
 

SpringSim’20, May 19-May 21, 2020,  Fairfax, VA, USA; ©2020 Society for Modeling & Simulation International (SCS) 

 

 

A MODEL LIBRARY FOR FINITE STATE MACHINES IN CADMIUM 

 
Amitav Shaw  

Arshpreet Singh 

Gabriel Wainer 

 

Dept. of Systems and Computer Engineering 

Carleton University 

Ottawa, Canada 

{amitavshaw, arshpreetsingharshpr}@cmail.carleton.ca, gwainer@sce.carleton.ca 

 

ABSTRACT 

The Discrete Event System Specification (DEVS) formalism has been employed to provide a common 

basis for discrete-event modeling and simulation. Here, we describe a DEVS library for finite state 

machines built using Cadmium, a DEVS Modeling and Simulation tool, and we discuss different case 

studies of Moore and Mealy Machines. We build upon the concept that each state can be represented 

as a DEVS atomic model instance which can be coupled with other instances to form a coupled model 

representing a Finite State Machine. 

 

Keywords: Finite State Machine, DEVS, Cadmium, Moore machine, Mealy machine 

 

1    INTRODUCTION 
Discrete Event Systems Specifications (DEVS) is a formalism that has gained attention in the scientific 

and engineering research realm (Zeigler, Praehofer and Kim 2000). DEVS allows describing the system 

behavior at various hierarchical levels. At the base level, atomic model describes the generic behavior of 

the discrete event system by encoding how it reacts to external events, makes a transition and how it 

generates output. This allows for building complex models by connecting atomic models in a hierarchical 

manner to build a network of coupled models. At the highest level, a coupled model describes the system.  

The Cadmium tool (Vicino et al. 2019) allows the users defining DEVS models, and providing libraries is 

useful to the end users. By including libraries of other formalisms such as Finite State Machine (FSM), 

Petri Nets, Timed Automata, Cellular Automata etc., would allow users defining complex multicomponent 

model with ease. Here, we are interested in experimenting with Finite State Machines, which can be used 

to represent complex systems in different domains (engineering, computer science, linguistics, logic, or 

biology).  

Here we present the definition and implementation of an FSM library in Cadmium. We discuss how to 

define Moore and Mealy Machines and a method to describe an atomic model which serves as a building 

block for FSM’s based on Moore and Mealy machine design methodologies. The idea is to create a generic 

atomic model which comprises of state variables to manipulate the states, manage state transitions, and 

handle the events and outputs. Two such atomic models are built for satisfying Mealy and Moore Machine 

paradigm. We make it general by exposing the state variables providing callback functions for event and 

transition handling. These callbacks are supposed to be implemented by the applications which will be 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

developed by creating coupled models on top of these atomic models. Using the proposed implementation, 

the atomic model description, the coupled model description, the instantiation of atomic models and im-

plementations of the callbacks should be enough to build any complex finite state machine. 

The rest of the paper is organized as follows. Section II presents few of related work. Section III presents 

the model description. Section IV presents the implementation of the model. Section V presents the appli-

cations built using the models and discusses the simulation results.  

2 RELATED WORK 

In (Garredu et al. 2013) the authors propose an FSM Model to DEVS Model transformation by doing Model 

to Model transformation using a tool known as MetaDEVS. They defined an empty atomic model with few 

basic state variables and generic transition functions from an FSM model. There are limitations as pointed 

out by the authors. Their implementation cannot generate code from a source model. Code is required to run 

models in tools like Cadmium. MetaDEVS converts an existing model to DEVS, and it works when there is 

an existing model to be reused as DEVS. It is not feasible when an FSM model needs to be created from 

scratch.  

In (Kocı and Janoušek 2009), the authors use DEVS to communicate the messages and data between different 

components of an object-oriented hierarchy. The authors propose to rely on the hierarchical structure of 

DEVS. Although the system architecture draws inspiration from DEVS it does not build any DEVS atomic 

model for input places or transitions. Therefore, this implementation is not designed to be used in multi-

formalism context and cannot be easily interfaced with other DEVS component.  

An implementation of Petri Net in DEVS is presented (Jacques and Wainer 2002). The Petri Net model serves 

as a library of a different formalism. Conceptually, the FSM library and its Petri Net implementation have 

similarities. Both build a library using an atomic model to represent the building blocks of a Petri Net. There 

are two models developed in to indicate the transitions and input places, respectively. The implementation 

allows it to be used in a DEVS model and can be interfaced with models of other formalisms. 

A previous implementation of FSM library in DEVS is presented in (Zheng and Wainer 2003) where we built 

a library of FSM in CD++ (Wainer 2009), using numeric codes to represent states. The transitions and event 

handling were done by decoding the transitions from the coupled model and calculating the next transition 

and output. Our implementation builds upon few of these concepts and makes a more generic model to allow 

building complex FSM models in Cadmium. Cadmium allows the flexibility to use user defined data type to 

represent the states, the events, and outputs which we take advantage of. To the best of our knowledge this 

work is unique in providing a finite state machine model library developed for Cadmium tool. 

3 FSM LIBRARY MODELS DESCRIPTION 

Every finite state machine consists of finite states with transition functions. Here, the behavior of a generic 

state is described as an atomic model. A Finite State Machine is created by generating a coupled DEVS model 

which consists of atomic models interconnected with each other. The description of the atomic model and 

FSM models based on this atomic model will be discussed in this section. 

Two atomic models were developed as per Moore and Mealy criteria, one atomic model for Mealy imple-

mentation and another atomic model for Moore implementation. The definitions of Moore and Mealy differ 

in that way the output function of these finite state machines is defined. In case of Moore design of finite 

state machine, the output function is formally given by G: S →.  

The output function of Mealy design of finite state machine is given by G: S  Σ → 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

Here G is the output function, S is a finite set of states and  is the set of finite output alphabets. In Moore 

machine the state output does not depend on the event input, whereas in Mealy machine, the state output 

depends both on the state and the event input.  

Figure 1 shows a sketch of an atomic model that serves as a building block for finite state machines. There 

are different input and output ports to the atomic model which are described henceforth. EventIn is an input 

port to the atomic model which takes the external event. TransitionIn is an input port to the atomic model 

which takes in the value outputted by Out of any other state indicating next active state. Output is an output 

port to give the output of a model. ErrorOut is an output port to give error messages. Out is an output port 

out of the atomic model to give the next active state.  

 

Figure 1: Atomic Model of a Finite State. 

A unique global stateName is assigned to each state in a finite state machine. It represents the name of the 

state and defined as a string which uniquely identifies a state. The variable phase indicates whether this 

state is active or passive. If the input from TransitionIn matches the name of a state, then the state becomes 

active. Only one state is active at a time in the FSM. The state variable is used to output a state value. In 

case of the Moore models, this will be instantiated while creation of the state, whereas, in case of Mealy 

machines this variable is not instantiated and decided when an event comes. This difference is maintained 

in the implementation. The nextActiveState variable is the name of the next state to transition to. Whenever 

a state transitions to any other state based on a valid event input, it sends nextActiveState as output from 

Out to TransitionIn of all the connected states. A state becomes active if the message received from Tran-

sitionIn port is same as its stateName. Only one state can be active at time in a model. 

The state variable fsm_callback_event is a function pointer to the event callback function which is imple-

mented in the application of the FSM. It is called whenever there is an event inputted to the system. This 

function pointer has parameters modified whenever the callback function is called. This allows the state to 

be modified according to the logic of the FSM. The state variable fsm_callback_transition is a function 

pointer to transition callback function which is implemented in the application. This function pointer has 

parameters which are modified whenever the callback function for transition is called. The most significant 

role of this callback function is to turn the phase of a certain state to be active. 

The state variable isEvent is enabled in the implementation of the fsm_callback_event whenever an event 

comes. This is checked in the output function of the atomic model before outputting the state and nextAc-

tiveState from the current state. The state variable isError is enabled in fsm_callback_event implementation 

if there is a spurious event. This variable is checked in the output function of the atomic model and if true, 

allows the error message to be outputted. The state variable errorOut contains the error message of the state 

which is outputted by the output function of the atomic model if isError is enabled.  

 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

4 FSM LIBRARY MODEL IMPLEMENTATION 

The atomic models in Cadmium are programmed in C++ as a header only library. To explain the software 

architecture from a high level a simple class diagram is presented which shows how the concept of a state 

is depicted. In Figure 2, we can see that the atomic model contains all the state variables described earlier 

in the model description section. It also shows the methods defined according to DEVS formalism. The 

coupled model in the figure shows just one state instance that implements the atomic model. Any finite 

number of such states can be instantiated in a coupled model. The event that is inputted to the coupled 

model is connected to the EventIn port of all such states created by External Input Coupling (EIC). Each 

state connects its output port Output to different output ports of the coupled model by External Output 

Coupling (EOC). The different states are interconnected by Internal Coupling (IC). The output port, Out, 

of a state is connected to the input ports, TransitionIn, of all the states it can transition into. Conceptually, 

internal coupling establishes the connection between the states. 

 

Figure 2: Class Diagram of the software model. 

4.1 Constructors 

To create a state an object of the atomic model is created. To characterize a state, each state is initialized 

by calling the constructor defined in the atomic model. The below code snippet is from the MooreFSM.hpp. 

MooreFSM (string stateName, string state, string phase, bool isEvent,   

  void(*EventInFnPtr)(string eventIn, string transitionIn, string *nextActiveState,  

     string *errorMsg, string stateName, string *phase, bool *isEvent, bool *isError),  

       void(*TransitionInFnPtr)(string eventIn, string transitionIn,       

          string *nextActiveState, string *errorMsg, string stateName, string *phase,  

bool *isEvent, bool *isError)) { 

 state.stateName = stateName; 

 state.state = state; 

 state.phase = phase; 

 state.isEvent = isEvent; 

 state.fsm_callback_event = EventInFnPtr; 

 state.fsm_callback_transition = transitionInFnPtr;        }   

Figure 3: Moore Atomic Model Constructor. 
 

The constructor given in Figure 3 is called when we construct instances of the Moore atomic model. It is to 

be noted that this includes the instantiation of state. Similarly, the constructor of the Mealy atomic model 

is presented below: 

MealyFSM(string stateName, string phase, bool isEvent, void (*EventInFnPtr) 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

 (string eventIn, string transitionIn, string *nextActiveState,  

   string *state, string *errorMsg, string stateName, string *phase,  

     bool *isEvent, bool *isError), void (*TransitionInFnPtr)(string eventIn,  

      string transitionIn, string *nextActiveState, string *state,  

string *errorMsg, string stateName, string *phase, bool *isEvent, bool *isError)){ 

 state.stateName = stateName; 

 state.phase = phase; 

 state.isEvent = isEvent; 

 state.fsm_callback_event = EventInFnPtr; 

 state.fsm_callback_transition = TransitionInFnPtr;                     }   

Figure 4: Mealy Atomic Model Constructor 

It can be observed from the Figure 4 that this constructor does not initialize the state as opposed to the 

Moore model. This is because the output of a state in Mealy implementation is not hard coded into the state 

but is decided based upon the event that comes in. For Mealy implementation it will be shown later how 

the fsm_callback_event decides the output of the state based on the event and the state. 

A state is instantiated by creating a shared_ptr from the atomic model class. An example for construction 

of Moore state from one of the applications implemented is shown below: 

shared_ptr<dynamic::modeling::model>TemperatureSet=dynamic::translate::make_dynamic_  

  atomic_model<MooreFSM, TIME>("TempSet", "TempSet", "Enter Reference Temp.", "active",  

    true, fsm_callback_event, fsm_callback_transition); 

Figure 5: Moore State Instantiation 

The fact that Figure 5 represents a constructor for Moore model, the state output value is passed during 

instantiation of a state and this is known as the output of the state (TemperatureSet). The third parameter 

passed into the constructor in the figure ("Enter Reference Temp.") is the output for this state. In contrast, 

Mealy machine state instantiation will omit this parameter in calling of its constructor.  

4.2  Callbacks  

Two function callbacks, fsm_callback_event and fsm_callback_transition passed as parameters to the con-

structor of each state define how inputs are managed and how one state transitions to another state. These 

callbacks are implemented in the applications which will be using these atomic models for developing an 

FSM. The implementation of these callbacks differs depending on if it is a Mealy implementation or a 

Moore implementation of the FSM. fsm_callback_event is responsible to handle the external events inputted 

to a state, whereas, fsm_callback_transition manages the transition input to a particular state. The state 

transitions depending on external events, logic for output generation and error reporting are defined in these 

callbacks. The code snippet below shows the fsm_callback_event declaration for Mealy model. 

void (*fsm_callback_event) (string eventIn, string transitionIn, string  

 *nextActiveState, string *state, string *errorMsg, string stateName, string  

*phase, bool *isEvent, bool *isError); 

Figure 6: Mealy Model EventIn Callback declaration 

In Figure 6, it can be observed that the state variables are passed as parameters. It is to be noted here that 

all the parameters passed as pointer may be subject to modification in the implementation of the callback. 

In Mealy model implementation the state is passed as a parameter to populate this variable according to the 

event and the active state. Similarly, the code snippet below shows the declaration of fsm_callback_event 

of a Moore FSM implementation. 

void (*fsm_callback_event) (string eventIn, string transitionIn, string  

 *nextActiveState, string *errorMsg, string stateName, string *phase, bool  

*isEvent, bool *isError); 

Figure 7: Moore Model EventIn Callback 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

In Figure 7, certain state variables which need to be modified in the function are passed as pointers. Here, 

the state is not passed as a parameter as the output is not modified in the event callback but hardcoded 

during state instantiation and does not depend on the event. 

To demonstrate how fsm_callback_event and fsm_callback_transition are constructed, a simple FSM is 

presented. This FSM presents itself as an example for illustrating how the logic for managing the input 

events and state transitions are encoded. There are three state in the FSM described in Figure 8, StateA, 

StateB and StateC. It has only two valid events ‘X’ and ‘Y’. If an event ‘X’ arrives in the FSM and if the 

StateA is active, it transitions to StateB, otherwise if the StateB is active, it transitions to StateC. If an event 

‘Y’ arrives only StateB reacts to this event if it is active and transitions to StateC. In case of invalid inputs, 

the FSM outputs error message and resets to the initial state which is stateA. 

 

Figure 8: A simple Finite State Machine 

The implementation of fsm_callback_event follows a structure which can serve as a guideline towards 

building any application. The fsm_callback_event definition below shows how certain state variables are 

modified to maintain the state machine. 

 
fsm_callback_event (parameters: eventIn, transitionIn, pointer to nextActiveState, 

pointer to  errorMsg, stateName, pointer to phase, pointer to isEvent, pointer to 

isError)   

  if (eventIn == X) then 

     if (stateName == “StateA” && pointer to phase == “active”) then    

                pointer to nextActiveState = “StateB” 

    pointer to state = “Output of StateA” 

    pointer to phase = “inactive” 

    pointer to isEvent = true 

     else if (stateName==“StateC” && pointer to phase==“active”) then 

    pointer to nextActiveState = “StateA” 

    pointer to state = “Output of StateC” 

    pointer to phase = “inactive” 

    pointer to isEvent = true 

else if (eventIn == Y) then 

     if(stateName== “StateB” && pointer to phase==“active”)then                                                              

     

             pointer to nextActiveState =   “StateC” 

    pointer to state = “Output of StateB” 

    pointer to phase = “inactive” 

    pointer to isEvent = true  

  else if (eventIn!= X && eventIn!= Y) then 

    pointer to nextActiveState = “StateA” 

    pointer to errorMsg = “Invalid Input” 

    pointer to isError = true 

    pointer to isEvent = true 

  if (stateName!= “stateA”) then  

       pointer to phase = “inactive” 

Figure 9: Mealy event callback pseudo code 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

Figure 10 presents a pseudo code to show how the fsm_callback_event would manage the events. The 

pseudo code shows that for each event there may be one or more conditional block corresponding to each 

state that may react to the particular event. For each state whose phase is “active”, it can be seen that the 

nextActiveState is made to point to the next state based on a particular event, phase is made “inactive” and 

isEvent is made “true” to indicate an event arrived into the system. In case of Mealy implementation state 

is populated with the output of the state, whereas in Moore implementation, state is not modified in the 

fsm_callback_event function and the step of assignment to state is omitted from the function. In the case 

when an invalid event arrives (neither ‘X’ nor ‘Y’), isError is assigned “true” and errorOut is populated 

with the error message of the state. This pseudo code presents the intuition behind handling of the events 

without knowing any detail about the FSM. More conditional checks may be necessary depending on the 

application. However, the basic structure will follow the algorithm presented in the pseudo code. 

fsm_callback_transition (eventIn, transitionIn, pointer to nextActiveState, pointer to 

state, stateName, pointer to phase, pointer to isEvent, pointer to isError)   

   if (!transitionIn.empty()) then 

      if (stateName == transitionIn) then 

   pointer to phase = "active"; 

   pointer to isEvent = true; 

Figure 10: transition callback pseudo code 

The fsm_callback_transition callback function handles the input from the TransitionIn input port in a state. 

In this function the TransitionIn is compared with its stateName. If the two match this state becomes active 

and starts accepting external events. This is a basic structure of a fsm_callback_transition. Depending on 

application, it may have more conditional checks. If a state triggers a transition without any event (i.e. timer 

expired), it may contain conditional blocks like in fsm_callback_event to set the nextActiveState, isEvent 

and phase.  

Both these callbacks have all the state variables as parameters which can be used by the application logic 

accordingly. The only difference between Moore implementation and Mealy implementation of these 

callbacks in that the State is not passed as a parameter in case of Moore Machine whereas it is included in 

case of Mealy Atomic model. This is because the events do not decide the state output in case of Moore 

Machine and the State need not be manipulated in these callbacks. However, in Mealy implementation State 

is passed to the callbacks as the outputs are decided based on incoming events and decided as part of the 

logic of handling the events and state transitions.  

4.3  Transition functions implementation 

Whenever an event comes into the coupled model the external transition is called which as follows: 

void external_transition(TIME e, typename make_message_bags<input_ports>::type mbs) {  

 vector<string> bag_port_eventIn, bag_port_transitionIn; 

 bag_port_eventIn=get_messages<typename MooreFSM:eventIn>(mbs); 

 bag_port_transitionIn=get_messages<typename MooreFSM:transitionIn>(mbs); 

 if(!bag_port_eventIn.empty()){ 

     state.fsm_callback_event(bag_port_eventIn[0],"",&state.nextActiveState,  

     &state.errorMsg,state.stateName,&state.phase,state.isEvent,&state.isError);  

 if(!bag_port_transitionIn.empty() ) 

   state.fsm_callback_transition("",bag_port_transitionIn[0], &state.nextActive  

    State,&state.errorMsg,state.stateName,&state.phase,&state.isEvent);      } 

Figure 11. External transition function in Moore model 

In the Figure 11 it can be observed that fsm_callback_event or fsm_callback_event is called based on 

whether it is an event or a transition, respectively. In this implementation only one of the callbacks is called 

in the external transition function.  

The output function is as follows: 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

typename make_message_bags<output_ports>::type output() const {typename  

 make_message_bags<output_ports>::type bags; 

if(state.isEvent) { 

  get_messages<typenameMealyFSM:state>(bags).push_back(state.state);  

  get_messages<typename MealyFSM:Out>(bags).push_back(state.nextActiveState);} 

if(state.isError) 

    get_messages<typename MealyFSM:errorOut>(bags).push_back(state.errorMsg); } 

Figure 12. Output function of the Atomic Model 

The output function described in Figure 12 checks for the isEvent and isError variable which are set by the 

application logic and gives out the state output or error output, respectively. These variables are set to true 

only in the callback functions described in B. 

4.4   Internal transition function implementation 

If the state variables isEvent and isError are not assigned false, the output function would generate output 

after the time advance expires every time. 

    void internal_transition() { 

 state.isEvent = false; 

 state.isError = false;   } 

Figure 13. Internal transition function 

As shown in Figure 13, isEvent and isError are set to false in the internal transition of the atomic model so 

that the model doesn’t send out outputs repeatedly after expiry of time advance in absence of any event. 

5     CASE STUDIES 

In this section we discuss several case studies showing the definition of the model in DEVS, the transitions 

and outputs of the states.  

5.1  Automatic Temperature Controller 

The automatic temperature controller model in Figure 14 is built as a Moore model, following a design 

presented in (Zungeru et al. 2018). This application first lets the user to set the reference temperature to a 

certain value. The sensors then sense the room temperature. If the temperature sensed is less than the refer-

ence temperature, the heater is turned on; otherwise the AC is turned on. If the heater is turned on it also 

checks for Carbon Monoxide (CO) levels. It raises and alarm to see if the CO level is above the allowable 

limit. The CO level here is generated as a random number between 20 to 100ppm; as CO levels above 

50ppm are hazardous, the FSM transitions to the state CODetectAlarm, or to CODetectOk if the levels are 

below alarming point. 

 

Figure 14: State Diagram of Automatic Temperature Controller 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

The coupled model specification is as follows: 

X = {SetTemperature, a numerical value of Sensed temperature} 

D = {TempSet, TempSensed, HeaterOn, AcON, CODetectOK, CODetectAlarm}; 

Z(TempSet) = TempSet, Z(TempSet) = TempSensed,  

Z(TempSensed)=HeaterOn, Z(TempSensed) = AcON; 

Z(HeaterOn) = CODetectOK, Z(HeaterOn) = CODetectAlarm, (CODetectOK)= TempSet;  

Z(CODetectAlarm) = TempSet, Z(AcON) = TempSet 

A simplified coupled model diagram is depicted in Figure 15 which strips off the transition in and out for 

simplicity of the diagram. The transitions can be seen from state diagram and the DEVS specification, with 

TempSet, TempSensed, HeaterOn, AcON, CODetectOK and CODetectAlarm atomic models. 

 

Figure 15: Automatic Temperature Controller Coupled Model 

To evaluate the models, we use an input_reader model, whose output port is connected to the EventIn input 

port of the models. Following, we show a sample test case for the model:  

Inputs for eventIn 
00:00:10 setTemperature 

00:00:20 70 

00:00:30 setTemperature 

00:00:40 70 

00:00:50 setTemperature 

00:01:00 90 

00:01:10 setTemperature 

00:01:20 150 

00:01:30 setTemperature 

00:01:40 50 

Initially, we generate a temperature of 70 (F), while the reference temperature is set at 80 F. Hence, if the 

sensed temperature is below this reference temperature it is supposed to switch on heater otherwise it would 

have switched on the Air Conditioner. Following we show a simulation trace for the FSM model. 

out: {70} generated by model input_reader 

23:000 - [MooreFSM:state: {Sensing Room Temp}, MooreFSM:Out:{HeaterOn}] model:TempSense 

26:000 - [MooreFSM:state: {Heater is ON}, MooreFSM:Out: {CODetectAlarm}] model: HeaterOn 

Figure 16: Simulation log snippet for Automatic Temperature controller model 

 The highlighted simulation logs in the Figure 16 indicate that the on sensing 70 F the state transition from 

“Sensing Room Temp.” to “HeaterOn” state and the heater is turned on. In this application, turning the 

heater on is associated with CO detection activity in a closed environment. Figure 17 indicates the one 

instance where the random number may have been below 50, this application transitions from “HeaterOn” 

state to “CODetectOk” state as can be observed from the highlighted simulation log. 

59:000 [MooreFSM:state: {Heater is ON}, MooreFSM:Out: {CODetectOK}], model: HeaterOn 

Figure 17: Highlighted log to suggest normal CO level 

Following, we can see the results obtained when the temperature goes above 80F; in that case, the Air 

Conditioning is turned on, as seen in Figure 18 where the sensed temperature is 90 F. 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

out: {90}, model: input_reader 

[MooreFSM:Out: {AirCondOn}], model:TempSense 

01:06:000 - [MooreFSM:state: {AC ON}, MooreFSM:Out: {TempSet}], model:AirCondOn 

Figure 18: Highlighted log indicating higher temperature 

The FSM also puts a restriction on the temperature sensed. If it is either above 120 F or less than -40 F, it 

sends an error message to indicate the sensor is producing invalid data. This can be seen in the highlighted 

simulation log in Figure 19, where we can see an error message when there is an input of 150 F to the FSM 

indicating that the sensor read may be faulty. 

out: {150}, model:input_reader 

01:36:000 MooreFSM:errorOut: {Invalid Temperature sensed}], model:  TempSense 

Figure 19: Highlighted logs indicating faulty reading 

5.2   Online Library Portal 

The case study presented in this section is used to represent an Online Library portal as described in Figure 

20. In this case, we use the Mealy FSM model is used to build model.  

 

Figure 20: State Diagram of Online Library Portal 

As we can see, users enter an Online portal in a University website, and then they enter the title of the 

book/journal requested. The FSM represents the search of the book in the database (“Searching” state). If 

the item is found, the portal prompts for Login Details. The Login needs a correct Password. The Password 

entered is checked, and if there is a successful match, it gives out a link (“Download” state). If the password 

does not match with the one in the system, the portal prompts the user to retype the correct password. If the 

book is not found, the portal gives out the address of the Library Building to check for further query of the 

item. As we can see, the outputs of the states now depend on the event, and not just the states. 

 

Figure 21. Online Library Portal Coupled Model 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

A simplified coupled model diagram is depicted in Figure 21 (which omits the transition in and out for 

simplicity of the diagram), shows the mapping of the FSM into a DEVS coupled model. 

This coupled model, which represents the Mealy machine depicted in Figure 20, can be formally specified 

as follows: 

X = {Search Book, Book Name, Login password}; 

D = {EnterOnlineLibrary, Searching, LoginPortal, LibraryAddress, Download}; 

Z(EnterOnlineLibrary) = Searching;  

Z(Searching) = LoginPortal, Z(Searching) = LibraryAddress; 

Z(LoginPortal) = LoginPortal, Z(LoginPortal) = Download 

Z(Download)=EnterOnlineLibrary, Z(LibraryAddress) = EnterOnlineLibrary. 

where EnterOnlineLibrary, Searching, LoginPortal, LibraryAddress and Download are instances of the 

atomic model.  

To study the model, we can run different test cases using the Cadmium input_reader described in the pre-

vious section. Let us consider the following test scenario: 

Inputs for eventIn 
00:00:10 SearchBook 

00:00:20 ParticlePhysics 

00:00:40 MaCoDrum 

00:00:50 SearchBook 

00:01:00 Cosmos 

00:01:10 MaCDum 

00:01:20 MaCoDrum 

00:01:30 Gibberish 

00:01:40 SearchBook 

00:01:50 AlgorithmBook

In the online library portal, the password set is “MaCoDrum”. Whenever this event comes after the queried 

book or journal is found in the database it gives out a Download link. This application accepts few names 

of the book/topics. “ParticlePhysics” is one of them as it is assumed that this book is present in the database. 
 

out: {ParticlePhysics}] generated by input_reader  

23:000 - [MealyFSM:state: {Enter Login Details to Access.}, MealyFSM:Out: {Login},  

out: {MaCoDrum}], model:input_reader 

43:000 - [MealyFSM:state:{Download Link}, MealyFSM:Out:{Download}], model:  Login 

Figure 22. Highlighted simulation log showing successful search and login 

If a wrong password is entered, the state remains at “Login” state and prompts for entering the correct 

password. This is indicated in the simulation logs provided in the Figure 23. 

out:{MaCDum}, model:input_reader 

01:13:000 -[MealyFSM:state: {Enter Correct Password}, out:{MaCoDrum}], model:            

input_reader 

01:23:000 - MealyFSM:state: {Download Link}, MealyFSM:Out: {Download}], model:Login 

Figure 23. Highlighted simulation log showing wrong password entered 

As it can be seen in the Figure 23, when we enter the incorrect password “MaCDum” instead of the correct 

one which is “MaCoDrum”, we are requested to retry, and once the correct password is entered it transitions 

to “Download” state. 

6 CONCLUSION 

We presented a method to build Moore and Mealy in DEVS, defining basic components as atomic models 

and building applications based on these models. The idea was to implement FSM libraries for Cadmium, 

providing one of the components of several DEVS multi-formalism. This implementation provides a frame-

work and method to define DEVS model for finite state machines and aims to provide an insight into build-

ing any complex application using the libraries built. With Cadmium any data type can be used to define 

the state variables and message passing between states.  

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



Shaw, Singh and Wainer 

 

 

 

Cadmium provides a clean and efficient platform to simulate DEVS model. By observing the design pattern 

and language features used it is quite efficient. For example, it uses the modern C++ features such as 

shared_ptr which ensures no memory leak. It creates Abstract Atomic Model which can be used in several 

applications. This design facilitated the task of building FSM library on top of it and provided a platform 

for a clean design. 

As the implementation of FSM presented here follows DEVS formalism, it lends itself to be easily inter-

faced with other DEVS models easily and provides a seamless interaction with each other in a simulation. 

Further enhancements can be made to the model by including a queue model to store the events and manage 

each event to maintain proper states. This will ensure that no event is ignored, and all events will be pro-

cessed in due course of time. This will make the model faster and asynchronous in terms of arrival of events 

and processing them. 

REFERENCES 

Zeigler, B.P., H. Praehofer, and T. G. Kim 2000. Theory of modeling and simulation. Academic press. 

D. Vicino, L. Belolli, C. Ruiz-Martin, G. Wainer. 2019 “Building DEVS Models with the Cadmium Tool”. 

In Proceedings of the 2019 Winter Simulation Conference. National Harbor. MD.  

Garredu, S., Vittori, E., Santucci, J., & Bisgambiglia, P. 2013. “From State-Transition Models to DEVS 

Models: Improving DEVS external interoperability using MetaDEVS”. In Proceedings of 

International. Conference on Simulation and Modeling Methodologies, Technologies and Applications. 

Reykjavik. Iceland. 

Kocı, R., & Janoušek, V. 2009. “Simulation based design of control systems using DEVS and Petri Nets”. 

In Proceedings of International Conference on Computer Aided Systems Theory. Las Palmas, Spain. 

C. Jacques, G. Wainer. 2002. “Using the CD++ DEVS toolkit to develop Petri Nets”. In Proceedings of the 

2002 SCS Summer Computer Simulation Conference. San Diego, CA. USA.  

T. Zheng, G. Wainer. 2003 “Implementing finite state machines using the CD++ toolkit”. In Proceedings 

of the 2003 SCS Summer Computer Simulation Conference. Montreal, QC. Canada. 

G. Wainer 2009. Discrete-Event Modeling and Simulation: a Practitioner’s approach. CRC Press. 

Zungeru, A. M., Mangwala, M., Chuma, J., Gaebolae, B., & Basutli, B. 2018. Design and simulation of an 

automatic room heater control system. Heliyon, 4(6), e00655. 

AUTHOR BIOGRAPHIES 

AMITAV SHAW is a Masters of Engineering student at the Department of Systems and Computer Engi-

neering at Carleton University. His email address is amitavshaw@cmail.carleton.ca.  

ARSHPREET SINGH is a Masters of Engineering student at the Department of Systems and Computer 

Engineering at Carleton University. His email address is arshpreetsingharshpr@cmail.carleton.ca. 

GABRIEL A. WAINER, FSCS, SMIEEE, is a Full Professor and Associate Chair for Graduate Studies 

at Carleton University (Ottawa, Canada). Prof. Wainer is a member of the Board of Directors of the SCS. 

He is one of the founders of the Symposium on Theory of Modeling and Simulation, SIMUTools and the 

symposium on Simulation of Architecture and Urban Design (SimAUD). Prof. Wainer is the Special Is-

sues Editor of SIMULATION, a member of the Editorial Board of IEEE Computing in Science and Engi-

neering, Wireless Networks (Elsevier), Journal of Defense Modeling and Simulation (SCS). He is the 

head of the Advanced Real-Time Simulation lab, located at Carleton University's Centre for advanced 

Simulation and Visualization (V-Sim). He is a Fellow of SCS. His email address is gwainer@sce.car-

leton.ca. 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 


