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Abstract We discuss a number of methods for converting high level modeling for-

malisms and languages into lower level discrete-event systems specifications using 

the DEVS formalism. We present the implementation of such methods in the CD++ 

open source toolkit, and discuss different case studies. We focus on a variety of 

methods, ranging from Petri Nets and Finite State Machines up to Modelica and 

advanced Traffic modeling languages, showing the generality of DEVS based solu-

tions, and the definition of user libraries in different domains. 

1 Introduction 

As discussed in the Introduction chapter, I have attended SummerSim since 

1999, presenting a variety of results of our research to the Modeling and Simulation 

community. Besides making lifetime friends and colleagues, I was able to witness 

(and collaborate with) research on different modelling and simulation methodolo-

gies. In the beginning, the conference focused in a number of methodologies and 

applications for continuous and discrete-event simulation, which were mature and 

well established. In parallel, there were a large number of research efforts focusing 

on modeling formalisms, and a number of those investigations focused on the trans-

formation of models into DEVS [Zeigler et al., 2000]. In this chapter, we introduce 

our efforts in this field, which are summarized in Figure 1 (the reader can find in-

formation about these topics at htpp://cell-devs.sce.carleton.ca/ars). 

Although the research in modeling methodologies in our laboratory includes nu-

merous areas, ranging from Graphical User Interfaces (CD++Builder), Real-Time 

Simulation (RT-DEVS, Embedded CD++, E-CD Boost, I-DEVS, I-DEVS Sched-

ulability, E-CDBoost), Parallel and Distributed Simulation (Parallel CD++, Con-

servative and Time-Warp/PCD++, Mashup SOA CD++, Remoting .NET DEVS, 

RESTful middleware, multi-core optimistic PCD++, DEVS as a service, SamSaas 

Mashups), our main focus has been on theory of modeling and simulation. This 

included the definition of Cell-DEVS and its abstract simulator and its extension to 



 

 

 

 

 

Parallel Cell-DEVS and Quantized Cell-DEVS, as well as the first definition of Ac-

tivity Tracking as a method to reduce cell activation in Cell-DEVS models, and the 

extension to N-Dimensional Cell-DEVS models. We defined the ATLAS traffic 

language and the ATLAS traffic simulation compiler. We also worked in the trans-

formation of different methodologies into DEVS and Cell-DEVS. For instance, we 

showed how to transform Petri Nets [Jacques and Wainer, 2002], Finite State Ma-

chines [Zheng and Wainer, 2003]. We also worked in various extensions to the 

DEVS formalism and proved important properties with the Stochastic DEVS for-

malism [Castro et al., 2010], how to check models based on the Rational Time-

Advanced DEVS [Saadawi and Wainer, 2010], and how to model real-time systems 

with constraints using Imprecise RT DEVS. We also introduced formal verification 

of Hybrid DEVS models, presented finite forkable DEVS and DEVS with uncertain 

inputs. We were also able to show the transformation of other methods, including 

Finite Element (FEM), Lattice Gas and Computational Fluid Dynamics. As research 

on modeling of continuous and hybrid systems advanced, the concept quantization 

of the state variables obtaining a discrete event approximation of the continuous 

system proved to be an important method to allow the integration of continuous and 

discrete models. This method that could be defined using DEVS [Kofman and 

Junco, 2001], and was later extended to the family of QSS methods [Pietro et al, 

2018]. We used these methods to define models of continuous systems, including 

VHDL-AMS, and later Bond Graphs [D’Abreu and Wainer, 2006] and Modelica 

[Chechiu and Wainer, 2005]. 

 
Figure 1. Modeling Methodologies at the Advanced Real-Time Simulation Lab 

In this chapter, we summarize some of these efforts, presenting a tutorial on dif-

ferent modeling methods and their translation into DEVS. Most of the research pre-

sented has been discussed in numerous articles and books [Wainer 2009], and this 

serves as a generic introduction for the readers interested in advancing in this re-

search area. The tools are open source, and all the models presented here are pub-

licly available. 

We first discuss the definition of simple Finite State Machines and its definition 

as DEVS models. Then, we introduce Timed Petri Nets, and show a library of DEVS 
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models for modeling and simulating them. After, we show a method we defined, in 

which we have Timed Automata models converted into DEVS (and vice-versa), 

allowing advanced model checking using tools like UPPAL, in particular using hy-

brid models that can be defined through quantization of the input/output signals. We 

then elaborate on the definition of Bond Graph models and their implementation 

using Quantized DEVS models. Bond Graphs were used to build a Modelica com-

piler, which is described next. We also built a library to build digital circuits using 

VHDL-AMS, which is described next. Finally, we present ATLAS, a specification 

language defined to depict city sections and to model and simulate traffic flow. 

Road segments are defined by their size, number of lanes, traffic direction, maxi-

mum speed, etc. Once the city section is outlined, the constructions are translated 

into Cell-DEVS models, and the traffic flow is automatically set up. The rule gen-

eration for describing the traffic behavior is based on macro templates, enabling 

changes in the model implementation in a flexible way.  

2 Modeling Finite State Machines in DEVS 

Finite State Machines have been used in systems engineering applications as 

they can represent complex artificial devices in an abstract fashion. They are char-

acterized as abstract mathematical entities that can take a finite number of states, 

and they respond to external inputs to trigger transitions between states. A deter-

ministic FSN can be formally defined, using a systems theoretical notation, as fol-

lows [Hopcroft and Ullman, 1979]: 

 

FSM = < S, X, Y, ,  > 

 

 Where  X:  finite input set  

  Y:  finite output set  

  S:   finite state set  

  : X x S → S the next state function 

  : S → Y is the output function (Moore machine) or 

   X x S → Y (Mealy machine) 

 

In [Zheng and Wainer, 2003] we showed how to define FSM as DEVS. The basic 

idea is to represent the behavior of a generic state as an Atomic model, and then to 

build the FSM by combining a number of those atomic models into a coupled model 

representing the FSM. All the states in a FSM are encoded as integers, and a unique 

global value, stateCode, is assigned to each state. A phase is used to indicate if a 



 

 

 

 

 

given state is active or passive (and only one state is can be active at a time, accord-

ing to FSM semantics). The events are encoded as integers as well.  

The formal DEVS specification for the FSM for the atomic model State is:  

 

FSM = < X, Y, S, δext, δint, λ, ta> 

 

X = {eventIn, transitionIn} 

Y = {stateOut, transitionOut } 

S = { phase, events[],isEvent stateCode, stateValue, nextActiveState } 

δext ((phase, events[],isEvent stateCode, stateValue, nextActiveState), e, x)  

      case phase  

    active:  

        if x is from eventIn  

get nextActiveState from events[ ];   

     isEvent = true; 

     ta(active, 0); //trigger an immediate internal event for output 

     passive: 

                 if x is from transitionIn 

isEvent = false; 

ta(passive, 0); 

} 

 

δint (events[ ], stateCode, phase, stateValue, nextActiveState, isEvent)   {  

if (isEvent)  // always passivate after receiving an event 

  passivate(); 

 else // new state activated by the input from the transition 

  ta(active, Infinity); 

} 

 

λ(events[ ], stateCode, phase, stateValue, nextActiveState) { 

if (isEvent) // inform the next active state 

     send nextActiveState to port transitionOutput   

 else   // indicate the current state 

     send stateValue to port stateOutput    

} 

 

The state variable events[ ] is an array that records the legal events of the state 

and the associated nextActiveState; and stateCode includes the unique state code of 

the state (0 represents the initial state in a FSM). The phase can be active or passive; 

stateValue is the assigned output of the state; nextActiveState is the state code of the 

next active state; isEvent indicates if an event is received or if a transition signal is 
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received. The eventIn receives encoded numbers representing external events. If a 

state receives a legal event listed in events[ ] when it is active, the stateOut port 

sends out the current stateValue, and the transitionOut port sends out the nextAc-

tiveState signal to all the transitionIn ports in the FSM reporting which state will be 

active in the next step. A state becomes active if the encoded number received from 

transitionIn port is same as its stateCode.  

In order to create an FSM we connect various States: 

- All transitionOut and transitionIn ports should be connected together inside 

the FSM.  

- All eventIn ports of States should be connected to an input port of a FSM. 

- Each  stateOut port of State could either be connected to an individual output 

port of a FSM or connected together as one output port of a FSM  

- All the states in a FSM are encoded as integer numbers (stateCode) during 

simulation. The state with the stateCode 0 is the initial state in the FSM.  
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Figure 2. A model of an ATM machine, and the corresponding DEVS coupled model 

After executing this model in CD++ with a set of external events, we obtain the 

results in Figure 3. The left column shows the inputs, and the right column, the 

outputs obtained when we test it.  

As we can see, initially we insert a card, which produces a checkingpin output. 

When we receive PIN-OK, we trigger an output in selectingtransaction (in this case, 

a withdrawal, which generates a withdrawing output). We then choose the account 

type and the amount. As we can see, the user does not confirm the amount (con-

firm_no), as they made a mistake. This is selected again at 00:80, after which we 

confirm, withdraw the card, and start the process all over again. 



 

 

 

 

 
00:00:10 in insertCard 

00:00:30 in PIN-OK 

00:00:40 in withdrawal 

00:00:50 in choose_account_type 

00:00:60 in choose_amount 

00:00:70 in confirm_no 

00:00:80 in choose_amount 

00:00:90 in confirm_yes 

00:00:100 in withdraw_card  ... 

00:00:010 checkingpin  

00:00:030 selectingtransaction  

00:00:040 withdrawing  

00:00:050 inputingamount  

00:00:060 confirming  

00:00:070 inputingamount  

00:00:080 confirming  

00:00:090 withdrawaldone  

00:00:100 idle ... 

Figure 3.Execution of the ATM machine model in CD++ 

The library allows the users to define FSM and to use DEVS as the intermediate 

modeling and simulation language, obtaining an equivalent model that can be exe-

cuted and combined with other models easily. For instance, it could be combined 

with a Petri Net model like the one described in the next subsection. 

2 Petri Nets 

Petri Nets (PN) originally defined by C.A Petri, is a modeling formalism devel-

oped to study concurrent systems [Peterson 1977]. They became very popular as 

they can represent the models both using a formal mathematical notation which is 

adequate for formal proofs and software development, as well as a graphical repre-

sentation, which is well suited for communication and analysis.  

The static properties of PN are defined by bipartite graphs in which the nodes 

are called Places (represented graphically as bubbles) and Transitions (represented 

as bars), and the links in the graph connect places to transitions (and vice-versa). 

PN are executed by firing transitions that are enabled, one at a time, for as long as 

there is at least one enabled transition. This dynamic behavior is observed by using 

tokens that are added to places, and by the instantaneous firing of the transitions that 

are enabled to do so. A transition is enabled when they have at least one token on 

each input link to the transition. When a transition fires, a token is removed from 

each one of its input places and another token is deposited in each one of the output 

places. When more than one transition is enabled, the one that fires is selected in 

nondeterministic fashion. 

Through the years, numerous extensions to PN have been introduced, allowing 

the modeler to define complex behavior [Liu and Zhang, 2018]. Our PN library in 

DEVS, allows the users to define PN and to run them using a DEVS tool like CD++. 

Our library supports some of these extensions. 

- Inhibitor arcs: a special arc is placed between a place and a transition, and this 

new arc enables the transition only if the place is empty, as opposed to containing 

at least one token.  
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- Multiple Arcs: they indicate that the number of tokens being transferred when 

firing is more than one.  

- Time: PN are logical time models, meaning that only the behavioral aspects are 

considered (deadlock, livelock, concurrent execution, etc.). Timed PN (TPN) intro-

duced the concept of time, and therefore can be used for non-behavioral analysis 

(performance, throughput, timeliness, etc. [Bowman and Gomez, 2006]). Timing 

can be represented as delays associated to the model execution. 

       
Figure 4.  (a) Inhibitor Arc; (b) Multiple Arcs 

We built a library of Petri Nets in CD++, whose main components are based on 

our FSM model in the previous section [Jacques and Wainer, 2002]. The library 

includes an atomic model to represent a place, and another to represent a transition. 

The Place atomic model can receive token inputs from transition models, and when 

a transition fires, we generate an input to tell the place to remove tokens (we support 

multiple arcs, and timed PN, as the DEVS message also includes a timestamp for 

the incoming tokens). We report the number of tokens the Place contains so transi-

tions can determine if they are enabled (including TPN, in whose case we only con-

sider enabled transitions if timestamps are equal to or lower than the current time). 

We consider two kinds of delays:  

- Delayed Transition Firing: these are special transitions where the firing 

condition must be maintained for a certain time before the actual firing occurs. 

- Timestamped Tokens: we can use timestamps for the tokens in a place. The 

firing condition needs enabled tokens whose timestamp is equal to or lower than the 

current time. When a transition fires, the output tokens should ALSO include a 

timestamp. 

The TPN Place atomic model can be defined as: 

 

TPN_Place = < X, S, Y, int, ext, ta,  >  

 

X = {IN  N+x R} 

Y = {OUT  N+} 



 

 

 

 

 

S = {{tokens  bag(R)}  {id  N+}  {phase  {active, passive}  {id  R0
+} 

} where tokens is the list of tokens with their timestamps contained in the place, and 

id is the identifier of the place as assigned by the simulator. 

ext ( (number of tokens N, id, timestamp T)  S, e, x  X) { 

case id 

0:  // generic message  

   add ‘N’ tokens with timestamp ‘T’ to tokens; 

  k = max(0 , min_timestamp(tokens) – e ); 

  ta (active, k); 

 

!= 0:  // specific message  

      id matches id of this place? 

           no: discard the message 

           yes: if there are enough enabled tokens 

decrement tokens by the number specified  

   ta(active, 0)  

} // end of ext 

 

int ((number of tokens N, id, timestamp T)  S) {  
if there are tokens with timestamp larger than the current time 

no: passivate 

yes: ta (active, min_timestamp(tokens) – e)      

} } // end of int 

 

 ((number of tokens N, id, timestamp T)  S) { 

     send ( (id, number of tokens), out);  }  

 

The external transition function receives new tokens with timestamps, and adds 

them to the list of tokens, or decrement the number of tokens (only the enabled ones 

based on their timestamp) to fire a transition. After this, an internal transition is 

scheduled; an output combining id and tokens state variables is generated and trans-

mitted on the OUT port. The number of advertised tokens is that of enabled tokens, 

whose timestamp is equal to or lower than the current simulation time. The internal 

transition function keeps scheduling events until all tokens have been enabled. 

The TPN transition atomic model is defined as: 

 

TPN_transition = < X, S, Y, int, ext, ta,  > 

 

X = {IN0, IN1, IN2, IN3, IN4  N+} 
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Y = {OUT1  1xR, OUT2  2xR, OUT3  3xR, OUT4  4xR, FIRED  N+}  

S = {{inputs  N}  {enabled  bool}  {active   bool }}. 

ext (s,e,x) {  

     case port 
            IN0: arc width = 0;  IN1: arc width = 1; 

            IN2: arc width = 2; IN3: arc width = 3; 

            IN4: arc width = 4; 

    extract the id of the place sending the message; 

    if this is the first message we get from this id, inputs++; 

    save (id, arc width); 

   extract number of tokens in the place that sent the message and save it; 

   if all input places have enough tokens to enable the transition 

  if transition is enabled enabled = true 

          if transition is active  

ta(active, nextChange) 

        else  

active = true; 

ta(active, DELAY_FIRE); 

 else  

enabled = active = false 

passivate 

} end of ext  

 

int (s) { 
if inputs = 0 // transition is a source,  

              ta (active, random() ).  

  else 

     passivate 

active = false 

} 

 

 (s) { 
firing_time = now + DELAY_TOKEN; 

send ((1, firing_time), OUT1); send ((2, firing_time), OUT2); 

send ((3, firing_time), OUT3); send ((4, firing_time), OUT4); 

send a message to every input place via the FIRED port;  

} //  end of  (s)  

 



 

 

 

 

 

The model uses a number of input and output ports: 

- IN1: it is used to receive the number of enabled tokens in the places connected 

to this input. Places that connect to this port have a single connecting arc; if the 

transition fires, only one token will be removed from the input places. 

- IN2-4 are used for multiple arcs (2 to 4 arcs) 

- IN0: inhibitor arc. The input place must contain zero tokens (including those 

enabled by time for TPN) for the transition to fire and when it does, no token is 

removed from the place. 

- OUT1-4 are used to transmit 1-4 tokens to the corresponding ports. 

- FIRED is used to remove tokens from the input places which must have their 

IN port connected to this output port in addition to being connected to one of the 

input ports.  

The inputs state variable contains the number of input places for the transition, 

and enabled indicates if the transition is enabled or not. The model uses the 

DELAY_TOKEN parameter to determine delayed firing (i.e., the tokens will have 

a timestamp which is the current time plus DELAY_TOKEN). After being enabled 

DELAY_FIRE time, the transition actually fires.  

One factor that is complex when simulating TPN in a DEVS simulator like 

CD++ is that when two or more transitions are enabled, one must be chosen and 

fired in a non-deterministic fashion. This implies that a controlling agent, aware of 

the state of all transitions in the model, would be required to determine which one 

should fire. In order to do this, the transition model schedules its own firing includ-

ing a random amount of time after the transition is enabled. Given that all transitions 

do the same, this result in a near non-deterministic decision process.  

When simulating the TPN results, we need to see the evolution of the marking, 

as seen in the following figure. The first two lines list the name of the places and 

transitions that make up the model. Then, we show the initial marking of the TPN 

counting the number of enabled tokens. We see transition t2 firing at time 00:00:05, 

which makes places p2 and p3 update their token count. Then 2 seconds later, p1 

and p4 do the same (as this is a TPN) producing the marking (1,4,4,1). 

 
Petri Net places: p1 p2 p3 p4 

Petri Net transitions: t1 t2 

[00:00:000]  p1: 0 enabled tokens  p2: 5 enabled tokens 

            p3: 5 enabled tokens  p4: 0 enabled tokens 

   (0,5,5,0) 

  | 

   t2 [00:00:05:000] 

       | 

       V 

[00:00:05:000] p2: 4 enabled tokens p3: 4 enabled tokens 

[00:00:07:000] p1: 1 enabled token  p4: 1 enabled token 

 
  (1,4,4,1)... 
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Let us assume now that we want to study the behavior of an elevator. The eleva-

tor starts at the first floor, and it waits for people. Once people are inside, it closes 

the doors and it moves to the second floor, where opens its doors, waits for people 

leaving the elevator, closes the doors, and it returns to the first floor. A part of the 

TPN of this elevator model can be seen in Figure 5. All places use time-stamped 

tokens. For instance, the PeopleWaiting place, each token represents one person, 

and their timestamp represent their time of arrival to the elevator. In the transition 

T1, the DELAY_FIRE parameter represents the time that the doors remain open if 

the button is not pressed and no one is entering the elevator. The DELAY_TOKEN 

parameter represents how long it takes to close the door. In T3, DELAY_TOKEN 

represents how long it takes to open the door. In T6, DELAY_FIRE models the time 

it takes to enter the elevator. In T7, DELAY_FIRE is how long it takes to start 

moving after the doors are closed. Finally, in T8 DELAY_FIRE represents how 

long it takes to reach the second floor. 

 
Figure 5.  A TPN for modeling an elevator  

The following test case shows a simulation run in which PeopleWaiting initially 

holds 3 tokens with timestamps 00:00:05, 00:00:10 and 00:00:15, representing the 

arrival of three persons at those times.  
 

Petri Net places: Closed Opening Open ButtonPressed  

  PeopleWaiting PeopleEnter PeopleInside  

  PeopleArrived 1stFloor ElevatorUp    

  2ndFloor leavingElevator  

Petri Net transitions: t1 t2 t3 t4 t5 t6 t7 t8 t9 t10  

t11 t12 t13 t14 



 

 

 

 

 
[00:00:000]  Closed: 1 enabled  Opening, Open,  

    PeopleWaiting, PeopleEnter, ElevatorUp, 

PeopleInside, PeopleArrived: 0 enabled   
1stFloor: 1 enabled   
2ndFloor, leavingElevator: 0 enabled  

[00:00:05:000]  PeopleWaiting: 1 enabled  

 

(1,0,0,0,1,0,0,0,1,0,0,0) 

| 

t4 [00:00:05:017] 

| 

V 

[00:00:05:017]  ButtonPressed, PeopleWaiting: 1 enabled  

 

(1,0,0,1,1,0,0,0,1,0,0,0) 

| 

t2 [00:00:05:031] 

| 

V  
[00:00:05:031]  Closed: 0 enabled ; Opening: 1 enabled  

ButtonPressed: 0 enabled ; 1stFloor: 1 enabled  

(0,1,0,0,1,0,0,0,1,0,0,0) 

| 

t3 [00:00:05:047] 

| 

V 

[00:00:05:047] Opening: 0 enabled  
 

 

... 

 

[00:00:49:044] ElevatorUp, Closed: 0 enabled; Opening: 1 enabled;  

PeopleInside: 3 enabled; 2ndFloor: 1 enabled  

(0,1,0,0,0,0,3,0,0,0,1,0) 

| 

t3 [00:00:49:060] 

| 

V 

[00:00:49:060] Opening: 0 enabled ; Open: 1 enabled  

(0,0,1,0,0,0,3,0,0,0,1,0) 

| 

t10 [00:00:54:083] 

| 

V 

[00:00:54:083] Open: 0 enabled ; PeopleInside: 2 enabled ;  

PeopleArrived: 1 enabled  

... 
[00:01:00:153] Open, PeopleInside: 0 enabled ; 2ndFloor: 1 enabled  

 

 

As we can see, initially the elevator is in Floor 1, and the door is closed. No 

transition is enabled. However, at 05:000, the first person arrives, enabling one to-

ken in the PeopleWaiting place. Transition t4 is enabled, and it fires, representing 

that the elevator button has been pressed (and it takes 17ms to react). Transaction 

t2 is enabled 14ms after that, which fires, triggering the opening of the door, and 
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disabling the button pressed. At 05:047, t3 is enabled, and now the door is open. A 

while after the three individuals have arrived, the elevator has moved to the second 

floor. We can see that at 49:044 the elevator is in the second floor, it has stopped 

moving up and there are three individuals waiting to leave the elevator. After 14 

ms, the door is enabled to open, and it opens, allowing the individuals to leave the 

elevator. They leave one by one, until 01:00:153, where the elevator is empty in the 

second floor. 

As we can see, TPN can be simulated using DEVS atomic models for PN tran-

sitions and places with an unmodified DEVS simulator, including a method in the 

internal transition function enabling timed Petri Nets. The DEVS specification al-

lows transforming the methods with ease, and building user libraries for developing 

multimodels. In the next section, we discuss an extension for more advanced models 

based on Timed Automata. 

3 Timed Automata and DEVS 

New theoretical advances in model checking have allowed guaranteeing proper-

ties about models of real world systems using a formal approach. Model checking 

techniques can be automated, and Timed Automata (TA) theory [Alur and Dill 

1994], in particular, has provided many practical results in this area. However, these 

formal methods are difficult to apply, and in many cases, they do not scale up well. 

Instead, using Modeling and Simulation (M&S) to gain confidence about the model 

correctness can be used to improve the study of experimental conditions during 

model definition, experimenting with virtual systems, explore options, including 

those cases where testing under actual operating conditions may be impractical. 

Nevertheless, no practical, automated approach exists to perform the transition that 

exists between the modeling and the development phases, and this often results in 

initial models being abandoned. Simultaneously, M&S frameworks are not as ro-

bust as their formal counterparts are. If the models used for M&S are formal, their 

correctness would also be verifiable, and a designer could see the system evolution 

and its inner workings even before starting a simulation [Saadawi and Wainer, 

2010]. In order to deal with these issues, we showed a mechanism to represent TA 

with DEVS, and extended it to model hybrid systems using QSS methods, hence 

enabling formal verification of hybrid models within DEVS formalism.  

We showed that, in order to be able to transform a DEVS model to a TA, we 

need that:  

a) the TA variables bounded integers, in order to guarantee the finiteness of state 

space and hence the termination of the reachability algorithm (nevertheless, for 



 

 

 

 

 

QSS, state variables are real numbers), and  

b) the time of the next event be approximated to an integer number (in doing so 

we need to preserve the original behavior of QSS).  

The first issue was handled by converting rational real numbers to integers by 

multiplying all values by the least common multiple of all the denominators. For 

any irrational values, we introduced a new method in [Saadawi and Wainer, 2010]. 

For the second issue, we use abstraction by over-approximation. With this tech-

nique, we approximate the real value of the event time ti with a bounded time inter-

val such that tc  [TL,TH]. This interval is bounded by floor(ti) and ceiling(ti) respec-

tively. To obtain a TA that contains the behavior of a QSS model, we need a 

simulation relation with the QSS model (i.e., we need to show that the TA simulates 

QSS). To do so, each state in QSS would be simulated by a corresponding state in 

the TA, and each target state in QSS simulated by a corresponding target state in 

the TA. We will show these aspects using an example for an elevator controller 

originally introduced in [Saadawi and Wainer, 2010]. A summary of this case study 

is given below.  

 
Figure 6: Elevator TA model. 

In this model, whenever the elevator receives a command to stop, it synchronizes 

with a braking elevator motion model (applyBrake!). The elevator waits in state 

Braking for the quantized speed q value to reach zero. Once the elevator speed 

reaches zero, the transition from Braking to Stopped would be enabled and exe-

cuted, then the elevator sends stop! to the elevator-controller. This hybrid model 

allows the designer to verify the control system with different parameters of the 

elevator physical system such as different braking values of de-accelerations, dif-

ferent elevator initial speeds, or other parameters in a more detailed QSS model. 
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This is an important addition to the elevator system verification as relevant physical 

factors to the controller performance can be identified and formally verified during 

design phase. The elevator de-acceleration motion and its speed are described by:  

a
dt

dv
=                          v = at + vi      

where v is the elevator speed, a is the acceleration constant, and the speed is v at 

any point in time t, with vi the initial elevator speed before applying the brakes. 

To simulate and verify this hybrid model, we obtained a discrete representation 

of the elevator braking model, and we employed DEVS and QSS. We use a quan-

tized variable q related to v(t) system variable by quantization. To enable the formal 

verification, we transformed the QSS model to an equivalent TA model, resulting 

in the TA shown in figure 7. 

 
Figure 7. TA model of braking elevator motion. 

Here, S1 represents the initial elevator speed (4 m/s), the quantum value is dQ = 

0.5 m/s, and sigma is the time interval between the outputs of two successive quan-

tized values. When this model receives a synchronization input event (?) on the 

applyBrake channel, it changes to the state S2 and starts a loop S2-S3-S2... in which 

we calculate the next quantized output q and the next values of sigmaL and sigmaH. 

When the quantized speed q reaches zero, the model moves back to S1 and waits 

for another applyBrake event. As discussed earlier, sigma (the time advance) is 

over-approximated with an integer interval   [sigmaL, sigmaH].  

Figure 8 shows the execution of the simulated hybrid DEVS model with braking 

de-acceleration equals -0.12 m/s2. In this case, the time needed for the elevator to 

stop is approximately 33 seconds. This would contradict the user requirements, as 

the user expects the elevator to reach third floor within 27 seconds at most, and after 

this time the requirement for the elevator controller to be ready to accept another as 

shown on the transition S5 → S6. However, the slow-braking elevator would not be 

able to fulfill the second request in time, hence we have a time lock and the model 

cannot progress beyond S5. 



 

 

 

 

 

 
Figure 8. (a) Elevator speed; (b) Quantized speed, acceleration= - 0.12 m/s2. 

It is important to count with advanced methods for modeling hybrid systems 

(where continuous and discrete phenomena interact), as they are found in many nat-

ural and artificial systems. Methods like those that we presented in this section can 

include verification of cyber-physical systems, which usually include discrete-event 

controllers interacting with a continuous plant. The combination of RTA-DEVS, 

hybrid Timed Automata and QSS allows verifying real-time hybrid systems mod-

eled by DEVS. We showed a methodology to verify hybrid DEVS models. Some 

limitations, however, for this method of over approximation is that for systems de-

scribed with nonlinear derivatives, it can lead to a wide flow pipe around the actual 

system trajectory. Other limitation is the inherit problem with model checking tech-

nique of state-space explosion that limits the ability to scale verification to larger 

models. In the next section, we show how to model these kind of hybrid systems 

using the Bond Graphs formalism and its transformation to DEVS. 

4 Bond Graphs 

The Bond Graphs formalism (BG) is a mathematical modelling method that fo-

cuses on the representation of continuous dynamic systems that can be described 

hierarchically [Karnopp et al., 1990; Vila and Rico, 2018]. BG represents the phys-

ical systems as a directed graph with hierarchical components, and its basic theory 

is based on the energy conservation law and the use of a lumped approach, separat-

ing dynamic system properties from each other, using submodels, and then linking 

those using ideal connectors. These connectors represent energy flow, and, it is as-

sumed they have power continuity, and that no energy is generated or dissipated in 

the ideal connections. The physical systems they represent are modeled using di-

rected graphs whose nodes define the physical processes and whose links (bonds) 

represent the ideal exchange of energy between them. Energy (or its time derivative, 

power), is the fundamental exchange between elements of the system. Power is the 

product of flow and effort (and they have no specific semantics; it can be used in 

translation mechanics, as force and velocity; in electrical systems, as voltage and 
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current, etc.). The energy flow is represented elements exchanging effort and flow 

through the bonds. In order to represent the exchange of power between elements, 

we need to show the flows between components and their causality, as no compo-

nent can determine the two power variables (effort and flow) at the same time. 

Given a pair of elements connected through a bond, their causality determines which 

causes flow and which causes effort.  

There are a number of BG elements, including:  Capacitor (C), Inductor (I), Re-

sistor (R), Effort source (Se), Flow source (Sf), Transformer (TF), Gyrator (GY), 1-

junction, 0-juction. To illustrate how they are defined, let us consider the R ele-

ments, which can represent resistors in the electrical domain, dampers the in me-

chanical context, etc. Their constitutive equation is defined by an algebraic equation 

relating flow and effort: e = r. (f). The electrical resistor is mostly linear, and the 

corresponding equation is u=R.i, where R is the resistance’s constant. 

 
Figure 9. Top: R element with flow-in causality, equations and block diagram represen-

tation; bottom: R element with effort-in causality, equations and block diagram. 

Based on BG concepts, we defined a discrete event library for Bond Graphs us-

ing DEVS [D’Abreu and Wainer, 2006], in which we define Quantized BG (QBG), 

that is, a BG where all the storages and sources are quantized elements. This method 

combines BG and DEVS models with QSS by adding quantizers equipped with 

hysteresis to the integrators output. The library consists of a number of atomic 

DEVS models developed on CD++, which implement QSS and QBG. The follow-

ing code snippet shows a part of the quantizer model equipped with hysteresis im-

plemented in CD++.  

 

External transition 

if ( msg.port() == in ) { 

 if ( state() == passive ) { 

   double inputValue = msg.value();    // gets message value 

   currQValue = hquantize( inputValue); // applies QSS 

   holdIn(active, Time::Zero); // schedule instantaneous transition } 

} 

 



 

 

 

 

 

Internal transition 

passivate();   //waits the reception of external messages 

 

Output function     

if ( firstValue || ( currQValue != lastQValue ) ) {   

    firstValue = false; 

    lastQValue = currQValue; 

    sendOutput( msg.time(), out, currQValue ) ;  }        

// If first value received or boundary crossed, Sends quantized value  

 

hquantize function 

if ( firstValue ) return QMethod->quantize( value ); 

 

if ( ( value > lastQValue ) || ( value <= lastQValue -  ) ) { 

   return QMethod->quantize( value );  // hysteresis window size  

} 

return lastQValue; 

 

The model receives external inputs, and then computes the quantization function 

(with hysteresis) of the value received. Then, transmits the calculated value only if 

a boundary is crossed. The model parameters included the Quantization method (we 

support uniform and intervals quantization), their parameters (quantum size, lower 

and upper saturation values), the intervals quantization method (array of intervals 

and length of array of intervals, and the hysteresis window size. 

A coupled DEVS representing a QBG model can be formally defined as: 

CQBG = <Xself, Yself, D, {Mi}, {IC}, select> 

 Xself  = {}  (no external inputs) 

Yself  = {} (no external outputs) 

 D is the set of elements representing BG components, and for each i in D, 

 Mi  is a DEVS atomic model representing a QBG component  

 IC  is the internal coupling set defined as: IC = {iceui,vj}  {icfvj,ui} where 

iceui,vj and icfvj,ui represent the coupling between effort and flow ports on u and v, 

being the effort calculated by element u.  





=
otherwiseφ

 source)(flow  sourcea not is v if) ) in v, ( ), out u, ( (
ice

ejei

vjui,  

 if u is a serial junction then i = 1 (only one effort-out port) 





=
otherwiseφ

 source)(effort  sourcea not isu  if) ) in u, ( ), out v, ( (
icf

fifj

uivj,  

 if v is a parallel junction then j = 1  (only one flow-out port) 

select gives priority to structural components (junctions, transformer, gyrator). 
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The library includes the following models: QBGCapacitorFlowIn, QBGInduc-

torEffortIn, QBGResistanceFlowIn, QBGResistanceEffortIn, QBGSourceEf-

fort_Constant, QBGSourceEffort_Step, QBGSourceEffort_Sine, QBGSourceEf-

fort_Pulse, QBGSourceFlow_Constant, QBGSourceFlow_Step, 

QBGSourceFlow_Sine, QBGSourceFlow_Pulse, QBGTransformer, QBGGyrator-

FlowIn, QBGGyratorEffortIn, QBGSerialJunction, QBGParallelJunction.  

In order to show how to use the library, we define a mechanical model of the 

response of mass against the application of effort, shown in Figure 10.  

             
Figure 10. Mechanical circuit and its Bond-Graph representation 

Following, we show two cases of execution of the model, in which we use dif-

ferent frequencies. Figure 12 the evolution of mass speed over time. It can be seen 

how speed is modified every time that effort is imposed over M and how it tries to 

return to its original value. We use I=40; C=2; SE: signal=pulse, period=200ms, 

pulse duration=2ms, and different resistance. We can see that the variation of re-

sistance produces changes in the number and speed of oscillations, as expected. 

 
Figure 11. Mass speed; (a) R=1.5; (b) R=3. 

Using our BG library, we then conducted an extended effort, building the first 

open source Modelica compiler, which was implemented on top of the QBG library, 

and will be described in detail in the following section. 

-0.21

-0.11

-0.01

0.09

0.19

0 1000 2000 3000

-0.21

-0.11

-0.01

0.09

0.19

0 1000 2000 3000



 

 

 

 

 

5 Modelica 

Modelica is an object-oriented language, defined for modeling physical systems 

and built to support library development and model exchange. Modelica models are 

described using differential, algebraic and discrete equations, and there are various 

libraries of standard components using ODEs, block diagrams, electrical and me-

chanical formalisms [Fritzson, 2004].  

We defined a compiler that understands models from the electrical library in 

Modelica [D’Abreu and Wainer, 2006]. A source file in Modelica is compiled into 

an equivalent Bond Graph representation of the circuit. The generated BG consti-

tutes the output, which is used for simulation. The BG generation algorithm is based 

on Karnopp’s circuit construction method [Karnopp et al, 1990]. The approach is to 

build a BG that resembles the circuit structurally, and then to simplify it based on 

selected properties, as follows: 

- For each node with a distinct potential add a 0-junction: we used 

transitive closure applied to every node on the graph (we check for paths between 

arbitrary nodes x and y, given only adjacency information). As there are different 

ways to specify the parallel coupling between elements in the circuit, we need to 

ensure that the 0-junction elements are correctly inserted (independently from the 

definitions in the Modelica file). 

- Insert each 1-port circuit element by adjoining it to a 1-junction, 

inserting 1-junctions between the appropriate pair of 0-junctions (C, 

I, R, Se, Sf elements): we add a 1-junction to each 1-port element, inserting 

it between the corresponding pair of 0-junctions.  

- Assign power directions to all bonds: a standard convention assumes 

positive direction of power when it flows out of sources (Se and Sf) and into C, I 

and R elements. For two-port elements, TF and GY, we consider that power flows 

into the elements. We use a power propagation algorithm that traverses the graph 

and assigns power using the standard conventions and the information in the Mod-

elica file. At the end of this step we obtain a directed BG is obtained. 

- Erasing ground potential: all the explicit ground potentials are deleted 

from the graph; if there is no explicit ground potential, we delete the 0-junction 

nearest to each source element. The 0-junctions selected are only those associated 

with the negative pin of every source’s port. 

- Simplification: a junction between two bonds with through power direction 

can be deleted; likewise, a bond connecting two junctions of the same type can be 

deleted and the junctions joined  

In the final BG, we check for algebraic loops and singularities (elements that 

have discontinuities e.g. diode), and we generate an optimized QBG corresponding 

to the electrical circuit, which is used to generate a coupled DEVS model in CD++. 
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model circuit 

  Modelica.Electrical.Analog.Sources.PulseVoltage  

V(V=10,width=50,period=2); 

  Modelica.Electrical.Analog.Basic.Resistor R1(R=10); 

  Modelica.Electrical.Analog.Basic.Capacitor C(C=50); 

  Modelica.Electrical.Analog.Basic.Ground Gnd; 

equation 

  connect(V.p, R1.p);    connect(R1.n, C.p); 

  connect(C.n, V.n);    connect(V.n, Gnd.p); 

end circuit; 

 

    (a) 

 

[top] 

components : $SJ1@QBGSerialJunction C@QBGCapacitorFlowIn  

R1@QBGResistanceEffortIn V@QBGSourceEffort_Pulse 

 

link : e1n@$SJ1 e1p@R1  link : f1p@R1 f1n@$SJ1 

link : f2n@$SJ1 f1p@C  link : e1p@C e2n@$SJ1 

link : f3p@$SJ1 f1n@V  link : e1n@V e3p@$SJ1 

 

[C] 

quantum : 0.1 hystWindow : 0.01 C :     50  initialLoad :  0 

 

[R1] 

R :     10 

 

[V] 

quantum : 0.1   hystWindow : 0.01 signal : Pulse   offset : 0 

startTime : 0   amplitude : 10 period : 2       width : 50 

 

(b) 

 

 
(c) 

Figure 12. (a) Modelica model (b) QBG translation (c) Model execution 
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Figure 12 shows a Modelica model of a circuit, first, and the translation to QBG 

after. As we can see, we generate a coupled model for each of the Modelica com-

ponents. The corresponding QBG are built for each of the components, and, in this 

case, they are connected by the Serial Junction SJ1 (which is automatically gener-

ated by the compiler using the procedure explained above). The equations are con-

verted into couplings in the DEVS coupled model. After the coupled model defini-

tion, we can see the initialization values for each of the components, which also 

follow the Modelica specification. The Capacitor and the Pulse Voltage generator 

are approximated using QSS (the quantum size and the hysteresis window parame-

ters can be adjusted for simulation). Finally, we show outputs in both Flow and 

Effort ports for Capacitor C, which matches the expected behavior of the circuit. 

6 VHDL 

Digital designers have often relied on M&S for the design of circuits, as simu-

lated studies allow reducing the number of design bugs and integration errors, while 

easing product maintenance and reducing the overall cost. Design and simulation of 

digital logic with HDLs (Hardware Descriptor Languages) is a well-proven meth-

odology. Mixed signal HDL simulators allow combining discrete time digital and 

continuous time analog models. Here, we discuss a method for simulating mixed 

signal HDLs by converting the designs to DEVS [Mehta and Wainer, 2005]. The 

discrete-event nature of DEVS is well suited to model digital logic, and signal quan-

tization with QSS allows modeling the continuous systems components.  

VHDL-AMS is targeted toward register transfer level modeling of digital circuits 

with limited behavioral modeling and analog constructs. The main construct used 

by the language is the Entity, which describes the interface to a VHDL-AMS design 

or design unit. The entity declaration contains a list of ports, each of which is as-

signed a type and an optional mode. Ports of type std_logic or std_logic_vector (a 

standardized type for digital logic) are used for digital signals while electrical ports 

are used for analog signals. In the case of digital signals, ports will have mode in, 

out, inout or buffer. Analog ports do not require a mode. The syntax of an entity 

declaration is as follows: 

 
entity  entity_name is 

     port ( [signal |  terminal | quantity] identifier {,  

  identifier}: [mode | ] signal_type | electrical 

        {; [signal | terminal | quantity ] identifier {,  

  identifier}: [mode | ] signal_type | electrical}); 

         ) ; 

end [entity] [entity_name] ;   

 



23 

 

 

 

 

 

For instance, Figure 13 shows the declaration for an analog low pass filter entity. 

 
entity LPF is  

   port ( 

   terminal tout, tin,  

        tgnd: electrical 

   ); 

end entity LFP;  

 

architecture top of LPF is 

  signal clk : std_logic; 

  signal vin : std_logic; 

  quantity vout across tout to tgnd; 

 

begin 

  vout’dot = (1/(R*C))*(vin-vout); 

clk: entity clk 

       port map (clk=>clk); 

       vin<=clk; 

end architecture top; 

 

tin tout

tgnd

R

C

vin

vout

 
Figure 13. Low-pass Filter 

A design architecture describes the functionality of a design or design unit; this 

may be a structural, dataflow or behavioral description. A single architecture is as-

sociated with exactly one entity.  
 

architecture architecture_name of entity_name is 

     signal_declaration 

     | constant_declaration 

     | component_declaration 

begin  

     {process_statement 

     | concurrent_signal_assignment_statement 

     | component_instantiation_statement 

     | simultaneous_statement}  

end [architecture] [architecture_name] ; 

 

The body of an architecture consists of statements that may be categorized as 

concurrent, sequential or simultaneous. These statements operate on signals and 

quantities that are declared within the scope of the architecture, and on ports that 

are declared in the entity.  

 
signal signal_name : std_logic_vector (upper_bound downto 

lower_bound) | std_logic ;   

quantity identifier : REAL | Voltage | Current | Charge ; 

quantity identifier {, identifier} across identifier {, identifier} 

through free_terminal to reference_terminal ; 

Signals and quantities are defined in the declarative region. These belong to the 

scope of the architecture in which they are declared and may only be referenced 

within that architecture. Quantities may also be declared relative to terminals in an 

entity declaration. These may be either across or through quantities. Across quan-

tities, represent the voltage at the free terminal relative to the reference terminal. 



 

 

 

 

 

Through quantities represent the current from the free terminal into the reference 

terminal. Process, Simultaneous, Concurrent Assignment and Conditional Concur-

rent Assignment Statements execute concurrently within an architecture. The con-

ditional concurrent assignment statement assigns the target signal the value of an 

expression if the condition is true and the value of a different expression otherwise. 

A process executes the statements between begin and end process when an event 

occurs on a signal in its sensitivity list. No signals modified by the process are up-

dated until the process body is completed. The statements between begin and end 

clauses are referred to as sequential statements, and they are executed in sequence.   

 
[process_name:] 

process (sensitivity_list) 

   { type_declaration      } 

begin  

  {signal_assignment_statement 

  | if_statement 

  | case_statement 

  end process [process_name] ; 

 

The if statement has identical semantics to that of an if-then-else statement in 

C/C++; the case-when statement runs the sequence of statements that are listed un-

der the when clause whose expression matches that of the expression in the case 

statement. Simultaneous statements are generally used for describing Differential 

Algebraic Equations, and may consist of quantities or signal, for instance: 

 
x1’dot’dot == -f*(x1 – x2) / m1; 

x2’dot’dot == -f*(x2 – x1) / m2; 

… 

The ‘dot notation denotes the derivative with respect to time of the quantity listed 

before the ‘dot. For example signal’dot is the first derivative with respect to time of 

signal, while signal’dot’dot is the second derivative.   

Figure 14 shows the software architecture of the tools used to build VHDL-AMS 

models. We start with a syntax check phase, in order to ensure that the VHDL-AMS 

model is syntactically correct. During the elaboration phase, each component de-

scription is assigned to a structure in the VHDL-AMS design hierarchy. The descrip-

tion of the architecture and entity for each component in the design is parsed, and a 

Netlist is produced, which includes interconnected integrators, algebraic operators, 

processes, signals and sub-component instances. We then generate DEVS models 

in CD++, using a library for each components of the design and a coupled model to 

define the architecture. The CD++ models are then compiled, after which the Netlist 

and model library are used by the model file generation, after which we obtain a 

DEVS coupled that can be used for simulation. In order to convert VHDL-AMS mod-

els to CD++ coupled models (done during the Model Code and Netlist Generation 

phases above) we first need to identify the components that constitute the design 
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hierarchy. Basic components do not contain sub-component instances in their ar-

chitectures, while aggregate components do. We generate a dependency tree must 

in which the leaves are basic components, while branches are aggregate compo-

nents, and the root is the top-level model. VHDL-AMS sub-component instances are 

connected to the architecture in which they are instantiated as defined by the port 

map clause in their component instantiation statement. 

 

 
Figure 14. Architecture of the VHDL to DEVS compiler 

The process body is implemented within the external transition function in 

CD++. Buffering is also done within the external transition function for each signal 

referenced in a rising_edge or falling_edge operation. Buffers are also created for 

each output port on the model in CD++. The output ports on the model represent all 

the signals that are driven from within the VHDL-AMS process. The values that are 

assigned to these buffers will be output on their respective ports when the model 

schedules an output event.  Expressions and case statements are converted directly 

to equivalent ones in C++. The CD++ signal model is used to implement transport 

delay on messages sent between process model ports. The implementation of the 

process model in DEVS does not allow assignment statements to have transport 

delays, since the output events for all driven signals must occur simultaneously. 

Therefore, we implemented transport delays in the CD++ signal model, which re-

ceives and buffers data on its input port, enters the active state for the time specified 

by the assignment statement transport delay, and outputs the buffered data on its 

output port.   

 

Design

Syntax

Check

Elaboration

Model Code

and Netlist

Generation

Model Code

Compilation

and Linking

Model (MA)

File

Generation

Simulation

Execution

(CD++)

sAMS

VHDL

Design Syntactically

Correct sAMS

VHDL Design

Elaborated

sAMS VHDL

Design

Model Netlist

Model

Code and

Makefile

Simulation
Time

Simulation
Model

Simulation Log

Visualization

Tools (CD++

GUI)

Model
Library

Timing

Diagrams

and Plots



 

 

 

 

 

As discussed earlier, simultaneous statements in VHDL-AMS allow the definition 

of continuous time systems through differential algebraic equations (DAE); in our 

case, we approximated this by solving ordinary differential equation systems with 

initial conditions, and combining them with a DEVS approximation of Runge-Kutta 

and Euler integration methods. For instance, in the case of Euler, we compute yn+1 

= yn + h.f(tn, yn). The method extrapolates the solution over the interval using an 

approximation to the derivative at the beginning of the interval (Figure 15).    

 

 
Figure 15. Euler integration method 

We implemented both Euler and a fourth-order Runge-Kutta Method Integration 

method (which is more accurate and stable than Euler for a given step size, as it uses 

the derivative at the beginning of the interval, the derivative at two trial midpoints 

and the derivative at a trial end point). These two methods were defined using the 

QSS method (order two), providing accurate results for a small quantum size. To 

do so, we inverted the equations used by the numerical methods to determine at 

what time (relative to the present time) the integral of the first order differential 

equation will enter the quantum state above or below the current quantum state. We 

decompose the ODE into a set of first order differential equations, and convert them 

into a Quantized Integrator model.  

The following figure shows a CD++ definition of the DEVS model derived from 

the low pass filter presented in Figure 13, and simulation results of the model. 

 

[top] 

components : int@rkIntegModel clock 

out : clk y 

Link : y@int y  Link : y@int dydt@int 

Link : out@clock clk Link : out@clock vin@int 

 

[int] 

y0 : 0 dydt0 : 0 C : 1.0E-6  R : 1000 

[clock] 

components : inv@Process_Inv sig1@Signal qm@QuantumMultiply 
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out : out 

Link : out@sig1 in@inv Link : out@inv in@sig1 

Link : out@sig1 in@qm Link : out@qm out 

 

[sig1] 

Transport_Delay : 00:00:1:000 

 

[qm] 

Transport_Delay : 00:00:000 Attenuation : 100 

Figure 16. DEVS implementation of the low pas filter in Figure 13. 

 

 
Figure 17. Simulation results of the low-pass filter. 

7 The ATLAS Traffic Modelling Language  

Urban traffic analysis is a problem whose complexity makes the analysis with 

traditional analytical methods difficult. The use of simulation is now the tool of 

choice urban traffic analysis. ATLAS (Advanced Traffic Language Specifications) 

is devoted to build models of city sections using microsimulation [Davidson and-

Wainer, 2006]. The basic language constructions allow defining a static topology 

of the section to be studied. The dynamic behavior of the section can be modified 

by including traffic lights, traffic signs, etc. Once the urban section is outlined, mod-

els are converted into cell spaces and the traffic flow is automatically set up. Lan-

guage constructions were mapped into DEVS and Cell-DEVS models. The models 

were formally specified, which made easier the verification of the language con-

structions.  

ATLAS allows to represent the structure of a city section defined by a set of 

streets connected by crossings. The language constructions define a static view of 

the model, and they are considered as cellular models. The main constructions are 



 

 

 

 

 

Segments, Crossings, Parking segments, Traffic lights, Railways, Construction 

sites, and Traffic Signs. Different Experimental frameworks can be used to conduct 

experimentation and analysis. 

ATLAS formal language defines the structure and behavior of these constructs, 

and we used the formal specification with validation purposes. Based on ATLAS, 

we built TSC, the Traffic Simulation Compiler, which understands ATLAS models 

and translates them into DEVS models. In order to make the model definition easier, 

we defined two different tools for model definition and simulation visualization. 

MAPS allows the user to build maps and decorations (traffic signs, speed, etc.), and 

the results can be animated using CD++ (or Google Maps) to visualize the simula-

tion results. Figure 18 shows a workflow and the software stack used for ATLAS. 

 

 
Figure 18. ATLAS Tool stack  

Following, we will summarize the constructions of ATLAS, their formal speci-

fications, and their implementation in the TSC simulation language (the reader in-

terested in further details about the formal language and the compiler tools can refer 

to [Lo Tártaro et al. 2001]). 
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The main construction is the segment, which represent a section between two 

intersections. Each lane in a given segment has the same direction (i.e., they are 

one-way) and they have a maximum speed. They are formally specified as:  

Segment={(p1,p2,n,a,dir,max)} 

where p1 and p2 represent the boundaries of each segment, n is the number of 

lanes, and dir represents the vehicle direction, 0 represents the traffic direction is 

from p2 to p1 and 1 represents the traffic direction is from p1 to p2. The a parameter 

defines the shape of the segment (0-straight or 1-curve, allowing to define the city 

shape precisely, and to include the exact number of cells), and max is the maximum 

speed allowed in this segment. 

 
Figure 19. A road segment 

The syntax of TSC [Lo Tártaro et al., 2001] allows defining the segments by 

delimiting them using the sentences begin segments and end segments. At least one 

segment must be defined, using the following syntax: 

 
id = p1, p2, lanes, shape, direction, speed, delay, parkType 

 

where, 

p1: (x, y), integers; the start of the segment. 

p2: (x, y), integers; the end of the segment. 

lanes: integer, the number of lanes in the segment. 

shape: [curve | straight], the shape of the segment.  

direction: [go | back],  the direction of the segment.  

speed: integer, maximum speed in the segment. 

delay: integer, defines a delay value used for parking lanes.  

parkType: [parkNone | parkLeft | parkRight | parkBoth], defines if 

parking is allowed in the segment, and where. 

The following example shows the definition of the segments section; in this case 

there is only one segment with start/end points at cells (4,1) and (4,3), two lanes 



 

 

 

 

 

wide. It is a straight segment, and traffic moves from origin (cell (4,3)) to destina-

tion (cell (4,1)). The maximum speed is 60 km/h. You can park on the right lane, 

and the simulation will receive a parameter of 1100 s as the average delay  
begin segments  

    S1 = (4,3), (4,1), 2, straight, go, 60, 1100, parkRight 

end segments 

As we can see in Figure 18, these TSC specifications are translated into CD++, 

as a set of rules based on the Cell-DEVS formalism. We defined models for seg-

ments from 1 to 5 lanes (unidirectional), and we formally verified the correctness 

of the rules. We will now discuss this mapping for 2-lane segments.  

A segment s t = (p1, p2, 2, a, dir, max) is defined as a 2D Cell-DEVS model, 

using transport delays, with the structure presented in Figure 20.  

 
Figure 20. 2-lane segment  

Each row has a different specification, based on the asymmetry of the cell space. 

The vehicles in the first row can move straight or to the right (and the ones in the 

second row, in the opposite direction). The first row is defined as: 

 

C0j = < I, X, S, Y, N, int, ext, delay, d, , , D > 

 

I = < , Px, Py>, with  = 6; and Px = { (X1, boolean), (X2, boolean), (X3, boolean), (X4, 

boolean), (X5, boolean), (X6, boolean) }; Py = { (Y1, boolean), (Y2, boolean), (Y3, boolean), 

(Y4, boolean), (Y5, boolean) , (Y6, boolean) }. 

X = Y = boolean; 

S: 
   1 if there is a vehicle; 
s    =  
   0 otherwise. 

delay = transport;  

d = convert_to_delay(speed(max)); where speed is a random function that uses 

using a probabilistic distribution based on vehicle traffic. One expects a few vehi-

cles with maximum and minimum speed, and a majority between them. Based on 

the maximum speed, we compute the mean )/(*
3

2
hkmmaxx =  and the standard 

deviation, )/(*
3

1
hkmmax= , which are passed to the function, which returns a 

natural number representing the random speed in km/h for the vehicle. Based on 

this, we compute the delay to cross a cell, which is 7.5 m (the size needed for a 
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vehicle [Chopard et al. 1996]), dividing by the speed in km/h, and multiplying by 

602 (to convert the delay in km/h into seconds).  

N = { (0,0), (0,1), (-1,0), (-1,1), (0,-1), (-1,-1) }; 

 is: 

 

New State Preconditions Rule Name 

1 ( (0,0) = 0 and (0,-1) = 1 )  or From_Behind 

( (0,0) = 0 and (0,-1) = 0 and (-1,-1) = 1 

and (-1,0) = 1 ) 

From_Right 

0 ( (0,0) = 1 and (0,1) = 0 ) or Move_Forward 

 (0,0) = 1 and (-1,1) = 0 and (-1,0) = 0  Right_of_Way_Right 

(0,0) True Default 

  

The vehicles can only arrive from the cell behind, or from the right (due to the 

neighborhood definition). For diagonal movements, we need to consider the right 

of way. In this way, we avoid collisions. The rules in the second lane are symmet-

rical to these ones, but we also need to consider that the vehicles from the right have 

the right of way (so, we evaluate those rules first). 

The coupled model corresponding to the segment is defined as: 

 

S2L(k, max) = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, , N, C, B, Z, select > 

 

Ylist = { (0,0), (1,0), (0,k-1), (1,k-1) } 

Xlist = { (0,0), (1,0), (0,k-1), (1,k-1) } 

I = <Px, Py>, with Px = {x-c-vehicle, boolean>, x-c-vehicle, boolean>, <x-c-free, 

boolean>, <x-c-free, boolean>} and Py = {<y-c-free, boolean>, <y-c-free, boolean>, 

<y-c-vehicle, boolean>, <y-c-vehicle, boolean>} 

X = Y = Boolean; 

n = 2;    t1 = 2;  t2 = k;  =  6 and N is described for each lane. 

C = { Cij / i  [0, 1]   j  [0, k-1] }, with Cij a Cell-DEVS atomic model 

B = { (0, k-1), (1, k-1), (0,0), (1,0) } 

select = { (0,1), (1,1), (0,0), (1,0), (0,-1), (1,-1) } 
  + 

                                    y = y1

 (x1,y1)

          (x2,y2)

                                            y = y2

 
Figure 21. Computing the length based on inclination angles. 



 

 

 

 

 

In this case, S2L(k, max) is a segment of 2 lanes, k cells long, and maximum 

sped max km/h. The number of cells k is computed automatically as the distance 

between start/end of the segment divided by 7.5 m, using the inclination angle as in 

Figure 21. 

The model’s interface includes the cells of the first and last column of the seg-

ment; these ones can interchange vehicles from/to the crossings. Therefore, the be-

havior of these cells is different to the rest of the segment, and the formal definitions 

of the borders change as follows, for cell (0,0): 

 =  4; N = { (0,0), (0,1), (-1,0), (-1,1) } 

 

 
Figure 21. Neighborhood definition and ports for border cell (0,0) 

 is: 

New State Preconditions Rule Name 

1 (0,0) = 0 and portvalue(x-c- vehicle) = 1 From_Crossing 

0 ( (0,0) = 1 and (0,1) = 0 ) or Move_Forward 

 (0,0) = 1 and (-1,1) = 0 and (-1,0) = 0  Right_of_Way_Right 

(0,0) True Default 

 

This cell only receives vehicles that are coming from a crossing, while the rules 

to advance are similar to the other cells. We define a similar set of rules for cell 

(1,0), the second input border. Similarly, cells (k,0) and (k,1) need a modification 

of neighborhood and input/output ports to allow vehicles to leave the segment in 

the direction of a crossing. In this case,  is: 

 

New State Preconditions Rule Name 

1 

send(0, y-c-vehicle) 

(0,0) = 0 and (0,-1) = 1 From_Behind 

( (0,0) = 0 and (0,-1) = 0 and (-1,-1) = 1 

and (-1,0) = 1 ) 

From_Right 

0 

send(1, y-c- vehicle) 

(0,0) = 1 and portvalue(x-c-free) = 0 To_Crossing 

(0,0) True Default 

This cell only receives vehicles coming from a crossing, while the rules to ad-

vance are similar for lane one and the rest of the model do not change. We have 

symmetric rules for cell (1,0). Likewise, cells (0, k-1) and (1, k-1) must generate 

outputs to the crossings, and the behavior generated is similar. 
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Parking defines different behavior in the border cells in a segment, as these can 

be used for parking, as seen in Figure 2. They are formally defined as: 

Parking={(s,n1)} 

Every pair (s1, n1) identifies the segment and the lane where car parking is al-

lowed. If n1= 0, the cars park on the left; if n1 = 1, the cars park on the right. As 

seen in the segments definition, the parking has been added as an attribute of the 

segment for each of them in the TSC compiler. 

 Crossings are defined in those points in the plane where several segments inter-

sect. They are formally defined as:  

Crossings={(c,max)} 

which represents the points where the crossings are located, and the maximum 

speed to cross a segment (this allows defining a different speed for the crossing and 

the segments they are connected to, and defining specialized behavior for countries 

where speed in crossings should be lower than in the crossing streets. Likewise, it 

allows defining reduced speeds for roundabouts. Finally, if there are segments with 

different speeds entering a given crossing – for instance, a main avenue crossing a 

residential street – this lets us defining the desired speed for the crossing). Crossings 

are translated to a cellular model built as a ring of cells with moving vehicles. A 

vehicle in a cell of the crossing has higher priority to obtain the next position in the 

ring than the cars outside the crossing (see Figure 22). The number of cells in the 

ring is calculated as the number of input and output segments connected to the cross-

ing, as shown in Figure 22. 

 

 

 


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=
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Figure 22. Crossing definition and calculation of number of cells in the crossing 

 The TSC definitions for crossings are delimited by the separators begin cross-

ings and end crossings. Each sentence defines a crossing using the following 

syntax: 
id = p, speed, tLight, crossHole, pout 

Parameters p and speed represent the coordinate of the crossing (p1,p2) and 

max speed for the crossings. Pout defines the probability of a vehicle to leave the 

crossing, used to simulate random routing of different vehicles.  

 

Crossings with traffic lights are defined as:  

TLCrossing={(c | c∈Crossings)} 



 

 

 

 

 

Here, c ∈ TLCrossings defines a set of models representing the traffic lights in a 

corner and the corresponding controller. Each of these models is associated with a 

crossing input. The model sends a value representing the color of the traffic light to 

a cell in the intersection corresponding to the input segment affected by the traffic 

light. The following qualifier is added to a standard crossing definition in TSC when 

a crossing must include traffic lights:  

 
tLight : [withTL | withoutTL] 

  

The crossings C1 and C2 in the following definition show two crossings, one at 

cell (4,3), and another at cell (4,14). Both have a maximum speed of 40 km/h and a 

probability to leave the cell of 70%. 

 
begin crossings 

   C1 = (4,3), 40, withTL, withoutHole, 0.7 

   C2 = (4,14), 40, withTL, withoutHole, 0.7 

end crossings 

 

Railways are defined as a set of level crossings overlapped with the road seg-

ments (see fig. 5). The railway network is defined by:  

RailNet={(Station,Rail) 

Where Station is a model and Rail ∈ RailTrack and RailTrack is defined as: 

RailTrack={(s,   δ,   seq)} 

Railtrack associates a level crossing with other existing constructions in the city 

section. Each element identifies the segment that is crossed (s) and the distance to 

the railway from the beginning of the section (δ). Finally, a sequence number (seq) 

is assigned to each level crossing, defining its position in the RailTrack. RailNet 

represents a set of stations connected to railways. When a railway is defined in TSC, 

we use the begin railnets and end railnets clauses. Each RailNet is defined using 

the following syntax: 
id =(s1, d1)  (s2, d2)  (s3, d3)… 

where si defines an identifier of a segment crossed by the railway, and di defines 

the distance between the beginning of the segment si and the railway. The compiler 

automatically generates the sequence number.  

Similarly, we have defined language constructions for potholes, traffic signs, 

construction zones, etc. 

The following picture shows a main section in downtown Ottawa. The traffic in 

this area is usually crowded, and congestion occurs frequently. The area includes 

two parks, several one-way streets and avenues. In several of these streets, parking 

is allowed, while in others it is forbidden. There are traffic lights in several of the 

crossings. 
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Figure 23. Traffic section for case study: Elgin Street in Ottawa 

Figure 24 shows the ATLAS definition for this area, labeling the segments and 

crossings. Using MAPS, we built a model of this section, which is then translated 

to ATLAS TSC as follows: 

 
begin segments 

  S1 = (4,1), (4,3), 2, straight, back, 60, 1100, parkRight 

  S2 = (5,1), (4,3), 2, straight, go, 60, 1100, parkRight 

  S3 = (4,3), (4,14), 2, straight, back, 60, 1100, parkRight 

  S4 = (4,3), (5,14), 2, curve, go, 60, 1100, parkRight 

... 

   

   S28 = (4,36), (10,36), 1, straight, go, 40, 1100, parkNone 

   S29 = (10,36), (13,36), 1, straight, go, 40, 1100, parkNone 

   S30 = (4,39), (1,40), 1, straight, go, 50, 1100, parkNone 

   S31 = (4,39), (1,39), 1, straight, back, 50, 1100, parkNone 

end segments 

 

begin crossings 

C1 = (4,3), 40, withTL, withoutHole, 220, 110 

C2 = (4,14), 40, withTL, withoutHole, 221, 111 

... 

C8 = (10,28), 20, withoutTL, withHole, 229, 119 

C9 = (10, 36), 20, withoutTL, withHole, 230, 120 

end crossings 

 

begin ctrElements 

in S21 : pedestrian crossing, 1, 110 

in S22 : pedestrian crossing, 1, 111 

in S22 : school, 2, 112 

in S23 : stop, 7, 113 

in S24 : stop, 6, 114 



 

 

 

 

 
... 

in S30 : pedestrian crossing, 1, 117 

end ctlElements 

 

For instance, we can see, that segment S1 is a two-lane road, which includes all 

the parameters as discussed earlier. Following the method to compute the cells in 

the cell space, this model must be mapped into a two-dimensional Cell-DEVS with 

transport delays. Similarly, the TSC definition of segment S29 represents is a one 

way street starting at (10, 36) and ending at (13, 36). The traffic direction on this 

road is from the source to the destination. The maximum speed is 40 km/h and park-

ing is not permitted. The crossing C1 is at position (4, 3) and the maximum speed 

in this intersection is 40 km/h. The crossing has traffic lights, and there are no pot-

holes. We can also see that in road segment 22, there is a school located 2 cells away 

from the beginning point, and that in segment 28, there is a pedestrian crossing lo-

cated 1 cell away from the beginning point. 

The compiler generates a CD++ file, using the TSC template rules, and the model 

generated is as follows, following the rules for 2-lane models described above: 

 
[TOP] 

components : S1  S2  S3 ... S31   ; segments 

     C1   C2   ... C7      ; crossings 

S17tl@TrafficLight S17Gen@Generator S15Cons@Consumer ... 

C1stl@SincroTrafficLight C2stl@SincroTrafficLight  

C21stl@SincroTrafficLight C4stl@SincroTrafficLight  

C41stl@SincroTrafficLight 

... 

 

link : y-t-car0@S17Gen x-ge-car00@S17 

link : y-t-car1@S17Gen x-ge-car10@S17 

... 

 

[S17] 

type : cell 

width : 3    height : 2      delay : transport    border : nowrapped 

neighbors : (1,-1) (1,0) (1,1) (0,-1)(0,0)(0,1) (-1,-1) (-1,0) (-1,1) 

in : x-ge-car00 x-ge-car10 x-c-space02 x-c-space12   

out: y-c-car02 y-c-car12 

link : x-ge-car00 x-ge-car@S17(0,0) 

link : x-ge-car10 x-ge-car@S17(1,0) 

... 

localtransition : S17-segment2-lane0-rule   

[S17-segment2-lane0-rule] 

#Macro(S17-From_Behind) 

#Macro(S17-From_Right_Lane) 

#Macro(S17-Move_Forward) 

#Macro(S17-To_Right_with_Right_of_Way) 

#Macro(S17-Default) 

 

… 
#BeginMacro(S27-From_Behind) 
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rule : 1         40 { (0,0) = 0 and (0,-1) = 1 } 

 

As we can see, the segments definitions are translated into CD++ coupled models 

using the definitions discussed earlier. For instance, we can see the definition of 

segment S17, a small Cell-DEVS model, of 2 lanes (3 cells long), connected to a 

generator model (which feeds the section with vehicles through the ports x-ge. The 

local transition rule is defined using the formal specifications discussed above, and 

in particular, we show a definition of the macro used to define the rule “From_Be-

hind”, which represents movement to a cell from the vehicle behind it. When we 

simulate the model, we can change initial conditions, for instance, the traffic lights, 

number of vehicles generated, etc. Figure 24 shows the simulation results at differ-

ent times in segment S17, in which we injected a similar amount of vehicles, and 

we can see the influence of traffic lights (lower line) that help regulating the traffic 

in the section.  

 

 
Figure 24. Simulation scenario with traffic lights and without traffic lights 

8 Conclusion 

The last 50 years of SummerSim have brought a wide range of advances to the 

field of Modeling and Simulation. Here, we have discussed our lab’s research in the 

area, focusing on using DEVS as a common formalism for simulating a diverse 

variety of models. DEVS provides the means of building complex models evolving 

incrementally from simple subcomponents in incremental, hierarchical fashion. 

This view enables the reuse of simulations and components, where the integration 

of simulations and components is seamless.  

The experiments were carried out using CD++, a DEVS tool that has been built 

following the formal definitions of DEVS and Cell-DEVS. The modeler can then to 

focus on the modeling formalism of interest, and to use all the advantages of DEVS 
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(in terms of integration with other models, multimodeling, sharing of repositories, 

proving the validity of simulation code, etc.) for model composition and simulation.  

The use of formal modeling techniques enhances model verification. Specifi-

cally, automated rule verification, based on meeting basic logical properties in cel-

lular models and coupled model definitions, can be provided. Our tools also provide 

mechanisms for automating the verification of multicomponent model coupling. In 

the same sense, we showed how to provide multimodeling and hybrid modeling. 

The models are able to include both continuous and discrete event model compo-

nents. For instance, the behavior governing the physics of a vehicle can be described 

with Bond Graphs (continuous modeling technique), while vehicle cruise control 

system might be better modeled using a discrete event formalism. We showed how 

to integrate these model views in a seamless fashion, using DEVS and the CD++, 

combined with the QSS method and model transformations. Spatial notions can 

provide extra facilities for understanding and visualizing the resulting simulation. 

For example, it allows incorporating geographical data obtained in GIS software.  
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