and eventually become large rela-

tive to Dt. As explained in Section 3.2, the problem wor-

sens as disparate time scales are incorporated into a model.

For the noise signal, individual noise segments are gen-

erated until their combined duration reaches Dtpredictor.

However, when the individual segment durations are added

to the current time t in the simulator, t advances by less

than Dtpredictor. The fact that the noise signal is shortened,

rather than lengthened, is likely due to short noise seg-

ments being rounded to zero.

In the case of the drift, a close investigation reveals that

the signal is actually lengthened beyond Dtpredictor due to

rounding error. Unfortunately, the measurement durations

are also rounded upward, and to such an extent that they

surpass the end of the drift signal. This causes the drift to

be excluded from the final measurement. This unexpected

behavior occurs toward the end of a simulation run, after

the prediction system is mostly trained. The result is an

increase in false predictions, and an underestimated accu-

racy of 73:0%.

Could the problems seen in Figure 9 be fixed with a

more robust implementation of the model? The answer is

yes, at least for this specific configuration. In fact, it may

be sufficient to simply lengthen Dtpredictor by a small

amount while keeping the shorter duration constants the

same. Such model-specific or experiment-specific fixes,

however, are less than satisfactory. The main concern is

not how to eliminate harmful rounding errors, but rather

how to prevent them from going undetected. With the help

of Figure 8 we can see that the 73:0% result is suspicious;

it differs from configurations expected to yield statistically

equal accuracies. Yet, this verification procedure is not

generally applicable, so temporal rounding errors may

well go unnoticed.

The 73% configuration is an interesting case where the

relevant time scales are just sufficiently disparate that

floating-point arithmetic has a significant impact on the

simulation results. As the time scales diverge, the simula-

tion runs become nearly impossible to salvage with minor

implementation improvements. Consider the configuration

yielding 79:1% accuracy, just slightly above and to the

right of 73% in Figure 8. The problems with this simula-

tion run can be seen in the first of 100 predictions, shown

in Figure 10. As before, the last measurement occurs after

the end of the drift signal due to rounding error. However,

Figure 8. Mean accuracy results using 64-bit floating-point time
values. The results become erratic as the time scales diverge.

Figure 9. Impact of floating-point time values at
��toccurrence = 105s and ��tincident = 10�6s. Both drift and noise
signals end before the last measurement, rendering it invalid.

Figure 10. Impact of floating-point time values at
��toccurrence = 107s and ��tincident = 10�7s. The drift signal ends just
slightly ahead of the last measurement. Also, a variety of other
problems are evident.

Goldstein et al. 531

here the noise signal ends extremely early, with all but a

few segments rounding to zero. The reduction in noise

promotes consistency in the low-frequency measurements,

which should bias the accuracy upward. A third problem

is that the durations between the high-frequency measure-

ments have rounded to zero, and so the first six measure-

ments now occur at a single point in simulated time. As

we approach the top right-hand corner of Figure 8, the

scales become so disparate that all types of events seen in

Figures 9 and 10 collapse to a single instant. This collap-

sing of events promotes consistency, causing prediction

accuracy to be overestimated.

Revisiting Figure 8, observe the three failures for con-

figurations with D�toccurrence 2 f105s, 106s, 107sg and

D�tincident = 10�8s. With these particular combinations of

time scales, the kincident message is occasionally sent before

the yfeature needed to predict the class of the incident. The

model has a condition to fail in such cases. The condition

could be removed, allowing the simulations to complete,

but the results would be invalid.

To summarize the experiment, a number of the draw-

backs listed in Sections 3.1 and 3.2 are evident in the

results produced with 32-bit fixed-point, 64-bit fixed-point,

and 64-bit floating-point time representations. The experi-

ment excludes 32-bit floating-point time values, but with

only 24 bits of precision the outcome would be poor for

most if not all of the 100 configurations. A clear trend in

all the results is that the impact of temporal rounding error

increases with the discrepancy between a model’s longer

and shorter time scales. In the fixed-point case, the longest

time scale compels the selection of a long time quantum,

and problems arise when this quantum approaches or sur-

passes the shortest time scale. Although there is no time

quantum in the floating-point case, rounding errors propor-

tional to the longest time scale cause varying degrees of

havoc as they approach the shorter time scales.

3.4 Time implementation strategies

Various strategies have been used to implement time repre-

sentations in the form of data types and associated opera-

tions. While a number of these strategies mitigate some of

the drawbacks of fixed- and floating-point time values, no

existing implementation seems to satisfy all concerns per-

taining to the collaborative development of multiscale

simulation models.

The first strategy we consider could be described as a

‘‘brute force approach’’ to representing simulated time.

The idea is to use a fixed-point time representation con-

sisting of (a) a universal time precision fine enough for all

intended users and (b) an arbitrary-precision integer multi-

plier. Arbitrary-precision integers are not constrained to

32 or 64 bits, but rather expand in memory as needed to

accommodate increases in magnitude without sacrificing

resolution. This representation addresses both the range

limitations of 32- and 64-bit fixed-point time values as

well as the undesirable rounding effects associated with

floating-point time values.

To illustrate the advantages of a brute force approach to

time representation, we extend the experiment in Section

3.3 to include fixed-point time values with arbitrary-

precision multipliers. We select a time quantum of 10�30

seconds, which appears to be sufficiently short for any

computer simulation we have encountered in the literature.

As shown in Figure 11, believable mean accuracy values

close to 76% are reported for all combinations of time

scales.

Although it seems to eliminate all of the many prob-

lems encountered in the Section 3.3 experiment, a brute

force approach to time representation has two drawbacks.

The obvious drawback is a reduction in computational

efficiency when compared with standard 32- or 64-bit

alternatives. However, our main concern with the brute

force approach is its reliance on a common time precision.

Modelers might assume different precision levels, causing

software testing/maintenance issues. Moreover, no univer-

sal time precision is suitable for all disciplines.

Consider the 10�30s time quantum used to produce the

Figure 11 results. We would expect quantum chromody-

namics researchers to be satisfied with this precision level.

Molecular biologists might find it unnecessarily fine-

grained, yet tolerable. Modelers concerned with human-

scale systems would find 10�30s absurdly short, and might

decide against adopting the time representation.

Computational astrophysicists would find it even less

acceptable. While the underlying issue is the perception of

performance loss, the important point is the discriminating

Figure 11. Mean accuracy results for the experiment Section
3.3 using arbitrary-precision fixed-point time values.

532 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

nature of the approach. The astrophysicist would not want

to dedicate over 150 bits of precision to every time value

knowing that experts of small-scale phenomena need dedi-

cate only 64 bits. Choosing a coarser precision would bet-

ter accommodate the modelers of large-scale systems, but

might exclude modelers of small-scale systems.

In short, the brute force approach retains the fixed-point

representation’s inconvenient trait of requiring a common

time precision.

Another implementation strategy involves the use of a

rational number data type, which stores both a numerator

and denominator as separate integers. Rational simulated

time values are explored by Vicino et al.2 in conjunction

with a hybrid representation that strives to improve com-

putational efficiency with special treatment for powers of

two. To simplify the discussion, we focus on basic rational

number data types without such optimizations. We assume

that the numerator and denominator are both arbitrary-

precision integers. Rational numbers are compelling in

that they accommodate exact results not only for addition

and subtraction, but also for multiplication and division.

Rational time values require no preselected precision lev-

els, have no range limitations, and can exactly represent

durations such as 1
3
s that involve neither binary nor deci-

mal fractions.

While rational time values appear to solve a number of

rounding problems, their benefits over fixed-point repre-

sentations may be limited in practical situations. For exam-

ple, consider a model that generates messages separated by

exponentially distributed durations of simulated time.

Suppose the time constant is 17s. Theoretically, these dura-
tions are irrational numbers, but in practice they will be

rounded off. If time values are rational numbers, one must

arbitrarily select a precision level, and the most obvious

approach is to fix the denominator. Suppose the denominator

is fixed at 1,000,000. The numerator is then exponentially

distributed with a mean value of 17,000,000. Although

rational numbers do no harm to the result here, they offer lit-

tle advantage over a fixed-point representation with a time

quantum of 1ms. Some modelers may prefer the fact that

with rational numbers, the precision is implicit in the round-

ing that occurs within each model. Other modelers may pre-

fer precision levels to be explicitly specified.

The C++11/14 Chrono Library provides a fixed-point

representation in which the multiplier is an integer and the

precision level is a rational number.52 Although the num-

ber of bits of each time value is not strictly standardized,

it appears typical that the multiplier and the numerator/

denominator of the precision level are limited to 64 bits

for the sake of efficiency. The precision level is a template

argument and must therefore be inferrable at compile time.

This promotes efficiency and early error detection,

although for certain applications it might be preferable to

determine the precision at run time. A reliance on tem-

plates discouraged us from adopting the Chrono Library as

a basis for our multiscale time representation, but we still

consider it a viable option for fixed-point simulated time

values in C++.

One final implementation strategy is the use of a 64-bit

floating-point number as the multiplier in a fixed-point

time representation. The key observation is that a 64-bit

floating-point number can exactly represent all consecu-

tive positive integers with a magnitude of at most 253, or

9,007,199,254,740,992. Using an object-oriented program-

ming language such as C++, a floating-point multiplier and

a precision level can be encapsulated in a class. When an

arithmetic operation is invoked on an instance of that class,

the calculation is performed first with floating-point arith-

metic, and the resulting multiplier is rounded if needed. An

important caveat is that the multiplier not exceed 253 � 1.

According to the definitions in Sections 3.1 and 3.2, the

strategy described above constitutes a fixed-point repre-

sentation notwithstanding the internal use of a floating-

point number. An encapsulated floating-point multiplier

reduces the need for type conversions when performing

time value operations involving multiplication and divi-

sion. Furthermore, IEEE 754 floating-point numbers

include a representation of infinity and its associated

mathematical rules, providing a convenient way to incor-

porate infinite durations.

4 Multiscale time representation

Having examined both fixed-point and floating-point time

values as well as a number of implementation strategies,

we remain without a computer representation of simulated

time that convincingly addresses the needs of collabora-

tive, multiscale modeling and simulation. Particularly

unsettling are the potential consequences of floating-point

time values. It is true that the most harmful effects occur

only with vastly disparate time scales. However, the

subtlety of these effects, their tendency to surface in a vari-

ety of forms, and the fact they occur without warning leads

us away from the floating-point option. Our solution more

closely aligns with the fixed-point approach in that time

durations associated with models include precision levels

and multipliers. Yet, we avoid introducing any practical

range limitations, as well as any need to impose a common

time quantum on the entire simulation. Despite the need

for arbitrary-precision data types in certain places, the

solution is itself a multiscale approach in that its associated

event scheduling and recording algorithms can be imple-

mented using mostly 64-bit operations. Here we describe

the principles, key features, and design of the proposed

multiscale time representation.

4.1 Representation principles

The proposed representation of simulated time is based on

the following principles.

Goldstein et al. 533

1. Every atomic model should have a specified time

precision, and modelers should be able to assume

that all time durations encountered by any instance

of the model are rounded to this precision level.

There is no universal time quantum that all mode-

lers must agree on, as inevitable disagreements

would then discourage the sharing of models.

Furthermore, there is no selection of a common

precision level on a per-simulation basis, as this

might contradict the levels specified for one or

more models included in the run. Respecting a

model’s specified time precision promotes consis-

tent model behavior.

2. An atomic model’s precision level is assigned

using a base-1000 SI time unit (i.e., kiloseconds,

seconds, milliseconds, etc.). Although minutes and

hours may not serve as specified precision levels,

we note that multiples of these durations can be

exactly represented with a 1s time precision. The

restriction of time quanta to base-1000 SI units

means that quantities such as 1
3
s or fm=c cannot be

exactly represented. We consider this limitation

outweighed by the advantage of having a common

factor (i.e., 1000) separate each assignable time

unit (e.g., nanoseconds) from the next (e.g.,

picoseconds).

3. Atomic model code should use 64-bit fixed-point

time values. The rationale for a single representa-

tion is to simplify the reading and writing of

model-specific code for the benefit of modelers,

who may be experts in a variety of disciplines but

not necessarily software engineering. The restric-

tion to 64 bits ensures that most mathematical

operations on time values will be supported on

nearly any platform, and that they will be compu-

tationally efficient. The fixed-point option avoids

any unexpected behavior arising from floating-

point arithmetic.

4. Whereas atomic models should be restricted to 64-

bit fixed-point time values, a simulator may be

implemented using an assortment of time-related

data types and data structures. The rationale for

tolerating greater complexity in simulator code is

that its developers are expected to have consider-

able software engineering expertise. The internal

complexity of a model-independent simulator must

be hidden from the domain experts who apply it to

their models.

5. An atomic model instance’s simulated time values

may be approximate, so long as any error is

bounded by the model’s time quantum dt.

Uncertainty in the time durations that separate

events is a necessary consequence of the principles

above, but this uncertainty should be bounded.

6. Whereas time values encountered by atomic mod-

els may only approximate the actual progression of

simulated time, a simulator must maintain the exact

current time point and the exact time points associ-

ated with recorded and scheduled events.

7. Although simulators may use arbitrary-precision

arithmetic in places to satisfy the principles above,

64-bit operations should be used where possible to

reduce memory and processing requirements.

4.2 Representation features

The principles listed in the previous section demand a

solution that maintains the convenience and predictable

rounding behavior of a fixed-point representation, yet

tracks event times with a degree of exactness traditionally

accomplished only through the exclusive use of arbitrary-

precision data types. The features described here collec-

tively satisfy these requirements. The primary novelties of

our approach include a scale-related rationale for distin-

guishing between durations and time points (Section

4.2.1), the notion of ‘‘perceived time’’ in the context of

scale (Section 4.2.2), the operation called ‘‘multiscale time

advancement’’ (Section 4.2.3), the incorporation of epochs

into the event scheduling mechanism (Section 4.2.4), and

the re-purposing of the event scheduling data structure for

tracking elapsed durations (Section 4.2.5).

4.2.1 Durations versus time points. Certain computer repre-

sentations of time use the same data type for all time val-

ues, whereas others use different data types for durations

of time and points in time. In the C++11/14 Chrono

Library, durations and time points are distinguished so that

duration-related code can be more easily reused among

systems that differ in the epochs used to encode dates.52

An additional benefit of this approach is that certain oper-

ations can be defined for durations only, or time points

only, but not both. For example, it makes sense to multiply

a 20-second duration by 3 to obtain a 1-minute duration,

but multiplying the time point March 14, 1:59 AM by 3

requires a reference point, which is generally arbitrary.

For the multiscale time representation, we must distin-

guish between durations and time points simply because

Principle 3 of Section 4.1 demands 64-bit time values for

model implementations, whereas Principle 6 requires

simulators to use arbitrary-precision time values to track

event times. Event times are time points, so our proposed

time point data type has a variable number of digits. In

model code, we discourage the use of these arbitrary-

precision time values by avoiding the need to express

event times. This is done by adopting a core convention of

the DEVS formalism whereby models express time values

in durations relative to the current point in simulated time.

534 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

We refer to these time values as elapsed durations, mea-

sured from the most recent past event, and planned dura-

tions, measured to the most imminent future event of those

that are currently planned. For example, if the simulator

labels a previous, current, and future event with the time

points 58, 67, and 72, respectively, the model might only

be aware that the elapsed duration is 9 and the planned

duration is 5. Our representation therefore complements

the arbitrary-precision time point data type with a duration

data type based on 64-bit operations. The duration type is

used to represent elapsed durations, planned durations, and

other relative quantities of time.

Listed below are several key operations involving dura-

tion operands (Dt), time point operands (t), or operands of

both data types (Dt, t).

� Negation (Dt): the unary operation �Dt reverses

the sign (positive/negative) of the duration.
� Scaling (Dt): the binary operations a � Dt and Dt � a

multiply the magnitude of the duration by the real

number a.
� Binary addition (Dt): the binary operation

DtA +DtB adds the magnitudes of two durations to

yield a new duration.
� Binary subtraction (Dt, t): the binary operation

DtB � DtA subtracts the magnitudes of two dura-

tions to yield a new duration, whereas the binary

operation tB � tA subtracts two time points to yield

a duration. The resulting durations are always exact

provided the difference between the operands can

be represented using the 64-bit representation; if the

result requires too many bits, the operation yields

an infinite duration.
� Gap estimation (t): the binary operation tB � tA

yields a duration that approximates the difference

between the two time points. The approximation

must be sufficiently accurate that the earlier time

point tA eventually reaches the later time point tB if

tA is repeatedly advanced by tB � tA.
� Time accumulation (Dt, t): the operation t+Dt

adjusts the time point by the exact value of the

duration.
� Time advancement (Dt, t): the operation t . Dt

adjusts a time point representing the current time

according to an operation that may not give the

same result as time accumulation (t+Dt). A spe-

cific form of this operation called ‘‘multiscale time

advancement’’ is introduced in Section 4.2.3 to

honor the specified precision of each integrated

model.

We will revisit some of these operations as we discuss

other features of the multiscale representation and its

design. The mathematics associated with these and other

operations can be found in Appendix A.

4.2.2 Perceived time. Principle 5 of Section 4.1 states that

an atomic model instance’s simulated time values may be

approximate, so long as any error is bounded by the mod-

el’s time quantum dt. This scale-related form of approxi-

mation is a necessary consequence of Principles 1–4, and

here we elaborate on the concept. In essence, an atomic

instance can not necessarily determine the current simula-

tion time t. From the instance’s perspective, t is anywhere

in the range t̂4 t\ t̂+ dt, where dt is the model’s time

quantum and t̂ is its perceived time. In other words, the

perceived time is the actual time rounded down to a multi-

ple of the model’s time quantum.

As illustrated in Figure 12, different perceived times

coexist within a multiscale model. In the scenario shown,

every model with a forest-unit time precision has a per-

ceived time of 375. This means that the current time t is in

the range 3754 t\ 500. Models with a tree-unit precision

perceive the current time as 425, although based on their

knowledge the current time could be almost as advanced

as 450. Leaf-unit precision models perceive the current

time correctly as 448, assuming they are the finest-scale

models in the system. Yet, as far as the models are aware,

the current time is in the range 4484 t\ 449. Note that

the factor of 5 separating one time precision from the next

is a convention we use only for illustrative purposes. In the

actual representation, successive precision levels are sepa-

rated by factors of 1000, consistent with Principle 2.

Perceived time allows durations to be accumulated

error-free at every independent scale. Consider, for exam-

ple, a model with 1s precision and 1000s time steps. The

simulation begins at t= 0, and an instance of the model

schedules an event at t= 1000. However, suppose the

Figure 12. A current time of 448 at leaf-unit precision is perceived as 445, 425, and 375 at the branch-, tree-, and forest-unit
precision levels, respectively.

Goldstein et al. 535

instance receives a message at t= 2:2. To maintain its

scheduled t= 1000 event, the instance must then yield a

planned duration of 997:8s. Inconveniently, its 1s preci-

sion level only allows it to produce a planned duration of

998s. If conventional time accumulation is used, the future

event will be scheduled at t= 1000:2, introducing error.

Such errors can then accumulate over time. However, if

the 998s planned duration is applied to the perceived mes-

sage time (t= 2 instead of t= 2:2), then the t= 1000

event occurs exactly when planned.

Perceived time points are not explicitly represented in

any of the data types or data structures in our approach.

They exist only implicitly as a result of an operation called

multiscale time advancement, explained in Section 4.2.3.

However, an expert modeler can make perceived time

explicit if he/she so choses. Let us assume a simulation

begins at t= 0. An instance of the time point data type can

be stored as a state variable in an atomic model instance,

and set to t= 0 on initialization. If the time point is then

advanced—using multiscale time advancement—by every

encountered elapsed duration, the time point will track the

perceived time. If this is done by the smallest scale model

in the system, the associated time point is the current time.

Again, we consider this an expert technique. Domain

experts need not use the time point data type. In fact, they

need not be familiar with the concept of perceived time. It

is generally sufficient to know that some models measure

time more precisely than others, and that the simulator

sorts out any discrepancies.

4.2.3 Multiscale time advancement. Multiscale time

advancement is the operation that introduces perceived

time into a simulation, despite the fact perceived time val-

ues are not explicitly represented. Essentially, multiscale

time advancement increases a perceived time point by

exactly the duration specified, even though the actual time

point may increase by a shorter duration. More precisely,

the actual time point is increased by the shortest possible

amount such that the model specifying the duration still

perceives time as if it progressed exactly as much as

expected.

Figure 13 illustrates multiscale time advancement in

three distinct scenarios. In all three cases, a time point of

448 leaf units is advanced by a duration with a magnitude

of 100 leaf units. However, the duration is expressed with

a different precision level in each scenario, which changes

the outcome of the operation. In the upper plot, the dura-

tion is expressed as 100 leaf units, and time progresses by

the expected amount. In the middle plot, the perceived

time of 445 at the branch-unit scale increases by exactly

the specified duration of 20 branch units, but the actual

time increases by only 97 leaf units (from 448 to 545). In

the lower plot, the perceived time of 425 at the tree-unit

scale advances by exactly 4 tree units, but the actual time

increases by only 77 leaf units (448 to 525).

Section 4.2.1 introduced the notation for multiscale

time advancement, t . Dt. The notation is inspired by

Nutaro,53 who uses the . operator for advancing a rather

different form of time representation. Nutaro’s time values

are pairs (t, c), where t is the simulated time and c is a

count that orders events that share a simulated time point.

Extensive work has been done on similar time representa-

tions incorporating one or more non-physical compo-

nents.54–61 The multiscale representation described here

deals only with simulated time: the t component in

Figure 13. Using multiscale time advancement, advancing a time point (448) by equal durations (100 leaf units = 20 branch units =
4 tree units) produces a different result depending on the time unit of the advancement duration.

536 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

Nutaro’s (t, c) time values. Yet, the manner in which mul-

tiscale time advancement truncates small-scale informa-

tion is somewhat analogous to the reseting of the c

component, which occurs when a (t, c) time point is

advanced by a positive duration of simulated time.

4.2.4 Event scheduling epochs. As the multiscale representa-

tion was under development, a primary consideration was

the question of whether the proposed time values and oper-

ations would reasonably accommodate the complete set of

data structures and algorithms needed to implement a gen-

eric simulator. As the focus was on discrete event simula-

tion, we dedicated much of our efforts to the enhancement

of priority queues that handle the scheduling of future

events.

Inconveniently, neither the time point data type nor the

duration data type are suitable for tracking the timing and

ordering of large numbers of future events. Assigning an

arbitrary-precision time point to every future event would

contradict Principle 7 of Section 4.1, which states that 64-

bit operations be used where possible to reduce memory

and processing requirements. In addition, although our

duration time values are based on 64-bit operations, they

are inappropriate for a different reason. Recall from

Section 4.2.1 that planned durations are measured from

the current point in simulated time. If every future event

was tracked using its planned duration, then all of the

durations stored in the queue would have to be updated

whenever the current time advances. We prefer to avoid

such obvious inefficiencies.

Note that the issue of how to represent future event

times is orthogonal to the choice of priority queue algo-

rithm. This point deserves elaboration. Rönngren and

Ayani62 compare the performance of several priority queue

algorithms, including the implicit binary heap, the splay

tree, and the calendar queue. Any of these methods could

be combined with the multiscale time representation we

propose. What our approach affects is the encoding and

interpretation of the time value associated with each event.

To distinguish between the challenge of how to physically

handle future event information, and the challenge of how

to encode and interpret event times for multiscale simula-

tion, we adopt a new term. In the context of our approach,

a time queue is an event-tracking data structure that encap-

sulates both a priority queue algorithm (i.e., one of those

compared by Rönngren and Ayani62) and our method for

processing time values associated with different scales.

Our time queue data structure introduces epochs into

the event scheduling process. We define an epoch as the

time period starting at an epoch reference time, or ‘‘epoch

date,’’ and ending at the most distant time point that can be

represented as a positive fixed-point offset from the refer-

ence time. For example, the January 1, 1970, epoch date

popularized by C, C++, and Unix is widely used in conjunc-

tion with a 1s precision level and a signed 32-bit integer

multiplier. This convention gives rise to the so-called ‘‘Year

2038 Problem,’’ the prospect of widespread system failures

coinciding with the end of the epoch. Incidentally, this is

further evidence of the inadequacy of 32-bit time values.

The epochs we introduce are juxtaposed end on end,

allowing the full extent of a simulation run to be accom-

modated regardless of how much simulated time elapses or

how precisely event times are resolved. Every future event

time is then stored as an offset from the beginning of its

encompassing epoch. We refer to the stored offsets as

planned phases. Planned phases, planned durations, and

epochs are illustrated in Figure 14. Note that all time points

and durations in this diagram are specific to the leaf scale,

Figure 14. The illustrated time queue tracks two planned durations, which are measured relative to the current time (422) by
storing the corresponding planned phases, which are measured relative to the beginnings of epochs. The first planned duration is
within the current epoch (375–499), which contains the current time. The second planned duration is within the next epoch (500–
624), which will eventually become the current epoch. All time points and durations shown are specific to the leaf scale. Epochs at
the leaf scale coincide with time quanta at the forest scale.

Goldstein et al. 537

regardless of where they are drawn. In the example, an

epoch at the leaf scale coincides with a single time quan-

tum at the forest scale.

The current epoch contains the current time. In

Figure 14, the current time is 422, and the current epoch

stretches from time 375 to 499. An event scheduled for

time 479 is also in this epoch. The planned duration for

this event is 57 (479� 422), but will decrease as time

advances. The corresponding planned phase will retain its

value of 104 (479� 375) as time advances, which is why

the time queue data structure stores planned phases intern-

ally. Planned phases are converted to and from planned

durations as needed.

The next epoch begins after the current epoch ends. In

Figure 14, the next epoch starts at time 500 and contains a

scheduled event at time 535. Again, the planned phase is

stored because it remains constant as time advances.

Observe that a planned phase in the current epoch is at

least as long as its corresponding planned duration; in the

next epoch, a phase is always shorter than its planned

duration because it is measured from a more advanced

point in time (i.e., time 500 instead of 375).

A compelling feature of this approach is that it is unne-

cessary to record which epoch contains each planned phase.

Given only an event’s phase value, one can determine its

associated epoch, its planned duration, and its time point.

The calculation requires the current time t, the only time

point stored by a time queue. Using t, one computes the

epoch phase, the number of time quanta separating t from

the beginning of the current epoch. If a planned phase is at

least the epoch phase, the event is in the current epoch. If

the planned phase is less than the epoch phase, the event is

in the next epoch. Note that these are the only two cases.

Scheduled events can never precede the current epoch

because they would have already occurred. Likewise, the

epoch that begins after the next epoch is irrelevant, as we

impose a limit of one epoch width on the duration data type

used to specify planned durations. In Figure 14, the epoch

width and planned duration limit are both 53, or 125. The

actual representation uses an epoch width and duration

limit of 10005, as explained in Section 4.3.

Figure 14 shows only events scheduled by models with

a common time precision (leaf-unit precision, in this case).

A number of complications arise when tracking events

scheduled by models with different precision levels. Yet,

even if all events are handled by the same time queue

instance, it remains possible to store future event times

using planned phases, and to compare these phases with-

out resorting to arbitrary-precision arithmetic. The algo-

rithms required to achieve this functionality are provided

in Appendix A.5.

4.2.5 Other event-tracking features. In addition to tracking

future events, it is often necessary to store and retrieve

durations and time points associated with past events.

To record all past event times as they occur, we define

a relatively simple data structure called the time sequence.

When an instance of this data structure receives its first

event time as an instance of the time point data type, it

stores the full arbitrary-precision value along with a zero-

valued offset of type duration. When new event times are

added, the structure appends additional duration-valued

offsets from the initial time point. If the new event time is

sufficiently advanced or sufficiently precise that it cannot

be exactly represented with an offset, then the full time

point is recorded along with a duration of zero. Thereafter,

additional event times are measured from this new time

point. Details can be found in Appendix A.4.

Finally, although discrete event simulation is character-

ized by the use of a priority queue, theory from Zeigler

et al.3 reveals that one additional data structure is needed

to support all applications. A central concept underlying

the DEVS formalism is the observation that certain state

transitions depend on the elapsed duration, the time

elapsed since the previous event. We therefore define a

time cache data structure responsible for providing elapsed

durations by tracking the time points of the previous event

for each model instance. This is different from the time

sequence, which can record all event times and is not opti-

mized for the previous one.

Conveniently, the time cache data structure can be

designed with ease using the following technique. Instead

of attempting to track a previous event as it recedes into

the past, the idea is to track an imaginary future event as it

becomes progressively more imminent. The previous

event and its imaginary future event are always separated

by the maximum representable duration, 10005 � 1 time

quanta, so tracking one is as effective as tracking the

other. We track the imaginary future event so that we may

simply re-purpose the time queue data structure. Thus, a

time cache encapsulates a time queue; information about

past events is maintained by internally tracking imaginary

future events. More information is provided in Appendix

A.6.

4.3 Representation design

We propose that the features described in Section 4.2 be

organized in a computer representation of simulated time

consisting of three data types named scale, duration, and

time point, as well as three data structures named time

sequence, time queue, and time cache. All six elements

and their relationships are shown in Figure 15. The separa-

tion of durations and time points was discussed in Section

4.2.1. The reason we abstract the concept of scale into its

own data type is that it can be reused for both the duration

and time point data types, as well as distance-related data

types in possible future work toward a multiscale represen-

tation of space. As previously discussed in Sections 4.2.4

and 4.2.5, the time sequence, time queue, and time cache

538 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

data structure collectively support the recording of past

events and the scheduling of future events in a discrete

event simulation.

Two mathematical constants, b and h, play an impor-

tant role in the representation’s design. The base constant

b is a factor that separates one allowable time unit from

the next. Since the time unit representing a model’s preci-

sion is roughly proportional to the model’s time scale, we

could state that b also separates one scale from the next.

To adhere to Principle 2, b must be 1000, although other

base constants are possible in theory.

The epoch constant h establishes bh as the limiting

multiplier of the duration data type. We use h= 5 for the

following reason. Recall from Section 3.4 an implementation

strategy in which an integer-valued multiplier is represented

using an encapsulated 64-bit floating-point number. We

adopt this technique, and must therefore choose a limit-

ing multiplier less than 253, or 9,007,199,254,740,992.

Yet, as explained below, we also require that this limit

be a power of b. The largest value of 1000h less than 253

is one quadrillion, or 10005. Hence h= 5, and the dura-

tion data type’s fixed-point multiplier m must satisfy

10�15 \m\ 1015.

The decision to use a 1015 multiplier limit instead of

253 is to align a full epoch at one scale with single time

quantum at a larger scale. The alignment of an epoch with

a time quantum occurs when there are exactly h steps

between the two scales. For example, with h= 5, an

epoch at a scale with an attosecond precision level

(1000�6s) is exactly 1 millisecond (1000�1s). The rela-

tionship between time quanta and epochs was illustrated in

Figure 14 with the alternative set of constant values b= 5

and h= 3. Note that it would be impossible to render a

full epoch’s worth of quanta using the actual b= 1000,

h= 5 conventions.

To help make the proposed representation reproducible,

a detailed mathematical description of each data type and

data structure is provided in Appendix A. The appendix

uses a unique set of notations in order to distinguish

the proposed multiscale time value operations from

conventional arithmetic. For example, the scale data type

represents a power of 1000, specifically 1000level for some

integer level, but we use the notation below in order to dis-

allow unnecessary scale-valued operations such as the

multiplication of two scale values:

level fscale (1000level)g

The notation for duration values uses a clock symbol

and clearly shows the multiplier m and precision level. The

precision is represented using the scale data type:

m u fduration (m � 1000us)g

The time point notation uses a different clock symbol

and also incorporates a scale-valued precision level.

Instead of a single multiplier variable, this data type fea-

tures a sequence of n digits di, where 04 di \ 1000:

½dn�1
n�1

, . . . , d2
2
, d1

1
, d0

0
� u ftime pointg

In addition to describing these data types and their asso-

ciated operations, Appendix A formalizes the key algo-

rithms employed by the time sequence, time queue, and

time cache data structures. Appendix B offers sample code

and suggestions for implementing the multiscale time rep-

resentation in C++.

5 Modeling and simulation using a
multiscale time representation

A multiscale time representation has now been proposed,

but how would it impact modeling and simulation? Here

we answer this question. We focus first on issues relevant

to modelers, particularly domain experts hoping to collabo-

rate in the development of multi-domain, multi-paradigm,

and multiscale simulations. We then present a prototype

implementation and its application to the prediction system

model of Section 3.3.

Figure 15. Multiscale time representation data types (single border), data structures (double border), and relationships (arrows).

Goldstein et al. 539

5.1 Implications for multiscale modeling

Modelers are experts in their domains who may have con-

siderable coding experience, but generally lack a systems

engineer’s familiarity with computer technology and soft-

ware engineering practices. Ideally, modelers would enjoy

the benefits of a multiscale time representation with mini-

mal exposure to its complexity. For this reason, most

modelers should use only the scale and duration data

types. The time point data type and the time
sequence, time queue, and time cache data struc-

tures are intended primarily for systems engineers who

develop simulation frameworks and environments.

Realistically, there may be occasions where an expert

modeler uses one of these data structures within a model,

but typically a model will store and process temporal

quantities using the duration data type.

Aside from a modeler’s direct exposure to the duration

data type, the proposed time representation introduces a

number of considerations pertaining to the modeling pro-

cess. In the following, we explain why these considerations

arise and how modelers should respond.

5.1.1 Selection of time precision. As emphasized throughout

the paper, our approach requires almost every atomic

model to have an explicitly specified time precision. The

one exception is that some atomic models produce only

zero or infinite planned durations and have no need for

elapsed durations. These models can be described as hav-

ing no time scale. They need not be given any precision

level.

Multiscale models are constructed by integrating

atomic models with different precision levels. Interactions

among these models are coordinated using multiscale time

advancement, which truncates every increase in the cur-

rent time based on the time precision of the atomic model

scheduling a future event. It turns out this truncation has

no effect following a planned event: an event scheduled

by an instance for itself. A planned duration can only be

shortened following an unplanned event: an event trig-

gered by an incoming message. The effect of this trunca-

tion is most pronounced when time is advanced by a

single quantum.

Figure 16 depicts a scenario in which the current time is

449 leaf units. There is a model at the tree-unit precision

level, and an instance of this model is currently scheduling

an event with a planned duration of 1 tree unit. A single

tree unit equals 25 leaf units; hence, under a conventional

time accumulation approach, the future event would be

scheduled at a time of 474 leaf units (449 + 25). Using

multiscale time advancement, however, the event time is

truncated at the model’s precision level. The event is there-

fore scheduled at time 450, only one leaf unit beyond the

current time. (Note: the instance’s perceived time increases

from 425 to 450, but the current time advances from 449

to 450.) In effect, the planned duration suffers a 96% error

since the event is scheduled after 1 leaf unit instead of 25.

In general, if a large-scale model produces planned

durations Dtp equal to 1 unit of its precision level, and if

this model is influenced by smaller-scale models, then

temporal rounding errors may approach 100% of Dtp.

Fortunately, this problem is easily addressed by choosing

a time quantum considerably shorter than the model’s

planned durations. If Dtp is increased from one quantum to

only two quanta, the maximum error drops to just under

50%. As a rule of thumb, we recommend that a model’s

time precision be one millionth of its time scale, rounded

down to a base-1000 SI unit. If this guideline is followed,

the situation in Figure 16 will rarely occur.

5.1.2 Limit on planned durations. We turn our attention to

the scheduling of future events, where the key constraint is

that every finite planned duration must be less than 1015

time quanta. Thus, while a model’s time precision should

be sufficiently fine to keep rounding errors well below its

scale, an excessively fine precision level will limit how far

into the future one can schedule events. Let us observe

that 1015 is equal to 106 times 103 times 106. Our rule of

thumb attempts to keep most planned durations in the mid-

dle three orders of magnitude, at least six orders above the

quantum and at least six orders below the 1015 limit. If a

model’s scale is roughly 5s, one chooses a 1ms precision

and accepts 999, 999, 999:999999s (approximately 32

years) as the furthest duration into the future an event can

be conveniently scheduled.

Figure 16. A scenario in which an event is scheduled with a planned duration of 1 tree unit, but the event time is truncated due to
multiscale time advancement. The scheduled event occurs only 1 leaf unit into the future.

540 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

Although there is a 1015 quanta limit on the scheduling

of future events, there is essentially no limit on the extent

of a simulation run. For example, it is possible for a model

to schedule a preemptive event every 5 � (1014) time

quanta, ensuring that the limiting duration of 1015 quanta

never expires. With this technique and some bookkeeping

code, the modeler can actually circumvent the limit and

allow events to be scheduled arbitrarily far in the future.

Yet, such measures will rarely be necessary, since 1015

allows sufficient range and precision for most single-scale

models.

5.1.3 Infinite elapsed durations. Arguably the most inconve-

nient aspect of the proposed time representation is the

prospect of infinite elapsed durations. These occur when

(a) an atomic instance enters a passive state by yielding a

planned duration of ‘, (b) the instance remains undis-

turbed for at least 1015 time quanta according to its preci-

sion level, and (c) a message is then received triggering an

unplanned event. Infinite elapsed durations are inconveni-

ent because special cases may be required to handle them.

Fortunately, if modelers forget to implement these special

cases, there is good chance their simulations will fail in a

noticeable way due to the tendency for ‘ values to

propagate.

Modelers must understand that an infinite elapsed dura-

tion means the instance is in a steady state. If in fact the

instance is not in a steady state, the modeler should not

have allowed the instance to remain passive for 1015 or

more time quanta. Our definition of steady state is a situa-

tion in which a response to an external stimulus no longer

depends, in any predictable way, on exactly when the sti-

mulus occurs. Hence, when the actual elapsed duration

overflows to ‘, no important information is lost in terms

of how the model should behave. For example, if a state

variable y approaches an asymptote ymax, the modeler can

approximate y as either ymax or ymax � e for some suitably

small e. On the other hand, if the steady state happens to

be an oscillating pattern, one option is to choose a phase

randomly. Imagine a wheel that is suddenly stopped after

being allowed to spin for a very long time; its final rota-

tion angle is more-or-less random. If needed, a modeler

can avoid infinite elapsed durations altogether by schedul-

ing preemptive events every 5 � (1014) time quanta (see

Section 5.1.2).

5.1.4 Extremely disparate scales. As previously emphasized,

multiscale modeling is accomplished by integrating single-

scale atomic models with different precision levels. There

is effectively no bound on the diversity of scales that can

be combined. Suppose one simulates the cosmic evolution

of the universe up to 1038 years when black holes theoreti-

cally become the only stellar-like objects. Suppose he/she

then wishes to resolve molecular effects at representative

locations in this dark, distant future. The overall simulation

could be achieved with perhaps a yottasecond (1024s) pre-
cision atomic model for the later stages of the universe, a

yoctosecond (10�24s) precision atomic model for the

molecular-level effects, and possibly terasecond, second,

and picosecond atomic models to bridge the gap between

these vastly disparate scales. It is unclear whether such a

simulation will ever be undertaken, but comforting to

know that even the most extreme multiscale modeling

efforts need not be hindered by issues related to time rep-

resentation. Models involving combinations of subatomic,

molecular, biological, geological, and astrophysical time

scales can be integrated with relative ease, and simulated

using mostly 64-bit time value operations.

5.2 Prototype simulator and application

The DEVS formalism provides a basis for reusable

simulators supporting a compositional style of model

development.3 Due to the generality of the formalism, a

DEVS-based simulator can also serve as a foundation for

multi-paradigm modeling tools that accommodate a vari-

ety of general-purpose and domain-specific simulation

techniques.63 Our prototype simulator takes this highly

regarded approach, and incorporates the proposed repre-

sentation of simulated time. Although we make use of the

existing convention that DEVS models express event

times relative to the current time, every model must now

be extended with a specified time precision. We test the

prototype by applying it to the prediction system model of

Section 3.3. As discussed below, the failures and extreme

rounding errors observed when using fixed-point and

floating-point time representations do not surface with the

new simulator.

In reimplementing the prediction system model using

the multiscale time representation, a precision level is

specified for each of the eight atomic models. While we

would generally want to use our rule of thumb (divide by

a million, round down), this application is an unusual case

where the two duration parameters Dtoccurrence and Dtincident
each vary over 10 orders of magnitude. The need to

accommodate these vastly different time scales forces us

to choose particular precision levels. In the case of the

occurrence model, a minimum Dtoccurrence of 10s suggests
a microsecond precision level based on the rule of thumb,

but we choose milliseconds to accommodate the maxi-

mum Dtoccurrence of 10
10s.

Figure 17 indicates the selected time precision for each

atomic model in the prediction system. Models that react

instantaneously in simulated time have no time scale, and

thus no time precision. Observe that 27 orders of magni-

tude separate the longest simulation durations (i.e., the

1010s maximum occurrence duration, multiplied by 102

occurrence–incident pairs) from the finest precision levels

(i.e., femtoseconds, or 10�15s).

Goldstein et al. 541

The experimental results for all 100 combinations of

Dtoccurrence and Dtincident are shown in Figure 18. Unlike the

fixed- and floating-point results in Section 3.3, the simula-

tions neither fail nor deteriorate toward the top right-hand

corner where the scales become disparate. The results

resemble those of the brute force approach in Section 3.4.

However, since each atomic model now has its own time

precision, a wider range of disciplines can now be

accommodated.

Although the use of 64-bit operations wherever possible

should promote efficiency, an analysis of computational

speed and memory consumption remains as future work.

Further experiments could help answer a number of

performance-related questions. How does the use of a

fixed-point, floating-point, brute force, or multiscale time

representation affect run times for a representative sample

of simulation models? Under what circumstances do time

value operations become significant from an efficiency

perspective in comparison with domain-specific computa-

tions? How can the proposed approach be optimized for

time and/or space efficiency, and are such efforts worth-

while? Yet, regardless of efficiency-related considerations,

the multiscale time representation is justifiable as a scal-

able and domain-neutral strategy for controlling rounding

error while avoiding the need for any universally accepted

precision level. The approach promotes quality simulation

results using conventions suitable for collaborative model-

ing efforts.

6 Conclusions

Scale, as defined in Section 2.1, pertains to the magnitudes

of distances and durations that appreciably affect simula-

tion results. It follows that rounding errors in the timing of

events must be small relative to a model’s time scale.

However, this requirement may be difficult to satisfy in a

multiscale context if time is represented using standard

32- or 64-bit numbers, as rounding errors proportional to

the longer time scales may distort behavioral patterns at

the shorter time scales. In pursuit of general approaches

for collaborative multiscale modeling, we have examined

the implications of various representations of simulated

time, including the multiscale solution introduced in this

paper. This work leads us to the following conclusions.

1. All types of 32-bit time values should be avoided

in discrete event simulation, except possibly in the

most constrained applications. With 32 bits, only a

narrow range of scales can be supported.

2. Binary floating-point time values are problematic

and should generally be avoided. While floating-

point is often considered the default representation

for real numbers, its distinguishing characteristic is

the fact that rounding errors are proportional to the

magnitude of the represented value. This rounding

behavior is often desirable, but not in the case of

simulated time. As a simulation progresses, the

current time variable increases, but there is rarely

a reason that errors should increase as well. Errors

Figure 17. The prediction system model of Section 3.3 with time units specifying each model’s precision levels.

Figure 18. Mean accuracy results for the Section 3.3
experiment using the multiscale time representation.

542 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

associated with floating-point time values can have

a severe impact in multiscale contexts.

3. Fixed-point time values with 64-bit integer multi-

pliers could be considered a naı̈ve approach to rep-

resenting simulated time. One must choose a

precision level based on the anticipated length of a

simulation run, then hope that the shortest scales

will be adequately resolved. The most ambitious

multiscale applications may be difficult to

accommodate.

4. Fixed-point time values with arbitrary-precision

integer multipliers could be considered a brute

force approach to time representation. In this case

the shortest scales determine the precision level,

and computing resources are acquired as needed to

accommodate the full length of any simulation run.

Multiscale efforts are supported, but arguably only

within isolated disciplines. Collaboration between

disciplines suffers because modelers are unlikely

to agree on a universal time precision.

5. The solution presented in this paper constitutes a

multiscale approach to the representation of simu-

lated time. Precision levels specified on a per-

model basis keep temporal rounding errors low

relative to scale, which by definition minimizes

the effects of these errors. Instead of relying on

arbitrary-precision integers throughout the simula-

tion code, 64-bit fixed-point time values are used

within models and wherever possible in the simu-

lator. Collaboration among disciplines is promoted,

since models with disparate time scales can be

integrated without the need to agree on any com-

mon time precision.

A recipient of the 2013 Nobel Prize in Chemistry

awarded for multiscale modeling, Karplus64 begins his lec-

ture with a three-atom simulation developed in the 1960s.

This serves as an example of how an early focus on single-

scale simulations, combined with a willingness to collabo-

rate, will ultimately give rise to multiscale considerations

due to the inevitable differences in scale among models.

Thus, if a simulation framework is intended to support the

sharing and integration of models within a growing inter-

disciplinary community, one should fully expect multiscale

modeling to become a priority even if it is not emphasized

at the outset.

Because time representations are generally shared

between models and simulators, they are difficult to

replace once established in a framework. The fact that

OMNeT++ switched to a fixed-point approach is a testa-

ment to the deficiencies of floating-point time values. Yet,

fixed-point representations are also limited if one’s ulti-

mate hope is to foster collaboration among disciplines. By

incorporating a multiscale representation of simulated time

such as the one presented in this paper, a framework’s

time value operations should never become a limiting fac-

tor as multiscale scenarios emerge.

General solutions that address the challenge of multi-

scale modeling will complement advances in multi-domain

and multi-paradigm modeling, improving support for col-

laboration in systems science. As mentioned in Section

2.3, a new representation of time is one of two general

solutions to multiscale challenges we find particularly

compelling. The other is a multiscale representation of

space. Most computer graphics libraries are based on

floating-point spatial coordinates, and techniques such as

normalization are used to cope with the resulting rounding

errors. This approach will become untenable for models

combining vastly different spatial scales. A multiscale

alternative might include data types such as a unit vector

with base-2 floating-point components (direction), a base-

1000 floating-point spatial scalar (distance), a spatial vec-

tor with base-1000 fixed-point components (position), and

an arbitrary-precision spatial vector to be used only where

needed (reference point). In addition to effective represen-

tations of space and time, general support is needed for

domain-neutral multiscale approaches, such as those illu-

strated in Section 2.2. These challenges provide a way for-

ward in addressing one of the most important bases for

heterogeneity in the modeling and simulation of complex

systems: a discrepancy in scale.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

Appendix A Representation mathematics

Provided here are the mathematical operations and algo-

rithms associated with the multiscale simulated time repre-

sentation, which consists of the scale, duration, and time

point data types, as well as the time sequence, time queue,

and time cache data structures.

A.1 Scale mathematics

The scale data type represents the general concept of

scale as a dimensionless power of 1000. Its primary role

in the multiscale time representation is to specify a mod-

el’s level of time precision as a base-1000 SI unit, satisfy-

ing Principles 1 and 2 of Section 4.1. We imagine that a

scale value could also be used to characterize the mag-

nitude of distance-valued quantities in a multiscale repre-

sentation of space, although this is future work.

To reason mathematically about the scale data type,

we express a scale value using the notation below. The

symbol represents the factor of 1000 between scales,

and the attribute level is an integer exponent:

Goldstein et al. 543

level fscale (1000level)g

The custom notation offers several advantages over a

conventional expression, such as 1000level or blevel (see

Section 4.3 for the definition of b). The level expression

is more compact than 1000level, and unlike blevel it clearly

indicates the fact that scale has only a single attribute.

More importantly, the custom notation allows us to restrict

the set of mathematical operations that can be performed

on scale values. For example, we consider the product
level1 � level2 meaningless. However, it is useful to

express the division of one scale by another to yield a

power of 1000:

level1

level2
= 1000level1�level2

An implementation of the scale data type is described in

Appendix B.1.

A.2 Duration mathematics

The duration data type represents a quantity of time as

a multiple of a time quantum, where the time quantum is

based on a precision level represented by a value of type

scale. The primary role of duration is to quantify the

simulated time between events in a discrete event

simulation.

A duration value is expressed as follows, where m is the

multiplier and u is the precision level:

m u fduration (m � 1000us)g

The quantity of time represented is m � 1000u seconds.

Examples of durations are given below:

1 0 f1 secondg
10 0 f10 secondsg
10 �1 f10 millisecondsg
7158 �2 f7158 microsecondsg
� 200 �2 f�200 microsecondsg

� 200 �2 f�200 microsecondsg
200 1 f200 kilosecondsg

The standard arithmetic operators + ,�, �, and = are used

to express fixed-point operations. The fixed-point addition

(+) and subtraction (�) operations require both duration
operands to have the same precision level, and the result is

always a duration value with the same precision as the

operands. If the resulting multiplier is less than 10005 in mag-

nitude, addition and subtraction yield exact results:

2 0 + 3 0 f5 secondsg
2 0 � 3 0 f�1 secondg

The fixed-point multiplication (�) and division (=) oper-
ations always involve one duration operand and one scalar.

In the case of division, the duration must be the numerator.

For both multiplication and division, the precision level of

the resulting duration value is the same as the duration-

valued operand. This essentially means that the multiplier

m of the original duration is multiplied or divided by the

scalar operand. In the examples below, no rounding is

needed:

5 � 100 0 = 500 0

1

5
100 0 = 20 0

100 0 � 1
5
= 20 0

100 0=5= 20 0

In the following case, the resulting multiplier is rounded

from 12.5 to 13. A fraction of exactly half the time quan-

tum is rounded away from zero, although other rounding

conventions are possible:

100 0=8 = 13 0

Comparison operations assume that the duration oper-

ands on both sides could be replaced by their associated

quantities m � 1000us:

2 0 . 1000 �1

2 0 \ 3000 �1

� 8 �4 \ � 7 �4

An important consequence is that two or more duration

values may be equal without being the same. For example,

the three values below are equal since they all represent 1s.
Yet, the values are distinct since they have different preci-

sion levels:

1 0 = 1000 �1 = 1000000 �2

The possibility of duration values being equal yet dis-

tinct has significant implications. For example, applying

the same fixed-point operation to the three versions of 1s
yields different results:

1
3
� 1 0 = 0 0

1
3
� 1000 �1 = 333 �1

1
3
� 1000000 �2 = 333333 �2

Whereas the = comparison operator tests only equality,

one may use the [operator to indicate that two duration

values are equivalent in both multiplier and time precision:

500 �1 + 500 �1 = 1 0

500 �1 + 500 �1[1000 �1

544 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

If the multiplier of a computed duration reaches or

exceeds the limit of 10005 as a result of a fixed-point oper-

ation it overflows, yielding a positive or negative infinite

duration:

999999999999999 2 + 1 2 = ‘

�1000000 � 1000000000 �5 = � ‘

While we regard the duration data type as a fixed-

point representation of time, an implementation effort

revealed the benefits of accommodating floating-point

operations when needed. Taking inspiration from

Goldberg,42 we use �, �, 	, and
 to indicate floating-

point arithmetic. However, in the case of duration, these

are not base-2 but rather base-1000 operations. Base-1000

floating-point operations support arithmetic between dura-

tion values with different precision levels, as in the follow-

ing examples:

3 0 � 475 �1[3475 �1

1 1 � 1 �2[1000000001 �2

500 �4 � 1 �3[� 500 �4

The above examples yield exact results, although

floating-point operations can be used for approximation,

as seen below:

1

3
	 1 0 = 333333333333333 �5

1

3
	 1000 �1 = 333333333333333 �5

1000 �1
 3= 333333333333333 �5

Floating-point operations on duration values select the

time precision of the result that achieves the highest accu-

racy possible given the 10005 multiplier limit and the base

of 1000. If there are multiple resulting precision levels that

would yield the highest achievable accuracy, then the cho-

sen precision is the one that differs least from the finest

precision among the operands. These rules allow precision

levels to be adjusted to avoid overflow, as shown below:

999999999999999 2 � 1 2

[1000000000000 3

�1000000	 1000000000 �5

[� 1000000000000 �4

The division of one duration by another is always con-

sidered a floating-point operation, even if the
 operator

does not appear. As expressed by the general rule below,

the numerator and denominator may have different preci-

sion levels and the result is a scalar with no prescribed

precision. Implementations should represent the result

using a standard double precision floating-point value:

m1
u1

m2
u2
= m1

m2
� 1000u1�u2 fgeneral ruleg

1
�1

1
0 = 0:001 fexampleg

Although the floating-point operations may seem con-

venient, simulation frameworks should be designed to dis-

courage their use. Our multiscale approach relies on

consistent precision levels within atomic models, and

requires exact addition and subtraction in the simulator.

The fixed-point operations have these properties.

There is one last detail concerning the mathematics of

the duration data type. We have seen that a positive or neg-

ative infinite duration has no time precision, as it is not

needed. Intuitively, a duration of zero should not require a

precision level either. Yet, we do in fact include the time

precision for zero durations. Although 0s, 0ms, and 0ms all
represent the same quantity of simulated time, the associ-

ated precision levels are significant in that they may affect

subsequent fixed-point operations:

‘ finfinite duration (no time precision)g
� ‘ fnegative infinite durationg
0 0 fzero secondsg
0 �1 fzero millisecondsg
0 �2 fzero microsecondsg

Our implementation of the duration data type makes

use of a C++11 feature allowing SI units to appear as part

of the syntax. For example, the code 5_ms represents 5

milliseconds. Further implementation-related details are

provided in Appendix B.2.

A.3 Time point mathematics

The time point data type represents points in simulated

time. It is intended for use in simulator code where, as

emphasized by Principle 4 of Section 4.1, software com-

plexity is tolerated to a greater extent than in model code.

The main purpose of the time point is to describe event

times as offsets from a common reference point. Because

the reference point is arbitrary, it makes little sense to per-

form addition or subtraction on pairs of time point

instances, not to mention multiplication or division.

Rather, the key operations involve either perturbing a

time point instance using a duration value, or

obtaining a duration value expressing the difference

between two time point instances.

A time point instance contains an arbitrary-precision

integer in the form of a vector of n base-1000 digits

d0 . . . dn�1, plus a scale value representing the time

Goldstein et al. 545

precision associated with the least significant digit. The

time point notation is shown below:

½dn�1
n�1

, . . . , d2
2
, d1

1
, d0

0
� u ftime pointg

Underneath each digit is a corresponding index. The

little-endian convention is used, so the least significant

digit d0 has the smallest index. Each digit is an integer in

the range 04 di \ 1000, and the represented time offset

in seconds is given by the following expression:

P
i2f0, ..., n�1g

di � 1000u+ i foffset in secondsg

Below are several examples of time point instances.

The meaning of each expression is shown in hours (HH),

minutes (MM), seconds (SS), and fractions of sections

(xx . . .): HH:MM:SS:xxxxxx. The empty vector, shown

as ½ � 0, represents 00 : 00 : 00:

½ � 0 f00 : 00 : 00g
½45
0
� 0 f00 : 00 : 45g

½45
1
, 1
0
� �1 f00 : 00 : 45:001g

½45
2
, 1
1
, 92

0
� �2 f00 : 00 : 45:001092g

½645
2

, 1
1
, 92

0
� �2 f00 : 10 : 45:001092g

½504
3

, 645
2

, 1
1
, 92

0
� �2 f140 : 10 : 45:001092g

Unlike a floating-point value, a time point instance can

represent an extremely large magnitude yet still resolve

arbitrarily small differences. For example, the sum of a

yettasecond (1024s) and a yoctosecond (10�24s) can be

exactly represented:

½1
16
, 0
15
, 0
14
, . . . , 0

2
, 0
1
, 1
0
� �8 f1024s+ 10�24sg

A finite duration value can be added to or subtracted

from a time point instance. The result is always exact,

regardless of the magnitude or precision of either operand.

Note that the vector of digits in the resulting time point

may expand to accommodate any combination of scales:

½ � 0 + 5000388 �3

= ½5
2
, 0
1
, 388

0
� �3

½5
2
, 0
1
, 388

0
� �3 + 1777 �4

= ½5
3
, 0
2
, 389

1
, 777

0
� �4

The vector of digits also shrinks if possible. Any zero

digits on either end are removed. This may result in a coar-

sening of the time precision, as in the second example

below:

½5
3
, 600

2
, 280

1
, 777

0
� �4 � 5 �1

= ½600
2

, 280
1

, 777
0
� �4

½600
2

, 280
1

, 777
0
� �4 + 223 �4

= ½600
1

, 281
0
� �3

When the time point data type is used in a simulation to

express the current point in simulated time, we do not use

straightforward addition operations to advance the time

point instance. Rather, we apply multiscale time advance-

ment. Given a time point instance t and a finite, nonnega-

tive duration value m u, multiscale time advancement

is denoted t . m u. If the advancement duration is

zero (m= 0), the result is same as the original time point.

If the duration is positive, the result is a time point instance

that is similar to t+ m u except truncated at the preci-

sion level of the duration. Essentially, all digits less signifi-

cant than u are discarded.

Advancing equal time point instances by equal durations

may yield different outcomes if the durations have different

precision levels. This effect is shown in the examples below.

Note that the duration is equal to 1150ms in all three cases:

½72
3
, 800

2
, 444

1
, 321

0
� �3 . 1150000000 �3

= ½73
3
, 950

2
, 444

1
, 321

0
� �3

½72
3
, 800

2
, 444

1
, 321

0
� �3 . 1150000 �2

= ½73
2
, 950

1
, 444

0
� �2

½72
3
, 800

2
, 444

1
, 321

0
� �3 . 1150 �1

= ½73
1
, 950

0
� �1

There are two ways to measure the difference between

two time point instances. The first is regular subtraction,

using the � operator. The second is an approximation of

subtraction we refer to as a gap operation and express

using �. The rationale for providing these two similar

operations is that they both a yield duration value, and

the duration data type cannot always represent the

exact result. In some cases we are willing to approximate

the difference between two time point instances, so we

use one operation; sometimes we are not willing to employ

approximation, so we use the other operation.

If the exact difference between two time points can be

expressed with a multiplier less than 10005, then � and �
produce the same result:

½31
2
, 775

1
100
0
� �2 � ½1

1
, 170

0
� �1

= 30605100 �2

½31
2
, 775

1
100
0
� �2 � ½1

1
, 170

0
� �1

= 30605100 �2

546 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

Below are two more examples of � and � producing

the same result. Although the initial time point spans more

than 10005 quanta, the subtraction eliminates a digit:

½7
5
, 3
4
, 5
3
, 6
2
, 2
1
, 9
0
� �5 � ½7

0
� 0

= 3005006002009 �5

½7
5
, 3
4
, 5
3
, 6
2
, 2
1
, 9
0
� �5 � ½7

0
� 0

= 3005006002009 �5

If the exact difference between the time points cannot

be represented with a multiplier less than 10005, subtrac-

tion yields an infinite duration whereas the gap operation

produces an approximation. In the � operation below, for

example, the result is off by 9fs:

½7
5
, 3
4
, 5
3
, 6
2
, 2
1
, 9
0
� �5 � ½6

0
� 0

= ‘

½7
5
, 3
4
, 5
3
, 6
2
, 2
1
, 9
0
� �5 � ½6

0
� 0

= 1003005006002 �4

We require the result of a gap operation to be within a

single time quantum of the resulting duration value.

Consider the formulas below, which suggest different

results for the same � operation. The first result (=) has

an error of 0:2fs. It is the best possible approximation, and

the error is less than the 1fs time quantum of the resulting

duration. The second result (’) has a much larger error of

2:8fs. It is still acceptable, however, since the time quan-

tum of the result is now 1ps. The third result (6¼) has an
error of 1:8fs. Although this is a closer approximation than

the second result, it is invalid since the error is not less

than the resulting duration’s time quantum of 1fs:

½1
0
� 0 � ½2800

0
� �6

= 999999999999997 �5

½1
0
� 0 � ½2800

0
� �6

’ 100000000000 �4

½1
0
� 0 � ½2800

0
� �6

6¼ 999999999999999 �5

fexact : 1s� 2800as= 999999999999997200asg

There is actually a second rule concerning �—a some-

what obvious rule—which is that tA � tB must never be

approximated as zero if time points tA and tB differ.

The above rules concerning gap operations ensure that

multiscale time advancement has a convenient property.

Suppose we have time point instances tA and tB, where

tA \ tB. Also suppose that we introduce a mutable vari-

able t, and assign it an initial value of tA. If we repeatedly

advance t toward tB using the assignment

t t . (tB � t), then t will eventually reach tB. In prac-

tice, only one or two iterations will be required, but the

important point is that there exists a mechanism to

advance any time point to a future time point.

Taking the rules a step further, the gap operation should

be implemented such that the resulting duration value’s

precision is always the one that yields the highest achiev-

able degree of accuracy while satisfying the above require-

ments. If there are still multiple levels to choose from, one

should select the level closest to the finest precision among

the operands. If followed, these additional conventions will

help standardize multiscale time value operations.

Appendix B.3 outlines how the data structure can be

implemented in C++.

A.4 Time sequence mathematics

The time sequence data structure stores a set of unique

time points that are appended in increasing order. The

structure’s primary role is to aid in the recording of simu-

lation results. For example, the recorded time points may

represent event times or the endpoints of time series seg-

ments. A simple vector of time point instances would

fulfill the same role, but what distinguishes a time
sequence is that, where possible, time points are stored

using duration values to save memory. The fact that

exact time points are recorded satisfies Principle 6 of

Section 4.1, while the use of 64-bit duration values

addresses the efficiency considerations of Principle 7.

Suppose one wishes to store time points tA, tB, and tC,

defined below:

tA = ½5
0
� �2

tB = ½5
3
, 0
2
, 0
1
, 72

0
� �5

tC = ½3
6
, 600

5
, 0
4
, 5
3
, 0
2
, 0
1
, 72

0
� �5

The resulting time sequence instance would store tA as

a full time point instance, then attempt to record tB and tC
as offsets from tA. This is possible in the case of tB, since

tB � tA can be represented as a duration value. However

tC � tA cannot be represented as a duration since the mul-

tiplier would not be less than 10005:

tB � tA = 72 �5

tC � tA = ‘

In order to record tC, it is necessary to store a second

time point instance. Ultimately, the following informa-

tion would be stored: a sequence of offsets (of type dura-
tion) and a typically shorter sequence of partitions. Each

partition would contain two elements: the index of the first

of a group of offsets that belong to the partition, and the

Goldstein et al. 547

time point instance to which the offsets must be added.

For example, the sequence tA, tB, tC would be represented

using the three offsets shown below, which are grouped

into partitions ½0, tA� and ½2, tC�:

0 0

0

, 72
1

�5

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½0, tA�

, 0 0

2|fflfflffl{zfflfflffl}
½2, tC�

The following information would be stored:

0 0, 72 �5, 0 0
� �

foffsetsg

0, ½5
0
� �2

� �
fpartition½0�g

2, ½3
6
, 600

5
, 0
4
, 5
3
, 0
2
, 0
1
, 72

0
� �5

� �
fpartition½1�g

Algorithm 1 formalizes the procedure for appending a

time point t onto a time sequence. The key decision is on

line 11, where the algorithm determines if t can be

appended as a duration offset Dt (line 12) or if a new parti-

tion is needed (lines 14 and 15).

The opposing procedure, obtaining the time point at a

given index i, is relatively straightforward. One may use a

binary search to identify the encompassing partition ½ip, tp�,
after which tp + offsets½i� yields the time point in question.

For most applications, a time sequence instance

will have only a single partition. The performance penalty

of storing and searching through arbitrary-precision time

point instances should surface only in multiscale contexts

where the added complexity is justified.

The time sequence data structure could be modified

to allow the removal of recently added time points, which

would support roll-back operations in optimistic parallel

simulation. Insertions and removals in the middle of a

sequence are not possible unless the underlying algorithm

is replaced. Fortunately, these operations are rarely

encountered in discrete event simulation, since any altera-

tion in behavior at time t is likely to invalidate results

obtained later than t.

Appendix B.4 shows how custom iterators can be incor-

porated into a C++ implementation of the time sequence

data structure, and how the structure supports a relational

approach to storing simulation results.

A.5 Time queue mathematics

The time queue data structure stores the current point in

simulated time, and keeps track of future time points when

events are scheduled to occur. It is the most sophisticated

element of the proposed time representation. The time
queue ensures each atomic model perceives time accord-

ing to its own precision level (Principle 5, Section 4.1).

Yet, being an element of the simulator, it maintains exact

timing information (Principle 6).

The time queue tracks future event times not as

time point instances, but rather as duration values

(Principle 7). It is similar to the time sequence in this

regard, providing arbitrary precision despite using a

memory-efficient representation for internally stored event

times. However, the time queue solves a considerably

more difficult problem. Firstly, future event times may be

added to the queue in any order, provided they do not pre-

cede the current time. Secondly, future event times may

also be canceled before they have a chance to occur.

Thirdly, numerous comparisons between event times are

needed as part of the searching and sorting inherent in any

priority queue; these comparison operations must be per-

formed efficiently without allocating memory in the form

of extra time point digits. As explained in Section

4.2.4, our solution involves tracking every event time as a

planned phase: an offset from the reference point at the

beginning of an encompassing epoch. We use the term

‘‘phase’’ as a shorthand for ‘‘planned phase.’’ This con-

cept, which pertains to scheduled events, must not to be

confused with the ‘‘scale phase’’ or ‘‘epoch phase’’ quan-

tities defined below, which pertain to the current time.

The key to the approach is the conversion between

planned durations and phases. To schedule an event, a

planned duration must be converted into a phase to be

stored in the queue. To advance time to the most imminent

scheduled event, the stored phase must be converted into a

planned duration. Let us formalize these conversions given

a current time t and a scale of interest u. We start by

selecting notations for two quantities:

hti u fscale phaseg

hti
u+h

u fepoch phaseg

Algorithm 1 Time sequence append

1: function APPEND time sequence,tð Þ
2: ½partitions,offsets� time sequence
3: np #partitions
4: n #offsets
5: �t ∞
6: if np > 0 then
7: ½i,ti� partitions½np � 1�
8: �t t� ti
9: ASSERT (�t> offsets½n� 1�)
10: end if
11: if �t<∞ then
12: offsets offsets k ½�t�
13: else
14: partitions partitions k ½n,t�
15: offsets offsets k ½ 0 0 �
16: end if
17: return½partitions,offsets�
18: end function

548 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

The scale phase is essentially the base-1000 digit of t at

the scale of interest, or zero if no digit exists at that scale.

This definition assumes t is never negative, as otherwise

some arithmetic is needed such that the offset represented

by the digit is measured away from �‘ as opposed to zero.

As defined in Section 4.2.4, the epoch phase is the number

of time quanta separating t from the beginning of the cur-

rent epoch. With b= 1000 and h= 5 (see Section 4.3),

the two quantities are bounded as follows:

0 4 hti u \ b

0 4 hti
u+h

u \ bh

The epoch phase can be derived from scale phases:

hti
u+h

u =
X

i2f0, ...,h�1g
bi � hti u+ i

The procedure for converting a planned duration Dt

into a planned phase Dtf is given in Algorithm 2. The

decision point on line 4 checks whether the event is in the

next epoch instead of the current one.

Algorithm 3 converts a planned phase Dtf into a

planned duration Dt. Line 4 again checks whether the

event is in the next epoch.

Note that the multipliers m and mf and the epoch phase

in Algorithms 2 and 3 are regular integers, not special data

types. Hence, the addition and subtraction operations

involving these variables are just standard arithmetic oper-

ations that require no rounding.

Until now we have assumed a common time precision

for all planned durations used to schedule events. Yet, the

objective is to support atomic models with diverse time

scales. The precision levels of the planned durations may

therefore differ, and so the time queue must acknowledge

the existence of not just two epochs (one ‘‘current’’ and

one ‘‘next’’), but also several distinct pairs of epochs (one

‘‘current’’ and one ‘‘next’’ at each scale).

The incorporation of multiple precision levels into a

single queue is further complicated by the fact that a

planned duration Dtp operates on the current time t using

multiscale time advancement. The single-scale scenario

described in Figure 14 of Section 4.2.4 suggests that

t+Dtp gives the event time, but this is only true if there

is one time precision. The general expression for each

event time is in fact t . Dtp. As a result, the actual order of
scheduled event times may be inconsistent with their

planned durations.

Consider the scenario in Figure 19. As in the Section

4.2.4 scenario, the current time is 422 leaf units, but here

it is shown as a jagged line to reflect the inclusion of dura-

tions expressed in branch, tree, and forest units. Observe

that the forest and tree scales feature scheduled events

with equal planned durations (1 forest unit = 5 tree units).

Surprisingly, the forest-scale event is scheduled at an ear-

lier time. The branch scale event has a shorter Dtp (22

branch units \ 5 tree units), but is scheduled at a later

Algorithm 2 Basic conversion to phase

1: function PHASE_FROM_DURATION (t, �t)
2: m u �t

3: mφ hti
u+ 5

u +m

4: if mφ ≥ 10005 then
5: mφ mφ � 10005

6: end if
7: �tφ mφ

u

8: return �tφ
9: end function

Algorithm 3 Basic conversion to duration

1: function DURATION_FROM_PHASE (t, �tf)

2: mf
u �tf

3: m mf � hti
u+ 5

u

4: if m< 0 then
5: m m+ 10005

6: end if
7: �t m u

8: return �t
9: end function

Figure 19. The time queue shown features one scheduled event at each of the four scales. As a result of multiscale time
advancement, scheduled event times do not necessarily adhere to the order implied by their respective planned durations. Note
that, in general, a time queue can have multiple scheduled events at each scale.

Goldstein et al. 549

time. Finally, the tree- and leaf-scale events are both

scheduled for time 525 despite having different planned

durations.

Although scenarios involving multiple precision levels

are conceptually intimidating, only a few enhancements

are needed to make the time queue function properly.

Firstly, in order to identify and properly handle simulta-

neous events, we need to ensure that every unique future

event time has a unique planned phase. We accomplish

this by coarsening the phase; the time precision is repeat-

edly increased by one scale so long as the event time does

not suffer any rounding error. In Figure 19, the 103 leaf-

unit event has a time of 525, which can be coarsened to

the tree scale without losing precision. This leaf-scale

event is then stored with the 5 tree-unit event as a group

of two simultaneous events. With such groups identified,

any of a number of simultaneous event handling tech-

niques can be adopted. A tie-breaking function can be

used, as in the classic version of the DEVS formalism, or

the grouped events can be executed concurrently, as in a

variant of that formalism called Parallel DEVS.3

For this first enhancement, Algorithm 2 is replaced by

Algorithm 4 when converting planned durations into

planned phases. The key difference is the loop on line 10

of Algorithm 4, which repeatedly coarsens the precision

by one scale so long as no accuracy is lost. Once accuracy

would be lost, the maximized flag is set and the loop is ter-

minated. This ensures the coarsest possible prevision level

is used to store each future event time.

Algorithm 4 is complicated by two special cases. If a

scheduled event occurs at t= 0, then the phase precision

can be coarsened indefinitely. The unbounded flag detects

this case, and on line 30 the default precision level udefault

is adopted for the planned phase. It is safe to use

udefault = 0 if the simulation starts at time zero. The other

special case is a planned duration of zero, which is proble-

matic if its precision level is too coarse. We detect this

case on line 4, and on line 5 we re-initialize the time preci-

sion to that of the current time. It will then be coarsened,

but the maximized flag will prevent it from becoming

coarser than the phases of other events scheduled for the

same time.

The second time queue enhancement is a means of

comparing planned phases with different precision levels.

The naı̈ve approach is to simply convert every phase into

a time point instance, but this would likely sacrifice the

efficiency gains that motivated the use of phases in the

first place. Instead, we need a fixed-memory algorithm for

comparing two planned phases based on the future event

times they represent. Given two planned phases with dif-

ferent precision levels, the method for sorting their respec-

tive future event times is as follows.

1. convert both planned phases into planned durations

using Algorithm 3;

2. if one planned duration has a coarser time preci-

sion than the other, refine it until the precision lev-

els match;

3. after refinement, the shorter planned duration cor-

responds to the more imminent future event.

The operation in Step 2 can be achieved using

Algorithm 5, which refines one planned duration so that

its relatively coarse time precision u matches another

planned duration’s precision urefined . As usual, the current

time t plays a critical role.

The final enhancement to support multiple scales allows

one to take an event’s planned duration Dt, and express it

in the precision level urescaled at which the event was origi-

nally scheduled. The first step is to use Algorithm 3 to con-

vert the stored phase into the planned duration Dt.

Algorithm 6 then completes the operation. Under normal

circumstances, the phase will be at least as coarse as
urescaled , and in this case line 5 re-purposes a function we

Algorithm 4 Enhanced conversion to phase

1: function PHASE_FROM_DURATION t, �tð Þ
2: ½dn�1

n�1
, . . . , d0

0
� ut t

3: m u �t
4: if m= 0 then
5: u ut
6: end if

7: mφ hti
u+ 5

u +m

8: maximized ?
9: unbounded ?

10: while :maximized ^ :unbounded do
11: carry 0
12: if mf ≥ 10005 then
13: mf mf � 10005

14: carry 1
15: end if
16: if MOD(mf,1000) 6¼ 0 then
17: maximized T
18: else if (mf = 0) ^ (u+ 5≥ ut + n) then
19: if carry= 0 then
20: unbounded T
21: end if
22: end if
23: if :maximized ^ :unbounded then
24: mf mf=1000

25: mf mf + 10004 · hti u+ 5 + carry

� 	
26: u u+ 1
27: end if
28: end while
29: if unbounded then
30: u udefault
31: end if

32: �tf mf
u

33: return �tf
34: end function

550 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

have already defined. However, for an event time of zero,

the planned phase may not be coarse enough due to line 30

of Algorithm 4. In that case, the initial value on line 3 of

Algorithm 6 will ultimately be returned.

The methods and algorithms above (a) allow future

events to be scheduled using planned durations featuring

different precision levels, (b) allow the event times to be

stored using phase durations that need not change as time

advances, (c) allow the event times to be compared with-

out constructing the corresponding time points, and (d)

allow an event’s planned duration to be expressed at its

original precision level. This is all that is needed to incor-

porate vastly different time scales into a single queue of

future events.

To implement the time queue data structure, the C++

functions described in Appendix B.5 proved useful.

A.6 Time cache mathematics

One of the key insights underlying the DEVS formalism is

the idea that the post-event state of a model instance may

depend not only on the previous state, but possibly also on

the duration of time elapsed since the previous event.3

Thus, if a simulation framework is to be as general as pos-

sible, a mechanism is needed to store and retrieve elapsed

durations. The time cache data structure fulfills this role,

providing elapsed durations by tracking previous events. It

can be regarded as the opposite of the time queue, which

tracks future events and provides planned durations.

Recall from Section 4.2.4 that for efficiency reasons,

we dismissed the idea of storing many arbitrary-precision

time point instances in the time queue. We want to mini-

mize arbitrary-precision arithmetic in the time cache as

well. Also recall that the time queue does not store planned

durations directly, for then they would all need to be

decreased whenever the current time advances. Similarly,

the time cache should not store elapsed durations

directly, as they would all need to be increased at every

time advancement. Recall that the time queue works by

storing planned phases measured from the beginning of a

relevant epoch. A similar mechanism is needed for the

time cache.
Fortunately, as explained in Section 4.2.5, the time

cache data structure can be conveniently implemented by

encapsulating and re-purposing the time queue. The idea

is to track an imaginary future event instead of the actual

past event. The actual event and its imaginary counterpart

are always separated by the maximum representable dura-

tion, (10005 � 1) u, so it is a trivial matter to derive

the time point of one from the time point of the other.

The mathematics underlying the time cache is as fol-

lows. Let Dt be the elapsed duration, measured between

the previous event and the current time. Let D~t be the ima-
ginary planned duration, measured between the current

time and the imaginary future event in the encapsulated

time queue. We focus on a model instance with a time pre-

cision of u. When the instance undergoes an event, that

event becomes a past event with a current elapsed duration

of zero, or 0 u. The imaginary planned duration D~t is
then initialized as follows with the maximum multiplier of

10005 � 1:

Dt = 0 u) D~t = (10005 � 1) u

As time passes, the imaginary planned duration

decreases. Suppose that the multiplier is ~m at some point

in time. If the elapsed duration Dt is then needed, it is cal-

culated according to the formula below:

D~t = ~m u) Dt = (10005 � 1� ~m) u

An imaginary future event is terminated in any of three

circumstances. Firstly, the simulation may end, in which

case the imaginary event is no longer needed. Secondly, the

instance may undergo another event, which produces a new

imaginary event, which replaces the existing one. Thirdly,

the current time may surpass the imaginary future event,

meaning that the elapsed duration has increased beyond the

maximum representable duration of 10005 � 1 time quanta.

In this last case, the imaginary future event is removed

from the encapsulated time queue, and the corresponding

Algorithm 5 Planned duration refinement

1: function REFINED_DURATION(t, �t, urefined)

2: m u �t

3: if m> 0 then
4: while (m< 10005) ^ (u≥ urefined) do
5: m 1000 ·m� hti u

6: u u� 1
7: end while
8: end if
9: �t0 ∞
10: if m< 10005 then
11: �t0 m urefined

12: end if
13: return �t0

14: end function

Algorithm 6 Planned duration rescaling

1: function RESCALED_DURATION(t, �t, urescaled)

2: m u �t

3: �t0 m urescaled

4: if u≤ urescaled then
5: �t0 REFINED DURATION(t,�t,urescaled)
6: end if
7: return �t0

8: end function

Goldstein et al. 551

past event is no longer tracked. If the elapsed duration is

then needed for that model instance, it is reported as ‘.

This is the mechanism by which infinite elapsed durations

arise. As discussed in Section 5.1.3, an elapsed duration of

‘ means the model instance is in a steady state; other-

wise, the modeler should not have allowed the instance to

remain passive for 1015 or more time quanta.

A C++ implementation of the time cache data structure

is briefly outlined in Appendix B.6.

Appendix B Representation
implementation

The multiscale time representation consists of the six ele-

ments described in Section 4 and Appendix A: scale, dura-

tion, time point, time sequence, time queue, and time

cache. The implementation of each element is outlined

here with the aid of simplified C++11 code listings from

our prototype simulator.

B.1 Scale implementation

In C++, the scale data type of Appendix A.1 is easily

implemented as a scale class encapsulating the level

attribute as the integer level_. The sample code below is

a simplified version of the class declaration in our imple-

mentation. Comparison operators, string conversion func-

tions, and selected constexpr qualifiers have been

omitted.

Instead of constructing a scale value by invoking the

constructor directly, the programmer may simply use one

of the pre-defined values below.

Scales smaller than yocto (1000�8) or larger than

yetta (10008) must be obtained via the constructor (e.g.,

scale (-9)). The smallest and largest possible scales

are determined by the integer data type encapsulated by

scale. Observe that on line 22 of the class declaration,

level_ is stored as a signed 8-bit integer that accommo-

dates all integers from –128 to 127. At the time of writing,

it is difficult to imagine a need for scales smaller than

1000�128 or larger than 1000127, regardless of whether

time or space is the dimension of interest. Nevertheless, a

larger integer data type could be chosen should the need

arise.

Some operations are redundant in a mathematical

context, yet convenient in a programming context. In

mathematical notation, we disallow level1 + 1 as one

can always write level1 + 1. In the code, assuming s

is an instance of scale, an expression such as s + 1 is a

convenient alternative to scale (s.level() + 1) .

We therefore include various addition and subtraction

operators in the scale class, all of which are applied

to the level_ member variable. The division operator

still behaves according to the mathematical operation,

approximating the ratio of the represented powers of

1000. Examples of these operations are shown below.

B.2 Duration implementation

A C++ implementation of the Appendix A.2 duration data

type is outlined below. Selected constexpr qualifiers,

and a number of member functions including comparison

operators, are not shown.

552 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

A duration value may be obtained using the con-

structor, or alternatively a user-defined literal as permitted

by C++11 and subsequent standards of the programming

language. The user-defined literal option requires the exact

value to be known at compile time. In addition, the preci-

sion level can be no finer than yocto and no coarser than

yetta . Examples of duration values expressed as

user-defined literals are below.

Recall from Section 3.4 the implementation strategy in

which a 64-bit binary floating-point number is encapsu-

lated in a fixed-point time class. This strategy is adopted

in the duration class: multiplier_ is of type

float64, although the member functions ensure that it is

rounded to an integer value as needed following every

operation. As mentioned in Section 4.3, the 10005 limit is

chosen as the largest power of 1000 less than 253, the point

at which float64 ceases to exactly represent all integers.

The use of the float64 type allows multiplier_ to

be either positive or negative infinity, supporting infinite

durations. The finite() member function allows one to

check that a duration value is not infinite.

Recall from Appendix A.2 that the mathematical descrip-

tion of duration values involves both fixed-point and base-

1000 floating-point operations. These operations were

denoted + , �, �, and = (fixed-point), and �, �, 	, and

(floating-point). Yet, the duration class has only one set

of operators, +, -, *, and / . To use these C++ operators for

both fixed- and floating-point operations, we encapsulate a

flag fixed_ that determines their rounding behavior. Thus,

every duration value is either fixed, in which case its

time precision is preserved through operations, or unfixed,

in which case the resulting duration value’s precision

may be altered to minimize rounding error.

By default, duration values are unfixed, which

makes it easy to express durations using combinations of

multiples of base-1000 SI units. Consider the expression

3_s + 475_ms. If the operands were fixed, this expres-

sion would raise an error since the left-hand side is in sec-

onds whereas the right-hand side is in milliseconds.

However, because duration values are unfixed by

default, 3_s + 475_ms is equivalent to 3475_ms.
The fixed_at(scale) member function maintains

the expressed quantity of time, if possible, but fixes the

time precision. The following expressions illustrate the

effect of this operation.

On line 1 above, an unfixed duration value is created

at millisecond precision. The same value is divided by 4

on line 2. Because the values are unfixed, the duration
value resulting from the division has its time precision

automatically refined to microseconds, which happens to

produce the exact result. On line 4, the original expression

is fixed and then divided by 4. Since the resulting dura-
tion value must remain in milliseconds, the result is

rounded off. If the original expression is instead fixed at

microseconds, as on line 6, an exact result is achieved.

The duration class includes a number of member

functions related to precision. The rescaled(scale)

Goldstein et al. 553

function is almost identical to fixed_at, producing a

duration value with the specified precision level. The

difference is that rescaled neither fixes nor unfixes the

time precision of the result. The member functions

refined() and coarsened() are similar to

rescale, but automatically select the finest or coarsest

possible precision level that does not alter the represented

duration. The unfixed() method produces an unfixed but

otherwise equivalent duration value.

A key property of fixed duration values is that their

precision levels propagate. Specifically, if an operation

involves one fixed duration fixed_dt and one unfixed

duration unfixed_dt, the result is generally a fixed duration

with the time precision fixed_dt.precision(). This
propagation of fixed precision levels is useful because,

within an atomic model, it promotes adherence to the mod-

el’s specified time quantum. Our assumption is that nearly

all duration values produced within an atomic model

instance depend in part on the instance’s duration-valued

parameters and on its elapsed durations. By fixing these

input duration values at the specified time precision,

any derived duration value will adopt the same preci-

sion level even with no conscious effort on the part of

modeler.

B.3 Time point implementation

Below is an outline of a C++time_point class, with

comparison operators and const reference qualifiers

omitted.

The class’s behavior is very consistent with the mathe-

matical operations described in Appendix A.3. Unlike the

duration data type, which involved rounding in numerous

operations, the rounding in the time point data type is

restricted to the � operation implemented by the gap(-
time_point) member function. The sign() member

function and associated member variable accommodate

negative time_point objects. Negative time points add

flexibility to the class, but greatly complicate its imple-

mentation. The precision() and nscales() func-

tions provide, respectively, the smallest scale with a

nonzero digit and the total number of stored digits. The

scale_digit(scale) function reports the base-1000

digit at the indicated scale.

Unlike duration, the time_point class lacks mul-

tiplication and division operations. Furthermore, its com-

putations may require memory to be dynamically

allocated. These limitations reflect the fact that time_-
point is intended for simulator developers with expertise

in software engineering. Modelers are expected to use the

more convenient and efficient duration class, which

may mean accepting some degree of approximation.

B.4 Time sequence implementation

The time_sequence class below is based on the data

structure described in Appendix A.4. Algorithm 1 is imple-

mented within the append(time_point) member

function. The listing excludes const reference qualifiers

and binary search operations.

554 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

Adhering to a recommended practice in C++, a

custom iterator is used to provide access to the stored

time points and support traversal. The iterator, named

time_sequence :: const_iterator, can be incre-

mented, decremented, or offset by an arbitrary integer. It

enables loops such as the one on line 11 below.

Information stored in the iterator improves efficiency

as one traverses the time_sequence from front (earliest

time point) to back (latest time point). Accessing the time

points out of order is less efficient, although still possible

and convenient.

When recording simulation results, one must store

not only time points but also their associated event

data, such as inputs, outputs, and state variables. The

time_sequence class could be modified to retain this

information. Yet, our intention is that event data be

recorded in a complementary structure that uses the

same time point indices as the time_sequence. This
could be interpreted as a relational approach to storing

simulation results, as opposed to an object-oriented

approach. Every time point in a time_sequence
should be associated with not one event but rather a set

of events, since multiple events can occur at the same

point in simulated time.

B.5 Time queue implementation

The time_queue class implements the data structure in

Appendix A.5, encapsulating Algorithms 3–5. Its member

variables include the current time ct_, a vector of planned

phases queue_, and a map events_ that associates a set

of simultaneous events with each planned phase.

Let us briefly describe the member functions starting

from near the bottom. The plan_event(int64,
duration) function schedules a future event using

Algorithm 4 to derive the planned phase. The phase is

inserted into queue_ using a binary search based on com-

parison operations involving Algorithms 3 and 5.

The until(int64) function provides the planned

duration after which the specified event will occur,

whereas cancel_event(int64) removes the speci-

fied event. Both of these functions can be made efficient

using an additional private member variable not shown

in the above code, one that maps each event identifier to

its associated planned phase and precision level.

The imminent events of a non-empty time_queue
instance are those future events scheduled to occur first.

The imminent_events() and imminent_dura-
tion() functions obtain these events and their associated

planned duration. The pop_event(int64) and pop_e-

vents() functions may be used to remove these events when

it is time for them to be processed.

Three advance(...) functions are provided to

advance the current time ct_. The first, with no

Goldstein et al. 555

arguments, increases ct_ up to the event time of the

imminent events. The second, with the dt argument,

applies multiscale time advancement. An error is produced

if dt advances ct_ beyond the imminent events. The third

function advances the current time until it reaches the time

point expressed by the t argument. It can be implemented

by repeatedly invoking advance(t.gap(ct_)) until

ct_ and t become equal.

We design the time_queue primarily for use in a

simulator based on the DEVS formalism, which schedules

at most one future event for every model instance. This

means that the integer-valued event identifiers are exactly

the same as the model instance identifiers. We focus spe-

cifically on Classic DEVS, for which it is a common

implementation practice to order simultaneous events by

the identifier of the model instance. The standard C++set
data structure sorts its elements by default, making it effi-

cient to implement this simple tie-breaking mechanism.

However, alternative methods for handling simultaneous

events can be incorporated with minimal change to the

time_queue class.

B.6 Time cache implementation

A simplified C++time_cache implementation is shown

below. Consistent with Appendix A.6, the class encapsu-

lates an instance of time_queue named tq_.

The two key functions are retain_event(int64,
scale), which applies the 10005 � 1 offset and stores the

resulting imaginary event in tq_, and since(int64),
which calculates an elapsed duration by subtracting from

10005 � 1. The release_event(int64) preemp-

tively cancels the tracking of an event, which should only

be necessary if a model instance is terminated before a

simulation ends.

The remaining functions pertain to the current time of

the simulation. The current_time() function simply

returns tq_.current_time(). The advance(...)
functions must be invoked whenever the current time

changes. These functions first remove any imaginary events

in tq_ that have been surpassed, then advance time in tq_.
The time_cache class is motivated by the prevalence

of elapsed durations in DEVS-based simulations.

Together, the time_queue and time_cache classes

provide a general solution to event scheduling in the

presence of multiple time scales.

References

1. Hoekstra A, Chopard B and Coveney P. Multiscale model-

ling and simulation: a position paper. Philos Trans R Soc A

Math Phys Eng Sci 2014; 372: 1–8.

2. Vicino D, Dalle O and Wainer G. A data type for discretized

time representation in DEVS. In: proceedings of the

international conference on simulation tools and

techniques (SIMUTools), Lisbon, Portugal, 17–19 March

2014, pp. 11–20. Brussels: ICST.

3. Zeigler BP, Praehofer H and Kim TG. Theory of modeling and

simulation: integrating discrete event and continuous complex

dynamic systems. 2nd ed. San Diego, CA: Academic Press, 2000.

4. Gattass RR and Mazur E. Femtosecond laser micromachin-

ing in transparent materials. Nat Photon 2008; 2: 219–225.

5. Ben-Nissan G and Sharon M. Capturing protein structural

kinetics by mass spectrometry. Chem Soc Rev 2011; 400:

3627–3637.

6. KVA. Scientific background on the Nobel Prize in Chemistry

2013. Technical report, The Royal Swedish Academy of

Sciences (KVA), 2013.

7. Castiglione F, Pappalardo F, Bianca C, et al. Modeling biol-

ogy spanning different scales: an open challenge. BioMed

Res Int 2014; 2014: 902545.

8. Bettini C, Dyreson CE, Evans WS, et al. Glossary of time

granularity concepts. In: Etzion O, Jajodia S, Sripada S

(Eds.) Temporal databases: research and practice. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1998, pp.406–413.

9. Bettini C, Wang XS and Jajodia S. A general framework for

time granularity and its application to temporal reasoning.

Ann Math Artif Intell 1998; 220: 29–58.

10. Guo S, Hu X and Wang X. On time granularity and event

granularity in simulation service composition (WIP). In: pro-

ceedings of the symposium on theory of modeling & simula-

tion (TMS/DEVS), Orlando, FL, 26–30 March 2012. San

Diego, CA: SCS.

11. Goldstein R, Breslav S and Khan A. A quantum of continu-

ous simulated time. In: proceedings of the symposium on the-

ory of modeling & simulation (TMS/DEVS), Pasadena, CA,

3–6 April 2016, pp. 1:1–1:8. San Diego, CA: SCS.

12. Reynolds PF and Natrajan A. Consistency maintenance in

multiresolution simulations. ACM Trans Model Comput

Simulat 1997; 70: 368–392.

13. Davis PK and Bigelow JH. Experiments in multiresolution

modeling (MRM). Monograph Reports. RAND Corporation,

1998.

14. Heiner M and Gilbert D. Biomodel engineering for multi-

scale Systems Biology. Progr Biophys Mol Biol 2013; 1110:

119–128.

556 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

15. Dada JO and Mendes P. Multi-scale modelling and simula-

tion in systems biology. Integrat Biol 2011; 30: 86–96.

16. Qu Z, Garfinkel A, Weiss JN, et al. Multi-scale modeling in

biology: how to bridge the gaps between scales? Progr

Biophys Mol Biol 2011; 1070: 21–31.

17. Elliott JA. Novel approaches to multiscale modelling in

materials science. Int Mater Rev 2011; 560: 207–225.

18. Brandt A. Multiscale scientific computation: review 2000. In

Barth T, Chan T and Haimes R (eds)Multiscale and multire-

solution methods, volume 20 of Lecture Notes in

Computational Science and Engineering. Berlin Heidelberg:

Springer, 2001, pp.3–95.

19. Weinan E. Principles of multiscale modeling. Cambridge:

Cambridge University Press, 2011.

20. Saunders MG and Voth GA. Coarse-graining methods for

computational biology. Ann Rev Biophys 2013; 420: 73–93.

21. Sarraf Shirazi A, Von Mammen S and Jacob C. Abstraction

of agent interaction processes: towards large-scale multi-

agent models. Simulation 2013; 890: 524–538.

22. Dzwinel W, Wcis1o R, Yuen DA, et al. PAM: particle auto-

mata in modeling of multiscale biological systems. ACM

Trans Model Comput Simulat 2016; 26(3): 20:1–20:21.

23. Abraham FF, Broughton JQ, Bernstein N, et al. Spanning

the length scales in dynamic simulation. Comput Phys 1998;

120:538–546.

24. Brereton TJ, Kroese DP, Stenzel O, et al. Efficient simula-

tion of charge transport in deep-trap media. In: Laroque C,

Himmelspach Pasupathy JR, Rose O, et al. proceedings of

the winter simulation conference (WSC), Berlin, 9–12

December 2012. Piscataway, NJ: IEEE.

25. Nguyen VP, Stroeven M and Sluys LJ. Multiscale continu-

ous and discontinous modeling of heterogeneous materials: a

review on recent developments. J Multiscale Model 2011;

030: 229–270.

26. Kevrekidis IG, Gear CW and Hummer G. Equation-free: the

computer-aided analysis of complex multiscale systems.

AIChE J 2004; 500: 1346–1355.

27. Weinan E, Engquist B, Li X, et al. Heterogeneous multiscale

methods: a review. Commun Comput Phys 2007; 20: 367–

450.

28. Weinan E, Ren W and Vanden-Eijnden E. A general strategy

for designing seamless multiscale methods. J Comput Phys

2009; 2280: 5437–5453.

29. Lockerby DA, Patronis A, Borg MK, et al. Asynchronous

coupling of hybrid models for efficient simulation of multi-

scale systems. J Comput Phys 2015; 284: 261–272.

30. Fritzson P and Engelson V. Modelica — a unified object-

oriented language for system modeling and simulation. In:

Demeyer S and Bosch J (eds) proceedings of the European

conference on object-oriented programming (ECOOP),

Brussels, 20–24 July 1998, pp.67–90. London: Springer.

31. Vangheluwe HLM, de Lara J and Mosterman PJ. An intro-

duction to multiparadigm modelling simulation. In: Barros F

and Giambiasi N (eds) proceedings of the conference on AI,

simulation and planning in high automony systems (AIS),

Portugal, 7–10 April 2000, pp. 9–20. San Diego, CA: SCS.

32. Groen D, Zasada SJ and Coveney PV. Survey of multiscale

and multiphysics applications and communities. Comput Sci

Eng 2014; 160: 34–43.

33. van Elteren A, Pelupessy I and Zwart SP. Multi-scale and

multi-domain computational astrophysics. Philos Trans R

Soc A Math Phys Eng Sci 2014; 372: 1–3.

34. Goddard WA, Merinov B, van Duin ACT, et al. Multi-para-

digm multi-scale simulations for fuel cell catalysts and mem-

branes. Mol Simulat 2006; 320: 251–268.

35. Regenauer-Lieb K, Veveakis M, Poulet T, et al. Multiscale

coupling and multiphysics approaches in Earth sciences: the-

ory. J Couple Syst Multiscale Dynam 2013; 10: 49–73.

36. Chopard B, Borgdorff J and Hoekstra AG. A framework for

multi-scale modelling. Philos Trans R Soc A Math Phys Eng

Sci 2014; 372: 1–13.

37. Uhrmacher AM, Ewald R, John M, et al. Combining micro

and macro-modeling in DEVS for computational biology. In:

Henderson SG, Biller B, Hsieh M-H, et al. (eds) proceedings

of the winter simulation conference (WSC), Washington,

D.C, 9–12 December pp. 871–880. 2007. Piscataaway, NJ:

IEEE.

38. Santucci JF, Capocchi L and Zeigler BP. System entity struc-

ture extension to integrate abstraction hierarchies and time

granularity into DEVS modeling and simulation. Simulation

2016; 920: 747–769.

39. golang.org. The Go Programming Language: Packages

(Software Version 1.6), 2016.

40. Varga A. OMNeT++ User Manual (Version 4.5), 2014.

41. nsnam.org. ns-3 Discrete-Event Network Simulator Tutorial

(Software Version ns-3.25), 2016.

42. Goldberg D. What every computer scientist should know

about floating point arithmetic. ACM Comput Surv 1991;

230: 5–48.

43. Rapaport DC. The art of molecular dynamics. 2nd ed. New

York: Cambridge University Press, 2004.

44. Shaw DE, Grossman JP, Bank JA, et al. Anton 2: raising the

bar for performance and programmability in a special-

purpose molecular dynamics supercomputer. In: proceedings

of the international conference for high performance com-

puting, networking, storage and analysis, New Orleans, LA,

16–21 November 2014, pp. 41–53. Piscataway, NJ: IEEE.

45. Hartmann P, Donkó Z, Lévai P, et al. Molecular dynamics

simulation of strongly coupled QCD plasmas. Nucl Phys A

2006; 774: 881–884.

46. Smolin L. Atoms of space and time. Sci Am 2014; 230: 94–

103.

47. Vogelsberger M, Genel S, Springel V, et al. Properties of

galaxies reproduced by a hydrodynamic simulation. Nature

2014; 5090:177–182.

48. Adams FC and Laughlin G. A dying universe: the long term

fate and evolution of astrophysical objects. Rev Mod Phys

1997; 690: 337–372.

49. Wieland F. The threshold of event simultaneity. Simulation

1999; 160: 23–31.

50. Zeigler BP, Moon Y and Kim D. High performance model-

ling and simulation: progress and challenges. Technical

report, University of Arizona, 1996.

51. Lee JJ. How do earthquake early warning systems work?

Published online by National Geographic, http://news.natio

nalgeographic.com (2013, accessed 7 May 2015).

52. Josuttis NM. The C++ Standard Library: a tutorial and ref-

erence. 2nd ed. New York: Addison-Wesley, 2012.

Goldstein et al. 557

53. Nutaro JJ. Building software for simulation: theory and algo-

rithms with applications in C++. Hoboken, NJ: John Wiley

& Sons, 2011.

54. Lamport L. Time, clocks, and the ordering of events in a dis-

tributed system. Commun ACM 1978; 210: 558–565.

55. Jefferson DR. Virtual time. ACM Trans Program Lang Syst

1985; 70: 404–425.

56. Raynal M and Singhal M. Logical time: capturing causality

in distributed systems. Computer 1996; 290: 49–56.

57. Rönngren R and Liljenstam M. On event ordering in parallel

discrete event simulation. In: proceedings of the workshop

on parallel and distributed simulation (PADS), Atlanta, GA,

1–4 May 1999. Washington, DC: IEEE.

58. Nutaro JJ and Sarjoughian HH. A unified view of time and

causality and its application to distributed simulation. In:

Bruzzone AG and Itmi M (eds) proceedings of the summer

computer simulation conference (SCSC), Montreal, 20–24

July 2003, pp. 419–425. San Diego, CA: SCS.

59. Lee EA. Constructive models of discrete and continuous

physical phenomena. IEEE Access 2014; 2: 797–821.

60. Barros F. Semantics of multisampling systems. Int J Simulat

Proc Model 2016; 110: 374–389.

61. Goldstein R and Khan A. A taxonomy of event time repre-

sentations. In: proceedings of the symposium on theory of

modeling & simulation (TMS/DEVS), Virginia Beach, VA,

23–26 April 2017, pp. 6:1–6:12. San Diego, CA: SCS.

62. Rönngren R and Ayani R. A comparative study of parallel

and sequential priority queue algorithms. ACM Trans Model

Comput Simulat 1997; 70: 157–209.

63. Vangheluwe HLM. DEVS as a common denominator for

multi-formalism hybrid systems modelling. In: proceedings

of the IEEE international symposium on computer-aided

control system design (CACSD), Anchorage, AK, DC, 25–27

September 2000, pp. 129–134. Washington, DC: IEEE.

64. Karplus M. Development of multiscale models for complex

chemical systems: from H+H2 to biomolecules (Nobel lec-

ture). Angewandte Chemie Int Ed 2014; 530: 9992–10005.

Author biographies

Rhys Goldstein is a Principal Research Scientist at

Autodesk Research specializing in simulation theory and

its use in design applications. He has served on the orga-

nizing committees of the SimAUD (Simulation for

Architecture and Urban Design) and TMS/DEVS (Theory

of Modeling and Simulation) symposia.

Azam Khan is Director, Complex Systems Research at

Autodesk. He is the Founder of the Parametric Human

Project Consortium, SimAUD: the Symposium on

Simulation for Architecture and Urban Design, and the

CHI Sustainability Community.

Olivier Dalle is Maı̂tre de Conférences at the Computer

Sciences Départment of the Faculty of Sciences,

Université Nice Sophia Antipolis, and a member of

Université Côte d’Azur, CNRS, I3S, France.

Gabriel Wainer is Professor and Associate Chair for

Graduate Studies at the Department of Systems and

Computer Engineering, Carleton University. He is a

Fellow of SCS (Society for Modeling & Simulation

International).

558 Simulation: Transactions of the Society for Modeling and Simulation International 94(6)

