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Abstract— The technological advancement in Cyber- 
Physical Systems (CPS) has evolved into sophisticated 
hardware, leading to systems that are complex and 
interconnected. This trend has made modern CPS 
susceptible to faults. Traditional methods for fault 
detection and diagnosis are unable to adequately scale up 
to manage the faults that occur in CPS because of the tight 
interconnectivity between the physical and cyber parts of 
CPS. Also, hard real-time constraints present challenges 
that are not sufficiently addressed by traditional fault- 
tolerant design approaches; therefore, new methods are 
needed to deal with these faults. Here, we present a new 
scheme to detect and diagnose CPS faults, which relies on the 
combination of knowledge-based and model-driven Fault 
Detection and Diagnosis (FDD). The method is developed to 
be applied when building CPS using Discrete Event 
Methodologies. 
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I. INTRODUCTION 

The steady advancement in sensing, actuation, and 
control system computing technologies has led to the 
development of complex systems, including 
smartphones, autonomous vehicles, smart grids, 
automated buildings, smart cities [1]. The common 
characteristic of these systems is the tight coupling of 
hardware and software capabilities and constraints as 
well as the combination of heterogeneous components. 
These devices have hardware with advanced sensing and 
actuation with embedded computing capabilities. 
Similarly, the software now includes tools for data 
management, learning methods, and optimization [2] 

This level of complexity has necessitated the 
development of theoretical and practical methods for 
developing CPS. The main objective of the theory of CPS 
is to ensure that the interaction between software and 
hardware designs is better coordinated. Better 
coordination is achieved through improved awareness of 
the constantly evolving environment and improved 
capacity to handle huge amounts of data. [3] 

 
Current CPS are such that their designs are 

combinations of several subsystems and can become 
large and difficult to manage. Similarly, there is a tight 
interconnection between the physical and cyber parts, and 
these are closely designed together, which adds another 
level of complexity. In addition to the complexity of the 
design process, modern-day CPS are fully or partially 
autonomous with multiple and diverse applications. The 
literature in the field shows a wide acceptance of the 
benefits that automated control brings to manage this 
complexity. However, with increased complexity, tight 
interconnection, and automation, CPS are more 
susceptible to faults, making them more fragile [3][4]. 

Despite the complexity inherent in the design of CPS, 
the sensitivity of the applications of CPS require that they 
must be fault and failure tolerant. To design failure and 
fault-tolerant CPS, design methods must be able to 
anticipate the occurrence of faults, detect faults, and 
respond to these faults thereby preventing them from 
escalating to failure. Fault detection and diagnosis 
methods, when incorporated into the design of CPS, are 
computationally intensive. Therefore, they should be 
event-triggered and must be able to differentiate between 
faults and uncertainties. 

With this panorama in mind, we will propose a 
generic fault detection and diagnosis scheme capable of 
diagnosing CPS faults in real-time. The scheme is 
developed to accommodate different modeling methods 
but for clarity of explanation, we adapt it to the Discrete 
Event System Specification (DEVS) formalism. To 
assess the scheme, we implemented a library to store fault 
codes in a data structure and developed intelligent logic 
to ensure faults are correctly detected and isolated. 

II. BACKGROUND 

The main goal of Fault Detection and Diagnosis 
(FDD) is to correctly determine the nature, extent, 
location, and time of detection of a fault, based on 
available measurements obtained from the system [5]. To 
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properly detect and diagnose a fault, several researchers 
have proposed the following sequence: firstly, execute a 
fault detection step, where faults are detected using any 
mechanism prescribed by the system designers; after a 
fault has been detected, isolate the fault and determine the 
physical location of the fault; then, determine the nature 
of the fault and determine the extent of the impact of that 
fault in a process called fault identification and risk 
assessment [3][6]. 

There have been many methodologies proposed for 
FDD. However, FDD in CPS is challenging. The 
complex nature of CPS makes it difficult to distinguish 
faults from uncertainty (noise) and we need robust FDD 
to avoid false alarms. Faults in CPS can affect multiple 
components, therefore, FDD in CPS must be able to 
handle multiple faults. In large CPS, it is difficult to 
isolate faults that occur within their sub-systems and 
when these faults occur, they could quickly escalate to 
failures; hence, another challenge is to ensure that the 
faults are detected and isolated promptly [3] 

Timeliness is particularly important for safety-critical 
CPS systems in which the control of the CPS is done with 
the aid of sensors, a control algorithm, and actuators. In 
these systems, failing to meet timing deadlines can have 
significant effects. Undetected faults can affect 
timeliness, leading to potential system instability with 
catastrophic consequences [7] 

There have been different methods proposed for FDD 
for CPS, which can be classified based on three major 
paradigms, viz., model-based, data-driven/knowledge- 
based, and hardware-based [8]. Several methods have 
been proposed for each of these paradigms and it is 
important to note that they are not mutually exclusive but, 
in the following, we will adopt this classification. 

- Model-Based FDD: they are based on the use 
of a model developed based on some of the properties of 
CPS physics. These models can be qualitative, in which 
input-output relationships are expressed as qualitative 
functions; or quantitative, where the input-output 
relationship is expressed in terms of a mathematical 
function. [9]. 

- Data-Driven/Knowledge-Based FDD: they 
use models obtained from known input and output CPS 
data. This generates a data-driven model of the process. 
The model is then compared with real-time process data 
to find faults. 

- Hardware-Based FDD: we could use 
dedicated hardware or hardware integrated as part of the 
CPS. Typically, methods that fall within this category do 
not use models (unlike the other two methods). 

Model-Based FDD methods are the most effective in 
detecting and diagnosing unknown faults because the 

method does not depend on large real-time data for its 
detection and diagnosis. On the downside, the models 
used must define the input/output relationships 
accurately, and not all modeling techniques are adequate 
for this. The Knowledge Based FDD methods are 
particularly good for real-time FDD, however, they 
require large sets of historical data which may increase 
computational complexity. In this work, we explore the 
advantages of combining the knowledge-based and 
model-based FDD approaches [10]. 

As discussed in the introduction, we are interested in 
applying these methods to the development of CPS using 
the DEVS formalism, a formal modeling methodology 
based on systems theory [11]. The DEVS formalism 
decomposes complex systems into atomic and coupled 
models, where the atomic models specify the behavior, 
and the coupled model specifies the structure [12]. In 
DEVS, a CPS can be modeled as a composite of atomic 
and coupled models. DEVS provides a rich structural 
representation of components and can explicitly specify 
timing, which makes it easily adaptable for real-time 
systems. Various real-time systems have been 
successfully developed using DEVS [13][14][15]. 

The application of DEVS for real-time systems adds 
another level of difficulty because real-time constraints 
require that models now must interact with the 
environment in real-time. The environment could include 
software, hardware components, or human operators. 
DEVS by default is unable to manage this for a few 
reasons. DEVS uses virtual time (periods of inactivity are 
skipped) and we need to use a real-time clock for real- 
time CPS. The computing platforms used can affect the 
physical time it takes to execute a model, which creates a 
disparity between a simulated model and what happens in 
the physical system. Similarly, state transitions in DEVS 
events are defined to occur instantaneously (e.g., an event 
is defined as taking zero time); however, in real-time 
simulation state changes and operations may occur during 
a time interval (or a time window). Finally, it is difficult 
to validate simulated models in the real world [16][17] 

To address the problem of adapting DEVS for real- 
time systems, different researchers have produced 
different approaches that fall under two categories: new 
design methods for modeling real-time systems (for 
example, extending the DEVS formalism) or executing 
logical models using real-time DEVS simulators. 

Different approaches extend the DEVS formalism; 
for instance, [18] introduced the use of time windows or 
the concept of uncertainty intervals explored in [19]. A 
time window is a function that can take a value within a 
range instead of a single instant like the time advance; this 
allows events to occur within a period. In [17], Real-Time 
DEVS (RT-DEVS) was proposed; RT-DEVS is a major 
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milestone because other approaches that extended the 
DEVS formalism have some similarities with RT-DEVS. 
In RT-DEVS, real-time execution of models is facilitated 
by the addition of time interval functions (time- 
windows). With time windows, we can restrict the 
simulation time to ensure real-time execution. The 
concept of activity specification with constraints is 
defined for each state, which means some computation 
can be done without any modification to the state. The 
drawback of the RT-DEVS formalism is that activities 
are not explicitly included in the internal and external 
transition functions making it impossible to prioritize 
activities and it does not support receiving multiple inputs 
and sending multiple outputs because it is based on 
Classical DEVS. To tackle these drawbacks, [16] 
proposed the Action Level RT DEVS, which specifies 
constrained and schedulable actions in addition to 
individual state changes. Other researchers that employed 
an RT-DEVS simulator include DEVS on a chip [20], 
ECD++ [21], Power DEVS [22], and ECDboost [23]. The 
advantage of adding real-time functionalities to a DEVS 
simulator is that it does not add an extra level of 
complexity for the modeler and models developed using 
these simulators are backward compatible with existing 
DEVS models. 

In analyzing the definition of a fault, it is important to 
note that when the model has been designed and the 
modeler considers it is correct, it will not normally 
change. However, when this model is deployed to the 
target platform as a control software using DEVS which 
we call the Discrete Event Control Software (DECS), the 
DECS could violate the specification originally described 
by the model. From the foregoing, we will say that a fault 
in a DEVS-based CPS has occurred when the behavior of 
the CPS does not conform to the specification defined in 
the DEVS model. 

III. GENERIC FDD IN DEVS 

In this section, we propose a generic FDD scheme to 
detect and isolate faults. The scheme is designed to satisfy 
the following requirements: 

1. Correctly identify faults and distinguish them from 
noise or uncertainty 
2. Isolate faults within a complex CPS 
3. Manage multiple faults 
4. Prevent faults within subsystems from escalating 
into major faults 
5. Consume minimum resources and have fast 
computation. 

The scheme is event-based, and it only triggers the 
fault tolerance algorithm when the values that fall out of 
range within the CPS are confirmed to be faults. This is 
because not all values that fall out of range are faults. It 

could just noise or uncertainty. Within the CPS model, 
we would define algorithms for fault tolerance. These 
algorithms would only be executed when a fault has been 
confirmed by the FDD scheme presented in this section. 
The scheme is shown in Fig. 1. 

 
Fig. 1.   Proposed CPS FDD Scheme 

 
The first component is the CPS DEVS Model. It is a 

model of the CPS using DEVS, which is used for testing 
and to populate the Knowledge Base with faults. Once 
this model has been specified and implemented, we can 
execute it in a simulation environment: the CPS 
Simulation Environment component. This is a model of 
the environment of the CPS that allows us to simulate the 
CPS DEVS Model. With these simulations, we can study 
the model’s behavior in various scenarios. Based on the 
simulation results, we can go back to the CPS DEVS 
Model, modify the specifications if needed, and run new 
simulations. We also use the CPS Simulation 
Environment to study the model for possible faults. These 
studies would provide data to populate the Knowledge 
Base component. Once we are satisfied with the 
simulation results, the CPS DEVS Model, which was 
already evaluated using the CPS Simulation 
Environment, is deployed into the target platform and it 
is transformed into the DECS. 

The DECS component is deployed into the target 
platform for operational purposes. After the model has 
been ported to the target platform, we perform further 
testing and calibration. We may need to go back and 
redefine the CPS DEVS Model as the testing of the DECS 
in the real world or the CPS Simulation Environment may 
reveal some potential faults or design errors that were not 
properly captured in the initial specification. In that case, 
we would always go back to the CPS DEVS Model and 
modify it. Every modification should be done in the 
original model. Any fault information observed during 
testing and calibration of the DECS is stored in the 
Knowledge Base component. 

The Knowledge Base (KB) is a database that holds 
information about the known set of faults that can occur 
in the CPS. The Knowledge Base evolves through the 
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lifetime of the CPS because as new faults become known, 
information about these faults would be updated in the 
Knowledge Base. The information about faults is 
obtained from the simulation of the CPS DEVS Model in 
the CPS Simulation Environment, and in the experiments 
performed on the DECS. The supervisor communicates 
with the Knowledge Base to confirm faults. 

During its operation, if a fault occurred, the DEVS 
Based CPS would send the fault information to the 
Supervisor, an intermediate component between the 
DEVS Based CPS and the Knowledge Base that manages 
the fault detection process. When the DEVS Based CPS 
notifies values out of range, it confirms with the 
Knowledge Base if a fault has occurred. If a fault 
occurred, it notifies the DEVS Based CPS to take the 
recommended actions about that fault. 

In the rest of the section, each component that makes 
up the FDD scheme shown in Figure 1 is explained in 
more detail. 

A. CPS DEVS Model 
The first step for developing the CPS DEVS Model is 

understanding the CPS of interest and defining a 
requirements document about the expected behavior of 
the system. Deviations from the expected behavior are 
going to be considered faults, and they will be added to 
the Knowledge Base. With the information obtained from 
the requirements, we build a model of the CPS, including 
mechanisms to report deviations in the expected 
behavior. The model would be designed to send a special 
type output whenever these values fall out of range, called 
fault messages (fm). The fm is a unique code with 
information about the atomic model and the state variable 
out of range. The structure of the fm message is like the 
fault_id in the Knowledge Base, which would be 
described in section D. We do not call it fault_id because 
it is not yet confirmed as a fault from the Knowledge 
Base. While an fm can be a fault or uncertainty, a fault_id 
will be used for actual faults. 

After the model has been specified, we would test it 
using the CPS Simulation Environment. After we are 
satisfied with those tests, we would port it to the target 
platform where more tests and experiments are done. The 
tests and experiments conducted in both the simulation 
environment and the target platform can yield results that 
will result in a redesign of the model. 

B. CPS Simulation Environment 
The CPS Simulation Environment allows us to 

evaluate the CPS DEVS Model. During this testing 
phase, we confirm that the model behaves as expected. 
We also deliberately inject possible faults (for example 
feeding the model with inputs that are out of range to 
observe how the model responds to these faults. This 

provides more information about faults. It also allows us 
to improve the model with different methods to respond 
to these faults. Once we are convinced with the 
simulation results, we port the CPS DEVS Model to the 
target platform. The model deployed into the target 
platform is the DECS detailed in section C. Information 
about faults discovered during the simulations is used to 
populate the Knowledge Base component described in 
section D. 

C. DECS 
The CPS DEVS Model ported to the target platform 

and now operating in its environment is the DECS. This is 
controlling a physical system in its operating environment 
and thus it is prone to faults and uncertainties. Therefore, 
after the models have been ported to the target platform, 
we conduct more tests. If new faults are discovered 
during them, we may redefine the CPS DEVS Model, 
and we would include the information about these new 
faults in the Knowledge Base. After testing is complete, 
the DECS is now ready for the operating environment. 

During its operational phase, the DECS 
communicates with the Supervisor through its physical 
output ports. The DECS would send an output fault 
message (fm) to its physical output port whenever there 
is a value or a set of values out of range. As the DECS is 
the CPS DEVS Model in the target platform, fm is the 
message earlier explained. Each component specified as 
a DEVS atomic model would be able to generate an fm 
to indicate that there is a value out of range, and 
therefore, there may be a fault within the CPS. 

D. Knowledge Base 
The Knowledge Base is a database that holds 

information about faults that can occur in the DEVS 
Based CPS. To initially populate the Knowledge Base, 
this information is obtained from the following sources: 

• CPS DEVS Model: possible faults that can occur 
identified during the analysis of the system and the design 
of the model 

• CPS Simulation Environment: faults identified 
during experimentation on the simulated environment. 

• DEVS Based CPS: Experimentation and testing 
operation of the CPS within its operating environment 

The Knowledge Base is updated whenever new faults 
are identified using the actual data retrieved from the 
DEVS Based CPS operation. It is important to remark 
that the Knowledge Base would evolve through the life 
cycle of the CPS. Not all faults can be captured in the 
design stage, therefore if new faults appear during the 
operation of the CPS, they will be added to the 
Knowledge Base. 
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The faults in the Knowledge Base are associated with 
a frequency of occurrence. The frequency of occurrence 
is updated using the faults that occur during the CPS daily 
operations. 

The information stored in this component is important 
for two reasons. Firstly, it would be a source of 
information to update the models if needed; for example, 
if we obtain fault information from a test or the physics 
of the CPS that was not captured in the original design, 
we can use this information to update our CPS DEVS 
Model. Secondly, it is a critical component in the FDD 
schema because we will use this information to confirm 
the presence or absence of a fault in the CPS. 

To ensure proper operation of the FDD scheme, the 
Knowledge Base component must meet the following 
requirements: 

• Minimize memory usage: Because CPS have 
memory constraints, the added FDD should minimize 
memory usage to ensure it does not degrade the 
performance of the original CPS. 

• Allow for quick and reliable search: The real-time 
requirement of the CPS makes any FDD scheme useful 
only when it can produce a quick and accurate result. 

• Mutable: The Knowledge Base can be updated at 
any time during the life cycle of a CPS. This is important 
to allow us to include new faults that were not discovered 
during design and experimentation. 

• Unique Fault ID: Each fault store in the Knowledge 
Base must have a unique and consistent fault id. To 
achieve these requirements, we should follow a specific 
convention - for example, A12. This will allow us to 
quickly isolate faults by simply looking at this fault_id 

One of the requirements is a consistent pattern for the 
fault_id. To obtain a consistent fault id, we can use, for 
example, an alphanumeric coding convention (e.g. A1). 
Using this convention, we will label the atomic models in 
the DECS as alphabets and the state variables in terms of 
a number, hence A1 would mean, atomic model A and 
state variable 1 within the atomic model. Typical faults 
within a CPS model are not localized in one atomic 
model. A fault code can indicate that state variables from 
more than one atomic model are out of range. For 
example, A1B1 would mean that both atomic models A 
and B have the state variable 1 out of range. As we detail 
in the next section, the Supervisor oversees generating 
these combined codes. The alphanumeric convention is 
just an example. Other conventions may be used if they 
provide unique fault ids and allow us to quickly isolate 
faults through the fault id. 

To satisfy the other requirements, different 
implementations could be adopted depending on the size 
of the CPS. To keep modularity, a clear separation of 
components, and boost reusability, the Knowledge Base 

component is defined as a DEVS model that manages a 
database. The database will be implemented in different 
formats based on the application. For example, we can 
define the database as a plain text file where each row 
represents a fault and the associated frequency of 
occurrence. We can also define it as a set of two data 
structures where the first one would be a bloom filter to 
store the faults in a manner in which we can quickly 
confirm if a fault is present or not, and the second one is 
a standard hash to store the details of the faults and 
frequency of occurrence that can be retrieved if the 
presence of that fault has been confirmed. The bloom 
filters are data structures that do not store actual values 
hence they are relatively fast and require low storage and 
the storage is usually fixed and does not change when 
more data is added to the filter. They are also good 
because they do not return false negatives and have a low 
probability of false positives. An additional useful 
property of the bloom filter is that when data is stored, no 
deletion is allowed. 

The Knowledge Base component is formally defined 
using DEVS as the following atomic model: 
KB = <S, X, Y, δint, δext, δcon, λ, ta> 
S = {s1  {notify, passive} kb_match  {True, 
False} DB = associated database} 

X = {fault_id  string} 
Y = {True, False} 
δint (s) = {if s1 = notify then s1 = passive} 
δext (s,e,x) = { 

if s1 = passive, then 

Check if X (i.e. fault_id) exists in DB 
If fault_id exist, then 

kb_match = True 
increment Freq of fault_id DB 

else 
kb_match =False 

end if 
s1 = notify 

else 
//This case should never be reached } 

δcon = δint + δext 
λ (s1=notify, kb_match, DB) = {kb_match} 
ta (s1 = passive, kb_match, DB) = INFINITY 
ta (s1 = notify, kb_match, DB) = 
checktime} 

 
Regardless of the implementation of the database, 

when the Knowledge Base receives an input with a 
fault_id, if the fault_id is in DB, it will update the 
frequency of the fault_id in the database (DB) and update 
its state variable kb_match to True. Otherwise, kb_match 
will be updated to false. In any case, the state variable s1 
will be updated to notify. After the checktime (i.e., the 
time it takes the Knowledge Base to confirm the presence 
of a fault in its database), it will output the value of the 
kb_match variable and update its state variable s1 to 
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passive. The model will remain passivated until a new 
fault_id is received. 

E. Supervisor 
The purpose of the Supervisor is to ensure that the 

process of FDD between the DECS and the Knowledge 
Base is event-driven. The Supervisor would watch all the 
fault outputs from various atomic models to determine 
which part of the entire DECS sends an fm signal 
indicating a likely fault. The fm from the atomic models 
does not necessarily mean a fault has occurred. A fault 
has occurred only when the Supervisor has confirmed the 
fault_id from the Knowledge Base, a fault message (fm), 
or a combination of fault messages (fms) from the 
fault_id. By looking at the fm, the supervisor can 
determine where the fault signal is coming from, which is 
useful in isolating faults. On receiving an fm or multiple 
fm messages, the supervisor creates the fault_id and sends 
a request to the Knowledge Base to confirm that this is a 
fault. Once the supervisor confirms that a CPS fault has 
occurred, we can initiate any prescribed action for that 
fault within the atomic model responsible for that part of 
the CPS. In summary, the supervisor receives a fault 
message, creates a fault_id following a predefined 
convention, requests a check from the Knowledge Base 
and if the fault is present, it sends an output to the affected 
atomic model. 

The Supervisor is defined as a DEVS model with two 
input ports and two output ports. In the first input port, it 
receives fault messages (fm), while in the second input 
port it receives the confirmation of faults (i.e. true/false). 
Its first output port is used to send a check request (i.e. a 
fault_id) while the second output port is used to send an 
output trigger to confirm the presence of a fault. 

The Supervisor component is formally defined using 
DEVS as the following atomic model: 
SUPERVISOR = <S, X, Y, δint, δext, λ, ta> 
S = {passive, check, key, out_key, accommodate} 
X = {fm =fault_id, match = {True, False}} 

Y = {chk  string, read  string} 
δint (S) = { 

if S = check then S = passive 
else if S = accommodate then S = passive 
else if S = check then S = passive } 

δext (fm, state == passive) { 

If fm does not exist 
key = fm 

else 

key = composed (fm) 
S = check } 

δext (match is True, S == passive) 
{ out_key = matched_id 
S = accommodate } 

δext (match = false, S == passive) { 

// do_nothing} 
δext (match = true, S == check) {S = check} 
δext (fm, S == accommodate) {S = accommodate} 
λ(check) {send key to read} 
λ(accommodate) {send out_key to chk} 
ta(passive) = INFINITY 
ta(accommodate) = triggerttime 
ta(check) = checkingtime 

IV. CASE STUDY OF FDD 
To show the usability of the FDD scheme presented 

in this paper, we design a simple example where we 
explain the major components of the FDD scheme. In this 
example, for simplicity, we have designed, tested, run 
simulations, and experiments on a CPS DEVS model. 
After completing the design, we discovered that the CPS 
has yielded seven types of faults and we have uniquely 
defined the fault_ids and stored their values in the 
Knowledge Base presented in Table I. 

 

Fig. 2. Model Structure for FDD scheme 
 

We also obtained information about the nature of the 
faults that would help us set the priorities of the various 
fault messages from the atomic models that make up the 
CPS. The DECS, Knowledge Base, and Supervisor are 
shown in Fig. 2. The figure shows three (3) blocks that are 
from the FDD scheme presented in section III. In this 
figure, the DECS has been expanded to show its 
component models which are discussed in the subsequent 
sections. 

A. DECS 
In this case, we use four (4) fault generators (Model 

A, Model B, Model C, and Model D) which are modeled 
using DEVS to produce faults in a random pattern which 
is consistent with the way a CPS fault would present 
itself. These models would each have one state variable 
each A1, B1, C1, and D1, respectively. We define a 
possible fault as a state variable that is out of range and 
produces a message. 

Every time the model generates a message, it sends an 
output to the supervisor. It is important to note at this 
point that the fact that a state variable is out of range does 
not mean that a fault is present, every fault would need to 
be validated from the Knowledge Base. 
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B. Knowledge Base 
For small CPS with minimum memory requirements, 

we implemented the structure of the Knowledge Base as 
a flat-file; the supervisor can read the content of the file 
into memory and write to the file after a specified period. 
This type of Knowledge Base would work well for simple 
CPS; however, when the systems get large and complex 
there would be performance issues as the size of the file 
can grow large which would lead to slow and resource- 
intensive read and write. To deal with this, we 
implemented the Knowledge Base as a DEVS model that 
is initialized with the known faults and communicates 
through its inputs and outputs to the rest of the system. 
The Knowledge Base receives an input in the form of a 
fault_id and stores the fault information in a bloom filter 
data structure, this would help us maintain consistent 
performance, however, since the bloom filter does not 
store the actual fault codes, it is difficult to retrieve the 
frequency of occurrence of faults, and therefore an 
additional data structure would be needed. 

Table I. describes the initial state of the Knowledge 
Base we use in the example presented in this paper. The 
first two columns are part of the Knowledge Base 
structure and the third column is just a description of what 
the fault code means for readability purposes. The seven 
different fault codes have zero occurrences at the initial 
design stage before the start of the simulation. 

 
TABLE I. THE INITIAL STATE OF THE KNOWLEDGE BASE 

 

Fault id Frequency Description 
A1 0 Fault indicated A1 being out of range 

A1B1 0 Fault indicated by A1 & B1 being out 
of range 

A1C1 0 Fault indicated by A1 & C1 being out 
of range 

A1D1 0 Fault indicated by A1 & D1 being out 
of range 

B1C1 0 Fault indicated by B1 & C1 being out 
of range 

C1 0 Fault indicated by C1 being out of 
range 

C1D1 0 Fault indicated by C1 & D1 being out 
of range 

C. Supervisor 
The Supervisor would watch  the fault outputs from the 

four atomic models (A, B, C, and D) to determine which 
part of the DECS an fm signal indicating a likely fault 
originates from. On receiving an fm or multiple fm 
messages, the supervisor creates the fault_id based on the

detecting and isolating the faults. Prescribed action for 
fault accommodation is reserved for future work. 

D. Results 
This section describes the results obtained from the 

implemented Knowledge Base using the data presented 
in Table I, the DEVS based CPS and Supervisor 
explained earlier. Fig. 3 shows the logs from four models, 
which represent the fault messages for one simulation run 
for ten seconds. There are 4 plots for model A, B, C, and 
D respectively, the horizontal axis shows simulation time 
in seconds, the vertical axis shows the outputs of the 
atomic models with each spike representing a fault 
message. 

 
Fig. 3. Simulation Logs from Fault Messages 

 
From the logs, we can observe the number of times 

each model had a value that exceeded the specified range. 
For this simulation run, model A has a count of 15, model 
B 54, model C 20, and model D 37. The supervisor 
checked the Knowledge Base and found the following 
faults which are tabulated after simulation, the final 
output of our model is the frequency of the faults and this 
is equivalent to the number of times the supervisor sends 
a trigger to each atomic model in a faulty state. This is 
shown in Table II. 

TABLE II. THE FINAL STATE OF THE KNOWLEDGE BASE 

specification defined in section III. Then it sends a 
request to the Knowledge Base to confirm that this is a 
fault. Once the supervisor receives a confirmation that a 
CPS fault has occurred from the Knowledge Base, we 
send a signal to the atomic model affected. In this 
implementation, we are not concerned about how the 
model accommodates the fault. We are only interested in 

 
 

From the results presented in Fig. 3. and Table II, the 
supervisor received a total of 126 fault messages from the 
atomic models. The total number of actual faults 
confirmed by the supervisor was 50. This shows that the 

Fault Code Frequency 

A1 15 

A1B1 4 

A1C1 2 

A1D1 2 

B1C1 5 

C1 20 
C1D1 2 
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scheme was able to distinguish between a fault and 
uncertainty because 76 of those messages were an 
indication of transient disturbance. Similarly, from the 
scheme, each atomic model fault was sent within the 
same time window and some messages appear at the same 
time representing a scenario of multiple faults. The 
results show that in such a situation, with the priority 
method in the Supervisor, the Supervisor can react to 
these multiple faults. From Table II, by simply looking at 
the fault_id, we can tell which atomic model(s) and state 
variable the fault originated from, this convention serves 
two purposes. Firstly, it helps us quickly determine the 
location of the fault, and secondly, the fact that it is 
detected in the atomic model is early enough to prevent the 
faults from escalating. 

V. CONCLUSION AND FUTURE WORK 

In this work, we presented a fault detection and 
diagnosis (FDD) scheme that is capable of detecting and 
isolating faults in real-time, keep track of the frequency 
faults, handle multiple faults when they occur, and 
prevent false alarms by validating probable faults from 
the Knowledge Base. The scheme is based on a 
knowledge-based and model-based approach. The 
scheme presented is consistent with the DEVS formalism 
and is backward compatible with existing CPS models 
built using DEVS. We also discussed various options for 
scaling up the FDD scheme to more complex CPS. The 
FDD scheme presented here is simple to implement, 
however, CPS are complex and could generate more 
faults that may reduce the performance of the FDD 
scheme. Our future work includes deploying the FDD 
scheme to a target platform to test various options for 
physical storage of the Knowledge Base and apply the 
options for scaling the scheme to more complex 
applications to test its performance. One way to achieve 
this is to have the FDD scheme in modules in different 
parts of the CPS, this modular approach can be done in 
two ways, one would be to have the complete FDD 
scheme in different parts of the system or a second 
approach would be to have multiple small Knowledge 
Bases but one supervisor. 
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