
Converting high level models into DEVS

modeling and simulation applications

Gabriel A. Wainer

Department of Systems and Computer Engineering. Carleton University. 1125 Colonel By

Dr. Ottawa, ON. K12 5B6. Canada.

Abstract We discuss a number of methods for converting high level modeling for-

malisms and languages into lower level discrete-event systems specifications using

the DEVS formalism. We present the implementation of such methods in the CD++

open source toolkit, and discuss different case studies. We focus on a variety of

methods, ranging from Petri Nets and Finite State Machines up to Modelica and

advanced Traffic modeling languages, showing the generality of DEVS based solu-

tions, and the definition of user libraries in different domains.

1 Introduction

As discussed in the Introduction chapter, I have attended SummerSim since

1999, presenting a variety of results of our research to the Modeling and Simulation

community. Besides making lifetime friends and colleagues, I was able to witness

(and collaborate with) research on different modelling and simulation methodolo-

gies. In the beginning, the conference focused in a number of methodologies and

applications for continuous and discrete-event simulation, which were mature and

well established. In parallel, there were a large number of research efforts focusing

on modeling formalisms, and a number of those investigations focused on the trans-

formation of models into DEVS [Zeigler et al., 2000]. In this chapter, we introduce

our efforts in this field, which are summarized in Figure 1 (the reader can find in-

formation about these topics at htpp://cell-devs.sce.carleton.ca/ars).

Although the research in modeling methodologies in our laboratory includes nu-

merous areas, ranging from Graphical User Interfaces (CD++Builder), Real-Time

Simulation (RT-DEVS, Embedded CD++, E-CD Boost, I-DEVS, I-DEVS Sched-

ulability, E-CDBoost), Parallel and Distributed Simulation (Parallel CD++, Con-

servative and Time-Warp/PCD++, Mashup SOA CD++, Remoting .NET DEVS,

RESTful middleware, multi-core optimistic PCD++, DEVS as a service, SamSaas

Mashups), our main focus has been on theory of modeling and simulation. This

included the definition of Cell-DEVS and its abstract simulator and its extension to

Parallel Cell-DEVS and Quantized Cell-DEVS, as well as the first definition of Ac-

tivity Tracking as a method to reduce cell activation in Cell-DEVS models, and the

extension to N-Dimensional Cell-DEVS models. We defined the ATLAS traffic

language and the ATLAS traffic simulation compiler. We also worked in the trans-

formation of different methodologies into DEVS and Cell-DEVS. For instance, we

showed how to transform Petri Nets [Jacques and Wainer, 2002], Finite State Ma-

chines [Zheng and Wainer, 2003]. We also worked in various extensions to the

DEVS formalism and proved important properties with the Stochastic DEVS for-

malism [Castro et al., 2010], how to check models based on the Rational Time-

Advanced DEVS [Saadawi and Wainer, 2010], and how to model real-time systems

with constraints using Imprecise RT DEVS. We also introduced formal verification

of Hybrid DEVS models, presented finite forkable DEVS and DEVS with uncertain

inputs. We were also able to show the transformation of other methods, including

Finite Element (FEM), Lattice Gas and Computational Fluid Dynamics. As research

on modeling of continuous and hybrid systems advanced, the concept quantization

of the state variables obtaining a discrete event approximation of the continuous

system proved to be an important method to allow the integration of continuous and

discrete models. This method that could be defined using DEVS [Kofman and

Junco, 2001], and was later extended to the family of QSS methods [Pietro et al,

2018]. We used these methods to define models of continuous systems, including

VHDL-AMS, and later Bond Graphs [D’Abreu and Wainer, 2006] and Modelica

[Chechiu and Wainer, 2005].

Figure 1. Modeling Methodologies at the Advanced Real-Time Simulation Lab

In this chapter, we summarize some of these efforts, presenting a tutorial on dif-

ferent modeling methods and their translation into DEVS. Most of the research pre-

sented has been discussed in numerous articles and books [Wainer 2009], and this

serves as a generic introduction for the readers interested in advancing in this re-

search area. The tools are open source, and all the models presented here are pub-

licly available.

We first discuss the definition of simple Finite State Machines and its definition

as DEVS models. Then, we introduce Timed Petri Nets, and show a library of DEVS

3

models for modeling and simulating them. After, we show a method we defined, in

which we have Timed Automata models converted into DEVS (and vice-versa),

allowing advanced model checking using tools like UPPAL, in particular using hy-

brid models that can be defined through quantization of the input/output signals. We

then elaborate on the definition of Bond Graph models and their implementation

using Quantized DEVS models. Bond Graphs were used to build a Modelica com-

piler, which is described next. We also built a library to build digital circuits using

VHDL-AMS, which is described next. Finally, we present ATLAS, a specification

language defined to depict city sections and to model and simulate traffic flow.

Road segments are defined by their size, number of lanes, traffic direction, maxi-

mum speed, etc. Once the city section is outlined, the constructions are translated

into Cell-DEVS models, and the traffic flow is automatically set up. The rule gen-

eration for describing the traffic behavior is based on macro templates, enabling

changes in the model implementation in a flexible way.

2 Modeling Finite State Machines in DEVS

Finite State Machines have been used in systems engineering applications as

they can represent complex artificial devices in an abstract fashion. They are char-

acterized as abstract mathematical entities that can take a finite number of states,

and they respond to external inputs to trigger transitions between states. A deter-

ministic FSN can be formally defined, using a systems theoretical notation, as fol-

lows [Hopcroft and Ullman, 1979]:

FSM = < S, X, Y, ,  >

 Where X: finite input set

 Y: finite output set

 S: finite state set

 : X x S → S the next state function

 : S → Y is the output function (Moore machine) or

 X x S → Y (Mealy machine)

In [Zheng and Wainer, 2003] we showed how to define FSM as DEVS. The basic

idea is to represent the behavior of a generic state as an Atomic model, and then to

build the FSM by combining a number of those atomic models into a coupled model

representing the FSM. All the states in a FSM are encoded as integers, and a unique

global value, stateCode, is assigned to each state. A phase is used to indicate if a

given state is active or passive (and only one state is can be active at a time, accord-

ing to FSM semantics). The events are encoded as integers as well.

The formal DEVS specification for the FSM for the atomic model State is:

FSM = < X, Y, S, δext, δint, λ, ta>

X = {eventIn, transitionIn}

Y = {stateOut, transitionOut }

S = { phase, events[],isEvent stateCode, stateValue, nextActiveState }

δext ((phase, events[],isEvent stateCode, stateValue, nextActiveState), e, x)

 case phase

 active:

 if x is from eventIn

get nextActiveState from events[];

 isEvent = true;

 ta(active, 0); //trigger an immediate internal event for output

 passive:

 if x is from transitionIn

isEvent = false;

ta(passive, 0);

}

δint (events[], stateCode, phase, stateValue, nextActiveState, isEvent) {

if (isEvent) // always passivate after receiving an event

 passivate();

 else // new state activated by the input from the transition

 ta(active, Infinity);

}

λ(events[], stateCode, phase, stateValue, nextActiveState) {

if (isEvent) // inform the next active state

 send nextActiveState to port transitionOutput

 else // indicate the current state

 send stateValue to port stateOutput

}

The state variable events[] is an array that records the legal events of the state

and the associated nextActiveState; and stateCode includes the unique state code of

the state (0 represents the initial state in a FSM). The phase can be active or passive;

stateValue is the assigned output of the state; nextActiveState is the state code of the

next active state; isEvent indicates if an event is received or if a transition signal is

5

received. The eventIn receives encoded numbers representing external events. If a

state receives a legal event listed in events[] when it is active, the stateOut port

sends out the current stateValue, and the transitionOut port sends out the nextAc-

tiveState signal to all the transitionIn ports in the FSM reporting which state will be

active in the next step. A state becomes active if the encoded number received from

transitionIn port is same as its stateCode.

In order to create an FSM we connect various States:

- All transitionOut and transitionIn ports should be connected together inside

the FSM.

- All eventIn ports of States should be connected to an input port of a FSM.

- Each stateOut port of State could either be connected to an individual output

port of a FSM or connected together as one output port of a FSM

- All the states in a FSM are encoded as integer numbers (stateCode) during

simulation. The state with the stateCode 0 is the initial state in the FSM.

2

4

3

9

8

7

6

5

0 1

Figure 2. A model of an ATM machine, and the corresponding DEVS coupled model

After executing this model in CD++ with a set of external events, we obtain the

results in Figure 3. The left column shows the inputs, and the right column, the

outputs obtained when we test it.

As we can see, initially we insert a card, which produces a checkingpin output.

When we receive PIN-OK, we trigger an output in selectingtransaction (in this case,

a withdrawal, which generates a withdrawing output). We then choose the account

type and the amount. As we can see, the user does not confirm the amount (con-

firm_no), as they made a mistake. This is selected again at 00:80, after which we

confirm, withdraw the card, and start the process all over again.

00:00:10 in insertCard

00:00:30 in PIN-OK

00:00:40 in withdrawal

00:00:50 in choose_account_type

00:00:60 in choose_amount

00:00:70 in confirm_no

00:00:80 in choose_amount

00:00:90 in confirm_yes

00:00:100 in withdraw_card ...

00:00:010 checkingpin

00:00:030 selectingtransaction

00:00:040 withdrawing

00:00:050 inputingamount

00:00:060 confirming

00:00:070 inputingamount

00:00:080 confirming

00:00:090 withdrawaldone

00:00:100 idle ...

Figure 3.Execution of the ATM machine model in CD++

The library allows the users to define FSM and to use DEVS as the intermediate

modeling and simulation language, obtaining an equivalent model that can be exe-

cuted and combined with other models easily. For instance, it could be combined

with a Petri Net model like the one described in the next subsection.

2 Petri Nets

Petri Nets (PN) originally defined by C.A Petri, is a modeling formalism devel-

oped to study concurrent systems [Peterson 1977]. They became very popular as

they can represent the models both using a formal mathematical notation which is

adequate for formal proofs and software development, as well as a graphical repre-

sentation, which is well suited for communication and analysis.

The static properties of PN are defined by bipartite graphs in which the nodes

are called Places (represented graphically as bubbles) and Transitions (represented

as bars), and the links in the graph connect places to transitions (and vice-versa).

PN are executed by firing transitions that are enabled, one at a time, for as long as

there is at least one enabled transition. This dynamic behavior is observed by using

tokens that are added to places, and by the instantaneous firing of the transitions that

are enabled to do so. A transition is enabled when they have at least one token on

each input link to the transition. When a transition fires, a token is removed from

each one of its input places and another token is deposited in each one of the output

places. When more than one transition is enabled, the one that fires is selected in

nondeterministic fashion.

Through the years, numerous extensions to PN have been introduced, allowing

the modeler to define complex behavior [Liu and Zhang, 2018]. Our PN library in

DEVS, allows the users to define PN and to run them using a DEVS tool like CD++.

Our library supports some of these extensions.

- Inhibitor arcs: a special arc is placed between a place and a transition, and this

new arc enables the transition only if the place is empty, as opposed to containing

at least one token.

7

- Multiple Arcs: they indicate that the number of tokens being transferred when

firing is more than one.

- Time: PN are logical time models, meaning that only the behavioral aspects are

considered (deadlock, livelock, concurrent execution, etc.). Timed PN (TPN) intro-

duced the concept of time, and therefore can be used for non-behavioral analysis

(performance, throughput, timeliness, etc. [Bowman and Gomez, 2006]). Timing

can be represented as delays associated to the model execution.

Figure 4. (a) Inhibitor Arc; (b) Multiple Arcs

We built a library of Petri Nets in CD++, whose main components are based on

our FSM model in the previous section [Jacques and Wainer, 2002]. The library

includes an atomic model to represent a place, and another to represent a transition.

The Place atomic model can receive token inputs from transition models, and when

a transition fires, we generate an input to tell the place to remove tokens (we support

multiple arcs, and timed PN, as the DEVS message also includes a timestamp for

the incoming tokens). We report the number of tokens the Place contains so transi-

tions can determine if they are enabled (including TPN, in whose case we only con-

sider enabled transitions if timestamps are equal to or lower than the current time).

We consider two kinds of delays:

- Delayed Transition Firing: these are special transitions where the firing

condition must be maintained for a certain time before the actual firing occurs.

- Timestamped Tokens: we can use timestamps for the tokens in a place. The

firing condition needs enabled tokens whose timestamp is equal to or lower than the

current time. When a transition fires, the output tokens should ALSO include a

timestamp.

The TPN Place atomic model can be defined as:

TPN_Place = < X, S, Y, int, ext, ta,  >

X = {IN  N+x R}

Y = {OUT  N+}

S = {{tokens  bag(R)}  {id  N+}  {phase  {active, passive}  {id  R0
+}

} where tokens is the list of tokens with their timestamps contained in the place, and

id is the identifier of the place as assigned by the simulator.

ext ((number of tokens N, id, timestamp T)  S, e, x  X) {

case id

0: // generic message

 add ‘N’ tokens with timestamp ‘T’ to tokens;

 k = max(0 , min_timestamp(tokens) – e);

 ta (active, k);

!= 0: // specific message

 id matches id of this place?

 no: discard the message

 yes: if there are enough enabled tokens

decrement tokens by the number specified

 ta(active, 0)

} // end of ext

int ((number of tokens N, id, timestamp T)  S) {
if there are tokens with timestamp larger than the current time

no: passivate

yes: ta (active, min_timestamp(tokens) – e)

} } // end of int

 ((number of tokens N, id, timestamp T)  S) {

 send ((id, number of tokens), out); }

The external transition function receives new tokens with timestamps, and adds

them to the list of tokens, or decrement the number of tokens (only the enabled ones

based on their timestamp) to fire a transition. After this, an internal transition is

scheduled; an output combining id and tokens state variables is generated and trans-

mitted on the OUT port. The number of advertised tokens is that of enabled tokens,

whose timestamp is equal to or lower than the current simulation time. The internal

transition function keeps scheduling events until all tokens have been enabled.

The TPN transition atomic model is defined as:

TPN_transition = < X, S, Y, int, ext, ta,  >

X = {IN0, IN1, IN2, IN3, IN4  N+}

9

Y = {OUT1  1xR, OUT2  2xR, OUT3  3xR, OUT4  4xR, FIRED  N+}

S = {{inputs  N}  {enabled  bool}  {active  bool }}.

ext (s,e,x) {

 case port
 IN0: arc width = 0; IN1: arc width = 1;

 IN2: arc width = 2; IN3: arc width = 3;

 IN4: arc width = 4;

 extract the id of the place sending the message;

 if this is the first message we get from this id, inputs++;

 save (id, arc width);

 extract number of tokens in the place that sent the message and save it;

 if all input places have enough tokens to enable the transition

 if transition is enabled enabled = true

 if transition is active

ta(active, nextChange)

 else

active = true;

ta(active, DELAY_FIRE);

 else

enabled = active = false

passivate

} end of ext

int (s) {
if inputs = 0 // transition is a source,

 ta (active, random()).

 else

 passivate

active = false

}

 (s) {
firing_time = now + DELAY_TOKEN;

send ((1, firing_time), OUT1); send ((2, firing_time), OUT2);

send ((3, firing_time), OUT3); send ((4, firing_time), OUT4);

send a message to every input place via the FIRED port;

} // end of  (s)

The model uses a number of input and output ports:

- IN1: it is used to receive the number of enabled tokens in the places connected

to this input. Places that connect to this port have a single connecting arc; if the

transition fires, only one token will be removed from the input places.

- IN2-4 are used for multiple arcs (2 to 4 arcs)

- IN0: inhibitor arc. The input place must contain zero tokens (including those

enabled by time for TPN) for the transition to fire and when it does, no token is

removed from the place.

- OUT1-4 are used to transmit 1-4 tokens to the corresponding ports.

- FIRED is used to remove tokens from the input places which must have their

IN port connected to this output port in addition to being connected to one of the

input ports.

The inputs state variable contains the number of input places for the transition,

and enabled indicates if the transition is enabled or not. The model uses the

DELAY_TOKEN parameter to determine delayed firing (i.e., the tokens will have

a timestamp which is the current time plus DELAY_TOKEN). After being enabled

DELAY_FIRE time, the transition actually fires.

One factor that is complex when simulating TPN in a DEVS simulator like

CD++ is that when two or more transitions are enabled, one must be chosen and

fired in a non-deterministic fashion. This implies that a controlling agent, aware of

the state of all transitions in the model, would be required to determine which one

should fire. In order to do this, the transition model schedules its own firing includ-

ing a random amount of time after the transition is enabled. Given that all transitions

do the same, this result in a near non-deterministic decision process.

When simulating the TPN results, we need to see the evolution of the marking,

as seen in the following figure. The first two lines list the name of the places and

transitions that make up the model. Then, we show the initial marking of the TPN

counting the number of enabled tokens. We see transition t2 firing at time 00:00:05,

which makes places p2 and p3 update their token count. Then 2 seconds later, p1

and p4 do the same (as this is a TPN) producing the marking (1,4,4,1).

Petri Net places: p1 p2 p3 p4

Petri Net transitions: t1 t2

[00:00:000] p1: 0 enabled tokens p2: 5 enabled tokens

 p3: 5 enabled tokens p4: 0 enabled tokens

 (0,5,5,0)

 |

 t2 [00:00:05:000]

 |

 V

[00:00:05:000] p2: 4 enabled tokens p3: 4 enabled tokens

[00:00:07:000] p1: 1 enabled token p4: 1 enabled token

 (1,4,4,1)...

11

Let us assume now that we want to study the behavior of an elevator. The eleva-

tor starts at the first floor, and it waits for people. Once people are inside, it closes

the doors and it moves to the second floor, where opens its doors, waits for people

leaving the elevator, closes the doors, and it returns to the first floor. A part of the

TPN of this elevator model can be seen in Figure 5. All places use time-stamped

tokens. For instance, the PeopleWaiting place, each token represents one person,

and their timestamp represent their time of arrival to the elevator. In the transition

T1, the DELAY_FIRE parameter represents the time that the doors remain open if

the button is not pressed and no one is entering the elevator. The DELAY_TOKEN

parameter represents how long it takes to close the door. In T3, DELAY_TOKEN

represents how long it takes to open the door. In T6, DELAY_FIRE models the time

it takes to enter the elevator. In T7, DELAY_FIRE is how long it takes to start

moving after the doors are closed. Finally, in T8 DELAY_FIRE represents how

long it takes to reach the second floor.

Figure 5. A TPN for modeling an elevator

The following test case shows a simulation run in which PeopleWaiting initially

holds 3 tokens with timestamps 00:00:05, 00:00:10 and 00:00:15, representing the

arrival of three persons at those times.

Petri Net places: Closed Opening Open ButtonPressed

 PeopleWaiting PeopleEnter PeopleInside

 PeopleArrived 1stFloor ElevatorUp

 2ndFloor leavingElevator

Petri Net transitions: t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t11 t12 t13 t14

[00:00:000] Closed: 1 enabled Opening, Open,

 PeopleWaiting, PeopleEnter, ElevatorUp,

PeopleInside, PeopleArrived: 0 enabled
1stFloor: 1 enabled
2ndFloor, leavingElevator: 0 enabled

[00:00:05:000] PeopleWaiting: 1 enabled

(1,0,0,0,1,0,0,0,1,0,0,0)

|

t4 [00:00:05:017]

|

V

[00:00:05:017] ButtonPressed, PeopleWaiting: 1 enabled

(1,0,0,1,1,0,0,0,1,0,0,0)

|

t2 [00:00:05:031]

|

V
[00:00:05:031] Closed: 0 enabled ; Opening: 1 enabled

ButtonPressed: 0 enabled ; 1stFloor: 1 enabled

(0,1,0,0,1,0,0,0,1,0,0,0)

|

t3 [00:00:05:047]

|

V

[00:00:05:047] Opening: 0 enabled

...

[00:00:49:044] ElevatorUp, Closed: 0 enabled; Opening: 1 enabled;

PeopleInside: 3 enabled; 2ndFloor: 1 enabled

(0,1,0,0,0,0,3,0,0,0,1,0)

|

t3 [00:00:49:060]

|

V

[00:00:49:060] Opening: 0 enabled ; Open: 1 enabled

(0,0,1,0,0,0,3,0,0,0,1,0)

|

t10 [00:00:54:083]

|

V

[00:00:54:083] Open: 0 enabled ; PeopleInside: 2 enabled ;

PeopleArrived: 1 enabled

...
[00:01:00:153] Open, PeopleInside: 0 enabled ; 2ndFloor: 1 enabled

As we can see, initially the elevator is in Floor 1, and the door is closed. No

transition is enabled. However, at 05:000, the first person arrives, enabling one to-

ken in the PeopleWaiting place. Transition t4 is enabled, and it fires, representing

that the elevator button has been pressed (and it takes 17ms to react). Transaction

t2 is enabled 14ms after that, which fires, triggering the opening of the door, and

13

disabling the button pressed. At 05:047, t3 is enabled, and now the door is open. A

while after the three individuals have arrived, the elevator has moved to the second

floor. We can see that at 49:044 the elevator is in the second floor, it has stopped

moving up and there are three individuals waiting to leave the elevator. After 14

ms, the door is enabled to open, and it opens, allowing the individuals to leave the

elevator. They leave one by one, until 01:00:153, where the elevator is empty in the

second floor.

As we can see, TPN can be simulated using DEVS atomic models for PN tran-

sitions and places with an unmodified DEVS simulator, including a method in the

internal transition function enabling timed Petri Nets. The DEVS specification al-

lows transforming the methods with ease, and building user libraries for developing

multimodels. In the next section, we discuss an extension for more advanced models

based on Timed Automata.

3 Timed Automata and DEVS

New theoretical advances in model checking have allowed guaranteeing proper-

ties about models of real world systems using a formal approach. Model checking

techniques can be automated, and Timed Automata (TA) theory [Alur and Dill

1994], in particular, has provided many practical results in this area. However, these

formal methods are difficult to apply, and in many cases, they do not scale up well.

Instead, using Modeling and Simulation (M&S) to gain confidence about the model

correctness can be used to improve the study of experimental conditions during

model definition, experimenting with virtual systems, explore options, including

those cases where testing under actual operating conditions may be impractical.

Nevertheless, no practical, automated approach exists to perform the transition that

exists between the modeling and the development phases, and this often results in

initial models being abandoned. Simultaneously, M&S frameworks are not as ro-

bust as their formal counterparts are. If the models used for M&S are formal, their

correctness would also be verifiable, and a designer could see the system evolution

and its inner workings even before starting a simulation [Saadawi and Wainer,

2010]. In order to deal with these issues, we showed a mechanism to represent TA

with DEVS, and extended it to model hybrid systems using QSS methods, hence

enabling formal verification of hybrid models within DEVS formalism.

We showed that, in order to be able to transform a DEVS model to a TA, we

need that:

a) the TA variables bounded integers, in order to guarantee the finiteness of state

space and hence the termination of the reachability algorithm (nevertheless, for

QSS, state variables are real numbers), and

b) the time of the next event be approximated to an integer number (in doing so

we need to preserve the original behavior of QSS).

The first issue was handled by converting rational real numbers to integers by

multiplying all values by the least common multiple of all the denominators. For

any irrational values, we introduced a new method in [Saadawi and Wainer, 2010].

For the second issue, we use abstraction by over-approximation. With this tech-

nique, we approximate the real value of the event time ti with a bounded time inter-

val such that tc  [TL,TH]. This interval is bounded by floor(ti) and ceiling(ti) respec-

tively. To obtain a TA that contains the behavior of a QSS model, we need a

simulation relation with the QSS model (i.e., we need to show that the TA simulates

QSS). To do so, each state in QSS would be simulated by a corresponding state in

the TA, and each target state in QSS simulated by a corresponding target state in

the TA. We will show these aspects using an example for an elevator controller

originally introduced in [Saadawi and Wainer, 2010]. A summary of this case study

is given below.

Figure 6: Elevator TA model.

In this model, whenever the elevator receives a command to stop, it synchronizes

with a braking elevator motion model (applyBrake!). The elevator waits in state

Braking for the quantized speed q value to reach zero. Once the elevator speed

reaches zero, the transition from Braking to Stopped would be enabled and exe-

cuted, then the elevator sends stop! to the elevator-controller. This hybrid model

allows the designer to verify the control system with different parameters of the

elevator physical system such as different braking values of de-accelerations, dif-

ferent elevator initial speeds, or other parameters in a more detailed QSS model.

15

This is an important addition to the elevator system verification as relevant physical

factors to the controller performance can be identified and formally verified during

design phase. The elevator de-acceleration motion and its speed are described by:

a
dt

dv
= v = at + vi

where v is the elevator speed, a is the acceleration constant, and the speed is v at

any point in time t, with vi the initial elevator speed before applying the brakes.

To simulate and verify this hybrid model, we obtained a discrete representation

of the elevator braking model, and we employed DEVS and QSS. We use a quan-

tized variable q related to v(t) system variable by quantization. To enable the formal

verification, we transformed the QSS model to an equivalent TA model, resulting

in the TA shown in figure 7.

Figure 7. TA model of braking elevator motion.

Here, S1 represents the initial elevator speed (4 m/s), the quantum value is dQ =

0.5 m/s, and sigma is the time interval between the outputs of two successive quan-

tized values. When this model receives a synchronization input event (?) on the

applyBrake channel, it changes to the state S2 and starts a loop S2-S3-S2... in which

we calculate the next quantized output q and the next values of sigmaL and sigmaH.

When the quantized speed q reaches zero, the model moves back to S1 and waits

for another applyBrake event. As discussed earlier, sigma (the time advance) is

over-approximated with an integer interval   [sigmaL, sigmaH].

Figure 8 shows the execution of the simulated hybrid DEVS model with braking

de-acceleration equals -0.12 m/s2. In this case, the time needed for the elevator to

stop is approximately 33 seconds. This would contradict the user requirements, as

the user expects the elevator to reach third floor within 27 seconds at most, and after

this time the requirement for the elevator controller to be ready to accept another as

shown on the transition S5 → S6. However, the slow-braking elevator would not be

able to fulfill the second request in time, hence we have a time lock and the model

cannot progress beyond S5.

Figure 8. (a) Elevator speed; (b) Quantized speed, acceleration= - 0.12 m/s2.

It is important to count with advanced methods for modeling hybrid systems

(where continuous and discrete phenomena interact), as they are found in many nat-

ural and artificial systems. Methods like those that we presented in this section can

include verification of cyber-physical systems, which usually include discrete-event

controllers interacting with a continuous plant. The combination of RTA-DEVS,

hybrid Timed Automata and QSS allows verifying real-time hybrid systems mod-

eled by DEVS. We showed a methodology to verify hybrid DEVS models. Some

limitations, however, for this method of over approximation is that for systems de-

scribed with nonlinear derivatives, it can lead to a wide flow pipe around the actual

system trajectory. Other limitation is the inherit problem with model checking tech-

nique of state-space explosion that limits the ability to scale verification to larger

models. In the next section, we show how to model these kind of hybrid systems

using the Bond Graphs formalism and its transformation to DEVS.

4 Bond Graphs

The Bond Graphs formalism (BG) is a mathematical modelling method that fo-

cuses on the representation of continuous dynamic systems that can be described

hierarchically [Karnopp et al., 1990; Vila and Rico, 2018]. BG represents the phys-

ical systems as a directed graph with hierarchical components, and its basic theory

is based on the energy conservation law and the use of a lumped approach, separat-

ing dynamic system properties from each other, using submodels, and then linking

those using ideal connectors. These connectors represent energy flow, and, it is as-

sumed they have power continuity, and that no energy is generated or dissipated in

the ideal connections. The physical systems they represent are modeled using di-

rected graphs whose nodes define the physical processes and whose links (bonds)

represent the ideal exchange of energy between them. Energy (or its time derivative,

power), is the fundamental exchange between elements of the system. Power is the

product of flow and effort (and they have no specific semantics; it can be used in

translation mechanics, as force and velocity; in electrical systems, as voltage and

-1

4

0 20 40

m/sec

Time (s)

Elevator speed

0

0 10 20 30 40

m/s

Time (sec)

Quantized speed

17

current, etc.). The energy flow is represented elements exchanging effort and flow

through the bonds. In order to represent the exchange of power between elements,

we need to show the flows between components and their causality, as no compo-

nent can determine the two power variables (effort and flow) at the same time.

Given a pair of elements connected through a bond, their causality determines which

causes flow and which causes effort.

There are a number of BG elements, including: Capacitor (C), Inductor (I), Re-

sistor (R), Effort source (Se), Flow source (Sf), Transformer (TF), Gyrator (GY), 1-

junction, 0-juction. To illustrate how they are defined, let us consider the R ele-

ments, which can represent resistors in the electrical domain, dampers the in me-

chanical context, etc. Their constitutive equation is defined by an algebraic equation

relating flow and effort: e = r. (f). The electrical resistor is mostly linear, and the

corresponding equation is u=R.i, where R is the resistance’s constant.

Figure 9. Top: R element with flow-in causality, equations and block diagram represen-

tation; bottom: R element with effort-in causality, equations and block diagram.

Based on BG concepts, we defined a discrete event library for Bond Graphs us-

ing DEVS [D’Abreu and Wainer, 2006], in which we define Quantized BG (QBG),

that is, a BG where all the storages and sources are quantized elements. This method

combines BG and DEVS models with QSS by adding quantizers equipped with

hysteresis to the integrators output. The library consists of a number of atomic

DEVS models developed on CD++, which implement QSS and QBG. The follow-

ing code snippet shows a part of the quantizer model equipped with hysteresis im-

plemented in CD++.

External transition

if (msg.port() == in) {

 if (state() == passive) {

 double inputValue = msg.value(); // gets message value

 currQValue = hquantize(inputValue); // applies QSS

 holdIn(active, Time::Zero); // schedule instantaneous transition }

}

Internal transition

passivate(); //waits the reception of external messages

Output function

if (firstValue || (currQValue != lastQValue)) {

 firstValue = false;

 lastQValue = currQValue;

 sendOutput(msg.time(), out, currQValue) ; }

// If first value received or boundary crossed, Sends quantized value

hquantize function

if (firstValue) return QMethod->quantize(value);

if ((value > lastQValue) || (value <= lastQValue - )) {

 return QMethod->quantize(value); // hysteresis window size 

}

return lastQValue;

The model receives external inputs, and then computes the quantization function

(with hysteresis) of the value received. Then, transmits the calculated value only if

a boundary is crossed. The model parameters included the Quantization method (we

support uniform and intervals quantization), their parameters (quantum size, lower

and upper saturation values), the intervals quantization method (array of intervals

and length of array of intervals, and the hysteresis window size.

A coupled DEVS representing a QBG model can be formally defined as:

CQBG = <Xself, Yself, D, {Mi}, {IC}, select>

 Xself = {} (no external inputs)

Yself = {} (no external outputs)

 D is the set of elements representing BG components, and for each i in D,

 Mi is a DEVS atomic model representing a QBG component

 IC is the internal coupling set defined as: IC = {iceui,vj}  {icfvj,ui} where

iceui,vj and icfvj,ui represent the coupling between effort and flow ports on u and v,

being the effort calculated by element u.





=
otherwiseφ

 source)(flow sourcea not is v if)) in v, (), out u, ((
ice

ejei

vjui,

 if u is a serial junction then i = 1 (only one effort-out port)





=
otherwiseφ

 source)(effort sourcea not isu if)) in u, (), out v, ((
icf

fifj

uivj,

 if v is a parallel junction then j = 1 (only one flow-out port)

select gives priority to structural components (junctions, transformer, gyrator).

19

The library includes the following models: QBGCapacitorFlowIn, QBGInduc-

torEffortIn, QBGResistanceFlowIn, QBGResistanceEffortIn, QBGSourceEf-

fort_Constant, QBGSourceEffort_Step, QBGSourceEffort_Sine, QBGSourceEf-

fort_Pulse, QBGSourceFlow_Constant, QBGSourceFlow_Step,

QBGSourceFlow_Sine, QBGSourceFlow_Pulse, QBGTransformer, QBGGyrator-

FlowIn, QBGGyratorEffortIn, QBGSerialJunction, QBGParallelJunction.

In order to show how to use the library, we define a mechanical model of the

response of mass against the application of effort, shown in Figure 10.

Figure 10. Mechanical circuit and its Bond-Graph representation

Following, we show two cases of execution of the model, in which we use dif-

ferent frequencies. Figure 12 the evolution of mass speed over time. It can be seen

how speed is modified every time that effort is imposed over M and how it tries to

return to its original value. We use I=40; C=2; SE: signal=pulse, period=200ms,

pulse duration=2ms, and different resistance. We can see that the variation of re-

sistance produces changes in the number and speed of oscillations, as expected.

Figure 11. Mass speed; (a) R=1.5; (b) R=3.

Using our BG library, we then conducted an extended effort, building the first

open source Modelica compiler, which was implemented on top of the QBG library,

and will be described in detail in the following section.

-0.21

-0.11

-0.01

0.09

0.19

0 1000 2000 3000

-0.21

-0.11

-0.01

0.09

0.19

0 1000 2000 3000

5 Modelica

Modelica is an object-oriented language, defined for modeling physical systems

and built to support library development and model exchange. Modelica models are

described using differential, algebraic and discrete equations, and there are various

libraries of standard components using ODEs, block diagrams, electrical and me-

chanical formalisms [Fritzson, 2004].

We defined a compiler that understands models from the electrical library in

Modelica [D’Abreu and Wainer, 2006]. A source file in Modelica is compiled into

an equivalent Bond Graph representation of the circuit. The generated BG consti-

tutes the output, which is used for simulation. The BG generation algorithm is based

on Karnopp’s circuit construction method [Karnopp et al, 1990]. The approach is to

build a BG that resembles the circuit structurally, and then to simplify it based on

selected properties, as follows:

- For each node with a distinct potential add a 0-junction: we used

transitive closure applied to every node on the graph (we check for paths between

arbitrary nodes x and y, given only adjacency information). As there are different

ways to specify the parallel coupling between elements in the circuit, we need to

ensure that the 0-junction elements are correctly inserted (independently from the

definitions in the Modelica file).

- Insert each 1-port circuit element by adjoining it to a 1-junction,

inserting 1-junctions between the appropriate pair of 0-junctions (C,

I, R, Se, Sf elements): we add a 1-junction to each 1-port element, inserting

it between the corresponding pair of 0-junctions.

- Assign power directions to all bonds: a standard convention assumes

positive direction of power when it flows out of sources (Se and Sf) and into C, I

and R elements. For two-port elements, TF and GY, we consider that power flows

into the elements. We use a power propagation algorithm that traverses the graph

and assigns power using the standard conventions and the information in the Mod-

elica file. At the end of this step we obtain a directed BG is obtained.

- Erasing ground potential: all the explicit ground potentials are deleted

from the graph; if there is no explicit ground potential, we delete the 0-junction

nearest to each source element. The 0-junctions selected are only those associated

with the negative pin of every source’s port.

- Simplification: a junction between two bonds with through power direction

can be deleted; likewise, a bond connecting two junctions of the same type can be

deleted and the junctions joined

In the final BG, we check for algebraic loops and singularities (elements that

have discontinuities e.g. diode), and we generate an optimized QBG corresponding

to the electrical circuit, which is used to generate a coupled DEVS model in CD++.

21

model circuit

 Modelica.Electrical.Analog.Sources.PulseVoltage

V(V=10,width=50,period=2);

 Modelica.Electrical.Analog.Basic.Resistor R1(R=10);

 Modelica.Electrical.Analog.Basic.Capacitor C(C=50);

 Modelica.Electrical.Analog.Basic.Ground Gnd;

equation

 connect(V.p, R1.p); connect(R1.n, C.p);

 connect(C.n, V.n); connect(V.n, Gnd.p);

end circuit;

 (a)

[top]

components : $SJ1@QBGSerialJunction C@QBGCapacitorFlowIn

R1@QBGResistanceEffortIn V@QBGSourceEffort_Pulse

link : e1n@$SJ1 e1p@R1 link : f1p@R1 f1n@$SJ1

link : f2n@$SJ1 f1p@C link : e1p@C e2n@$SJ1

link : f3p@$SJ1 f1n@V link : e1n@V e3p@$SJ1

[C]

quantum : 0.1 hystWindow : 0.01 C : 50 initialLoad : 0

[R1]

R : 10

[V]

quantum : 0.1 hystWindow : 0.01 signal : Pulse offset : 0

startTime : 0 amplitude : 10 period : 2 width : 50

(b)

(c)

Figure 12. (a) Modelica model (b) QBG translation (c) Model execution

0

1

2

3

4

5

6

0 500000 1000000 1500000 2000000

 Flow Effort

Figure 12 shows a Modelica model of a circuit, first, and the translation to QBG

after. As we can see, we generate a coupled model for each of the Modelica com-

ponents. The corresponding QBG are built for each of the components, and, in this

case, they are connected by the Serial Junction SJ1 (which is automatically gener-

ated by the compiler using the procedure explained above). The equations are con-

verted into couplings in the DEVS coupled model. After the coupled model defini-

tion, we can see the initialization values for each of the components, which also

follow the Modelica specification. The Capacitor and the Pulse Voltage generator

are approximated using QSS (the quantum size and the hysteresis window parame-

ters can be adjusted for simulation). Finally, we show outputs in both Flow and

Effort ports for Capacitor C, which matches the expected behavior of the circuit.

6 VHDL

Digital designers have often relied on M&S for the design of circuits, as simu-

lated studies allow reducing the number of design bugs and integration errors, while

easing product maintenance and reducing the overall cost. Design and simulation of

digital logic with HDLs (Hardware Descriptor Languages) is a well-proven meth-

odology. Mixed signal HDL simulators allow combining discrete time digital and

continuous time analog models. Here, we discuss a method for simulating mixed

signal HDLs by converting the designs to DEVS [Mehta and Wainer, 2005]. The

discrete-event nature of DEVS is well suited to model digital logic, and signal quan-

tization with QSS allows modeling the continuous systems components.

VHDL-AMS is targeted toward register transfer level modeling of digital circuits

with limited behavioral modeling and analog constructs. The main construct used

by the language is the Entity, which describes the interface to a VHDL-AMS design

or design unit. The entity declaration contains a list of ports, each of which is as-

signed a type and an optional mode. Ports of type std_logic or std_logic_vector (a

standardized type for digital logic) are used for digital signals while electrical ports

are used for analog signals. In the case of digital signals, ports will have mode in,

out, inout or buffer. Analog ports do not require a mode. The syntax of an entity

declaration is as follows:

entity entity_name is

 port ([signal | terminal | quantity] identifier {,

 identifier}: [mode |] signal_type | electrical

 {; [signal | terminal | quantity] identifier {,

 identifier}: [mode |] signal_type | electrical});

) ;

end [entity] [entity_name] ;

23

For instance, Figure 13 shows the declaration for an analog low pass filter entity.

entity LPF is

 port (

 terminal tout, tin,

 tgnd: electrical

);

end entity LFP;

architecture top of LPF is

 signal clk : std_logic;

 signal vin : std_logic;

 quantity vout across tout to tgnd;

begin

 vout’dot = (1/(R*C))*(vin-vout);

clk: entity clk

 port map (clk=>clk);

 vin<=clk;

end architecture top;

tin tout

tgnd

R

C

vin

vout

Figure 13. Low-pass Filter

A design architecture describes the functionality of a design or design unit; this

may be a structural, dataflow or behavioral description. A single architecture is as-

sociated with exactly one entity.

architecture architecture_name of entity_name is

 signal_declaration

 | constant_declaration

 | component_declaration

begin

 {process_statement

 | concurrent_signal_assignment_statement

 | component_instantiation_statement

 | simultaneous_statement}

end [architecture] [architecture_name] ;

The body of an architecture consists of statements that may be categorized as

concurrent, sequential or simultaneous. These statements operate on signals and

quantities that are declared within the scope of the architecture, and on ports that

are declared in the entity.

signal signal_name : std_logic_vector (upper_bound downto

lower_bound) | std_logic ;

quantity identifier : REAL | Voltage | Current | Charge ;

quantity identifier {, identifier} across identifier {, identifier}

through free_terminal to reference_terminal ;

Signals and quantities are defined in the declarative region. These belong to the

scope of the architecture in which they are declared and may only be referenced

within that architecture. Quantities may also be declared relative to terminals in an

entity declaration. These may be either across or through quantities. Across quan-

tities, represent the voltage at the free terminal relative to the reference terminal.

Through quantities represent the current from the free terminal into the reference

terminal. Process, Simultaneous, Concurrent Assignment and Conditional Concur-

rent Assignment Statements execute concurrently within an architecture. The con-

ditional concurrent assignment statement assigns the target signal the value of an

expression if the condition is true and the value of a different expression otherwise.

A process executes the statements between begin and end process when an event

occurs on a signal in its sensitivity list. No signals modified by the process are up-

dated until the process body is completed. The statements between begin and end

clauses are referred to as sequential statements, and they are executed in sequence.

[process_name:]

process (sensitivity_list)

 { type_declaration }

begin

 {signal_assignment_statement

 | if_statement

 | case_statement

 end process [process_name] ;

The if statement has identical semantics to that of an if-then-else statement in

C/C++; the case-when statement runs the sequence of statements that are listed un-

der the when clause whose expression matches that of the expression in the case

statement. Simultaneous statements are generally used for describing Differential

Algebraic Equations, and may consist of quantities or signal, for instance:

x1’dot’dot == -f*(x1 – x2) / m1;

x2’dot’dot == -f*(x2 – x1) / m2;

…

The ‘dot notation denotes the derivative with respect to time of the quantity listed

before the ‘dot. For example signal’dot is the first derivative with respect to time of

signal, while signal’dot’dot is the second derivative.

Figure 14 shows the software architecture of the tools used to build VHDL-AMS

models. We start with a syntax check phase, in order to ensure that the VHDL-AMS

model is syntactically correct. During the elaboration phase, each component de-

scription is assigned to a structure in the VHDL-AMS design hierarchy. The descrip-

tion of the architecture and entity for each component in the design is parsed, and a

Netlist is produced, which includes interconnected integrators, algebraic operators,

processes, signals and sub-component instances. We then generate DEVS models

in CD++, using a library for each components of the design and a coupled model to

define the architecture. The CD++ models are then compiled, after which the Netlist

and model library are used by the model file generation, after which we obtain a

DEVS coupled that can be used for simulation. In order to convert VHDL-AMS mod-

els to CD++ coupled models (done during the Model Code and Netlist Generation

phases above) we first need to identify the components that constitute the design

25

hierarchy. Basic components do not contain sub-component instances in their ar-

chitectures, while aggregate components do. We generate a dependency tree must

in which the leaves are basic components, while branches are aggregate compo-

nents, and the root is the top-level model. VHDL-AMS sub-component instances are

connected to the architecture in which they are instantiated as defined by the port

map clause in their component instantiation statement.

Figure 14. Architecture of the VHDL to DEVS compiler

The process body is implemented within the external transition function in

CD++. Buffering is also done within the external transition function for each signal

referenced in a rising_edge or falling_edge operation. Buffers are also created for

each output port on the model in CD++. The output ports on the model represent all

the signals that are driven from within the VHDL-AMS process. The values that are

assigned to these buffers will be output on their respective ports when the model

schedules an output event. Expressions and case statements are converted directly

to equivalent ones in C++. The CD++ signal model is used to implement transport

delay on messages sent between process model ports. The implementation of the

process model in DEVS does not allow assignment statements to have transport

delays, since the output events for all driven signals must occur simultaneously.

Therefore, we implemented transport delays in the CD++ signal model, which re-

ceives and buffers data on its input port, enters the active state for the time specified

by the assignment statement transport delay, and outputs the buffered data on its

output port.

Design

Syntax

Check

Elaboration

Model Code

and Netlist

Generation

Model Code

Compilation

and Linking

Model (MA)

File

Generation

Simulation

Execution

(CD++)

sAMS

VHDL

Design Syntactically

Correct sAMS

VHDL Design

Elaborated

sAMS VHDL

Design

Model Netlist

Model

Code and

Makefile

Simulation
Time

Simulation
Model

Simulation Log

Visualization

Tools (CD++

GUI)

Model
Library

Timing

Diagrams

and Plots

As discussed earlier, simultaneous statements in VHDL-AMS allow the definition

of continuous time systems through differential algebraic equations (DAE); in our

case, we approximated this by solving ordinary differential equation systems with

initial conditions, and combining them with a DEVS approximation of Runge-Kutta

and Euler integration methods. For instance, in the case of Euler, we compute yn+1

= yn + h.f(tn, yn). The method extrapolates the solution over the interval using an

approximation to the derivative at the beginning of the interval (Figure 15).

Figure 15. Euler integration method

We implemented both Euler and a fourth-order Runge-Kutta Method Integration

method (which is more accurate and stable than Euler for a given step size, as it uses

the derivative at the beginning of the interval, the derivative at two trial midpoints

and the derivative at a trial end point). These two methods were defined using the

QSS method (order two), providing accurate results for a small quantum size. To

do so, we inverted the equations used by the numerical methods to determine at

what time (relative to the present time) the integral of the first order differential

equation will enter the quantum state above or below the current quantum state. We

decompose the ODE into a set of first order differential equations, and convert them

into a Quantized Integrator model.

The following figure shows a CD++ definition of the DEVS model derived from

the low pass filter presented in Figure 13, and simulation results of the model.

[top]

components : int@rkIntegModel clock

out : clk y

Link : y@int y Link : y@int dydt@int

Link : out@clock clk Link : out@clock vin@int

[int]

y0 : 0 dydt0 : 0 C : 1.0E-6 R : 1000

[clock]

components : inv@Process_Inv sig1@Signal qm@QuantumMultiply

27

out : out

Link : out@sig1 in@inv Link : out@inv in@sig1

Link : out@sig1 in@qm Link : out@qm out

[sig1]

Transport_Delay : 00:00:1:000

[qm]

Transport_Delay : 00:00:000 Attenuation : 100

Figure 16. DEVS implementation of the low pas filter in Figure 13.

Figure 17. Simulation results of the low-pass filter.

7 The ATLAS Traffic Modelling Language

Urban traffic analysis is a problem whose complexity makes the analysis with

traditional analytical methods difficult. The use of simulation is now the tool of

choice urban traffic analysis. ATLAS (Advanced Traffic Language Specifications)

is devoted to build models of city sections using microsimulation [Davidson and-

Wainer, 2006]. The basic language constructions allow defining a static topology

of the section to be studied. The dynamic behavior of the section can be modified

by including traffic lights, traffic signs, etc. Once the urban section is outlined, mod-

els are converted into cell spaces and the traffic flow is automatically set up. Lan-

guage constructions were mapped into DEVS and Cell-DEVS models. The models

were formally specified, which made easier the verification of the language con-

structions.

ATLAS allows to represent the structure of a city section defined by a set of

streets connected by crossings. The language constructions define a static view of

the model, and they are considered as cellular models. The main constructions are

Segments, Crossings, Parking segments, Traffic lights, Railways, Construction

sites, and Traffic Signs. Different Experimental frameworks can be used to conduct

experimentation and analysis.

ATLAS formal language defines the structure and behavior of these constructs,

and we used the formal specification with validation purposes. Based on ATLAS,

we built TSC, the Traffic Simulation Compiler, which understands ATLAS models

and translates them into DEVS models. In order to make the model definition easier,

we defined two different tools for model definition and simulation visualization.

MAPS allows the user to build maps and decorations (traffic signs, speed, etc.), and

the results can be animated using CD++ (or Google Maps) to visualize the simula-

tion results. Figure 18 shows a workflow and the software stack used for ATLAS.

Figure 18. ATLAS Tool stack

Following, we will summarize the constructions of ATLAS, their formal speci-

fications, and their implementation in the TSC simulation language (the reader in-

terested in further details about the formal language and the compiler tools can refer

to [Lo Tártaro et al. 2001]).

29

The main construction is the segment, which represent a section between two

intersections. Each lane in a given segment has the same direction (i.e., they are

one-way) and they have a maximum speed. They are formally specified as:

Segment={(p1,p2,n,a,dir,max)}

where p1 and p2 represent the boundaries of each segment, n is the number of

lanes, and dir represents the vehicle direction, 0 represents the traffic direction is

from p2 to p1 and 1 represents the traffic direction is from p1 to p2. The a parameter

defines the shape of the segment (0-straight or 1-curve, allowing to define the city

shape precisely, and to include the exact number of cells), and max is the maximum

speed allowed in this segment.

Figure 19. A road segment

The syntax of TSC [Lo Tártaro et al., 2001] allows defining the segments by

delimiting them using the sentences begin segments and end segments. At least one

segment must be defined, using the following syntax:

id = p1, p2, lanes, shape, direction, speed, delay, parkType

where,

p1: (x, y), integers; the start of the segment.

p2: (x, y), integers; the end of the segment.

lanes: integer, the number of lanes in the segment.

shape: [curve | straight], the shape of the segment.

direction: [go | back], the direction of the segment.

speed: integer, maximum speed in the segment.

delay: integer, defines a delay value used for parking lanes.

parkType: [parkNone | parkLeft | parkRight | parkBoth], defines if

parking is allowed in the segment, and where.

The following example shows the definition of the segments section; in this case

there is only one segment with start/end points at cells (4,1) and (4,3), two lanes

wide. It is a straight segment, and traffic moves from origin (cell (4,3)) to destina-

tion (cell (4,1)). The maximum speed is 60 km/h. You can park on the right lane,

and the simulation will receive a parameter of 1100 s as the average delay
begin segments

 S1 = (4,3), (4,1), 2, straight, go, 60, 1100, parkRight

end segments

As we can see in Figure 18, these TSC specifications are translated into CD++,

as a set of rules based on the Cell-DEVS formalism. We defined models for seg-

ments from 1 to 5 lanes (unidirectional), and we formally verified the correctness

of the rules. We will now discuss this mapping for 2-lane segments.

A segment s t = (p1, p2, 2, a, dir, max) is defined as a 2D Cell-DEVS model,

using transport delays, with the structure presented in Figure 20.

Figure 20. 2-lane segment

Each row has a different specification, based on the asymmetry of the cell space.

The vehicles in the first row can move straight or to the right (and the ones in the

second row, in the opposite direction). The first row is defined as:

C0j = < I, X, S, Y, N, int, ext, delay, d, , , D >

I = < , Px, Py>, with  = 6; and Px = { (X1, boolean), (X2, boolean), (X3, boolean), (X4,

boolean), (X5, boolean), (X6, boolean) }; Py = { (Y1, boolean), (Y2, boolean), (Y3, boolean),

(Y4, boolean), (Y5, boolean) , (Y6, boolean) }.

X = Y = boolean;

S:
  1 if there is a vehicle;
s = 
  0 otherwise.

delay = transport;

d = convert_to_delay(speed(max)); where speed is a random function that uses

using a probabilistic distribution based on vehicle traffic. One expects a few vehi-

cles with maximum and minimum speed, and a majority between them. Based on

the maximum speed, we compute the mean)/(*
3

2
hkmmaxx = and the standard

deviation,)/(*
3

1
hkmmax= , which are passed to the function, which returns a

natural number representing the random speed in km/h for the vehicle. Based on

this, we compute the delay to cross a cell, which is 7.5 m (the size needed for a

31

vehicle [Chopard et al. 1996]), dividing by the speed in km/h, and multiplying by

602 (to convert the delay in km/h into seconds).

N = { (0,0), (0,1), (-1,0), (-1,1), (0,-1), (-1,-1) };

 is:

New State Preconditions Rule Name

1 ((0,0) = 0 and (0,-1) = 1) or From_Behind

((0,0) = 0 and (0,-1) = 0 and (-1,-1) = 1

and (-1,0) = 1)

From_Right

0 ((0,0) = 1 and (0,1) = 0) or Move_Forward

 (0,0) = 1 and (-1,1) = 0 and (-1,0) = 0 Right_of_Way_Right

(0,0) True Default

The vehicles can only arrive from the cell behind, or from the right (due to the

neighborhood definition). For diagonal movements, we need to consider the right

of way. In this way, we avoid collisions. The rules in the second lane are symmet-

rical to these ones, but we also need to consider that the vehicles from the right have

the right of way (so, we evaluate those rules first).

The coupled model corresponding to the segment is defined as:

S2L(k, max) = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, , N, C, B, Z, select >

Ylist = { (0,0), (1,0), (0,k-1), (1,k-1) }

Xlist = { (0,0), (1,0), (0,k-1), (1,k-1) }

I = <Px, Py>, with Px = {x-c-vehicle, boolean>, x-c-vehicle, boolean>, <x-c-free,

boolean>, <x-c-free, boolean>} and Py = {<y-c-free, boolean>, <y-c-free, boolean>,

<y-c-vehicle, boolean>, <y-c-vehicle, boolean>}

X = Y = Boolean;

n = 2; t1 = 2; t2 = k;  = 6 and N is described for each lane.

C = { Cij / i  [0, 1]  j  [0, k-1] }, with Cij a Cell-DEVS atomic model

B = { (0, k-1), (1, k-1), (0,0), (1,0) }

select = { (0,1), (1,1), (0,0), (1,0), (0,-1), (1,-1) }
  + 

 y = y1

 (x1,y1)

 (x2,y2)

  y = y2

Figure 21. Computing the length based on inclination angles.

In this case, S2L(k, max) is a segment of 2 lanes, k cells long, and maximum

sped max km/h. The number of cells k is computed automatically as the distance

between start/end of the segment divided by 7.5 m, using the inclination angle as in

Figure 21.

The model’s interface includes the cells of the first and last column of the seg-

ment; these ones can interchange vehicles from/to the crossings. Therefore, the be-

havior of these cells is different to the rest of the segment, and the formal definitions

of the borders change as follows, for cell (0,0):

 = 4; N = { (0,0), (0,1), (-1,0), (-1,1) }

Figure 21. Neighborhood definition and ports for border cell (0,0)

 is:

New State Preconditions Rule Name

1 (0,0) = 0 and portvalue(x-c- vehicle) = 1 From_Crossing

0 ((0,0) = 1 and (0,1) = 0) or Move_Forward

 (0,0) = 1 and (-1,1) = 0 and (-1,0) = 0 Right_of_Way_Right

(0,0) True Default

This cell only receives vehicles that are coming from a crossing, while the rules

to advance are similar to the other cells. We define a similar set of rules for cell

(1,0), the second input border. Similarly, cells (k,0) and (k,1) need a modification

of neighborhood and input/output ports to allow vehicles to leave the segment in

the direction of a crossing. In this case,  is:

New State Preconditions Rule Name

1

send(0, y-c-vehicle)

(0,0) = 0 and (0,-1) = 1 From_Behind

((0,0) = 0 and (0,-1) = 0 and (-1,-1) = 1

and (-1,0) = 1)

From_Right

0

send(1, y-c- vehicle)

(0,0) = 1 and portvalue(x-c-free) = 0 To_Crossing

(0,0) True Default

This cell only receives vehicles coming from a crossing, while the rules to ad-

vance are similar for lane one and the rest of the model do not change. We have

symmetric rules for cell (1,0). Likewise, cells (0, k-1) and (1, k-1) must generate

outputs to the crossings, and the behavior generated is similar.

33

Parking defines different behavior in the border cells in a segment, as these can

be used for parking, as seen in Figure 2. They are formally defined as:

Parking={(s,n1)}

Every pair (s1, n1) identifies the segment and the lane where car parking is al-

lowed. If n1= 0, the cars park on the left; if n1 = 1, the cars park on the right. As

seen in the segments definition, the parking has been added as an attribute of the

segment for each of them in the TSC compiler.

 Crossings are defined in those points in the plane where several segments inter-

sect. They are formally defined as:

Crossings={(c,max)}

which represents the points where the crossings are located, and the maximum

speed to cross a segment (this allows defining a different speed for the crossing and

the segments they are connected to, and defining specialized behavior for countries

where speed in crossings should be lower than in the crossing streets. Likewise, it

allows defining reduced speeds for roundabouts. Finally, if there are segments with

different speeds entering a given crossing – for instance, a main avenue crossing a

residential street – this lets us defining the desired speed for the crossing). Crossings

are translated to a cellular model built as a ring of cells with moving vehicles. A

vehicle in a cell of the crossing has higher priority to obtain the next position in the

ring than the cars outside the crossing (see Figure 22). The number of cells in the

ring is calculated as the number of input and output segments connected to the cross-

ing, as shown in Figure 22.


==

=

=

)21(
),,,2,1(

pcpc
dirancctTt

nk

Figure 22. Crossing definition and calculation of number of cells in the crossing

 The TSC definitions for crossings are delimited by the separators begin cross-

ings and end crossings. Each sentence defines a crossing using the following

syntax:
id = p, speed, tLight, crossHole, pout

Parameters p and speed represent the coordinate of the crossing (p1,p2) and

max speed for the crossings. Pout defines the probability of a vehicle to leave the

crossing, used to simulate random routing of different vehicles.

Crossings with traffic lights are defined as:

TLCrossing={(c | c∈Crossings)}

Here, c ∈ TLCrossings defines a set of models representing the traffic lights in a

corner and the corresponding controller. Each of these models is associated with a

crossing input. The model sends a value representing the color of the traffic light to

a cell in the intersection corresponding to the input segment affected by the traffic

light. The following qualifier is added to a standard crossing definition in TSC when

a crossing must include traffic lights:

tLight : [withTL | withoutTL]

The crossings C1 and C2 in the following definition show two crossings, one at

cell (4,3), and another at cell (4,14). Both have a maximum speed of 40 km/h and a

probability to leave the cell of 70%.

begin crossings

 C1 = (4,3), 40, withTL, withoutHole, 0.7

 C2 = (4,14), 40, withTL, withoutHole, 0.7

end crossings

Railways are defined as a set of level crossings overlapped with the road seg-

ments (see fig. 5). The railway network is defined by:

RailNet={(Station,Rail)

Where Station is a model and Rail ∈ RailTrack and RailTrack is defined as:

RailTrack={(s, δ, seq)}

Railtrack associates a level crossing with other existing constructions in the city

section. Each element identifies the segment that is crossed (s) and the distance to

the railway from the beginning of the section (δ). Finally, a sequence number (seq)

is assigned to each level crossing, defining its position in the RailTrack. RailNet

represents a set of stations connected to railways. When a railway is defined in TSC,

we use the begin railnets and end railnets clauses. Each RailNet is defined using

the following syntax:
id =(s1, d1) (s2, d2) (s3, d3)…

where si defines an identifier of a segment crossed by the railway, and di defines

the distance between the beginning of the segment si and the railway. The compiler

automatically generates the sequence number.

Similarly, we have defined language constructions for potholes, traffic signs,

construction zones, etc.

The following picture shows a main section in downtown Ottawa. The traffic in

this area is usually crowded, and congestion occurs frequently. The area includes

two parks, several one-way streets and avenues. In several of these streets, parking

is allowed, while in others it is forbidden. There are traffic lights in several of the

crossings.

35

Figure 23. Traffic section for case study: Elgin Street in Ottawa

Figure 24 shows the ATLAS definition for this area, labeling the segments and

crossings. Using MAPS, we built a model of this section, which is then translated

to ATLAS TSC as follows:

begin segments

 S1 = (4,1), (4,3), 2, straight, back, 60, 1100, parkRight

 S2 = (5,1), (4,3), 2, straight, go, 60, 1100, parkRight

 S3 = (4,3), (4,14), 2, straight, back, 60, 1100, parkRight

 S4 = (4,3), (5,14), 2, curve, go, 60, 1100, parkRight

...

 S28 = (4,36), (10,36), 1, straight, go, 40, 1100, parkNone

 S29 = (10,36), (13,36), 1, straight, go, 40, 1100, parkNone

 S30 = (4,39), (1,40), 1, straight, go, 50, 1100, parkNone

 S31 = (4,39), (1,39), 1, straight, back, 50, 1100, parkNone

end segments

begin crossings

C1 = (4,3), 40, withTL, withoutHole, 220, 110

C2 = (4,14), 40, withTL, withoutHole, 221, 111

...

C8 = (10,28), 20, withoutTL, withHole, 229, 119

C9 = (10, 36), 20, withoutTL, withHole, 230, 120

end crossings

begin ctrElements

in S21 : pedestrian crossing, 1, 110

in S22 : pedestrian crossing, 1, 111

in S22 : school, 2, 112

in S23 : stop, 7, 113

in S24 : stop, 6, 114

...

in S30 : pedestrian crossing, 1, 117

end ctlElements

For instance, we can see, that segment S1 is a two-lane road, which includes all

the parameters as discussed earlier. Following the method to compute the cells in

the cell space, this model must be mapped into a two-dimensional Cell-DEVS with

transport delays. Similarly, the TSC definition of segment S29 represents is a one

way street starting at (10, 36) and ending at (13, 36). The traffic direction on this

road is from the source to the destination. The maximum speed is 40 km/h and park-

ing is not permitted. The crossing C1 is at position (4, 3) and the maximum speed

in this intersection is 40 km/h. The crossing has traffic lights, and there are no pot-

holes. We can also see that in road segment 22, there is a school located 2 cells away

from the beginning point, and that in segment 28, there is a pedestrian crossing lo-

cated 1 cell away from the beginning point.

The compiler generates a CD++ file, using the TSC template rules, and the model

generated is as follows, following the rules for 2-lane models described above:

[TOP]

components : S1 S2 S3 ... S31 ; segments

 C1 C2 ... C7 ; crossings

S17tl@TrafficLight S17Gen@Generator S15Cons@Consumer ...

C1stl@SincroTrafficLight C2stl@SincroTrafficLight

C21stl@SincroTrafficLight C4stl@SincroTrafficLight

C41stl@SincroTrafficLight

...

link : y-t-car0@S17Gen x-ge-car00@S17

link : y-t-car1@S17Gen x-ge-car10@S17

...

[S17]

type : cell

width : 3 height : 2 delay : transport border : nowrapped

neighbors : (1,-1) (1,0) (1,1) (0,-1)(0,0)(0,1) (-1,-1) (-1,0) (-1,1)

in : x-ge-car00 x-ge-car10 x-c-space02 x-c-space12

out: y-c-car02 y-c-car12

link : x-ge-car00 x-ge-car@S17(0,0)

link : x-ge-car10 x-ge-car@S17(1,0)

...

localtransition : S17-segment2-lane0-rule

[S17-segment2-lane0-rule]

#Macro(S17-From_Behind)

#Macro(S17-From_Right_Lane)

#Macro(S17-Move_Forward)

#Macro(S17-To_Right_with_Right_of_Way)

#Macro(S17-Default)

…
#BeginMacro(S27-From_Behind)

37

rule : 1 40 { (0,0) = 0 and (0,-1) = 1 }

As we can see, the segments definitions are translated into CD++ coupled models

using the definitions discussed earlier. For instance, we can see the definition of

segment S17, a small Cell-DEVS model, of 2 lanes (3 cells long), connected to a

generator model (which feeds the section with vehicles through the ports x-ge. The

local transition rule is defined using the formal specifications discussed above, and

in particular, we show a definition of the macro used to define the rule “From_Be-

hind”, which represents movement to a cell from the vehicle behind it. When we

simulate the model, we can change initial conditions, for instance, the traffic lights,

number of vehicles generated, etc. Figure 24 shows the simulation results at differ-

ent times in segment S17, in which we injected a similar amount of vehicles, and

we can see the influence of traffic lights (lower line) that help regulating the traffic

in the section.

Figure 24. Simulation scenario with traffic lights and without traffic lights

8 Conclusion

The last 50 years of SummerSim have brought a wide range of advances to the

field of Modeling and Simulation. Here, we have discussed our lab’s research in the

area, focusing on using DEVS as a common formalism for simulating a diverse

variety of models. DEVS provides the means of building complex models evolving

incrementally from simple subcomponents in incremental, hierarchical fashion.

This view enables the reuse of simulations and components, where the integration

of simulations and components is seamless.

The experiments were carried out using CD++, a DEVS tool that has been built

following the formal definitions of DEVS and Cell-DEVS. The modeler can then to

focus on the modeling formalism of interest, and to use all the advantages of DEVS

0

5

10

15

20

25

30

35

(in terms of integration with other models, multimodeling, sharing of repositories,

proving the validity of simulation code, etc.) for model composition and simulation.

The use of formal modeling techniques enhances model verification. Specifi-

cally, automated rule verification, based on meeting basic logical properties in cel-

lular models and coupled model definitions, can be provided. Our tools also provide

mechanisms for automating the verification of multicomponent model coupling. In

the same sense, we showed how to provide multimodeling and hybrid modeling.

The models are able to include both continuous and discrete event model compo-

nents. For instance, the behavior governing the physics of a vehicle can be described

with Bond Graphs (continuous modeling technique), while vehicle cruise control

system might be better modeled using a discrete event formalism. We showed how

to integrate these model views in a seamless fashion, using DEVS and the CD++,

combined with the QSS method and model transformations. Spatial notions can

provide extra facilities for understanding and visualizing the resulting simulation.

For example, it allows incorporating geographical data obtained in GIS software.

Acknowledgements

This work was partially funded by NSERC. The research has been conducted by

a large number of students in our lab in the last 20 years, including: M. Lo Tártaro,

C. Torres, T. Zheng, M. D’Abreu, L. Checiu, C. Jacques, H. Saadawi, D. Vicino,

R. Castro, S. Mehta, A. González and numerous others, who have spent long hours

in this research.

References
R. Alur, D. Dill. “Theory of Timed Automata". Theoretical Computer Science, volume 126, pg.

183-235, 1994.

H. Bowman, R. Gomez. Concurrency Theory: Calculi and Automata for Modelling Untimed and

Timed Concurrent Systems. Springer-Verlag London 2006.

R. Castro, E. Kofman, G. Wainer. (2010) “A Formal Framework for Stochastic DEVS Modeling

and Simulation”. SIMULATION: Transactions of the Society for Modeling and Simulation

International. Vol. 86, No. 10. pp. 587-611.

Chechiu, L., and Wainer. G. (2005). Experimental results on the use of Modelica/CD++. In Pro-

ceedings of the 2005 SCS Summer Computer Simulation Conference. Philadelphia, PA.

Chopard, B. Queloz, P. A.; Luthi, P. “Cellular Automata Model of Car Traffic in two-dimensional

street networks”. J.Phys. A.vol.29, pp.2325-2336, 1996

D’Abreu, M., and Wainer, G. (2006) A Bond-Graph mapping mechanism for M/CD++. In Pro-

ceedings of the 2006 SCS Summer Computer Simulation Conference. Calgary, AB, Canada.

A. Davidson, G. Wainer. ATLAS: a specification language for traffic modelling and simulation”.

Simulation, Practice and Experience. Elsevier. Volume 14, No. 3, pp. 317-337. April 2006.

Fritzson, P. (2004). Principles of Object-Oriented Modeling and Simulation with Modelica 2.1.

Wiley-IEEE Press.

Hopcroft, J. Ullman, J. (1979). Introduction to Automata Theory, Languages, and Computation.

Reading/MA: Addison-Wesley.

Jacques, C., and Wainer, G. (2002). Using the CD++ DEVS toolkit to develop Petri Nets. Proceed-

ings of the 2002 Summer Computer Simulation Conference, San Diego, CA. USA.

39

Karnopp, D., Margolis, D., Rosenberg, R. 1990: System Dynamics: a unified approach, Wiley.

Kofman, E., and Junco, S. (2001) Quantized State Systems. A DEVS Approach for Continuous

System simulation. Transactions of the SCS, 18(3): 123-132.

 Liu, F., & Zhang, H. (2018). A class of extended time Petri nets for modeling and simulation of

discrete event systems. SIMULATION, 94(8), 753–762.

M. Lo Tártaro, C. Torres, G. Wainer. "TSC: a compiler for the ATLAS language". In Proceedings

of 2001 Winter Simulation Conference. Arlington, VA. U.S.A. IEEE Press. 2001.

S. Mehta, G. Wainer. (2005) “DEVS for mixed-signal Modeling based on VHDL”. Proceedings

of 2005 DEVS Integrative M&S Symposium, Spring Simulation Conference. San Diego, CA.

Peterson, James L. “Petri Nets”. ACM Computing Surveys, Vol 3, No. 5. September 1977. pp 221-

252.

Pietro, F. D., Migoni, G., & Kofman, E. (2018). Improving Linearly Implicit Quantized State Sys-

tem Methods. SIMULATION. https://doi.org/10.1177/0037549718766689

H. Saadawi, G. Wainer. 2010. “Rational time-advance DEVS (RTA-DEVS). In Proceedings of

DEVS Symposium 2010, Orlando, FL., April 11-15.

 Villa-Villaseñor, N., Rico-Melgoza, J. J. (2018). Complementarity framework formulation from

bond graphs to model a class of nonlinear systems and hybrid systems with fixed causality.

SIMULATION, 94(9), 783–795.

Wainer, G. A. (2009). Discrete-Event Modeling and Simulation: A Practitioner’s Approach. Boca

Raton, FL, USA: CRC Press.

B. P. Zeigler, T. Kim, and H. Praehofer. 2000. Theory of Modeling and Simulation. San Diego,

CA: Academic Press,

Zheng, T., and Wainer, G. (2003). Implementing finite state machines using the CD++ toolkit.

Proceedings of the 2003 Summer Computer Simulation Conference. Montreal, QC. Canada.

Author’s Resume

GABRIEL A. WAINER, FSCS, SMIEEE, received the M.Sc. (1993) at the

University of Buenos Aires, Argentina, and the Ph.D. (1998, with highest honors)

at UBA/Université d’Aix-Marseille III, France. In July 2000, he joined the Depart-

ment of Systems and Computer Engineering at Carleton University (Ottawa, ON,

Canada), where he is now Full Professor and Associate Chair for Graduate Studies.

He has held visiting positions at the University of Arizona; LSIS (CNRS), Univer-

sité Paul Cézanne, University of Nice, INRIA Sophia-Antipolis, Université de Bor-

deaux (France); UCM, UPC (Spain), University of Buenos Aires, National Univer-

sity of Rosario (Argentina) and others. He is one of the founders of the Symposium

on Theory of Modeling and Simulation, SIMUTools and SimAUD. Prof. Wainer

was Vice-President Conferences and Vice-President Publications, and is a member

of the Board of Directors of the SCS. Prof. Wainer is the Special Issues Editor of

SIMULATION, member of the Editorial Board of IEEE Computing in Science and

Engineering, Wireless Networks (Elsevier), Journal of Defense Modeling and Sim-

ulation (SCS). He is the head of the Advanced Real-Time Simulation lab, located

at Carleton University's Centre for advanced Simulation and Visualization (V-Sim).

He has been the recipient of various awards, including the IBM Eclipse Innovation

https://doi.org/10.1177/0037549718766689
https://doi.org/10.1177/0037549718766689

Award, SCS Leadership Award, and various Best Paper awards. He has been

awarded Carleton University's Research Achievement Award (2005, 2014), the

First Bernard P. Zeigler DEVS Modeling and Simulation Award, the SCS Outstand-

ing Professional Award (2011), Carleton University’s Mentorship Award (2013),

the SCS Distinguished Professional Award (2013), and the SCS Distinguished Ser-

vice Award (2015). He is a Fellow of SCS.

