

Mobile experimentation using modelling and simulation in the Fog/Cloud
Khaldoon Al-Zoubi a and Gabriel Wainerb

aFaculty of Computer & Information Technology, Jordan University of Science & Technology (JUST), Irbid, Jordan; bDepartment of Systems
and Computer Engineering, Carleton University, Ottawa, Canada

ABSTRACT
Recently, we have seen an increase of the use of Cloud computing to provide Modelling &
Simulation services. In general, mobility support is lacking since clients normally contact the
same centralised clouds regardless of their locations. In this research, we propose a method
and algorithms to build Fogs as private services in which different middleware running in
varied Virtual Machines (on various distributed Fogs and Cloud backbone) to expose different
services. Clients access services via nearby Fogs, which then discover the required resources to
run experiments (on Fogs or cloud backbone). Our focus is on mobility, to permit clients to
conduct experiments (and visualise simulation results) using mobile devices. Mobility support
is further improved by introducing the novel concept of a mobile simulation experiment: if a
device moves away from a given Fog zone, the experiment moves with the device. We present
a prototype implementation, evaluation results, and different case studies.

ARTICLE HISTORY
Received 9 April 2021
Accepted 29 July 2021

INDEX TERMS
Modelling & Simulation
(M&S); mobile computing;
cloud computing; Fog
computing; edge computing

1. Introduction

The popularity of mobile devices (which are geogra-
phically dispersed and use wireless network access)
has raised what is expected from them. Mobility sup-
port can improve Modelling and Simulation (M&S) by
accessing and consuming simulation services from
virtually anywhere. Users can try to predict certain
outcome scenarios by inputting real parameters into
a simulation on demand (for instance, by studying
how the weather would affect traffic based on real
input factors like snow or rain).

Mobility access to M&S services can be comple-
mented by cloud computing, which can offer comput-
ing resources, which is important in those cases where
simulation execution needs advanced computation
resources to obtain meaningful results. On the other
hand, using M&S on the mobile devices has major
restrictions: battery life, storage, processing power,
and network connectivity. So far, this problem has
been solved by partially offloading computation onto
cloud resources. Simulations are divided into tasks
where the mobile device drives the simulation and
decides whether to execute tasks locally or to offload
them onto the Cloud. This approach treats mobile
devices as computing units like cloud resources,
which add computation overhead on devices and
require specific simulation tools to be installed on
those devices. In addition, devices (regardless of their
locations) need to access centralised datacenters. A
diversity of issues related to accessing centralised
resources in the Cloud have been researched for the

Internet of Things (IoT). In IoT applications, mobile
nodes (sensors, vehicles and phones) must be pro-
vided with adequate mobility support, geo-location
awareness, and low latency (Hu et al., 2017; Naha et
al., 2018; Yi et al., 2015). To deal with these issues, in
2012 Fog computing was introduced as a new method
to decentralise resources by building mini clouds,
called Fogs (Bonomi et al., 2012). The idea is that
near users perform full or partial computations on
behalf of the cloud backbone. Users access services
through nearby Fogs, which are usually built as private
clouds with local organisations resources, avoiding
contacting the main cloud backbone, when possible,
hence, opening the way to improve mobility support
and quality of service in the way clouds provide
services.

Our research focuses on how to build actual Fog
services and the cloud backbone to run simulation as a
service for different models. Fogs are built in a similar
way of the cloud backbone, but with lesser resources,
hence, they are mini clouds spread near users
(Figure 1).

We propose a Fog/Cloud architecture and present a
prototype implementation using actual private clouds
based on the OpenStack (Gai, 2020), a well-known
open-source software (started by Rackspace and
NASA in 2010) that can be used to build public/pri-
vate clouds. OpenStack core components are compute
nodes (to deploy virtual machines; hence, servers),
network nodes (to handle communication between
virtual machines and the external world), and

CONTACT Khaldoon Al-Zoubi ktalzoubi@just.edu.jo; khaldoon_alzoubi@hotmail.com Faculty of Computer & Information Technology, Jordan
University of Science & Technology (JUST), Irbid, Jordan

JOURNAL OF SIMULATION
https://doi.org/10.1080/17477778.2021.1964393

© Operational Research Society 2021.

controller nodes (to orchestrate VMs deployed on
compute nodes). Within each Fog or Cloud stack
(Figure 1), OpenStack manages and controls the bare
hardware and the virtual machines (VMs) layers. Each
VM runs a RESTful-based middleware with the cap-
ability of exposing different simulation environment
services. Accordingly, Fogs and Cloud simulation and
computing capabilities can be built and configured by
system administrators as desired. Note that our work
in (Al-Zoubi & Wainer, 2020a) describes how such
resources are managed and orchestrated, while our
work in (Al-Zoubi & Wainer, 2020b) discuss the scal-
ability of such methods. This research focuses on
mobility support for simulation experiments while
being aware of the location of those devices to enhance
mobility support. Clients can setup/start their experi-
ments via nearby Fogs, which then discover the
required VMs to run those experiments within specific
simulation environments, according to that experi-
ment settings. These servers may exist on a local Fog,
another Fog, or on the cloud backbone.

To handle mobility, the devices are built as clients
that communicate with an API for experimentation
via a nearby Fog using RESTful web services. The
mobile devices are used for visualisation of simulation
results from the Fog/Cloud, and they can also be used
to input parameters into the simulation loop. The
mobile devices are not involved in the actual simula-
tion cycle, avoiding installing simulation software on
the device and saving power and storage.

This is the first research platform providing simu-
lation experiments as services via real Fog/Cloud
while allowing actual mobile devices to consume
such services, and further move those services to be
closer to mobile devices locations. Our contribution
includes the definition of an architecture and the
construction of real Fogs to expose M&S resources,
allowing users to consume those services and run
their experiments using their mobile devices (in
contrast to most works that focus on simulating
Fogs to study their behaviour and performance).
We are also interested in reducing the computation

overhead of the mobile devices using our platform,
by building mobile Apps as lightweight RESTful
clients that manipulate the experiments on the Fogs
(and visualise returned results). No specialised simu-
lation software is needed to be installed on devices
(in contrast, environments that consume services
directly from the cloud backbone normally treat
mobile client as computing units that drive the
simulation and decide where to execute tasks,
increasing overhead). Finally, we also want to
enhance mobility support with the help of Fog com-
puting. We introduce a new concept: the mobile
simulation experiment. If a device moves away from
its current Fog zone, the experiment moves with the
device to a closer Fog, based on the device’s new
location.

The rest of the paper is organised as follows: Section
2 surveys related work. Section 3 presents the novel
concept of the mobile simulation experiments (that
reside on the Fog side), and Section 4 presents number
of use cases from the mobile device perspective.
Section 5 presents mobility support evaluation results
while conclusions are presented in Section 6.

2. Related work

As discussed earlier, the research presented here
allows users to use their actual mobile devices to
consume and run simulation experiments as ser-
vices on actual privately built Fogs. Those experi-
ments are mobile as they may travel according to
devices locations to nearby Fogs. Here, we present
different research efforts related to our research,
including: (1) Simulation software built to simulate
Fogs and Clouds; (2) Mobile/Cloud-based
Simulation (i.e., simulations executed on real
mobile devices and real cloud computing
resources), where no Fogs were used, (3) Fog
Computing Applications (i.e., data collected by dis-
tributed devices and processed by Fogs and clouds,
these researches not related to M&S); (4) Fog

Figure 1. Fog/Cloud infrastructure overview.

2 K. AL-ZOUBI AND G. WAINER

Computing infrastructure (i.e., resource allocation
and scheduling).

2.1. Fog/Cloud simulator tools

There has been extensive work done on Cloud, Fog and
Mobile Simulators (i.e., models and simulators used to
study Clouds and Fog computing systems), including
CloudSim (CloudSim, 2020) (simulates service brokers,
provisioning, and network), CloudNetSim++ (Malik et
al., 2017) (simulates datacenters energy consumption
and communication between datacenters), or
GroudSim (Ostermann et al., 2010) (simulates cloud
job executions and load distribution), or simulators
devoted to study Fogs like iFogSim (Gupta et al.,
2017) (simulates IoT devices connected Fogs), and for
mobile devices like simulators MofySim (Ju et al., 2016)
and 5 G K-Simulator (Kim et al., 2018). Further, migrat-
ing resources between Fogs were simulated to accom-
modate mobility in some tools like the presented work
in (Carlo et al., 2020), which simulates migrating entire
VMs between Fogs. Interestingly, VMs migration was
ruled out from our presented system early on. This is
because, in our case, VMs are middleware that could be
shared by different users and might be running different
experiments for the same/different users. Therefore, we
only migrate experiments, which usually represented as
few files.

This research is not on the simulation of Fogs, but
on the use of Fogs computing services to provide M&S
as a service.

2.2. Mobile/Cloud based simulation services

M&S researchers have used clouds to expose and
execute simulation services where the simulation can
then be accessed and consumed by clients (e.g., Web
browsers) (Rehman et al., 2019; Shekhar et al., 2016).
To provide mobility support, some research enabled
running simulations using mobile devices. In this case,
the simulation is divided into tasks queued on the
mobile device, which drives the simulation cycle
deciding if the tasks run on the local device or are
offloaded to the cloud. For instance, (Guan et al., 2016)
proposes an HLA-based mobile simulator, which par-
titions the simulation into tasks and defines the high-
computing tasks that require to be executed remotely
or locally. This research concludes that in most cases it
is better to offload all tasks onto the cloud. In
(Amoretti et al., 2015) multiple mobile devices offload
tasks to a cloud component called Dispatcher, which
distributes the tasks among VMs to balance the com-
putation load. The work in (Yang et al., 2017) devel-
oped a system model that divides the edge computing
resources wireless bandwidth into virtual channels.
Each mobile device sends the cost of an application
execution to the edge computing unit, which then

assigns it one of the virtual channels; hence, it parti-
tions the whole edge-computing bandwidth among
users’ devices.

Although these research results have some relation
to ours, their objectives are different to the ones we
outlined in the Introduction: we want the need for Fog
services to run simulations for different models; our
focus is on mobility, saving computations cycles,
avoiding installing specific software locally on the
device and saving power and storage.

2.3. Fog computing applications

Fog computing-based applications main purpose is to
enhance users’ quality of service by bringing some
computation close to users like in the case of health-
care systems or transportation systems such as (Giang
et al., 2016; Hou et al., 2016). In those type of systems,
based on Internet of Things (IoT), the scalability in the
number of mobile devices is essential. IoT mainly
deals with interconnecting any number of mobile
nodes (e.g., sensors, vehicles and phones) via the
Internet, with high mobility support, geographical dis-
tribution, location awareness, and low latency
(Bonomi et al., 2012). However, as it has been realised
in recent years that these requirements go against the
nature of clouds, which mainly exist in centralised
datacentres. In this case, all devices (regardless of
their locations) need to go to the centralised cloud
datacenters to consume their services.

Healthcare sector-based applications process data
from a large number of spread devices, like in
(Mahmud et al., 2018), which proposes an IoT health-
care-based system to optimise data communications
and power consumption; or (Rahmani et al., 2018),
which uses fog computing layers between the sensor
nodes and the cloud, in which the fog layers perform
partial sensor computation on behalf of the cloud.
Smart Cities also apply Fog computing technology.
For example, IoT-based connected vehicles develop
smart transportation systems providing driving direc-
tions in an urban area (Giang et al., 2016). Others use
vehicles as the means of computation and communi-
cation, and they use the vehicle resources (Hou et al.,
2016).

As can be seen that other related work is mainly
used to collect, store, or communicate data. In con-
trast, we apply here the Fog computing technology to
allow mobile devices to setup and execute simulation
experiments as services.

2.4. Fog computing infrastructure

In this category, researchers proposed methods for
resources allocation such as (Pooranian et al., 2017;
Taneja & Davy, 2017) and for Fog collaboration such
as (Alsaffar et al., 2016; Al-Zoubi & Wainer, 2020a).

JOURNAL OF SIMULATION 3

Resource allocation methods mainly deal with allocat-
ing and scheduling VMs to compute tasks. For exam-
ple, in (Taneja & Davy, 2017), the algorithms deploy
applications modules, as needed, onto Fog layers close
to users and improve their user experience and quality
of service. Energy-based dynamic resources allocation
can be used to improve energy use in the Fog comput-
ing centres as in (Pooranian et al., 2017), where groups
of VMs are allocated in the physical servers, and the
VMs are selected based on energy-related parameters
in each computation iteration.

Fog collaboration mainly deals with where to exe-
cute jobs. This requires coordination between Fog and
Cloud resources. For example, a linearised decision
tree can be used to balance users submitted jobs,
categorising each job using three parameters: size,
completion time, and VM capacity (Alsaffar et al.,
2016). Those methods then decide where to execute
a job either on the Fog or on the Cloud. Similarly, Fog
collaboration can execute heterogeneous simulation
jobs, if allocating VM(s) only is not enough but ensur-
ing that those servers also support the tools to run the
simulation based on users’ requirements (Al-Zoubi &
Wainer, 2020a). This means that servers/VMs cannot
be compared to each other based merely on comput-
ing capabilities.

This research focuses on enhancing mobility sup-
port on the Fog to conduct simulation experiments
using mobile devices. However, we reused the M&S
resources discovery and management from our
research in (Al-Zoubi & Wainer, 2020a), which stu-
died on large scale in (Al-Zoubi & Wainer, 2020b). It
is important to note that migrating experiments, in
our case, are not expensive since they are usually few
files defining experiment settings and other files like
model scripts; hence, we ruled out VM migrations
early in the project. In our case, each Fog is responsible
for one or more geographical zones; the mobile Apps
embed their device locations within their regular
requests sent to experiments, and based on this, con-
tacted Fog decides what to do about this device and

the subject experiment. If an experiment is migrated to
another Fog, the new URI for that experiment is
passed to that device. This is complex process as multi-
ple devices could be connected to the same experiment
from same or multiple Fogs, the experiment could be
active and running simulation over distributed
resources, and so on.

3. Mobile simulation experimnets

This section presents the novel concept of mobile
simulation experiments over the Fog architecture.
We first present the overall experiments organisation
over the Fog architecture; we then discuss the factors
(like the experiment state) used in determining on
how to move an experiment to another Fog. Finally,
we discuss the procedures taken by the system to
complete experiment travelling between Fogs.

3.1. Experiment Fog architecture and

requirements

Figure 2-1 shows the relationship between users and
experiments. Each user is an account with username
and password. Users can create any number of experi-
ments where each experiment is exposed to the out-
side world as URIs with defined RESTful API, as
described later. This makes experiments independent
from each other regardless of their owners. It is worth
to point out that mobile experiments move with
devices, thus, it is possible for a user experiments to
spread out over multiple Fogs.

Devices (i.e., mobile Apps) access simulation experi-
ment services through Fogs (Figure 2), and to be spe-
cific, via experiment URIs that are exposed via Ingress
Fog servers. In our case, those Fog servers are addressed
by the same floating IP address, hence seen by the
outside world as a single server. For discussion simpli-
city, we refer to those group of servers as Fog server
throughout this paper. Experiment URIs are prefixed
with the <Fog-Server-base-URL>, which contains the

Figure 2. Overall experiment Fog/Cloud architecture.

4 K. AL-ZOUBI AND G. WAINER

ingress Fog server-specific information like the IP
address; hence, it serves the client’s (e.g., mobile App)
pointer to a certain Fog. As a result, this part is the only
one changes in an experiment URI when it moves to a
different Fog. This makes sense, because from a client
perspective, the only thing changes is the server gateway
of that experiment. However, the rest of the experiment
URI structure stays the same regardless of its actual
location. This will further be discussed in more details
in Figure 4 (Section 3.2). It is worth noting that Figure 2
simplifies the overall picture. However, in practice
experiment might be distributed over different loca-
tions (i.e., experiment partitions) as in the case of dis-
tributed simulation, see details in (Al-Zoubi & Wainer,
2015).

Based on above, when an experiment is moved to a
different Fog, the device only needs to be updated with
the new Fog base URI so that it can attach it to the
beginning of the URI string when it interacts with the
experiment.

For an experiment to be mobile (i.e., that can
move), users, devices, and Fogs should support experi-
ment mobility, as follows:

(1) Usernames. User accounts are a single user or a
team. If users choose to support mobility, the
primary copy of their information (e.g., creden-
tials) is stored on the Cloud (while cached on
Fogs, as needed).

(2) Mobile device (i.e., phone App). If supports
mobility, it includes its geographical location

coordinates within its regular requests to
experiments. In our case, this location is sent
within the XML message that is usually sent via
HTTP POST and PUT requests, while it is sent
in the query parameters for the HTTP GET
requests. For example, a device is willing to
move the experiment, if it includes the follow-
ing in its request <mobile><location>
<X > 32.491998</X> <Y > 35.988219</Y>
</location>ile>. This allows device holders to
disable experiment mobility on their devices if
they do not grant location access for the mobile
App.

(3) Fogs should be configured to be responsible for
one or more geographical zones. This allows a
server upon a request receipt to determine if a
device current location is inside or outside its
Fog zone. To simplify this calculation, in our
case, Fog zones are always ensured to be
defined as quadrilaterals (Figure 3-1).

The Fog zone (Figure 3-1) is limited to four points
to reduce unnecessary computation overhead when
determining a device still within a Fog zone or outside
of it. To do so, Fogs first need to pre-calculate the area
of their zones. In our example, the area of the shown
quadrilateral in Figure 3-1, which is the sum of the two
triangles of ABD and BCD (i.e., by connecting points B
and D). After that, upon a message receipt from a
device, each pair of points in the Fog zone are con-
nected to the device reported location P. This leads to

Figure 3. Example of determining a device inside or outside a specific Fog zone.

Figure 4. Experiment state machine.

JOURNAL OF SIMULATION 5

the formation of four triangles: APB, BPC, CPD and
APD, as shown in Figure 3-2 and Figure 3-3. Figure 3-
2 shows when the reported location P is inside the Fog
zone; hence, the sum of the four formed triangles
(with respect to P) equals the Fog zone precalculated
area. Otherwise, it is outside the Fog zone (Figure 3-3),
hence, the area of the four formed triangles larger than
the Fog zone area.

3.2. Moving experiment deciding factors

Based on the above requirements, we assume that all
experiments are moveable, as our focus here is on
mobile experiments. Of course, moving a specific
experiment from a Fog to another depends on several
factors. The first of those factors is obviously the
experiment state. Each experiment can only evolve in
different states independently from other experiments
(Figure 4) regardless of their owners.

Figure 4 shows the three possible composite states
of an experiment: Not Present, Active, and Inactive
states. Not Present state indicates that the experiment
does not exist on the contacted Fog by a device (but
might exist on other Fogs). An experiment in the
Active state indicates that this experiment is currently
executing simulation; hence, M&S resources have
been allocated to this experiment where those
resources might exist on the contacted Fog, other
Fogs, or the cloud backbone. The Inactive state indi-
cates that the experiment exists (on the contacted
Fog), but simulation is not currently being executed
on this experiment; hence, M&S resources are not
allocated to run simulation.

The Inactive state (Figure 4) contains two internal
states: Incomplete and Runnable substates. The experi-
ment goes into the Incomplete substate upon the
experiment creation request is received from a user.
Creation request is HTTP PUT on URL <Fog-Server-
base-URL>/users/{user}/experiments/{experiment}
where {user} is user’s username and {experiment} is the
experiment given name by the user. However, before
creating the new experiment, the Fog needs to make
sure that the experiment does not exist in some other
Fog, as discussed later in Table 1 and Figure 8. The
Runnable substate indicates that simulation can be
executed for this experiment. This happens when all
required settings and data have been uploaded onto
the experiment. From this time forth, simulation can

be executed within this experiment. This done by
sending HTTP PUT request to create URL . . . /{experi-
ment}/simulation. This moves the experiment into the
Starting substate (within the Active state).

The Starting substate ((Figure 4)) indicates that the
experiment is in the process of discovering and select-
ing M&S resources that can execute the simulation.
Those resources may exist anywhere on the local Fog,
on other Fogs, on the cloud backbone, or mixed
between them. Here, we reuse the scheduler compo-
nent from our previous research in (Al-Zoubi &
Wainer, 2020a) to carry out the discovery & selection
operation. After those resources are allocated, the
experiment (on Fog) creates other experiments (like
any other experiment) on those found servers to run
the simulation. Accordingly, the experiment becomes
in the Running substate (where live results could be
read by the mobile App, if required). Of course, read-
ing live results from a running simulation needs to be
supported by that specific simulation environment
since our proposed platform is independent from
any specific simulation tool. For example, the CD++
(Wainer, 2009) version that supports this feature
requires clients to include in their HTTP requests the
simulation time window (i.e., start and end time) that
they need results for. For example, window [t1, �)
extracts results from t1 until last available simulation
time. This is according to REST principles that clients
should include all needed information to perform
their requests. Thus, it becomes the responsibility of
the clients to keep track of the last simulation time
they got results for and how to advance time in the
following requests. This means that they also control
the frequency of sending those requests, as it is related
to the situation of their internal processing. The main
advantage of this approach is that experiments are
decoupled from local specifics of clients. For instance,
multiple clients can easily be served by same experi-
ments without complicating experiment states and
management on the server side.

At this point, the experiment goes back to the
Inactive state through one of the following three sub-
states: Stopping (i.e., if user intentionally aborts simu-
lation), Logging Errors (i.e., if user’s simulation model
contains errors), and Saving Results (i.e., if simulation
is completed, results then stored on URL . . . /{experi-
ment}/results), hence, results are always available for
future download and simulation replay by clients.

To put above discussion in a simple example,
Figure 5 shows a simple use case interactions between
a client and the Fog/Cloud platform. In step #1, the
client (mobile app) sends request to the nearby Fog
(Fog-A) to create experiment. The client assumes the
nearby Fog is the one that had cached its accessed URI
(Fog-A in our example). For simplicity, we assume that
this request was received from a device within the
receiving Fog zone, and the experiment does not

Table 1. Mobile experiment cases.

Case
Experiment

State
Experiment

Type
Mobile Device

Location
Action
Taken

1 Not Present N/A Inside/Outside Fog
Zone

Figure 8

2 Inactive Primary/
Mirror

Inside/Outside Fog
Zone

Figure 9

3 Active Primary/
Mirror

Inside/Outside Fog
Zone

Figure 11

6 K. AL-ZOUBI AND G. WAINER

exist on this Fog or elsewhere across the entire Fog/
Cloud platform (i.e., this is because experiments can
move as discussed soon in Section 3.3). As a result, the
experiment main URI is created; hence, the client can
then update and build this experiment via this URI as
desired (step #2). Now, when the client decides to start
the simulation in this experiment (step #3), the experi-
ment then needs to (1) discover the resources that can
execute the simulation. For instance, if an experiment
can only be executed by CD++, we only then need to
find servers with CD++ capabilities. (2) select out of
those found resources best ones to execute simulation
considering factors like load, utilisation, and locations.
Our work in (Al-Zoubi & Wainer, 2020a) have fully
described this platform resources management includ-
ing resources orchestration, discovery, and selection.
As a result, resources to execute the simulation could
be found on a Fog or on the cloud backbone. In this
example (step #3.3), the simulation is offloaded to the
Cloud. In this case, the experiment on the Fog, creates
a temporary experiment on the cloud to run the simu-
lation. At this point, URI . . . /{experiment}/simulation
is used to interact with running simulation. Now,
when simulation is completed, results are retrieved
from the cloud and stored on the local Fog (in URI
. . . /{experiment}/results). It further deletes all allo-
cated resources on the Cloud. As can be seen that a

request might be received from a device that has
moved away from its original Fog. For example, Step
#4 shows that the device has moved from Fog-A to
Fog-B zone. This is detected by Fog-A based on the
geo information in the device request that was just
requesting the experiment results, as will be discussed
soon. As a result, a new Fog (Fog-B) is found for that
experiment based on its location. The new Fog URI is
slipped back to the device along with the response to
the original request. From now on, the device contacts
Fog-B for that experiment.

In addition to the experiment state, the second
factor that also plays a role in determining on how
to move an experiment is the experiment usage
within the current Fog zone. Of course, we do
not want to abandon other devices that still in the
current Fog zone because simply another device
has moved. At the same time, we do not want to
ignore the device that has moved to a different Fog
zone. Because of this, we designed two types of
experiments: Primary and Mirror experiments.
Mirror Experiment is a cached-in experiment on a
foreign Fog to serve devices within that foreign Fog
zone. However, the Primary Experiment is the main
experiment that exist on the home Fog to serve
devices within the home Fog and to keep track of
its mirror experiments on other foreign Fogs.

Figure 5. Simplified example of client/experiment interactions.

JOURNAL OF SIMULATION 7

It is worth noting that for obvious scalability and
performance reasons, the experiment does not directly
track connected devices. However, we measure the
experiment usage factor by tracking how the experi-
ment has recently been used (by devices) from the
current Fog. In our approach, as shown in Figure 6,
each experiment counts received requests from
devices within its home zone at each tick (i.e., default
is 5 minutes) over a retention period (i.e., default is 12
ticks). For example, Figure 6 shows an experiment
with retention of five ticks, hence, the retention box
moves one tick at a time, which always maintains five
ticks in the retention box. Figure 6(left) shows 590
requests in the retention box. Now, on the next tick,
the retention box moves one more tick to contain 670
requests, as shown in Figure 6(right).

Experiment usage factor (Figure 6) is mainly used to
determine when to create mirror experiments on other
Fogs, as discussed later. It further determines which
experiment should be the primary experiment and
which ones should be the mirror experiments
throughout the Fogs. In our case, the primary experi-
ment periodically performs voting among all its mirror
experiments by asking them to report their usage
metric (Figure 6). If a mirror reports usage more

than the primary, this mirror experiment becomes
the primary one.

In addition to experiment state and experiment
usage, the third factor in determining how to move
an experiment is the experiment type (i.e., primary or
mirror) upon a request receipt from a device located
outside its Fog zone.

3.3. Travelling experiment cases

As discussed above, the required taken actions on how
to move an experiment is based on the combinations
of multiple conditions. Those cases are summarised in
Table 1. The taken actions based on those cases are
carried out by number of components in the control
plan (shown in Figure 7) via exchanging XML control
messages using RESTful API.

Figure 7 shows the control plan components. In
Figure 7, Fog Mobile Controller is a single component
per Fog that contains location information about all
primary experiments on its local Fog. Cloud Mobile
Controller is the component that contains location
information about all primary experiments on all
Fogs. It further contains information about Fogs geo-
graphical zones.

Figure 6. Measuring experiment usage.

Figure 7. Control plan components.

8 K. AL-ZOUBI AND G. WAINER

Figure 8. Not-present experiment use case.

Figure 9. Inactive experiment use case.

JOURNAL OF SIMULATION 9

Table 1 summarises the required taken actions
based on the experiment state and experiment type.
These cases are discussed next. Note that as previously
stated that the Fog server term in our discussion is
multiple servers with the same floating IP address.

3.3.1. Case 1: Handling “not present” experiments
Case #1 (in Table 1) is the situation when a request is
received to an experiment that does not exist on the
receiving Fog server. However, before this server can
decide on what to do about this request, the server
needs to know if this experiment does not actually
exist or indeed exist somewhere else. This situation
manages the possibility of an old device that is una-
ware of deleting the subject experiment or unaware of
moving it to different Fog. The taken actions based on
Case #1 (in Table 1) are illustrated in Figure 8.

As shown in Figure 8, if a request is received from a
device that is located outside the current Fog zone to
an experiment that does not exist, the Fog server reads
the device location (i.e., Action #1, Figure 8) and sends
Find Experiment request to the Fog Mobile Controller.
The Find Experiment is an XML message sent via
HTTP POST method to the Mobile Controller URL,
which includes information like the subject experi-
ment URL and device location.

The Fog Mobile Controller (i.e., Action #2, Figure 8)
tries to lookup this experiment info based on the own-
er’s username. If found on local Fog, the new experi-
ment URL is returned to the Fog server. The Fog
server (i.e., Action #3, Figure 8) then returns this new
URL to the device to retry the request again. However,
if the experiment still not found on the Fog, the
request is then forwarded to the Cloud Mobile
Controller to check if another Fog has this experiment.

Upon requesting receipts on the Cloud, the Cloud
Mobile Controller (i.e., Action #4, Figure 8) tries to
lookup it up based on owner’s username. If experi-
ment is found, the experiment new URL is then sent
back until it reaches the receiving Fog server. The Fog
server (i.e., Action #3, Figure 8) then returns this new
URL back to the device to retry the request again.

However, if the experiment still not found and the
device location is known, the Cloud Mobile Controller
(i.e., Action #5, Figure 8) finds a new Home Fog for the
mobile device based on its location and then responds
back with the found Fog base URL. When this
response reaches the Fog server, it updates (i.e.,
Action #6, Figure 8) the device with the new home
Fog URL to retry the request again with the newfound
Fog. Otherwise, if cloud could not find a new home
Fog for this device, the Cloud Mobile Controller replies
with “New Fog Not Found” response.

Once the “New Fog Not Found” response is
received by the Fog server, the Fog server (i.e.,
Action #8, Figure 8) creates the experiment and
updates the Fog Mobile Controller with the experiment

creation event, which in turn updates the Cloud
Mobile Controller. This causes experiment to go into
the Inactive state (as discussed in Figure 4). However,
if the device original request was other than creation,
the Fog server (i.e., Action #9, Figure 8) responds to
the device with an HTTP error.

It is worth noting that the Fog server allows
experiments creation for devices outside its zone if
the Cloud Mobile Controller was not able to find a Fog
for this device. In this case, the Fog server (i.e., Action
#7, Figure 8) temporary adopts this device. This
means that the device UUID is cached in the experi-
ment in a list called adopted devices for some config-
ured grace time (i.e., 6 hours by default). The device
is removed from this adopted list when the grace time
expires for this device. After that, if a request is
received from this device and is still outside the Fog
zone, the taken actions will be according to Table 1
listed cases.

3.3.2. Case 2: Travelling experiments during
inactive state
Case #2 (Table 1) deals with the case when a request is
received by an experiment in the Inactive state. The
taken actions based on this case are illustrated on
Figure 9. During the Inactive state (see Figure 4),
mobile devices use experiment URIs to read informa-
tion (e.g., cached simulation results) or to update
experiment (e.g., simulation model), hence, simula-
tion is being executed.

As shown in Figure 9, if the experiment receives a
request from a device inside the current Fog zone, it
simply serves the device request (i.e., Action #1, Figure
9). The steps for serving the device request are illu-
strated in Figure 10. In this case, if the request does not
change the experiment, the request is granted and
response is sent back to the device (i.e., Action #1,
Figure 10). However, if this request changes the
experiment settings, the next action depends on the
experiment type. If this experiment is mirror, the
request is then forwarded to the primary experiment
to deal with it (i.e., Action #2, Figure 10). On the other
hand, if the experiment is primary, it grants the
request and updates all mirror experiments, if any (i.
e., Action #3, Figure 10), apply changes, and replies to
the device (i.e., Action #4, Figure 10).

To continue with Figure 9, when a request is
received from a device outside the current Fog zone,
in addition the device is currently being adopted, the
experiment simply serves the device request (i.e.,
Action #1, Figure 9), as previously discussed in
Figure 10.

However, if the device is not adopted, the next
action depends on the experiment type. If this experi-
ment is mirror, the request is forwarded to the pri-
mary experiment to deal with it (i.e., Action #2,
Figure 9).

10 K. AL-ZOUBI AND G. WAINER

However, if the experiment is primary, a request is
sent to the Cloud Mobile Controller to find a new home
Fog for this device based on its location (i.e., Action #3,
Figure 9). If the new Fog is not found, the Fog server
temporary adopts this device (i.e., Action #4, Figure 9),
and serves the device request (i.e., Action #1, Figure 9),
as previously discussed in Figure 10.

On the other hand, if the new Fog was found for
this device while this primary experiment has not

recently been used (see Figure 6), the primary
experiment is then transferred to the new Fog (i.
e., Action #7, Figure 9). It further (i.e., Action #8,
Figure 9) inserts the new primary experiment URL
in the device response (to be used by the device in
future requests), updates the Cloud Mobile
Controller, and serve the original device request (i.
e., Action #1, Figure 9), as previously discussed
Figure 10.

Figure 10. Serving-received-request composite state (see Figures 9 and 11).

Figure 11. Active experiment use case.

JOURNAL OF SIMULATION 11

In contrast, if the new Fog was found for this device
while this primary experiment has recently been used
(see Figure 6), a mirror is then created on the new Fog
(i.e., Action #5, Figure 9). It further (i.e., Action #6,
Figure 9) includes the new mirror experiment URL in
the device response (to be used by the device in future
requests) and serve the original device request (i.e.,
Action #1, Figure 9), as previously discussed Figure 10.

3.3.3. Case 3: Travelling experiments during active
state
Case #3 (Table 1) deals with the case when a request is
received by an experiment in the Active state (see
Figure 4). In this state, simulation is running in the
experiment, hence, M&S resources are allocated and
being used by the experiment. During this state,
mobile devices use experiment RESTful API (on the
nearby Fog) to manipulate running simulation, where
simulation could be distributed over allocated
resources on Fog, Cloud, or both.

As shown in Figure 11, if the experiment receives a
request from a device inside the current Fog zone, it
simply serves the device request (i.e., Action #1, Figure
11), as previously discussed in Figure 10. It also serves
the device request (i.e., Action #1, Figure 11) for
adopted devices even if they are located outside the
Fog zone. Otherwise, the next action then depends on
the experiment type.

If mirror experiment, the request is then forwarded
to the primary experiment to deal with it (i.e., Action
#2, Figure 11). However, if this experiment is primary
and the allocated resources to execute the simulation is
fully or partially running on the home Fog, the device
is temporarily adopted by this Fog (i.e., Action #4,
Figure 11), and the device original request is served
(i.e., Action #1, Figure 11).

However, if the simulation allocated resources only
exist on the cloud, a request is sent to the Cloud Mobile
Controller to find a new home Fog for this device (i.e.,
Action #2, Figure 11). If Fog is not found, the device is
then adopted (i.e., Action #4, Figure 11) and the ori-
ginal request is served (i.e., Action #1, Figure 11), as
previously discussed in Figure 10. However, if a new
Fog is found for this device, a mirror experiment is
setup on that found Fog (i.e., Action #5, Figure 11),
inserts the mirror experiment URL with the response
to the device (i.e., Action #6, Figure 11), and the
original request is served (i.e., Action #1, Figure 11).

4. Use cases

This section main purpose is to show how users view
simulation results on their mobile apps. In this case,
the mobile App retrieves results from the experiment
resource on the Fog/Cloud side. This could happen
during live simulation using URI . . . /simulation, or
after simulation have been completed via URI . . .

/results to download cached results for replay on client
side, as previously discussed in Figures 4 and 5. Thus,
in this case, the mobile app is used to view (and
visualise) the simulation results while the actual simu-
lation is executed on one or more middlewares that are
installed on VMs across the Fog/Cloud platform. It is
worth noting that the experiment view on the client
side sees any experiment on the Fog/Cloud side as URI
that begins with the Ingress server URI (called <Fog-
Server-base-URL> in Figure 4), which is the only part
of an experiment URI that gets updated when it moves
from a Fog to another. Of course, the Fog/Cloud plat-
form mechanism is the one that makes the decision to
move an experiment from a Fog to another (as dis-
cussed earlier), by simply overriding the experiment
URI on the mobile side. This RESTful API mechanism
simplifies the client side and relieves it from many
complex details on the Fog/Cloud side.

To this end, mobile Apps (on mobile devices) are
RESTful clients, allowing users to access their experi-
ments through the nearby Fog according to a defined
RESTful API. Experiment framework related API has
already been discussed in Figure 4 (in Section 3.2). As
previously discussed, experiment URIs are URI tem-
plates, which means they have the same URI structure
but with two variables: {username} and {experiment
name}. This ensures experiment URI uniqueness for
the same user and across different users. This also
allows users to list and view their existence experi-
ments and switch between those experiments.

Now, when a device needs to send to a request to an
experiment, it builds the experiment URI string
according to the URI template string (see Figure 4).
The differences between experiments URIs are the
{username}, the {experiment name}, and the <starting
base URI>. The <starting base URI> needs to be
attached at the beginning of the URI string to reach
the services. This basically is the Fog entry URI that
previously discussed. Of course, each Fog has a unique
entry URI; hence, in our case we use the IP addresses
to ensure this uniqueness. Thus, if an experiment is
moved to another new Fog, the old Fog embeds the
new Fog entry URI in its regular response to the
device, allowing future requests to go to the new
home Fog. This is smooth transition since RESTful
requests are stateless, which means requests are inde-
pendent of each other and contain all necessary infor-
mation to conduct the service.

Based on above, mobile Apps do not require simu-
lation engines to be installed on devices. However,
they need to know how to parse simulation results to
visualise the simulation. In our case, those results are
received as text format (e.g., Figure 12).

Therefore, from the mobile App viewpoint, it owns
the experiment by itself regardless of the number of
other devices communicating with the same experi-
ment. It further assumes the experiment is fixed in one

12 K. AL-ZOUBI AND G. WAINER

location that is reachable through the con-
structed URI.

For the remaining of this section the simulation will
be shown on the handheld device Apps (i.e., client
side) using two platforms: Android and Windows
phone. The Android mobile App is developed in Java
for the Android phone platform while the Windows
phone platform is built in C#. Further, the actual
simulation on the Fog side will be conducted using
the CD++ simulation tools (Wainer, 2009), that is
provided via RESTful-based middleware (Al-Zoubi &
Wainer, 2013).

4.1. Forest fire simulation on android

As a case study, we present a model to simulate forest
fires. In this model, fire propagation considers certain
parameters such as heat, density, fuel type, vegetation
size, wind speed, terrain topology and humidity. The
GPS and compass values (obtained from the mobile
device sensors) are used to advise fire fighters for the
best way to move.

Figure 12 shows an example of the forest fire simu-
lation results sent from the Fog to the App. The App
then draws these results (i.e., fire propagation) on top
of Google Maps (see Figure 13). The mobile App
visualises the fire propagation to advise fire fighters
of the best way to move in case of being too close to a
dangerous area.

Figure 13 shows the simulation and Google Maps
visualisation. It also shows the simulation major con-
trol buttons: Play, Pause and Recommend Direction.
The first two buttons are used to start and stop the
animation playback. The third button (Recommend
Direction) calculates the user position with respect to
the fire location and suggests the direction the user
should go.

Figure 14(right) shows the state of the screen
once the Recommend Direction button is pressed,
which is waiting for GPS response. Figure 14 (mid-
dle) shows a “go Ahead” direction suggestion, while
Figure 14(left) shows a “turn left” direction sugges-
tion. The way that this Android App manages
visualisation is as follows: The mobile App sends
a request to the experiment (via nearby Fog) to
read simulation results. Upon results receipt, the

App extracts the time, the fire spread rate, and
the coordinate position. The coordinate position is
then converted to geographic location. This conver-
sion is done by method getProjection() in the
MapView class (this class is part of Google
Android API (Google APIs for Android, 2020)).
Afterwards, the cells that contain fire are converted
to red cells (see Figures 13 and 14). This overlay
code is sub-classed from class Overlay in package
com.google.android.maps (a part of Google Android
API (Google APIs for Android, 2020)). This also
used to draw the direction arrows shown on Figure
14. The Time class (see Google Android API
(Google APIs for Android, 2020)) is used to

Figure 12. Snippet of simulation results sent from Cloud to the Android App.

Figure 13. Forest fire simulation visualisation on android
device.

JOURNAL OF SIMULATION 13

provide fire spreading animation. This also allows
the simulation to be played faster (or slower) than
the real-time simulation.

Further, when the Recommend Direction is pressed,
the app gets position updates from GPS, and gets
orientation updates from the compass. With each
update, the distance between the user and nearby
cells with fire (i.e., red cells on the screen) are calcu-
lated. Based on this, it calculates the angle between the
handheld device direction (as indicated by the com-
pass), and the vector starting at the closest cell with fire
(as indicated by simulation and GPS position), as
shown in Figure 15. Now, if this angle is less than 30
degrees (i.e., an arbitrarily chosen value), the app
suggests moving ahead for the user to flee the fire.
Otherwise, it suggests turning right or left, depending
on whether the angle is positive or negative.

The bearingTo() method (in the Location class in
package android.location (Google APIs for Android,
2020)) returns α angle in Figure 15. Further, the
Compass angle is obtained via the SensorManager
class (Google APIs for Android, 2020), which continu-
ously updated with any change of the handheld device
orientation. This information is used to determine β in
Figure 15, which is the device orientation around the Z

axis. The GeomagneticField class is used to compute δ
in Figure 15, where it is the magnetic declination from
true north. With those three variables, the application
then calculates the angle between the line from the
closes fire cell to the GPS location and the compass, as
shown in Figure 10. As a result, the angle of the arrow
(Figure 14) is given by (α-(β + δ)). If result is zero, the
direction of the user (i.e., given by compass) is moving
away from the fire (i.e., given by simulation and GPS),
hence the arrow becomes green. The arrow rotates
right or left as a reaction to the user rotating the device
around the Z-axis. Likewise, the arrow turns red if the
arrow angle gets larger than 30.

4.2. Ant Colony simulation on windows phone

Ant Colony model shows the behaviour of ants in an
environment with random obstacles and food loca-
tions. Thus, the model studies how ants find the hid-
den food locations, and how they find their way back
to the nest once a food location is found.

Ants live in what is called superorganism, which
means that ants interact with each other to define the
overall behaviour of the entire colony. This is shown in
the way they search for food, avoid obstacles, choose
the location of their nest, and in the way they find the
shortest path to go back to their nest.

In this model, ants search randomly by smelling
nearby food. They further mark their path by leaving
behind chemical traces called pheromones, allowing
them to find their way back to the nest (Dorigo, 2006).
Further, the closer ants get to previously found food,
the stronger pheromones substance smell becomes. In
doing so, ants eventually form lines between the nest
and food locations (Dorigo, 2006).

Figure 16 shows a snippet from the simulation
results produced by the CD++ simulation engine.
The “Y” result lines represent the visual aspects of
the experiment where ant(x, y) represent the next

Figure 14. Forest fire simulation visualisation with direction recommendation on android device.

Figure 15. Recommended direction calculation.

14 K. AL-ZOUBI AND G. WAINER

coordinate, and the value between the parentheses “()”
represents the encoded data. This encoded data indi-
cates cell state information, such as pheromones
strength in the cell, ant direction, amount of food,
the load that an ant carries, and so on.

Figure 17 shows the Windows Phone visualisation
based on received simulation results (Figure 16) from
the Fog. The App uses Microsoft’s XNA game studio
framework to visualise the simulation results. In
Figure 17, the pink spots and the leaf symbolise the
food, while the yellow rectangles symbolise the pher-
omone that ants leave behind.

4.3. Cancer spread simulation on windows phone

This model (Figure 18) studies the spread of cancer
cancerous cells in tissues. The simulation rules decide
on new cancer cells being created or dead. In this
model, the simulation starts with the initial values
defined in the input initial values (i.e., CD++ VAL
file (Wainer, 2009)). The Cell-DEVS dimensions for
this model was defined as 20 by 20 where they need to
be fit on 480 × 800 pixel screen. To resolve this issue,
the screen was cropped so that an area of 480 by 480
was used, which was done by multiplying each posi-
tion by 24 and then subtracting 160 out of the y
coordinate. Figure 18 shows a snippet of the cancer
simulation spreading in tissues.

4.4. Fire spreading simulation on windows phone

The Fire model is used to predict how a fire spread.
This model considers certain parameters such as heat,
minerals, density, fuel type, vegetation size, wind
speed, territory inclination and humidity. In this
model, the user can speed up or slow down the simu-
lation. The user can also pause the simulation, zoom in
and zoom out to get a better idea about the location of
the fire.

This model has different parts to it: the Bing
Map, the User Control buttons, and the Fire
Spread state. The Bing Map was loaded using
Silverlight. The Bing Map uses touch controls,
zoom levels, and several types of map views
(Aerial and Road). The User Control buttons (i.e.,
Play, Pause, Fast Forward, Speed and Sound
Effects) were also loaded using Silverlight. This
allows users to start, pause, fast forward, simulation
sound and change the fire spread speed. The Fire
Spread cells were constructed using XNA. These
cells have used a polygon to adapt to the fire
shape and a gradient colour was used to fill in the
polygon. These polygons are pined onto the map
(drawn on the map using geo coordinates) where
the size can change by zooming in or out. Each
polygon represents an area of 1 km2 on the map.

The fire spread state is drawn based on the received
simulation results from the running experiment on the

Figure 16. Snippet of simulation results sent from Cloud to the Mobile App.

Figure 17. Windows phone visualisation for Ant Colony simulation.

JOURNAL OF SIMULATION 15

Fog. For example, the following line was taken from
the simulation results:

Message Y/13:08:169/forestfire(18,15)(558)/out/
14.13617 to forestfire(02)

The first part of this line shows the message type
and simulation time. The coordinates represent the
location of the fire. These coordinates (x, y) are then
converted to Geo Coordinates (on the Bing Map) by
the mobile app as follows: (x/3-130 + 0.25, y/3 + 40).
The “Y” message value (which is 558 in the above
example) is then converted and scaled to fit within
the range of the gradient colour factors by the
mobile app.

This model targets Canadian forests as shown in
Figure 19(left). Figure 19 (right) shows a snippet of a
running simulation over a forest in British Columbia,
Canada. As the figure shows, the user can slow, fast,
zoom in, zoom out and pause the simulation.

5. Mobility support evaluation

This section focuses on the evaluation for the mobility
support aspects of the overall Fog/Cloud system as it is
within the scope of this paper. However, it is worth
noting that our work in (Al-Zoubi & Wainer, 2020a)
have fully evaluated the performance and scalability of
the Fog/Cloud collaboration algorithms that dealt
with the resources management, and with the M&S
discovery & selection to run experiments on best and
compatible resources (that could be allocated some-
where on the Fogs or Cloud backbone). In addition,
the scalability of those algorithms on large size was
additionally evaluated in our work described in (Al-
Zoubi & Wainer, 2020b).

Figure 18. Windows phone visualisation for cancer spread
simulation.

Figure 19. Windows phone visualisation for forest fire simulation.

16 K. AL-ZOUBI AND G. WAINER

The mobility support is evaluated here with
respect to the followings: (1) Changing Fogs for a
moving mobile device according to the previously
defined scenarios in Section 3.3 (this discussed
soon in Figures 22 and 23), (2) balancing executed

simulation tasks between Fogs and the Cloud back-
bone (this discussed soon in Figure 25), and (3) the
response time for clients served by the nearby Fogs
and the Cloud backbone (this discussed soon in
Figure 24).

Figure 20. Real system setup & configuration.

Figure 21. Simulated system setup & configuration.

JOURNAL OF SIMULATION 17

Figure 20 shows the real physical and configuration
setup that we used to collect the presented results in
this section. As can be seen that the actual system is
like a container that you can put into it your available
hardware, and accordingly create your middleware (i.
e., which are created quickly via OpenStack since they
are based on a VM image that is already had all
required software installed on it). This comes from
our knowledge as we experienced with many different
setups like the shown one in Figure 20. However, as
can be seen we were always faced with two practical

constraints: the available computing hardware for us,
comparing to real-world clouds, and (2) the geogra-
phical area size. For example, the setup, shown in
Figure 20, spreads within a single city and its suburbs,
which then places Fogs and Cloud in a range of 50–
60 km from each other.

Because of this, in addition to the real system setup
(in Figure 20), we will be using our simulated setup
shown in Figure 21 to study some issues on larger scale
and wider geographical area, as needed. This model
was built and simulated by CD++ to study our Fog/

Figure 22. Example of experiment creation cost using real system setup.

Figure 23. Example of mobility support during active/inactive experiment.

18 K. AL-ZOUBI AND G. WAINER

Cloud platform on large scale. The full details of this
model and its validation was presented in our work in
(Al-Zoubi & Wainer, 2020b).

To this end, the presented results were gathered
using two environment setups: (1) The real system
setup (shown in Figure 20) contains the Cloud back-
bone (with 12 VMs and 6 physical machines), cre-
ated, and controlled by OpenStack (as previously
discussed in Figure 1). It also contains four Fogs,
each of the Fogs contains one physical machine;
hence, this machine contains the entire OpenStack
solution. Each of Fog 1 and 2 contains one VM
while each of Fog 3 and 4 contains two VMs.
Finally, all middleware’s (VMs) on the Fogs and
Cloud have exposed the CD++ simulation services.
Further, each experiment has run with the fire forest
model (discussed in Section 4). (2) The simulated
system setup (shown in Figure 21) contains a cloud
with 500 VMs and 10 Fogs where each contains 30
VMs. Fogs and Cloud are simulated with 1000s of
kilometres apart.

In the first defined scenario in Section 3.3, when a
client (Figure 8) sends a request to an experiment that
does not exist, the receiving Fog server assumes that
the subject experiment may exist on some other Fog.
This could happen for many reasons like a device has
outstanding experiments in one of its old Fogs.
Therefore, our proposed solution has added extra
cost to verify an experiment existence, comparing to
a simple client/server system when a server has all
needed information locally. Figure 22 (using the real
system setup) looks at this added cost by considering

the case of creating new experiment, hence perform-
ing step #8 action in Figure 8. Figure 22 compares the
simple client/server system to the Fog/Cloud platform.
In case of the simple server, the decision is local, and
the experiment URI is accordingly created. However,
in the Fog/Cloud platform with mobility support, the
Fog server must first make sure the experiment does
not exist elsewhere before honouring the request. As
can be seen in Figure 22-1, there is a cost of about 100
msec to verify that an experiment does not exist under
low load pressure (comparing to the simple server
case). This cost gets a little bit larger under high
pressure (Figure 22-2), but the gap is also got closer
between the two systems. This tells us that this value
has maintained its stability while staying at a low level
comparing to the low-pressure case.

To study the system when a mobile device changes
Fog zones, a mobile device was placed in a travelling
car where the car path was intentionally planned to
cross through the four Fog zones of the real system
setup. The mobile periodically transmitted a simple
request each minute to check the experiment status,
hence, the device also embedded its current location in
those requests, allowing the contacted Fog to know if
this device is within its zone or outside. This test was
repeated twice: one for inactive experiment (i.e., an
experiment with no running simulation as discussed
in Figure 9), and the other one for active experiment
(i.e., an experiment with running simulation as dis-
cussed in Figure 11). Figure 23-1 shows the case of
inactive experiment. Specifically, the previous dis-
cussed case of step #7 & step #8 in Figure 9 whereas

Figure 24. Example of Fogs/Cloud client response time.

Figure 25. Example of balancing simulation tasks between Fogs and Cloud.

JOURNAL OF SIMULATION 19

the experiment is transferred to the new Fog. Figure
23–2 shows the case of active experiment. Specifically,
the previously discussed case of step #5 & step #6 in
Figure 11 where a mirror experiment gets created on
the found Fog (to avoid actual simulation migration).
As can be seen on both cases (in Figure 23), the spike
(of about 70–100 msec) in the last request before
changing the Fog is because of the time to find the
new Fog and experiments transfer coordination
between Fogs and the Cloud. The current Fog
responds to the device and slips the new Fog URI in
the response. After this, the next request transmission
will go through the new Fog. It is worth mentioning
that the actual transfer of experiment settings and files
occurs concurrently with the device response to
reduce delay.

Figure 24 compares requests response time when
clients served by the Fog or when served by the Cloud
backbone. Figure 24-1 shows the response time using
the real system setup. In this test, the client has sent
about 100 requests to Fog 1 (from its zone) and
repeated those requests to the cloud backbone. In
our case, clients are not allowed to contact the cloud
directly for security reasons, but we forced it in this
case to conduct this test. As can be seen, the gap is not
big (i.e., about 40 msec) since those Fogs are relatively
placed close to each other (within the same city).
Because of this, we repeated this test using our simu-
lated system. In this model, we placed Fogs and Cloud
1000s of kilometres apart. As expected, the difference
has jumped substantially as shown in Figure 24-1. This
case is more practical as Fogs are expected to be
located closer to users while clouds could be located
somewhere around the globe.

Figure 25 looks at balancing simulation tasks
between the Fogs and the Cloud backbone. This is
more related to the Fog/Cloud collaboration and
scheduling methods that we presented in (Al-Zoubi
& Wainer, 2020a) rather than the presented mobility
support in this research. However, it is still impor-
tant enough to not ignore. The idea here is to keep
evenly adding simulation tasks onto the system via
all Fogs. This means starting simulation experi-
ments, which lead to allocating resources to run
the simulation. Figure 25-1 shows how the real
system behaved under these circumstances. As can
be seen, Fogs tried to handle all tasks until a certain
point. After that, the cloud backbone starts getting
involved (i.e., at 28 experiments). At the end, Fogs
reached their ability where the Cloud backbone got
more involved. This behaviour was also shown in
Figure 25-2 using the simulated system. This tells us,
the more resources invested in the Fogs, the more
capability they would have to serve clients without
going to the Cloud. This is more important to know
since Fogs are expected to be built from privately
owned resources while the Cloud backbone are

generally expected to be paid services on public
clouds located somewhere around the world.

6. Conclusion

Indeed, providing Modelling and Simulation (M&S)
as a service via clouds enables users to take advantage
of such massive computing resources. However, this
approach lacks true mobility support since clients
normally contact the same centralised clouds regard-
less of their locations. This means that mobility sup-
port goes beyond simply having users consume
services from the Cloud using their mobile devices
(as in current M&S works). As discussed in this
paper, mobility support means several things like ser-
vices should be aware of clients’ geo-locations (as in
the cases of mobile devices), allowing them to con-
sume services from nearby locations (to enhance local
resources utilisation and quality of service). Fog com-
puting comes with the promise of enhancing mobility
support in Clouds, decentralising cloud resources, and
of allowing users to utilise their local resources. Fog
computing decentralises such cloud resources by
building mini clouds, called Fogs, near to the users
to perform full or partial computations on behalf of
the main cloud backbone. This lends itself to enhance
clouds mobility support and quality of service.
However, as we previously discussed, M&S research-
ers have so far approached the Fog computing tech-
nology by developing models or complete simulation
tools to simulate Fog and Cloud related issues.

In this paper, we have built a complete Fog/Cloud
infrastructure out of privately owned resources. In this
system, each VM contains a RESTful middleware that
can expose different simulation environments. This
means when a user (via mobile App) starts an experi-
ment, the nearby contacted Fog need to find the
appropriate simulation environments to run the sub-
ject experiment. We used mobile Apps to conduct
experiments through nearby Fogs that discover
needed M&S resources to run that experiment.
Mobile Apps visualise returned results once received.
We fully presented the novel concept of the mobile
simulation experiment: if a device moves away from its
home Fog, the experiment moves with the device to a
closer Fog. We further showed several use cases that
we conducted using actual mobile devices over an
actual existing Fog system.

We finally presented evaluation for those presented
methods. We have showed how such methods can
work in practice and how experiments can change
Fogs when executed by a moving a mobile device (i.
e., placed in a moving car). We further studied the
response time when experiments conducted on the
nearby Fog comparing to the Cloud backbone. These
results showed that the geographical distance can
affect the clients’ response time. We furthermore

20 K. AL-ZOUBI AND G. WAINER

showed how resources allocations are balanced
between Fogs and the Cloud backbone. These results
showed that tasks are executed on nearby Fogs until a
certain point, which then offloaded to the cloud back-
bone. This means the more capabilities you put into
the Fogs; the less tasks are offloaded to the cloud
backbone. This is important to know since Fogs are
expected to be privately owned while Clouds might be
privately owned or leased on public clouds.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Khaldoon Al-Zoubi http://orcid.org/0000-0001-6194-
3449

References

Alsaffar, A., Pham, H. P., Hong, C. S., Huh, E. N., & Aazam,
M. (2016). An architecture of IoT service delegation and
resource allocation based on collaboration between Fog
and Cloud computing. Mobile Information System, 2016
(1), 1–15. https://doi.org/10.1155/2016/6123234

Al-Zoubi, K., & Wainer, G. (2013). RISE: A general simula-
tion interoperability middleware container. Journal of
Parallel and Distributed Computing. Elsevier. 73(5), 580–
594. https://doi.org/10.1016/j.jpdc.2013.01.014

Al-Zoubi, K., & Wainer, G. (2015, June). Distributed simu-
lation of DEVS and cell-DEVS models using the RISE
middleware. Simulation Modelling Practice and Theory.
Elsevier, 55, 27–45. https://doi.org/10.1016/j.simpat.2015.
03.010

Al-Zoubi, K., & Wainer, G. (2020a, May). Fog and Cloud
collaboration to perform virtual simulation experiments.
Simulation Modelling Practice and Theory. Elsevier, 101,
102032. https://doi.org/10.1016/j.simpat.2019.102032

Al-Zoubi, K., & Wainer, G. (2020b, December). Modelling
Fog & Cloud collaboration methods on large scale. In The
IEEE Proceedings of the Winter Simulation Conference.
IEEE Press. https://doi.org/10.1109/WSC48552.2020.
9384058

Amoretti, M., Grazioli, A., & Zanichelli, F. (2015,
November). A modeling and simulation framework for
mobile cloud computing. Simulation Modelling Practice
and Theory. Elsevier, 58, 140–156. https://doi.org/10.
1016/j.simpat.2015.05.004

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog
computing and its role in the Internet of Things. In The
Proceedings of the first MCC Workshop Mobile Cloud
Computation (pp. 13–16). Association for Computing
Machinery (New York).

Carlo, P., Diogo, G., Lopes, M., Martins, L., Madeira, E.,
Mingozzi, E., Rana, O., & Bittencourt, L. (2020).
MobFogSim: Simulation of mobility and migration for
fog computing. Simulation Modelling Practice and
Theory. Elsevier. 101. https://doi.org/10.1016/j.simpat.
2019.102062

CloudSim. (2020). Retrieved December, 2020, from http://
www.cloudbus.org/cloudsim/

dev.m, Dorigo M., Birattari M., & Stutzle T. (2006). Ant
colony optimization. Computational Intelligence
Magazine. IEEE. 1(4), 28–39, Nov. 2006, doi:10.1109/
MCI.2006.329691

Gai, S. (2020). Building a future-proof cloud infrastructure: A
unified architecture for network, security, and storage ser-
vices. Addison-Wesley.

Giang, N. K., Leung, V. C. M., & Lea, R. (2016). On devel-
oping smart transportation applications in fog computing
paradigm. In The Proceedings of the 6th ACM Symposium
on Development and Analysis of Intelligent Vehicular
Networks and Applications (p. 2016). Association for
Computing Machinery (New York).

Google APIs for Android. (2020). Google. Retrieved
December, 2020, from https://developers.google.com/
android/reference/packages

Guan, S., Grande, R., & Boukerche, A. (2016). An HLA-
based cloud simulator for mobile cloud environments. In
The Proceedings of the 20th International Symposium on
Distributed Simulation and Real Time Applications (DS-
RT). IEEE (Piscataway, NJ).

Gupta, H., Dastjerdi, A., Ghosh, S., & Buyya, R. (2017).
iFogSim: A toolkit for modeling and simulation of
resource management techniques in internet of things,
edge and fog computing environments. Software: Practice
and Experience (SPE), 47(9), 1275–1296. https://doi.org/
10.1002/spe.2509

Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., & Chen, S. (2016).
Vehicular fog computing: A viewpoint of vehicles as the
infrastructures. IEEE Transactions on Vehicular
Technology, 65(6), 3860–3873. https://doi.org/10.1109/
TVT.2016.2532863

Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on Fog
computing: Architecture key technologies applications
and open issues. Journal of Network and Computer
Applications, Elsevier, 98, 27–42. https://doi.org/10.
1016/j.jnca.2017.09.002

Ju, M., Kim, H., & Kim, S. (2016). MofySim: A mobile full-
system simulation framework for energy consumption
and performance analysis”. In The proceedings of the
IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE.

Kim, Y., Bae, J., Lim, J., Park, E., Baek, J., Han, S., Chu, C., &
Han, Y. (2018). 5G K-simulator: 5G System simulator for
performance evaluation. In The Proceedings of the IEEE
International Symposium on Dynamic Spectrum Access
Networks (DySPAN). IEEE.

Mahmud, R., Koch, F. L., & Buyya, R., (2018). Cloud-fog
interoperability in IoT-enabled healthcare solutions. In
Proceedings of the 19th International Conference on
Distributed Computing and Networking. (ICDCN). ACM
(Association for Computing Machinery, New York).

Malik, A., Kashif, B., Malik, S., Zahid, Z., Aziz, K.,
Kliazovich, D., Ghani, N., Khan, S., & Buyya, R. (2017).
CloudNetSim++: A GUI based framework for modeling
and simulation of data centers in OMNeT++. Services
Computing IEEE Transactions, 10(4), 506–519. https://
doi.org/10.1109/TSC.2015.2496164

Naha, R., Garg, S., Georgakopoulos, D., Jayaraman, P., Gao,
L., Xiang, Y., & Ranjan, R. (2018). Fog computing: Survey
of trends, architectures, requirements, and research
directions. IEEE Access, 6, 47980–48009. https://doi.org/
10.1109/ACCESS.2018.2866491

Ostermann, S., Plankensteiner, K., Prodan, R., & Fahringer,
T. (2010). GroudSim: An event-based simulation frame-
work for computational grids and clouds. In The
Proceedings of the Euro-Par 2010 Parallel Processing

JOURNAL OF SIMULATION 21

Workshops. Springer. https://doi.org/10.1007/978-3-642-
21878-1_38

Pooranian, Z., Shojafar, M., Naranjo, P., Chiaraviglio, L., &
Conti, M. (2017). A novel distributed fog-based net-
worked architecture to preserve energy in fog data cen-
ters. In The Proceedings of the 14th IEEE International
Conference on Mobile Ad Hoc and Sensor Systems
(MASS). IEEE.

Rahmani, A., Gia, T., Negash, B., Anzanpour, A., Azimi, I.,
Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-
health gateways at the edge of healthcare Internet-of-
Things: A fog computing approach. Future Generation
Computer Systems, Elsevier,78, 641–658. https://doi.org/
10.1016/j.future.2017.02.014

Rehman, K., Kipouridis, O., Karnouskos, S., Frendo, O.,
Dickel, H., Lipps, J., & Verzano, N. (2019). A cloud-
based development environment using HLA and
Kubernetes for the co-simulation of a corporate electric
vehicle fleet. In The Proceedings of the IEEE/SICE/SICE
International Symposium on System Integration (SII).
IEEE.

Shekhar, S., Abdel-Aziz, H., Walker, M., Caglar, F., Gokhale,
A., & Koutsoukos, X. (2016). A simulation as a service
Cloud middleware”. Annals of Telecommunications, 71
(3), 93–108. https://doi.org/10.1007/s12243-015-0475-6

Taneja, M., & Davy, A., (2017). Resource aware place-
ment of IoT application modules in fog-cloud com-
puting paradigm. In The Proceedings of the IFIP/IEEE
Symposium on Integrated Network and Service
Management (IM). IEEE.

Wainer, G. (2009). Discrete-event modeling and simula-
tion: A practitioner’s approach. CRC/Taylor &
Francis.

Yang, L., Liu, B., Cao, J., Sahni, Y., & Wang, Z. (2017). Joint
computation partitioning and resource allocation for
latency sensitive applications in mobile edge clouds. In
The Proceedings of the IEEE 10th International Conference
on Cloud Computing (CLOUD). IEEE.

Yi, S., Li, C., & Li, Q. (2015). A survey of Fog computing:
Concepts applications and issues. In The proceedings of
the Workshop Mobile Big Data. ACM (Association for
Computing Machinery).

22 K. AL-ZOUBI AND G. WAINER

