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Abstract
In this paper, we present an architecture to improve video streaming quality of experience (QoE) in cellular networks with

high user equipment (UE) density. In the proposed architecture, video segments are progressively cached, as requested, in

selected UEs called storage members (SMs). Video segments are strategically cached to be available to requesting users in

the cell. Furthermore, the base-station controls the device-to-device communication between the UEs to provide collab-

orative peer-to-peer transmission of video segments. Dynamic adaptive streaming over HTTP is also employed to adapt the

quality of video segments to network conditions. We study the improvements achieved by the proposed architecture in

terms of many video streaming QoE metrics. Thereafter, we improve the operation of the proposed architecture by

introducing QoE awareness to both caching and distribution of video segments. We employ QoE awareness in three aspects

of the proposed architecture; cellular resource allocation, caching of video segments, and SM-assignment optimization. We

analyze the improvements achieved by the prospered QoE-awareness techniques in terms of video streaming QoE metrics.

Keywords 5G � Collaborative D2D communication � QoE awareness � Adaptive video streaming

1 Introduction

Nowadays, more than half of the global online video

viewing take place over mobile devices [1]. This increasing

adoption of mobile devices for video viewing and the rise

of many platforms for video streaming and Over-The-Top

(OTT) media services have caused video traffic to account

for the majority of data traffic over mobile networks.

According to [2], YouTube traffic only forms 21% of the

total mobile downlink traffic in north America during peak

hours.

This increasing popularity of video streaming is esca-

lating the growth of data traffic to be transmitted over

cellular networks and raising the challenge for cellular

network operators. Consequently, supporting video

streaming services has become a main concern for cellular

network operators, and new techniques are much needed to

help serving video traffic that is becoming the majority of

data traffic over cellular networks. Moreover, achieving

user satisfaction about the video service has become

another concern for cellular network operators. This issue

is becoming more important considering that not only the

popularity of online video streaming is increasing, but also

the quality of videos available via online streaming. For

instance, YouTube and Vimeo nowadays provide 4 K

video support (a very high-resolution format), while having

lower video qualities (e.g., 240p). This means that different

end users can have different data rate requirements. The

video playout dynamics at the clients such as video play-

out, pausing, and rebuffering further complicate the prob-

lem. As such, quality measure has shifted from quality of

service (QoS) to quality of experience (QoE) [3, 4], which

is the overall acceptability of the service as perceived by

the end user [5]. Hence, it is necessary not only to develop

new techniques to improve the delivery of video streaming

traffic, but also for the new techniques to consider the

complex, dynamic, and delay-sensitive nature of video

streaming traffic to provide end users with good QoE video

streaming.
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Much research in the literature has been conducted on

improving video streaming over cellular networks. Most of

the work in the literature either focus on developing

methods for cellular resource allocation over traditional

cellular networks (e.g., [6, 7]), or on developing new

adaptation strategies for the Dynamic Adaptive Streaming

over HTTP (DASH) (e.g., [8, 9]); an adaptive video bit rate

streaming technique. There has also been some work on

utilizing Device-to-Device (D2D) communication to

improve video streaming over cellular networks (e.g.,

[10, 11]). D2D communication is a technique that allows

direct communication between nearby devices in cellular

networks. We discuss the related work in the literature, in

more detail, in Sect. 2.2.

In [12], we propose an architecture to improve video

streaming QoE in cellular networks under high traffic load.

The architecture employs the cached and segmented

download algorithms that we propose in [13–15]. The

cached and segmented download algorithms provide base-

station (BS)-controlled progressive caching of video seg-

ments in selected user equipments (UEs) in the cell. These

UEs are called storage members (SMs) [15]. The algo-

rithms are also implemented by the BS to improve delivery

of video contents by providing collaborative D2D trans-

mission of video segments among UEs in the cell. Fur-

thermore, the architecture supports DASH. The proposed

architecture is called DASH-based BS-Assisted D2D video

STreaming in cellular networks (DABAST). In [12], we

evaluate the performance improvements achieved by

DABAST in terms of many video streaming QoE metrics.

Results show that DABAST significantly improves video

streaming QoE for many users in the cell by enhancing all

the measured QoE metrics.

We discuss DABAST in Sect. 3, and present some of

our previous performance evaluation results in Sect. 6.1.

As these results show, despite the clear improvements

achieved by DABAST for a significant portion of the video

streams in the cell, a high number of video streams did not

experience considerable improvement, and hence, did not

receive video streaming service with good QoE, due to the

repetitive video rebuffering. As such, making DABAST

aware of video streaming QoE for users in the cell can

further increase the QoE gains achieved by DABAST. QoE

awareness can be used in DABAST to minimize QoE

degradation that might be inevitable for some users under

high traffic load. This can be achieved by targeting users

who are experiencing poor QoE or by improving a certain

QoE metric as needed. QoE awareness can be also

employed to maximize the QoE achieved over the network,

or to achieve a balance between the objectives above.

Here, we extend our previous work in [12] by employing

QoE awareness in three aspects of DABAST, namely,

cellular resource allocation, caching of video segments,

and SM-assignment optimization. We analyze the

improvements achieved by each QoE-awareness technique

in terms of video streaming QoE metrics. Results show that

all the QoE-awareness techniques above improve the per-

formance gains achieved by DABAST. Here, we summa-

rize the main contributions of this paper over our previous

work:

• Employment of QoE-aware cellular resource allocation

in DABAST and analyzing the improvement achieved

over state-of-the-art cellular resource allocation

algorithms.

• An approach for High Rate Caching (HRC) of video

segments in DABAST to further improve video bit rate

under relatively lower traffic load.

• An optimization model for the SM-assignment problem

in DABAST to simultaneously maximize the aggregate

video bit rate in the cell and minimize the number of

rebufferings.

• Performance evaluation of the improvements achieved

by HRC and SM-assignment optimization in terms of

many video streaming QoE metrics.

The remaining of this paper is structured as follows, in

Sect. 2, we discuss the background and review the related

work in the literature. In Sect. 3, we present DABAST and

its implementation in cellular networks. In Sect. 4, we

discuss cellular resource allocation and the proposed QoE-

aware scheduling metric for DABAST. In Sect. 5, we

present the other two QoE-awareness approaches, namely

HRC and SM-assignment optimization. In Sect. 6, we start

by evaluating the performance improvements achieved by

DABAST. Afterwards, we analyze the performance

improvements achieved by all the proposed QoE-aware-

ness techniques. Finally, in Sect. 7, we present the con-

clusion of this work.

2 Background and related work

Here, we discuss the background for the topics involved in

this work. Thereafter, we review the related work in the

literature.

2.1 Technical background

2.1.1 HTTP video streaming

HTTP video streaming has an important role in the ubiq-

uitousness of online video streaming, as it allows users to

request and watch online videos using web browsers and

avoid the NAT and firewall traversal problems [16].

Nowadays, HTTP video streaming is the most popular way

of online video steaming. Moreover, it is employed by the
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biggest video sharing and OTT media services such as

YouTube and Netflix.

With HTTP video streaming, the video file is divided

into a stream of small HTTP files called segments. When a

user requests a video stream, video segments are down-

loaded progressively. Received segments are stored in a

video buffer. The client starts video playback after few

segments are received, and the remaining segments are

downloaded during playback. Playout buffer length refers

to the duration of video contents available in the video

buffer for playback. Video playout continues as long as

video contents are available in the video buffer. If the rate

at which video contents are received (data rate) is lower

than the rate at which video contents are consumed

(playback or playout rate), video buffer will be depleted

until it is consumed. In such case, playout stops so that

video contents are rebuffered.

2.1.2 DASH

In the case of limited network capacity or variable

throughput, the data rate could repeatedly decrease below

the playout rate. This could cause multiple playback

interruptions (also called video rebufferings). Video

rebufferings are annoying and degrade the quality of the

service as perceived by the end user. DASH is a dynamic

video streaming technique that allows changing the video

quality to adapt to the available data rate [17, 18]. With

DASH, the segments of a video are encoded at different

compression levels. As such, each segment will be avail-

able at the server side at multiple video bit rates. A media

presentation description (MPD), that contains information

about the video segments and the video rates at which they

are available, is sent to the client. During progressive video

download, the client switches between the different video

bit rates to adapt to the varying data rate. This reduces the

possibility of video playout buffer depletion when the data

rate degrades, which reduces the number of rebufferings

and improves the streaming quality. Furthermore, this

allows increasing video quality when the data rate increa-

ses which improves the channel utilization. Many video

streaming platforms, such as YouTube and Netflix, have

adopted DASH due to the performance gains it achieves.

In DASH, switching between different video bit rates

takes place at the end of video segments. An adaptation

strategy is used by the DASH controller at the client to

select the video bit rate of the next segment to adapt to

varying data rates. A good adaptation strategy achieves a

trade-off between two factors; maximizing the quality of

the video by selecting the highest video bit rate the network

can support, and at the same time, avoid rebufferings.

Much research has been carried out on developing video bit

rate adaptation strategies [8, 19, 20]. Some of these are

based on the estimated instantaneous data rate at the

receiver. In such algorithms, the DASH controller selects

the highest available video bit rate that is lower than the

current throughput. The drawback of these approaches is

that it is difficult to obtain an accurate estimation of the

data rate in environments with highly variable throughput.

Other algorithms are based on the length of the video

playout buffer length for adaptation, as it is the main

variable the controller is trying to manage. Here, we

employ the buffer-based approach in [8], as it is robust to

high data rate variability. Furthermore, in DABAST, the

UE could receive a video segment from the BS or from an

SM. Consequently, it would be difficult to estimate the

throughput at which the next segment will be received. The

adaptation algorithm, f(L), uses the playout buffer length,

L, to select the video bit rate of the next segment [8].

2.1.3 Video streaming QoE

With the increasing demand for video applications, sup-

porting high quality video services while achieving user

satisfaction about the service has become an important

concern for cellular network operators. Users pay their

operator and they expect reliable support for video services

in return. If the user is not satisfied, they may switch to

another provider. At the same time, different users can

have different data rate requirements to achieve their sat-

isfaction, due to the wide quality range of online videos

and due to the complex, dynamic, and delay-sensitive

nature of video streaming traffic. As per [21], major con-

tent providers have lost $2.16 billion due to low video

streaming experience, and the loss in revenue due to poor

QoE is expected to increase. This has made it necessary to

use QoE when evaluating video streaming services and to

implement QoE-aware video delivery techniques.

Many subjective QoE studies have been conducted to

determine the metrics that influence users’ opinion and

decide video streaming QoE [4, 22, 23]. These metrics

provide objective way to study, evaluate, and improve

video streaming QoE. Regarding HTTP video streaming, it

has been shown by many studies that video rebuffering and

initial delay are very important factors on the user’s QoE

[4, 23]. The quality of the video, measured by the video bit

rate, is also an important factor on the user’s QoE of HTTP

video streaming.

Obviously, video stalling decreases video streaming

QoE. The authors in [24] have shown that users usually

prefer one long rebuffering duration over multiple shorter

rebufferings. Many studies [23, 24] have shown that video
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stalling has the biggest impact on QoE, and even few short

rebufferings could have severe impact on the QoE. Con-

sequently, avoiding rebufferings should be a priority.

Video continuity index is a metric that considers the ratio

of the rebuffering time to the total video viewing time. The

continuity index is given by [9],

gc ¼ 1� DTrb
DT

; ð1Þ

where gc 2 0; 1½ �, DTrb is the total rebuffering time, and DT
is the duration of the experiment (playing time and

rebuffering time). When 0 rebufferings are experienced,

the continuity index value will be 1, which is the best-case

scenario.

Initial delay is another factor that degrades video

streaming QoE. It refers to the delay from the time a video

stream is requested by the user until the time video playout

starts. As video playout usually starts after few segments

are received and available for playout, initial delay depends

on the amount of video data needed to start playout and on

the data rate. Although initial delay has an impact on video

streaming QoE, studies have shown that it has less effect

than video stalling [23, 25] because initial delay is usually

expected, especially for relatively longer videos. Video bit

rate is also a metric that affects QoE. A higher video bit

rate accommodates higher image resolution and frame rate

in the video, which increases video streaming QoE.

2.1.4 Resource allocation in LTE-A networks

The downlink scheduler is a crucial component in LTE-A

systems due to its importance in efficient radio resource

utilization. The downlink scheduler allocates radio

resources to the UEs in the cell according to some objective

(e.g., maximizing the cell’s aggregate data rate). In LTE-A,

the radio spectrum is accessed using orthogonal frequency-

division multiple access (OFDMA) in the DL [26]. With

OFDMA, the radio channel is divided in both the time and

frequency domains. In time, the channel is divided into

sub-frames, and each sub-frame is 1 ms. Each sub-frame is

divided into 2 slots of 0.5 ms each. In frequency, the

channel is divided into sub-channels of 180 kHz each. A

unit that is composed of one slot in time (0.5 ms) and one

sub-channel in frequency is referred to as one Resource

Block (RB). A RB is the smallest schedulable radio

resource unit. The number of RBs in the channel depends

on the channel bandwidth. For example, a 10 MHz channel

contains 50 RBs. In LTE-A, the scheduler is implemented

at the BS, and it is responsible for allocating RBs to active

UEs. Scheduling takes place every transmission time

interval (TTI), which equals to 1 ms. Scheduling involves

deciding which UEs will be allocated the RBs in the next

1 ms interval, based on a certain scheduling metric.

2.1.5 D2D communication in cellular networks

D2D communication is one of the main technologies in the

fifth generation (5G) cellular networks [27] due to the

improvements it provides. In traditional cellular networks,

all communications from and to the UEs have to be relayed

over the BS. In such communication paradigm, the radio

access network (RAN) becomes the main bottleneck in

cellular networks with limited cellular frequency resources

that are shared among large number of users. With D2D

communication, on the other hand, two UEs within prox-

imity of each other can exchange data over direct links,

without the need to relay the traffic over the BS. This can

improve the data rate between the two UEs due to trans-

mission over one hop and shorter distance. Moreover, the

capacity of the cellular network can be increased by

coordination of multiple short distance transmissions to

achieve spatial frequency reuse. D2D communication can

also extend the coverage area of the cell and improve the

received signal for users at the cell edge. As such, much

work has been conducted to develop applications for D2D

communications in cellular networks and improve its per-

formance [28–30]. D2D communication allows collabora-

tion of users in cellular networks to share contents they

have. However, approaches are needed to motivate par-

ticipation of users in D2D communication. Incentivizing

users to participate in D2D communication is a topic that

has received much interest in the last couple of years. The

interested reader in this area is referred to [31, 32].

2.2 Related work

Some work in the literature have been conducted on D2D

video streaming in cellular networks. In [33], a system

called MicroCast was proposed to improve the quality of

video streaming. MicroCast is designed for a small group

of smart phone users who are within proximity of direct

communication from each other and would like to watch

the same video at the same time. A similar P2P application

was developed in [11] for live video streaming. The

application is designed for a small set of devices that have

both cellular and WiFi connections and interested in

watching the same live stream. In both systems, users

employ their cellular connections to download chunks of

the video and use their WiFi connections to share among

each other the downloaded chunks to improve the quality

of the video stream. While the proposals in [11, 33] result

in improvement for a small group of users, their scope is

limited as they are designed for a small group of users.

Furthermore, these systems are designed for live video

streaming where users have synchronous playout of the

video.
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In [34], a protocol, called RapidStream, was proposed

for P2P video streaming on mobile phones. The protocol is

analogous to some P2P streaming protocols on wired net-

works where peers disseminate their buffer maps to

announce availability of video segments and request video

chunks from each other based on such information.

Although such protocol is suitable for P2P video streaming

over wired networks, it requires too much signaling and

transmission (dissemination of buffer maps) to be scalable

for UEs that has limited power, processing, and transmis-

sion resources.

In [35], a system that employs D2D communication was

proposed to improve the delivery of video segments to

requesting UEs. In that system, multiple helpers can be

used to deliver video segments to the requesting UE. The

video is encoded by applying multiple description coding

by each helper. Each helper sends a different description to

the requesting UE. The authors propose an optimization

model to maximize video quality and efficiently consume

the helpers’ energy. However, the work in [35] does not

consider the most important metrics of video streaming

QoE such as the number of rebufferings and initial delay.

Improving video bit rate/video quality increases the end

user QoE. Never the less, increasing video bit rate could

increase transmission delays which increases the number of

rebufferings and initial delays. Such factors are very

important to consider as degradation of these metrics

would significantly worsen video streaming QoE.

All the work above either consider the case of live

streaming or do not consider how video segments are

cached in helpers when evaluating performance (requested

segments are assumed to be pre-cached). Moreover, all the

work above consider small-scale networks (up to 10 UEs

including helpers). In this work, we present and evaluate

DABAST; an architecture to improve the QoE of video

streaming in cellular networks with high user density.

DABAST employs the cached and segmented download

algorithms for BS-assisted progressive caching and D2D

video transmission between UEs [15]. As such, DABAST

does not only consider the transmission of video segments

over both cellular and D2D links, but also caching of video

segments. Video segments are strategically cached as per

the algorithms to be available to all users in the cell. Fur-

thermore, segments are progressively cached as requested

(not to waist valuable cellular resources). Although these

characteristics are very beneficial in any video streaming

scenario with high number of users, they are crucial for

high traffic load scenarios where various unsynchronized

users are streaming recently published contents (e.g., a

YouTube live video). However, with DABAST, not all

requested segments are cached in the cell and the cached

segments are not available in all video bit rates. Moreover,

there are different frequency resources available, i.e., a

cellular channel with limited bandwidth and out-of-band

channel with higher bandwidth. As we will see, many

decisions need to be taken dynamically regarding caching

and distribution of video contents, as well as allocation of

resources and SMs to improve video streaming QoE for

users in the cell. Additionally, DABAST operates in

proactive mode under high traffic load, where a series of

successive video segments are transmitted to the user from

multiple sources. From all the above, it is necessary to

study resource management in DABAST and how it

impacts its performance.

In [36], the authors proposed two scheduling algorithms

for the delivery phase in D2D video streaming. The algo-

rithms allocate frequency resources to several pre-matched

D2D links. A similar algorithm has been also proposed in

[37], where a single channel is shared by multiple D2D

links of pre-matched helper-receiver pairs. As with the

previous work above, the work in [36, 37] assume that all

videos are pre-cached in the user devices before video

streams start, and that each caching device already have the

video available at multiple video qualities. Our proposed

architecture considers not only the delivery phase, but also

video caching in the UEs in a high traffic load scenario.

Furthermore, the work in [36, 37] only consider the D2D

communication between the UEs in the network over a

single channel, considering that all requested videos are

cached. DABAST, on the other hand, provides a frame-

work that considers not only the D2D communication

between UEs (on a D2D channel), but also the cellular

communication between the UEs and the BS. This is cru-

cial because in a real scenario, many of the requested

videos might not be available in the distributed cache in the

cell, and hence, should be downloaded over the cellular

channel through the BS. Moreover, the work in [36, 37]

assumes that a UE is only provided the segments of a video

by one helper. In DABAST, SMs are assigned dynamically

to requesting UEs on a segment-by-segment basis,

depending on SMs availability and video bit rates of

available segments to maximize video streaming QoE.

Many video streaming QoE-aware approaches for

resource allocation in conventional cellular networks

(without D2D communication) have been proposed

[6, 7, 38, 39]. In [6], an adaptive video steaming QoE

maximization approach was proposed for resource alloca-

tion in LTE networks, where the playout buffer levels are

signaled from the UEs to the QoE optimizer at the BS. The

optimizer considers the playout buffer levels at the UEs to

perform a multi-user resource allocation. A similar

approach that employs the playout buffer length is pro-

posed in [7]. Other approaches use a utility function that

maps technical parameters such as transmission delay to

QoE scores [38, 39]. Based on this mapping, resource

allocation is performed to guarantee certain QoE score to
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users [38, 39]. The problem with the methods that depend

on utility functions for mapping is that such models do not

provide an accurate and real time evaluation of users’ QoE,

especially considering the complex and variable charac-

teristics of video contents as well as the video playout

dynamics at the clients such as video playout and

rebuffering. The work in [36, 37], adopt QoE-aware

approaches. They utilize the queue backlog size at the

senders or estimate of the playout buffer as the metric to

avoid causing long delays. However, the queue backlog

size at the senders or the duration of transmitted video

contents do not provide an accurate and real time way of

tracking the playout buffer at the clients considering the

video playout dynamics at the clients and that a user might

get video contents from different sources.

In this work, we employ QoE awareness in three aspects

of DABAST, namely, cellular resource allocation, caching

of video segments, and SM-assignment optimization. For

cellular resource allocation, we propose a scheduling

metric that employs the playout buffer length which is

similar to the one in [6] for traditional cellular networks

(without D2D communication). Our scheduling algorithm

is proposed to operate in DABAST and considers not only

the reported playout buffer length, but also an estimation of

the transmitted video contents over both the cellular and

the D2D channel. Furthermore, we propose an approach for

high video bit rate caching of segments in the UEs that also

utilizes the metric above. Finally, we propose an approach

for SM-assignment optimization to maximize the achieved

QoE for users in the cell. Results show that all the QoE-

awareness techniques above do indeed improve the per-

formance gains achieved by DABAST.

3 The DABAST architecture

In this section, we present DABAST and discuss its

implementation in cellular networks. DABAST employs

the cached and segmented download algorithms at the BS

to provide progressive caching of video segments in SMs

and to improve the delivery of video contents by providing

D2D transmission of video segments from SMs to

requesting UEs. The implementation of DABAST in cel-

lular networks is depicted in Fig. 1. As the figure shows, a

CSVD proxy is deployed at the BS to implement the

caching and distribution algorithm. In the following, we

present the Cached and Segmented Video Download

(CSVD) algorithm [14, 15], which is employed here to

study the performance improvements achieved by

DABAST.

With CSVD, the cell is divided by the BS into clusters.

UEs in the cell are assigned to clusters based on their

geographical location in the cell. Furthermore, UEs in the

central area of each cluster are selected as the SMs of that

cluster. SMs of a cluster are helper UEs that are used as the

distributed cache of that cluster. SMs are selected in this

way to prevent inter-cluster as well as inter-cell interfer-

ence when the SMs transmit to other UEs in the same

cluster over the D2D channel. When a UE requests a video

file, the BS processes the request and responds as follows:

• Send To an SM (STSM): This case is employed to

progressively cache video segments in the SMs of the

clusters as requested. If the requested video file is not

available in the distributed cache of a cluster (or more

copies need to be cached in the cluster), the BS sends

the file to an SM in the cluster and asks the SM to cache

the file. These files will be available for UEs in the

cluster when requested later.

• Send With Assistance (SWA): if requested segments of

a video file are available in any of the SMs, the BS will

ask the SMs to send the segments to the requesting UE

over D2D links.

• Send To a UE (STUE): otherwise, the video file is sent

through the BS over the cellular channel.

In [14, 15], we define a protocol for CSVD including a

variety of messages necessary for the interaction between

the BS, requesting UEs, and SMs. A complete definition of

the protocol is described. Furthermore, results show that

CSVD significantly improves the cell’s aggregate data rate

as well as the average data rate. It is worth mentioning that

D2D communication can take place over the cellular

spectrum (in-band) or over unlicensed spectrum (out-of-

band). Out-of-band D2D communication has the advantage

of further increasing the network capacity and eliminating

interference between cellular and D2D communication. As

such, we consider the case of out-of-band D2D commu-

nication in our research. The channel models employed are

listed in Sect. 6.1.

In DABAST, DASH-based video streaming is imple-

mented on top of CSVD, i.e., video segments can be

requested by the clients at various video bit rates with

DASH, and the caching and delivery of video segments are

implemented as per the CSVD algorithm. Video segments

can be cached at multiple video bit rates (when possible)

and delivered to users over the cellular channel or the D2D

channel (when the requested segment is cached).

The CSVD proxy intercepts clients’ requests for video

segments and decides where to send the video segment

from (e.g., as per the CSVD algorithm). If the segment is to

be transmitted from an SM, an Assistance Request message

will be sent to that SM to send the video segment to the

requesting UE [15] over the D2D channel. Otherwise, the

client’s request will be forwarded to the DASH server.

Under high traffic load, avoiding playout rebufferings

should be a priority. As such, video segments are
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progressively cached with low video bit rate, to minimize

the number of rebufferings experienced in the cell. Fur-

thermore, in such cases, requested video segments are

transmitted to the UEs from the distributed cache (when

found) even if the requested video bit rate does not match

that of cached segments. This maximizes the utilization of

the cached segments and the D2D channel in order to relax

the RAN bottleneck and minimize the number of

rebufferings. In Sect. 5, we show more sophisticated

approaches for caching and distribution of video segments

under relatively lower traffic load scenarios.

Under high traffic load, DABAST can also operate in

proactive mode. In proactive mode, up to a maximum

number of video segments can be transmitted to the

requesting UE when found in the distributed cache, without

waiting the user’s request for each segment. This speeds up

transmission of video segments and reduces the signaling

and latency between the BS and the UEs. Never the less,

proactive mode is activated under high traffic load and

when a series of successive video segments are available in

the distributed cache. If a video segment is not available in

the distributed cache, user’s request will be awaited.

4 DABAST with QoE-aware cellular resource
allocation

As we will see in Sect. 6.1, results show that despite the

clear improvements achieved by DABAST for a significant

portion of the video streams in the cell (about half of the

streams), the remaining streams do not experience con-

siderable improvement, and hence, do not receive video

streaming service with good QoE, due to the repetitive

video rebuffering. As such, the operation of DABAST can

be further improved by making it aware of video streaming

QoE for users in the cell. This can further increase the

performance gains achieved with DABAST by targeting

users who are experiencing poor QoE or by improving a

certain QoE metric as needed. We employ QoE awareness

in three aspects of DABAST, namely, cellular resource

allocation, caching of video segments, and SM-assignment

optimization. In this section, we focus on the first aspect,

i.e., cellular resource allocation.

4.1 Cellular resource allocation

Many scheduling algorithms have been proposed for LTE-

A. RR is one approach that can be used to allocate fre-

quency resources to UEs. For instance, all the RBs in a TTI

can be allocated to a UE each time. Despite its simplicity

and fairness, it does not consider the quality of the channel

between the UE and the BS, and hence, it does not maxi-

mize the system throughput. Furthermore, although RR

might be fair in a traditional cellular network, it will not be

fair in the case of DABAST because some UEs get video

segments over the D2D channel. If this data transmitted

over the D2D channel is not taken into consideration, users

who get some video segments over the D2D channel and

others who get all their video segments over the cellular

channel will be treated equally. One can tell that this

unfairness might increase the delay to transmit segments to

users who get video segments exclusively over the cellular

channel, and consequently increase the possibility of

rebuffering for such users.

Another algorithm that is widely used in LTE-A systems

is Proportional Fair (PF) scheduling [40]. PF scheduling

tries to achieve a balance between maximizing the system

throughput and achieving fairness among the UEs com-

peting for the cellular resources. This can be achieved by

considering for each UE both the current instantaneous rate

for that UE, as well as the recent average throughput of that

UE.

DASH server

CSVD 
server/proxy

BS

SM

UE
Client requests a segment 

SM sends
the segment

Request forwarded to 
DASH server if neded

Fig. 1 Implementation of

DABAST
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The scheduling algorithms above try to optimize certain

QoS objectives (e.g., fairness or maximizing the aggregate

data rate). User satisfaction is very important for network

operators and need to be considered in network operation.

The algorithms above do not consider the QoE for users

and do not try to improve the situation for users who are

having low video streaming QoE. Due to the various

metrics involved in video streaming QoE and due to the

complex and dynamic attributes of video contents,

scheduling resources for video streaming users is more

complicated. Traditional scheduling algorithms that are

oblivious to the end user QoE and to the characteristics of

video contents might result in low QoE for high number of

users.

In addition to the above, the nature of DABAST,

where some video segments can be transmitted over the

D2D channel from various sources, increase the com-

plexity of the problem. The cellular resources should be

allocated taking into consideration that some UEs will

get their segments over the D2D channel, and hence, the

cellular resources need to be utilized to help other users

who are not fortunate to receive segments over the D2D

channel (as their segments are not cached). In this sec-

tion, we propose a scheduling algorithm for DABAST

that takes into account the playout buffer length in the

UEs. The metric is similar to the one proposed in [6] for

traditional LTE-A systems. However, our algorithm is

updated to consider the reported playout buffer length

along with estimation of video contents transmitted over

both the cellular and D2D channels. It takes into account

all the information above to allocate the cellular

resources in a way that improves the QoE for the users

in the cell. Results show that our algorithm improves the

achieved video streaming QoE for users in the cell when

compared to RR and state-of-the-art PF scheduling. In

the following subsections, we provide a detailed

description of PF scheduling, followed by our Buffer-

Based scheduling (BB).

4.2 PF scheduling

PF scheduling tries to achieve a trade-off between maxi-

mizing the system throughput and achieving fairness

among the UEs in the cell [40]. In LTE-A, the BS regularly

receives Channel Quality Indicator (CQI) reports from the

UEs in the cell [40]. CQI conveys information to the BS on

how good the communication channel quality is between

the BS and the sending UE. From the information in the

CQI, the BS estimates the supported instantaneous data

rate, r̂k n½ �, for each user k. The PF scheduler then selects

the user k0 for transmission that has the maximum

scheduling metric [40], as follows,

k0 ¼ argmax
k

MPF
k n½ �

� �
¼ argmax

k

r̂k n½ �
Tk n½ �

� �
; ð2Þ

where MPF
k n½ � is the PF scheduling metric for user k, Tk n½ �

is the recent average throughput for user k over the past

window of N transmission intervals, and n denotes the

current scheduling interval. The recent average throughput

for user k is calculated as follows,

Tk n½ � ¼ 1� 1

N

� �
Tk n� 1½ � þ kk

N
rk½n�; ð3Þ

where N is the length of the window over which the

average throughput is calculated, rk½n� is the instantaneous

data rate at scheduling interval n, and kk n½ � is the activity

factor, and it equals 1 if user k is scheduled for transmis-

sion in the nth TTI and 0 otherwise. From the above, we

can see that the scheduling favors UEs with relatively

higher channel quality (to maximize the aggregate data

rate) by having the estimated instantaneous data rate in the

nominator, and at the same time, try to maintain fairness by

having the recent average throughput in the denominator.

Considering the channel instantaneous rate is very

beneficial when employing PF scheduling. However, in the

context of DABAST, the real advantage is using the recent

average throughput of the users in addition to the instan-

taneous rate. As previously discussed, in DABAST, some

video segments are transmitted over the cellular channel,

while other video segments are transmitted over the D2D

channel. By maintaining the recent average throughput of

each UE, we consider the video data that is transmitted

over both the cellular and the D2D channel. Hence, for UEs

that received segments over the D2D channel, the recent

average throughput will be relatively high, which conse-

quently leads to favoring UEs with low recent average

throughput when allocating cellular resources. Usually,

these are UEs that receive their video segments exclusively

over the cellular channel. This should reduce the number of

rebufferings experienced by such users and consequently

improve their QoE.

4.3 BB scheduling

Although PF scheduling provides advantages over RR

scheduling, it still does not take into consideration the end

user QoE. In this section, we propose a scheduling algo-

rithm, to use with DABAST, that takes into consideration

the reported length of the playout buffer at the client side.

Similar metrics have been proposed for traditional LTE-A

system. However, our BB scheduling algorithm is proposed

to operate in DABAST and considers not only the reported

playout buffer length, but also an estimation of the trans-

mitted video duration over both the cellular and the D2D

channel (from all SMs).
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In BB scheduling, the UEs signal their playout buffer

length to the BS. This update can be sent in certain cases;

when the change in playout buffer length from the last

reported value exceeds a certain threshold (e.g., 5 s), or

after a certain period passes from the last update. The

update can also be sent when the client status changes (e.g.,

playing to rebuffering). The main idea is that the BS will

allocate resources to active UEs giving more priority to

UEs with low playout buffer length to avoid rebufferings.

In our BB algorithm, the BS updates the scheduling

metric for each UE every TTI. The scheduling metric

considers the following,

• The last reported value of the playout buffer length

• An estimation of the video content length transmitted

over the cellular channel since the last update

• A third part that takes into account the segments that are

being transmitted by SMs over the D2D channel

To implement the above, the BB scheduler selects the

user k0 for transmission that has the maximum scheduling

metric, as follows,

k0 ¼ argmax
k

MBB
k n½ �

� �
; ð4Þ

where the BB scheduling metric, MBB
k n½ �, is calculated as

follows,

MBB
k n½ � ¼ Vmax n½ � � bk n½ � þ pk;c n½ � þ pk;d n½ �

� 	
; ð5Þ

where Vmax n½ � is the current maximum video length, which

is found as follows,

Vmax n½ � ¼ max
k

vk n½ �f g; ð6Þ

where vk n½ � is the length of the current video played by user
k. bk n½ � is the playout buffer length in seconds for user k, as

reported in the last update, and pk;c n½ � is the recently

transmitted playout time over cellular resources since the

last update, calculated as follows,

pk;c n½ � ¼ dk n½ �
fk n½ � ; ð7Þ

where dk n½ � is the amount of video data transmitted to user

k since the last update, and fk n½ � is the current video bit rate
of the segment transmitted to user k over the cellular

channel. pk;d n½ � is used to take into account the segments

that are being transmitted to user k via D2D communica-

tion since the last update from the UE, and it is calculated

as follows,

pk;d n½ � ¼ Nd � w� L� rk; ð8Þ

where Nd is the number of segments currently transmitted

over the D2D channel and w is the weight given for these

segments, i.e., the ones the BS sent Assistance Request

message for, but they are not received yet. L is the length of

the segment in seconds. Since such segments are being

transmitted now, they should be taken into account when

allocating cellular resources. This allows the scheduler to

early distinguish UEs that are being sent video segments

over the D2D channel. However, this factor is only con-

sidered here when user k does not currently have a video

segment scheduled over the cellular channel. Hence, the

factor rk. If user k is currently not being sent a video

segment over the cellular channel, rk will be set to 1 (rk is
set to 0, Otherwise). This is because pk;d n½ � significantly
reduces the scheduling metric of user k. If the video seg-

ment that is currently scheduled over cellular resources

precedes the one transmitted over the D2D channel, pk;d n½ �
might falsely indicate that user k has a long playout buffer,

which results in long transmission delays.

From the above, we can see that the metric used for BB

scheduling keeps the scheduler aware of the current play-

out buffer length at the UEs, and hence, avoid rebufferings

by allocating more resources to users with imminent

playout buffer stalling, and by saving the cellular resources

for users who get their video segments through the BS only

(over cellular resources). It is worth mentioning that as

with PF scheduling, the BB algorithm can be implemented

on RB-by-RB basis. In such case, pk;c n½ � should be updated

every time to keep track of the RBs assigned to each UE, as

it is considered in the scheduling metric. However, it is

computationally more efficient to implement the algorithm

on a slot-by-slot basis (recall that a slot is half a TTI, i.e.,

0.5 ms). In the latter case, if the RBs needed by the UE are

fewer than the RBs in the slot (half TTI), the remaining

RBs of the slot can be assigned to another UE to exploit all

the RBs in the slot.

The work in this paper is focused on scheduling

resources among video streaming users to improve video

streaming QoE for such users in the cell, and avoid QoE

degradation. However, in the case there are other types of

traffic (i.e., background traffic) that share the same

resources with video streaming users, the scheduler can

employ BB scheduling to allocate resources among both

video streaming traffic and other types of traffic. In such

case, the scheduler can set a certain value for the playout

buffer length of non-video streaming traffic. For example, a

high playout buffer length value can be assigned to delay-

tolerant data traffic so that it has lower priority than video

streaming traffic. The used value of the playout buffer

length assigned to delay-tolerant traffic can be used to

adjust the priority of such traffic. The higher the assigned

value for such traffic the lower priority it will have. This

also guarantees that resources will be allocated to delay-

tolerant traffic when video streaming users have a certain

playout buffer length.
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4.4 SM assignment

In DABAST, it is realistic to assume that SMs accept up to

a certain number of concurrent assistance requests. As

such, the BS should decide which SM should send video

segments to which requesting UE. We refer to this as the

SM-assignment problem. Here, we discuss how SMs are

assigned the task of video segment transmission to

requesting UEs in case of RR, PF, and BB cellular resource

scheduling.

In the case of RR scheduling, every time SM assignment

is performed, the BS goes through the active UEs in a RR

fashion and looks for a UE that needs a video segment that

is available in the distributed cache with an SM that is

willing to assist. This means that SM assignment is per-

formed in RR as well. In the case the BS finds more than

one SM that is available to send a video segment to a

requesting UE, the BS picks the SM that provided the least

assistance so far, to achieve SM load-balancing.

In the case of PF scheduling, the recent average

throughput of the requesting UEs and the average data

rate between SMs and requesting UEs can be both used

for allocating SMs to requesting UEs. This means that

PF is used for SM assignment in a similar way cellular

resources are allocated. Every time SM assignment is

performed, the BS goes through the requesting UEs and

selects the one with the highest ratio of the average data

rate to an SM over the recent average throughput of that

UE. This way, we assume that UEs periodically report to

the BS an estimation of the average data rate that can be

achieved if data is transmitted from a certain SM to this

requesting UE as proposed in [41]. In the case the

number of requesting UEs is high, this would cause

much overhead. As such, the recent average throughput

only can be utilized for SM assignment. This means that

the BS goes through the requesting UEs in an ascending

order based on the recent average throughput, and every

time the BS finds a requesting UE that needs a cached

segment with available SM, it will send assistance

request to that SM. As with RR, in the case the average

data rate between the UEs and SMs are not utilized, a

load-balancing approach can be used to select among

multiple available SMs.

In the case of BB scheduling, the UEs signal their

playout buffer length to the BS. Since this valuable infor-

mation is available at the BS, it can be further utilized for

SM assignment. In this case, the BS assigns available SMs,

giving more priority to UEs who have a low playout buffer.

This further decreases the possibility of playout buffer

depletion and consequently reduces the number of

rebufferings for users in the cell, which potentially

increases their QoE. When performing SM assignment, all

the factors in (5) will be considered, i.e., pk;d n½ � is always
utilized, and hence is calculated as follows,

pk;d n½ � ¼ Nd � w� L: ð9Þ

In the next section, we propose a more sophisticated

SM-assignment approach that has more than one objective

to further increase the QoE of users in the cell. In Sect. 6,

we evaluate the improvements achieved by all the QoE-

awareness techniques, including BB scheduling.

5 DABAST with HRC and SM-assignment
optimization

In this section, we consider cases where the available

resources are enough to avoid rebufferings. We aim to

further increase the utilization of the D2D channel in such

cases to improve video streaming QoE for users in the cell

by improving their video bit rate. We present the first

proposed technique; HRC. Afterwards, we present the

second proposed technique, which is SM-assignment

optimization.

5.1 HRC

As reported by many studies, video rebuffering has the

highest impact on video streaming QoE, and hence, it

should be avoided as much as possible. As such, when the

traffic load is very high, reducing the number video

rebufferings should be a priority. In these situations, video

segments are downloaded with low video bit rate to avoid

rebufferings. However, when the traffic load is lower, and

users are not experiencing rebufferings, it would be very

beneficial to send popular videos with high video bit rate. If

segments of popular videos are cached with high video bit

rate, they will be sent later to requesting users over the

D2D channel, which will considerably increase video bit

rate for these users, and hence, increase their video

streaming QoE.

We propose DABAST with HRC, to further improve

video bit rate for users in the cell. With HRC, segments of

a video are sent in a video bit rate that is higher than the

requested video bit rate. HRC is implemented by updating

the operation of the CSVD algorithm, to consider one more

case. We refer to this case as the HRC case. This case is

implemented as follows,

1. The first condition that is needed to consider HRC is

‘‘low’’ traffic load. Otherwise, HRC will further

increase the number of rebufferings in the cell and

reduce video streaming QoE. This can be decided

based on the number of rebufferings. For instance, the

HRC mode can be activated in the case that none of the
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users in the cell are experiencing video rebuffering, or

if the number of rebufferings is below a certain

threshold.

2. The second condition to employ HRC is if video

segments are sent to an SM. In this case, segments of

the video will be cached, and hence, will be sent later

to requesting UEs in a high video bit rate. On the other

hand, if the video is not going to be cached, only the

video bit rate of this stream will increase, and this

taken risk of sending a video with bit rate higher than

the requested bit rate will not result in a significant

reward.

3. HRC is only employed if the requested video is

popular. This is explained as in the previous condition.

If the video that is transmitted and cached with high

video bit rate is not popular, the taken risk of sending a

video with high video bit rate will not result in a

significant reward. This is because if the file is not

popular, it may not be requested often after this time,

and consequently, will not be utilized by later requests.

A video file can be considered popular enough for

HRC if it is requested more than a certain number of

times recently.

4. To avoid increasing the initial delay, the first few

segments are always transmitted with a low video bit

rate, even in HRC. The goal of HRC is to increase the

video bit rate without causing considerable degradation

to other video streaming QoE metrics.

HRC ensures that video segments of popular videos

are cached with high video bit rate. This will diversify

the content of the distributed cache in terms of video bit

rate, i.e., some segments might be cached in more than

one video bit rate. As such, the BS needs ensure that

high rate segments are fully exploited, and at the same

time, make sure that no degradation is induced to other

video streaming QoE metrics. This can be achieved by

carefully assigning SMs the tasks of sending video seg-

ments. This means that HRC introduces more complexity

to the problem of SM assignment. One way to imple-

ment SM assignment in this case is by employing the

same approach used with BB scheduling in the previous

section. That approach assigns available SMs, giving

more priority to UEs who have a low playout buffer, to

minimize the number of rebufferings, and in the case

more than one SM is available, the decision will be

made based on load-balancing among SMs. However,

this approach does not take into account the video bit

rate of the cached segments. Such a video bit rate

oblivious approach will not fully utilize the high video

bit rate segments that are available in the distributed

cache of the network.

In the following, we propose a better approach that takes

into account both the playout buffer length at the clients

and the video bit rate of the cached segments.

5.2 SM-assignment optimization

Here, we consider the problem of SM assignment in the

case where there are many UEs requesting video segments

that are cached with multiple video bit rates. An optimal

SM-assignment approach, in this case, would maximize the

achievable video bit rate in the cell, without causing a

considerable increase in the number of rebufferings or in

the initial delay. This should be achieved under the con-

dition that an SM only accepts up to a maximum number of

concurrent requests. We also assume that the BS sends up

to a maximum number of assistance requests each time SM

assignment is performed. SM assignment is performed by

the SM-assignment module at the BS, which runs an

optimization algorithm to find the best assignment. In the

following, we formulate SM assignment as a Mixed Integer

Linear Programming (MILP) problem.

Let us consider a cell with multiple clusters. C repre-

sents the set of clusters in the cell. Each cluster, c 2 C, has

a set of helping SMs, Mc. Mc contains SMs who have

cached video segments that are currently requested by

some UEs in the same cluster. A cluster also has a set of

requesting UEs, Qc, which contains the requesting UEs, for

which, the currently requested segment can be provided by

at least one SM in Mc. If G is the set of all video segments

that can be requested, i.e., all the video segments of the

current video streams, then each SM, m 2 Mc, is caching a

subset of the video segments, Gm � G. Moreover, each

requesting UE, q 2 Qc, is currently requesting a segment

gq 2 G. For each cluster, c 2 C, Sc is the set of ordered

pairs that represents the UE-SM combinations, in which,

the SM has the segment requested by that UE. Sc can be

represented as follows,

Sc ¼ q;mh ijq 2 Qc ^ m 2 Mc ^ gq 2 Gm

� �
: ð10Þ

S0c;z is a subset of Sc, that contains only the ordered pairs

that has z as the first item in the pair, where z 2 Qc. S
0
c;z can

be expressed as,

S0c;z ¼ q;mh ijq ¼ z ^ m 2 Mc ^ gq 2 Gm

� �
: ð11Þ

Similarly, S00c;t is a subset of Sc, that contains only the

ordered pairs that has t as the second item in the pair, where

t 2 Mc. S
00
c;t can be expressed as,

S00c;t ¼ q;mh ijq 2 Qc ^ m ¼ t ^ gq 2 Gm

� �
: ð12Þ

The SM-assignment problem can be formulated as an

MILP problem as follows,
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max
X

c2C

X

s2Sc
xs � Rs �

X

z2Qc

1�
X

s2S0c;z

xs

0

@

1

A � ea=Lz
0

@

1

A

0

@

1

A;

ð13Þ

s.t.
X

s2S0c;z

xs � 1; 8z 2 Qc; 8c 2 C; ð14Þ

X

s2S00c;t

xs �Dt; 8t 2 Mc; 8c 2 C; ð15Þ

X

c2C

X

s2Sc
xs

 !

�A; ð16Þ

xs 2 0; 1f g; 8s 2 Sc; 8c 2 C; ð17Þ

where,

• xs is the binary optimization variable for the sth UE–SM

combination. It indicates whether this UE–SM combi-

nation will be selected, i.e., xs is 1 if the SM in this

combination is assigned to the requesting UE in this

combination, and 0 otherwise.

• A is the maximum number of assistance requests that

can be sent each time SM assignment is performed.

• Rs is the video bit rate of the segment for combination s,

i.e., the video segment cached at the SM and requested

by the UE in the combination.

• Dt is the maximum assistance requests that can be

concurrently assigned to SM t.

• a is an optimization parameter.

• Lz is the current playout buffer length of requesting UE

z.

Equation (13) shows the objective function to be max-

imized. The objective function is composed to two parts.

The first part (before the minus sign) is to maximize the

aggregate video bit rate. This can be achieved by assigning

to each requesting UE the SM that is caching the requested

segment with the highest video bit rate, which results in

setting the binary variable of that combination, xs, to 1. The

second part of the objective function (after the minus sign)

aims to minimizing the number of rebufferings, by ensur-

ing that the playout buffer of the UEs is above a certain

level. The parameter a decides how aggressive the opti-

mizer is in favoring playout buffer depletion avoidance

over maximizing the aggregate video bit rate. It controls

the playout buffer level the optimizer tries to maintain

before it starts assigning SMs to UEs solely to maximize

the average video bit rate.

As can be seen from the equation, the first term (that

maximizes the aggregate video bit rate) is usually much

larger than
P

z2Qc
1�

P
s2S0c;z xs


 �
 �
, because the first

term includes the video bit rate of each combination, Rs,

which usually has high values (minimum value used for Rs

is 384 kbps). As such, the exponential term, ea=Lz , is used
in the second part. This makes the values of the two parts

of the objective function comparable and allows control-

ling the overall objective (playout buffer depletion avoid-

ance vs. maximizing the aggregate video bit rate) via the

parameter a. In the case there is a UE with a low playout

buffer length, the small value of Lz will significantly

increase the value of the exponential term. As such, the

optimizer will give high priority to assigning an SM to that

UE. However, when all the UEs have a relatively high

playout buffer length, the values of the exponential term

will be small, and hence, the optimizer will focus only on

the first term of the objective function which maximizes the

aggregate video bit rate.

From the above, we can see that this results in dynam-

ically maximizing video bit rate. When there are UEs with

low playout buffer that is below a certain threshold (de-

cided by the value of a), increasing the playout buffer

length of these UEs will have higher priority than maxi-

mizing video bit rate. However, if the playout buffer length

of the UEs is above that threshold, the highest priority will

be to maximize the video bit rate. In addition to maxi-

mizing the aggregate video bit rate dynamically while

avoiding rebuffering, a considerable increase in the initial

delay can also be avoided by controlling the value of a.
This is because further increase to the value of a gives

more priority to filling up the playout buffer of clients.

The first constraint which is imposed by Eq. (14) states

that every time SM assignment is performed, a maximum

of 1 SM can be assigned to any UE. The second constraint

shown in Eq. (15) ensures that the number of requests sent

to any SM does not exceed the maximum concurrent

requests of that SM. The third constraint, which is imposed

by Eq. (16) states that every time SM assignment is per-

formed, the number of requests should not exceed a certain

value. Equation (17) specifies the variable bounds of the

optimization problem.

The above SM-assignment optimization problem is an

MILP with
P

Scj j variables, where Sc is the set of UE–SM

combinations in cluster c. Sc only contains the combina-

tions where the SM can provide the current video segment

requested by that UE. If Sc contains many combinations,

solving the above problem might not be feasible in a TTI

time. However, SM assignment does not have to be per-

formed every TTI like cellular resource allocation. As SM

assignment in DABAST is done on a segment-by-segment

basis, the SM-assignment optimization problem can be

performed on a scale of tens of milliseconds. Fortunately,

there are many commercial solvers that can solve the above

problem quickly. We employ Gurobi, a commercial
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optimization solver [42], to solve the above optimization

problem during simulations. Gurobi uses the Linear Pro-

gramming (LP)-based branch-and-bound algorithm to

solve MILP problems [42]. Furthermore, it employs many

techniques to speed up execution time of the LP-based

branch-and-bound algorithm, such as pre-solving, cutting

planes, heuristics, and parallelism. We measured the exe-

cution times of the SM-assignment optimization problem

with Gurobi. We present and discus the execution-time

results in Sect. 6.3.

6 Performance evaluation of QoE-aware
DABAST

6.1 Performance evaluation of DABAST

We used the DEVS formalism [43] to build a model for

DABAST in an LTE-A network and implemented our

DEVS model with the CD?? toolkit [43]. For detailed

description of the developed DEVS model, the reader is

referred to [12]. System-level simulations were performed

using the developed simulator to evaluate the performance

of DABAST in terms of many video streaming QoE met-

rics, and compare it to the performance of a conventional

DASH system (without D2D communication). The simu-

lation setup is shown in Table 1. The parameters in Table 1

are taken from the LTE-A standard [44]. An LTE-A cell

with high user density is considered in the simulations. As

previously mentioned, out-of-band D2D communication is

employed here. As such, no interference between cellular

and D2D communication is assumed, as each communi-

cation takes place on a separate band. The urban macro

propagation model [44] was used for cellular links with a

DL operating carrier frequency of 900 MHz, and a trans-

mission bandwidth of 10 MHz. The D2D channel model at

24 GHz was used for D2D transmission [45]. A 60 MHz

out-of-band channel is employed for D2D communication.

The LTE-A protocol stack was considered for cellular and

D2D communication [46], and all frequency resources are

allocated by the BS. Furthermore, multi-radio access

techNologies (RATs), dual connectivity, and flow splitting/

aggregation [47, 48] are employed to send multiple video

segments to a user (from more than one source) simulta-

neously, when possible.

In the beginning of each iteration of the simulations, the

UEs are located throughout the cell with a uniform distri-

bution. Then, the cell is divided into 9 clusters, where UEs

are assigned to the clusters and SMs are selected. During

each iteration, UEs randomly request and watch video

streams from a list of 500 videos. The relative popularity of

videos is modeled with the Zipf distribution. It is shown in

[49] that this is a suitable model for this purpose. As such,

some videos are more popular, and hence, have higher

probability of being requested. During each iteration of the

simulation, each UE will request two video streams. A UE

requests a video stream, and after finishing the playout, it

will request a second video. The arrival of requests is

generated according a Poisson arrival process. The videos

are available in four video bit rate levels as in Table 1.

These video bit rates are adopted from the H.264/AVC

video coding standard [50]. The length of the videos is

441 s, which is the mean length of a YouTube video [51].

Table 2 shows the mapping between the playout buffer

length to the available video bit rates. This is used by the

buffer-based video bit rate adaption approach that is

employed by the DASH controller at the clients. Round

Robin (RR) is used for cellular resource scheduling. The

number of UEs in the cell is 500 and the Zipf exponent

value is 1.5.

We measure all the video streaming QoE metrics dis-

cussed in Sect. 2, i.e., the number of rebufferings, video

continuity index, initial delay, and video bit rate. Table 3

shows the mean values of these measurements from 50

simulation runs and the Margin of Error (MoE) for 95%

confidence interval.

As one can see in Table 3, clear improvement is

achieved by DABAST over conventional DASH in terms

Table 1 Simulation setup

Parameter Value

Cellular channel BW (MHz) 10

Cell range (m) 500

Number of clusters 9

BS antenna gain (dB) 12

BS transmission power (dBm) 43

UE antenna gain (dB) 0

UE transmission power (dBm) 21

Noise spectral density (dBm) - 174

Antenna height (m) 15

Transmission model UTRA-FDD

DL carrier frequency (MHz) 900

Area configuration Urban

D2D channel BW (MHz) 60

D2D carrier frequency (GHz) 24

D2D transmitter TX power (dBm) 23

D2D large-scale fading std deviation (dB) 4.3

D2D receiver noise figure (dB) 9

D2D TX/RX height from ground (m) 1.5

Segment length (s) 10

Number of buffered segments to start playout 4

Video bit rate levels (kbps) 384, 768, 2000, 4000

Videos length (s) 441
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of all the measured QoE metrics. For instance, results show

that DABAST achieved 50% reduction in the average

number of rebufferings. This is a significant improvement

in terms of the number of rebufferings, which significantly

improves video streaming QoE for users in the cell. The

reduction in the number of rebufferings and in the

rebuffering time achieved by DABAST significantly

improved the video continuity index.

The results also show that DABAST decreased the

average initial delay by 50%, which is also a significant

improvement. In this scenario, the average initial delay for

conventional DASH is high because there are 500 UEs in

the cell requesting video streams and sharing fixed cellular

frequency resources (10 MHz). This is also because video

playout starts after receiving 4 video segments. In addition

to improving all the metrics above, DABAST also

increased the average video bit rate. With DABAST, video

segments are sent to requesting UEs from both the BS over

the cellular channel and from the SMs over the out-of-band

D2D channel, thanks to the CSVD algorithm. With con-

ventional DASH, on the other hand, video segments are

only delivered to requesting UEs through the BS over the

cellular channel. As such, DABAST significantly relaxes

the RAN bottleneck (reduces congestion) and improves the

data rates at which video segments are transmitted to

requesting UEs when compared to conventional DASH,

which decreases the transmission delays of video segments.

This reduces the likelihood of video buffer stalling, and

consequently, reduces the number of rebufferings. This

also improves the delay to transmit the first 4 segments

needed to start playout, and hence, improves the initial

delay.

We have also measured the number of video segments

transmitted over the cellular channel and over the D2D

channel. The results have shown that about half of the

video segments (49.98%) were transmitted over the D2D

channel. This shows how effective DABAST can be and

explains the significant improvements achieved by

DABAST.

Figure 2 depicts the relative frequency histogram of the

number of rebufferings for both conventional DASH and

DABAST. One can see that with DASH, over 96% of the

video streams have either 3 or 4 rebufferings. The fig-

ure also shows that with DABAST, half of the video

streams have 0 rebufferings, and slightly less than half of

the streams have 3 or 4 rebufferings. This explains the

significant improvement achieved by DABAST in terms of

the average number of rebufferings (Table 3). Even in the

case of DABAST, there are users who experience 3 and 4

rebufferings. This is because we consider the case where

there are no video segments are cached in the beginning,

and that video segments are cached progressively as

requested. However, after video segments accumulate in

the distributed caches in the cell, many video segments will

be sent from the SMs over the D2D channel.

These segments will be transmitted faster to the

requesting UEs which prevents rebufferings. Furthermore,

as many of the segments are now sent over the D2D

channel, more cellular resources will be available for video

streams that receive segments exclusively through the BS.

This relaxes the RAN bottleneck and reduces the trans-

mission delays for such segments, which reduces the pos-

sibility of playout buffer depletion, decreasing the number

of rebufferings by 50%.

The number of received video segments with each video

bit rate is shown in Table 4 for conventional DASH and

DABAST. One can see that in the case of DABAST, fewer

video segments were received with the lowest video bit rate

(384 kbps) and more video segments were received with

higher video bit rates (768, 2000, and 4000 kbps). As such,

the average video bit rate of DABAST is higher than that of

conventional DASH, as shown in Table 3. In the case of

DABAST, some clients receive video segments from both

the BS and the SMs. These clients usually have longer

video playout buffer length because they receive video

segments with higher transmission rates. As such, these

clients request video segments with higher video bit rates,

which explains why some video segments were received

with higher video bit rates in the case of DABAST.

However, one can see from the results in Tables 3 and 4

that only a small improvement is achieved by DABAST in

terms of the video bit rate. As this is a high traffic load

scenario, the average data rates for users in the cell are low,

Table 2 Playout buffer length-video rate mapping

Playout buffer length (s) Video bit rate (kbps)

0 B L B 90 384

90\L B 150 768

150\L B 200 2000

200\L 4000

Table 3 Simulation results

Conventional DASH DABAST

Mean MoE Mean MoE

Rebufferings 3.4448 0.0179 1.7272 0.0164

Cont. index 0.7447 0.0009 0.8699 0.0001

Initial delay (s) 56.881 0.2200 28.654 0.4821

Video bit rate (kbps) 397.27 0.3267 430.16 1.3694
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and consequently, their playout buffers are low. Hence,

video segments are usually received and cached in the SMs

with the lowest video bit rate. Furthermore, under high

traffic load, the BS sends a cached video segment from the

distributed cache even if the video bit rate of the cached

segment does not match that requested by the client. As

previously mentioned, this is to increase the utilization of

the D2D channel and reduce the RAN bottleneck, which

reduces the number of rebufferings. Hence, despite the

increase in the data rates and playout buffer lengths

achieved by DABAST for some clients (which increases

the requested video rate), these clients still receive most

segments with low video bit rate (from the distributed

cache). Only when caching SMs are not available for

assistance, cached segments are received through the BS

with higher video bit rates.

We would like to shed some light into the feasibility of

using UEs as SMs in the cell. Each SM in the simulations

above caches two videos. Given that the average video bit

rate delivered to UEs is 430.16 Kbps (Table 4), the needed

storage capacity by each SM is about 370 Megabytes (not

even 1 Gigabyte). This is very affordable considering that

smart devices nowadays have storage capacity of multiple

Gigabytes (e.g., 32–128 GB).

6.2 QoE-aware cellular resouce allocation

We ran simulations to evaluate the performance of

DABAST in terms of video streaming QoE with all the

scheduling algorithms discussed in Sect. 4 (RR, PF, and

BB). We measure the same QoE metrics used in Sect. 6.1.

The simulation scenario and the setup in Sect. 6.1 (Table 1

and Table 2) are also used here. Table 5 shows the mean

values of the measured QoE metrics along with the MoE

values for 95% confidence interval. The values in Table 5

show the mean of all the average values from 50 simulation

runs. The results in Table 5 are for 500 UEs in the cell,

Zipf exponent of 1.5, and 500 videos.

When comparing the results for DABAST with RR and

PF scheduling, it can be seen that PF scheduling reduces

the average number of rebufferings by 0.2848 (16.49%

reduction), which is a considerable improvement.

Employing PF scheduling also caused a slight improve-

ment in the continuity index and in the average video bit

rate. With PF scheduling, the scheduling metric considers

the ratio of the instantaneous data rate of the UE to the

recent average throughput of the UE. The recent average

throughput considers the data transmitted over both the

cellular and D2D resources. By maintaining the recent

average throughput of each UE, we consider the video data
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Fig. 2 Relatve frequency histogram of the number of rebufferings for conventional DASH and DABAST

Table 4 Count of the received segments with each video bit rate

Video bit rate (kbps) Count

Conventional DASH DABAST

384 2,207,508 2,077,111

768 31,494 149,365

2000 10,998 19,273

4000 0 4251
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that is transmitted over both the cellular and the D2D

channel. Hence, for UEs that received segments over the

D2D channel, the recent average throughput will be rela-

tively high, which consequently leads to favoring UEs with

lower recent average throughput. Usually, these are UEs

with low playout buffer and UEs that receive their video

segments exclusively over the cellular channel. In this

scenario, where many UEs are sharing the cellular channel,

it would be beneficial to dedicate the limited cellular

resources to UEs that can only get their video segments

over the cellular channel. This will increase the cellular

resources for these users, and further relax the bottleneck of

the RAN, which reduces the number of rebufferings and

increases the continuity index.

Although PF scheduling keeps track of the recent

average throughput for each UE, which helps in reducing

the average number of rebufferings, it is oblivious to the

current playout buffer length of users. There are many

cases where a high value of the recent average throughput

might falsely indicate a high playout buffer length value. A

general case is when a video segment with high video bit

rate is transmitted to a UE. Although in such case the UE

experienced high recent throughput, this was used to send

relatively less video content (in s) due to the high video bit

rate of the segment. There is a different and more com-

plicated case that is specific to DABAST. With DABAST,

a video segment might be sent over the D2D channel when

found in the distributed cache, although the previous video

segment is still being transmitted over the cellular channel.

This speeds up transmission of video segments and keeps

the playout buffer length consistently high. It is worth

explaining that in such case, the previous segment was set

for transmission over the cellular channel due to unavail-

ability of SMs at the time this decision was made. In this

case, the UE will have a high recent average throughput

because a segment is transmitted over the D2D channel.

Hence, the PF scheduling metric for this UE will be low,

although the previous video segment is still being trans-

mitted over the cellular channel. A low scheduling metric

means that the PF scheduler will give low priority to this

UE when allocating cellular resources. This usually does

not result in rebuffering because such UEs (playing videos

cached in the SMs) have relatively higher playout buffer as

most segments are delivered over the D2D channel. Hence,

the segment transmitted over the cellular channel arrives

before consumption of the playout buffer. However, this

might result in high initial delay when the UE is awaiting

the initial video segments needed to start playout. This

explains why the average initial delay is higher for

DABAST with PF scheduling.

Table 5 shows that employing BB scheduling achieved

significant improvement in terms of rebuffering. BB

scheduling achieved 49.13% and 39.08% reduction in the

average number of rebuffering over RR and PF, respec-

tively. Table 5 shows that BB scheduling also significantly

increased the continuity index. BB scheduling achieved

these improvements in terms of rebuffering, while

achieving a slight improvement in the average initial delay.

With BB scheduling, the scheduler considers the reported

playout buffer length as well as an estimation of the length

of transmitted video contents. As such, the scheduler will

be always aware of the current playout buffer length at the

UEs, and hence, avoid rebufferings by allocating more

resources to users with low playout buffer. This explains

the improvement achieved by BB scheduling in terms of

the number of rebufferings and the continuity index.

Because BB scheduling keeps track of the actual playout

buffer length, it will allocate resources to a UE if it cur-

rently has a relatively low playout buffer, even if the next

segment is transmitted over the D2D channel. As such, BB

scheduling does not increase the initial delay as with PF

scheduling.

Table 5 shows that BB scheduling results in a very

slight reduction in the average video bit rate. BB

scheduling has 428.72 kbps average video bit rate, which is

only 0.33% and 1.1% reduction when compared to RR and

PF scheduling, respectively. This is a negligible reduction

that is not even noticeable by the end user. This reduction

is expected as BB scheduling utilizes more of the cellular

resources to help users who get their video segments

exclusively through the BS, and hence fewer segments will

be sent with higher video bit rate to users with higher

playout buffer, i.e., users who get some of their segments

over the D2D channel.

Figure 3 depicts the relative frequency histogram of the

number of rebufferings for DABAST with RR, PF, and BB

resource allocation. When comparing RR and PF

scheduling, one can notice that with PF scheduling, more

Table 5 Simulation results (RR

vs. PF vs. BB)
DABAST-RR DABAST-PF DABAST-BB

Mean MoE Mean MoE Mean MoE

Rebufferings 1.7272 0.0164 1.4424 0.0127 0.8787 0.1195

Cont. index 0.8699 0.0001 0.8923 0.0009 0.9258 0.0079

Initial delay (s) 28.654 0.4821 31.588 0.3159 28.376 0.7506

Video bit rate (kbps) 430.16 1.3694 433.47 0.8354 428.72 1.6469
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video streams have 0, 1, and 2 rebufferings, and fewer

video streams have 3 and 4 rebufferings. This explains the

improvement achieved with PF over RR scheduling in

terms of the average number of rebufferings. However, one

can see from Fig. 3 that with PF scheduling, there is a very

small number of streams (0.1%) that have 5 rebufferings.

As discussed above, this is because the PF scheduler is

oblivious to the current playout buffer length of the users in

the cell, and in some cases the higher value of the recent

average throughput does not necessarily indicate a longer

playout buffer. As such, the PF scheduler might ignore

such users and cause them to experience 5 rebufferings.

Figure 3 shows that BB scheduling significantly reduced

the number of streams with 3 and 4 rebufferings, and

eliminates the case of 5 rebufferings. This explains the

significant improvement achieved by BB scheduling in

terms of the average number of rebufferings, and shows the

importance of the playout buffer length awareness at the

scheduler.

As mentioned in Sect. 6.1, in each simulation run, each

UE requests and watches two videos consecutively. After

playout of the first video, a UE stays idle for a random

period of time, and then generates another request for a

video stream. Figure 4 shows the relative frequency his-

togram for the number of rebufferings of each request for

DABAST with RR, PF, and BB resource allocation. The

figure shows that all the rebufferings take place during the

first set of video streams. This is because at the time most

of the first video streams start, there are no video segments

cached in the distributed caches. Hence, most of the video

segments will be delivered over the cellular channel. As

such, the limited cellular channel will be shared by the

large number of users. This explains the high number of

rebufferings experienced by user in the first set of video

streams. All the streams in the second set have 0

rebufferings. By the time the second set of streams starts,

there will be many video segments cached in the clusters.

Hence, many of the segments will be delivered over the

D2D channel, which improves the data rates and eliminates

rebufferings, as previously discussed.

Figure 5 shows the histogram of the continuity-index for

DABAST with RR, PF, and BB resource allocation. As can

be seen from the figure, although PF scheduling increased

the continuity index value for many video streams when

compared to RR scheduling, there is a small number of

streams that have continuity index values less than 0.7,

which is the lowest value with RR scheduling. These are

the users who experience 5 rebufferings, as explained

above. With BB scheduling on the other hand, the conti-

nuity index value for many streams have increased, and the

minimum value did not decrease (still at 0.7).

6.3 HRC and SM-assignment optimization

Simulations were executed to evaluate the performance of

DABAST with the techniques discussed in Sect. 5. We

consider 3 versions of DABAST; DABAST with BB

scheduling (BB), DABAST with BB scheduling and HRC

(BB-HRC), and DABAST with BB scheduling, HRC, and

SM-Assignment optimization (BB-HRC-SMA). The
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Fig. 3 Relative frequency histogram of the number of rebufferings for DABAST with RR, PF, and BB resource allocation
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simulation setup in the previous sections (Tables 1, 2) was

also used here. As previously discussed in Sect. 5, we

consider the case of HRC when the traffic load is not high

enough to cause reoccurring video buffer stalling for users

in the cell. As such, we consider a cell with 300 UEs in the

simulations. Moreover, a Zipf exponent of 1.5 and 500

videos are considered. We measure the same QoE metrics

used in the previous sections. Table 6 shows the mean

values along with the MoE values for 95% confidence

interval of the measured QoE metrics. The table shows the

values for the three versions of DABAST, i.e., BB, BB-

HRC, and BB-HRC-SMA. The average value for each

simulation run was calculated. The values below show the

mean of all the average values from 120 simulation runs.

Table 6 shows that for BB and BB-HRC-SMA, the

average number of rebufferings is 0, while BB-HRC

resulted in a negligible increase in the number of

rebufferings. Table 6 shows that for BB-HRC, the average

RR PF BB

0.1%

54.5%
45.4%

100.0%

9.1%
2.7%

11.5%

44.2%

32.3%

0.2%

100.0%

9.4%

35.0% 35.7%

10.4% 9.6%

100.0%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

First request
S

econd request

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Number of rebufferings

R
el

at
iv

e 
fre

qu
en

cy

Fig. 4 Relative frequency histogram of the number of rebufferings in each request for DABAST with RR, PF, and BB resource allocation

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

x 10
4

Continuity index

C
ou

nt

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

x 10
4

Continuity index

C
ou

nt

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

x 10
4

Continuity index

C
ou

nt

RR

PF

BB

Fig. 5 Histogram of the

continuity index for DABAST

with RR, PF, and BB resource

allocation

2068 Wireless Networks (2020) 26:2051–2073

123



number of rebufferings is 0.0036. A further inspection of

the results of BB-HRC has shown that the maximum

number of rebufferings experienced by a UE is 1. This

means that out of the 300 UEs, about one UE might

experience 1 rebuffering. Regarding BB, it is expected to

have the least average number of rebufferings, as it does

not employ HRC, which means no video segments are

downloaded with high video bit rate. When comparing BB-

HRC and BB-HRC-SMA, we can see that in addition to

significantly improving the video bit rate, BB-HRC-SMA

completely avoided any rebufferings. Thanks to SM-as-

signment optimization, where every time SM assignment is

performed, the SMs are assigned in parallel to the UEs, i.e.,

the optimizer has a global view of the available SMs and

the requesting UEs. With BB-HRC, on the other hand, SMs

are assigned to UEs sequentially. The assignment module

goes through the requesting UEs in a descending order of

their scheduling metric (ascending order of their playout

buffer length), and each time allocates to that UE the

available SM (if any) with the least load, to achieve load-

balancing between SMs. This way, the SM-assignment

module might assign to a UE the SM with the least load

among the available SMs, although that SM could be the

only one available for the next requesting UE. This

explains why BB-HRC caused a very slight increase in the

average number of rebufferings.

In addition to avoiding rebufferings, BB-HRC-SMA

significantly improved the average video bit rate over other

versions of DABAST. The results show that BB-HRC-

SMA achieved 295.94 kbps (64.47%) and 119.9 kbps

(18.88%) increase in the average video bit rate over BB

and BB-HRC, respectively.

Regarding the average initial delay, we can see that

HRC has caused a very slight increase in the average initial

delay. The results show that BB-HRC caused only 0.3 s

(1.56%) increase in the initial delay, and BB-HRC-SMA

caused only 0.94 s (4.88%) increase in the initial delay

over BB. This is expected as many segments with higher

video bit rates are transmitted with HRC. The slight

increase in initial delays can be explained as follows.

Although with HRC the first few segments are still sent

with low video bit rate, other (subsequent) segments are

transmitted with high video bit rates over cellular resour-

ces. This increases the amount of data to be transmitted

over cellular resources and increases the contention for

cellular resources, which causes slightly higher initial

delays for other users that are currently receiving the first

few segments. However, this is a small price to pay con-

sidering the significant improvement achieved in terms of

the average video bit rate.

Figure 6 depicts the Empirical Cumulative Distribution

Function (ECDF) of the initial delay for each version of

DABAST. From the figure, one can see that all versions of

DABAST have very close distribution for the initial delay,

with a slight difference in the ECDF of BB-HRC-SMA for

values lower than 25 s. This means that the slight increase

in initial delay caused by HRC is not experienced by a

small group of UEs, but rather distributed over the UEs in

the cell. Thanks to BB scheduling, where cellular resources

are allocated to UEs with low playout buffer, which dis-

tributes the extra delay caused by transmission of high

video bit rate segments over all UEs in the cell sharing

cellular resources.

We calculated the average maximum initial delay,

which is the average maximum delay from all the simu-

lation runs. The average maximum delay values for BB,

BB-HRC, and BB-HRC-SMA are 35.31, 35.561, and

35.459, respectively. This means that HRC only caused a

negligible increase in these values, which further shows the

importance of BB scheduling.

Table 6 Simulation results for

DABAST (BB vs. BB-HRC vs.

BB-HRC-SMA)

BB BB-HRC BB-HRC-SMA

Mean MoE Mean MoE Mean MoE

Rebufferings 0.0 0.0 0.0036 0.0004 0.0 0.0

Cont. index 1.0 0.0 0.9997 0.0003 1.0 0.0

Initial delay (s) 19.280 0.1457 19.580 0.1694 20.222 0.1474

Video bit rate (kbps) 459.06 0.9697 635.10 4.6248 755.00 5.8524
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Table 7 shows the number of video segments received

with each video bit rate, for the different versions of

DABAST (BB, BB-HRC, and BB-HRC-SMA). When

comparing the results of BB and BB-HRC, one can see the

with BB-HRC, fewer video segments are received with the

lower video bit rates (384 and 768 kbps), and 386,315

video segments are received with high video bit rate

(2 Mbps). These are the segments of popular videos that

are downloaded and cached in the SMs with high video bit

rate. When comparing the results of BB-HRC and BB-

HRC-SMA, one can see that with BB-HRC-SMA, 240,638

more video segments are received with video bit rate of

2 Mbps. Most of these 240,638 video segments are

received with the lowest video bit rate in the case of BB-

HRC. This explains the further improvement achieved by

BB-HRC-SMA over BB-HRC in terms of the average

video bit rate.

As previously mentioned, we employ Gurobi, a com-

mercial optimization solver, to solve the SM-assignment

optimization problem during simulations. We measured the

execution times of the SM-assignment optimization prob-

lem with Gurobi for the simulations in this subsection

(Sect. 6.3). The used machine has a Quad-core Intel i7

processor with a speed of 3.6 GHz 9 8 threads. Measure-

ments have shown that the maximum execution time of the

problem was 10 ms, which is adequate for the time scale of

SM assignment (tens of milliseconds as previously dis-

cussed). We also measured the execution times for the

solver with 500 UEs. The maximum execution time in such

scenario goes up to 20 ms, which is still adequate for the

time scale of SM assignment. However, as discussed in

Sect. 5, HRC and SM-assignment optimization are not

employed under such scenario with high traffic load.

Finally, let us again have look at the storage capacity

needed by SMs in this case. More specifically, we are

interested in the HRC case, where video segments are

cached in high video bit rate, i.e., 2 Mbps. As mentioned

above, the first 4 segments are always cached with the

lowest video bit rate, while the remaining segments are

cached with high video bit rate (2 Mbps). Recall that each

SM stores 2 video files. As such, the storage capacity

needed by each SM in this case is 1596.4 MB (1.56 GB).

As discussed in Sect. 6.1, this amount of storage capacity is

affordable nowadays, considering that smart devices have

storage capacity of multiple Gigabytes (e.g., 32–128 GB).

7 Conclusion

The increasing popularity of video streaming is escalating

the growth of data traffic to be transmitted over cellular

networks and raising the challenge for cellular network

operators. Consequently, supporting video streaming ser-

vices while achieving user satisfaction about the video

service has become a main concern for cellular network

operators. As such, it is necessary not only to develop new

techniques to improve the delivery of video streaming

traffic, but also for the new techniques to consider the

complex, dynamic, and delay-sensitive nature of video

streaming traffic to provide the end users with good quality

of experience (QoE) video streaming. In this work, we

present our proposed architecture for improving the QoE of

video streaming over cellular networks with high user

density. The architecture employs the cached and seg-

mented download algorithms, which provide base-station

(BS)-assisted progressive caching of video segments in

storage members (SMs) and device-to-device (D2D) video

transmission in cellular networks. Dynamic adaptive

streaming over HTTP (DASH) is also employed by the

architecture to allow adaptive video streaming. The archi-

tecture is called DASH-based BS-Assisted D2D video

STreaming in cellular networks (DABAST). We evaluate

the performance of DABAST, through computer simula-

tions, in terms of video streaming QoE metrics. Results

show that DABAST achieves significant improvements in

terms of QoE when compared to conventional video

streaming over a cellular network, i.e., DASH streaming

without collaborative D2D communication.

We improve the operation of DABAST by introducing

QoE awareness to both caching and distribution of video

segments. We employ QoE awareness in three aspects of

DABAST; cellular resource allocation, caching of video

segments, and SM-assignment optimization. We analyze

the performance achieved by each QoE-awareness tech-

nique in terms of video streaming QoE metrics. We pro-

vide a thorough analysis of the results which show that all

the proposed QoE-awareness techniques significantly

improve the performance of DABAST.
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Table 7 Count of the received segments with each video bit rate

Video bit rate (kbps) Count

BB BB-HRC BB-HRC-SMA

384 2,606,646 2,360,752 2,121,270

768 633,354 492,933 491,777

2000 0 386,315 626,953

4000 0 0 0
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Université d’Aix-Marseille III,

France. In July 2000, he joined

the Department of Systems and

Computer Engineering at Car-

leton University (Ottawa, ON,

Canada), where he is now Full

Professor and Associate Chair

for Graduate Studies. He has

held visiting positions at the

University of Arizona; LSIS
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