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ABSTRACT
Recently, we have seen an increase of the use of Cloud computing to provide Modelling & 
Simulation services. In general, mobility support is lacking since clients normally contact the 
same centralised clouds regardless of their locations. In this research, we propose a method 
and algorithms to build Fogs as private services in which different middleware running in 
varied Virtual Machines (on various distributed Fogs and Cloud backbone) to expose different 
services. Clients access services via nearby Fogs, which then discover the required resources to 
run experiments (on Fogs or cloud backbone). Our focus is on mobility, to permit clients to 
conduct experiments (and visualise simulation results) using mobile devices. Mobility support 
is further improved by introducing the novel concept of a mobile simulation experiment: if a 
device moves away from a given Fog zone, the experiment moves with the device. We present 
a prototype implementation, evaluation results, and different case studies.
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1. Introduction

The popularity of mobile devices (which are geogra-
phically dispersed and use wireless network access) 
has raised what is expected from them. Mobility sup-
port can improve Modelling and Simulation (M&S) by 
accessing and consuming simulation services from 
virtually anywhere. Users can try to predict certain 
outcome scenarios by inputting real parameters into 
a simulation on demand (for instance, by studying 
how the weather would affect traffic based on real 
input factors like snow or rain).

Mobility access to M&S services can be comple-
mented by cloud computing, which can offer comput-
ing resources, which is important in those cases where 
simulation execution needs advanced computation 
resources to obtain meaningful results. On the other 
hand, using M&S on the mobile devices has major 
restrictions: battery life, storage, processing power, 
and network connectivity. So far, this problem has 
been solved by partially offloading computation onto 
cloud resources. Simulations are divided into tasks 
where the mobile device drives the simulation and 
decides whether to execute tasks locally or to offload 
them onto the Cloud. This approach treats mobile 
devices as computing units like cloud resources, 
which add computation overhead on devices and 
require specific simulation tools to be installed on 
those devices. In addition, devices (regardless of their 
locations) need to access centralised datacenters. A 
diversity of issues related to accessing centralised 
resources in the Cloud have been researched for the 

Internet of Things (IoT). In IoT applications, mobile 
nodes (sensors, vehicles and phones) must be pro-
vided with adequate mobility support, geo-location 
awareness, and low latency (Hu et al., 2017; Naha et 
al., 2018; Yi et al., 2015). To deal with these issues, in 
2012 Fog computing was introduced as a new method 
to decentralise resources by building mini clouds, 
called Fogs (Bonomi et al., 2012). The idea is that 
near users perform full or partial computations on 
behalf of the cloud backbone. Users access services 
through nearby Fogs, which are usually built as private 
clouds with local organisations resources, avoiding 
contacting the main cloud backbone, when possible, 
hence, opening the way to improve mobility support 
and quality of service in the way clouds provide 
services.

Our research focuses on how to build actual Fog 
services and the cloud backbone to run simulation as a 
service for different models. Fogs are built in a similar 
way of the cloud backbone, but with lesser resources, 
hence, they are mini clouds spread near users 
(Figure 1).

We propose a Fog/Cloud architecture and present a 
prototype implementation using actual private clouds 
based on the OpenStack (Gai, 2020), a well-known 
open-source software (started by Rackspace and 
NASA in 2010) that can be used to build public/pri-
vate clouds. OpenStack core components are compute 
nodes (to deploy virtual machines; hence, servers), 
network nodes (to handle communication between 
virtual machines and the external world), and 
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controller nodes (to orchestrate VMs deployed on 
compute nodes). Within each Fog or Cloud stack 
(Figure 1), OpenStack manages and controls the bare 
hardware and the virtual machines (VMs) layers. Each 
VM runs a RESTful-based middleware with the cap-
ability of exposing different simulation environment 
services. Accordingly, Fogs and Cloud simulation and 
computing capabilities can be built and configured by 
system administrators as desired. Note that our work 
in (Al-Zoubi & Wainer, 2020a) describes how such 
resources are managed and orchestrated, while our 
work in (Al-Zoubi & Wainer, 2020b) discuss the scal-
ability of such methods. This research focuses on 
mobility support for simulation experiments while 
being aware of the location of those devices to enhance 
mobility support. Clients can setup/start their experi-
ments via nearby Fogs, which then discover the 
required VMs to run those experiments within specific 
simulation environments, according to that experi-
ment settings. These servers may exist on a local Fog, 
another Fog, or on the cloud backbone.

To handle mobility, the devices are built as clients 
that communicate with an API for experimentation 
via a nearby Fog using RESTful web services. The 
mobile devices are used for visualisation of simulation 
results from the Fog/Cloud, and they can also be used 
to input parameters into the simulation loop. The 
mobile devices are not involved in the actual simula-
tion cycle, avoiding installing simulation software on 
the device and saving power and storage.

This is the first research platform providing simu-
lation experiments as services via real Fog/Cloud 
while allowing actual mobile devices to consume 
such services, and further move those services to be 
closer to mobile devices locations. Our contribution 
includes the definition of an architecture and the 
construction of real Fogs to expose M&S resources, 
allowing users to consume those services and run 
their experiments using their mobile devices (in 
contrast to most works that focus on simulating 
Fogs to study their behaviour and performance). 
We are also interested in reducing the computation 

overhead of the mobile devices using our platform, 
by building mobile Apps as lightweight RESTful 
clients that manipulate the experiments on the Fogs 
(and visualise returned results). No specialised simu-
lation software is needed to be installed on devices 
(in contrast, environments that consume services 
directly from the cloud backbone normally treat 
mobile client as computing units that drive the 
simulation and decide where to execute tasks, 
increasing overhead). Finally, we also want to 
enhance mobility support with the help of Fog com-
puting. We introduce a new concept: the mobile 
simulation experiment. If a device moves away from 
its current Fog zone, the experiment moves with the 
device to a closer Fog, based on the device’s new 
location.

The rest of the paper is organised as follows: Section 
2 surveys related work. Section 3 presents the novel 
concept of the mobile simulation experiments (that 
reside on the Fog side), and Section 4 presents number 
of use cases from the mobile device perspective. 
Section 5 presents mobility support evaluation results 
while conclusions are presented in Section 6.

2. Related work

As discussed earlier, the research presented here 
allows users to use their actual mobile devices to 
consume and run simulation experiments as ser-
vices on actual privately built Fogs. Those experi-
ments are mobile as they may travel according to 
devices locations to nearby Fogs. Here, we present 
different research efforts related to our research, 
including: (1) Simulation software built to simulate 
Fogs and Clouds; (2) Mobile/Cloud-based 
Simulation (i.e., simulations executed on real 
mobile devices and real cloud computing 
resources), where no Fogs were used, (3) Fog 
Computing Applications (i.e., data collected by dis-
tributed devices and processed by Fogs and clouds, 
these researches not related to M&S); (4) Fog 

Figure 1. Fog/Cloud infrastructure overview.
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Computing infrastructure (i.e., resource allocation 
and scheduling).

2.1. Fog/Cloud simulator tools

There has been extensive work done on Cloud, Fog and 
Mobile Simulators (i.e., models and simulators used to 
study Clouds and Fog computing systems), including 
CloudSim (CloudSim, 2020) (simulates service brokers, 
provisioning, and network), CloudNetSim++ (Malik et 
al., 2017) (simulates datacenters energy consumption 
and communication between datacenters), or 
GroudSim (Ostermann et al., 2010) (simulates cloud 
job executions and load distribution), or simulators 
devoted to study Fogs like iFogSim (Gupta et al., 
2017) (simulates IoT devices connected Fogs), and for 
mobile devices like simulators MofySim (Ju et al., 2016) 
and 5 G K-Simulator (Kim et al., 2018). Further, migrat-
ing resources between Fogs were simulated to accom-
modate mobility in some tools like the presented work 
in (Carlo et al., 2020), which simulates migrating entire 
VMs between Fogs. Interestingly, VMs migration was 
ruled out from our presented system early on. This is 
because, in our case, VMs are middleware that could be 
shared by different users and might be running different 
experiments for the same/different users. Therefore, we 
only migrate experiments, which usually represented as 
few files.

This research is not on the simulation of Fogs, but 
on the use of Fogs computing services to provide M&S 
as a service.

2.2. Mobile/Cloud based simulation services

M&S researchers have used clouds to expose and 
execute simulation services where the simulation can 
then be accessed and consumed by clients (e.g., Web 
browsers) (Rehman et al., 2019; Shekhar et al., 2016). 
To provide mobility support, some research enabled 
running simulations using mobile devices. In this case, 
the simulation is divided into tasks queued on the 
mobile device, which drives the simulation cycle 
deciding if the tasks run on the local device or are 
offloaded to the cloud. For instance, (Guan et al., 2016) 
proposes an HLA-based mobile simulator, which par-
titions the simulation into tasks and defines the high- 
computing tasks that require to be executed remotely 
or locally. This research concludes that in most cases it 
is better to offload all tasks onto the cloud. In 
(Amoretti et al., 2015) multiple mobile devices offload 
tasks to a cloud component called Dispatcher, which 
distributes the tasks among VMs to balance the com-
putation load. The work in (Yang et al., 2017) devel-
oped a system model that divides the edge computing 
resources wireless bandwidth into virtual channels. 
Each mobile device sends the cost of an application 
execution to the edge computing unit, which then 

assigns it one of the virtual channels; hence, it parti-
tions the whole edge-computing bandwidth among 
users’ devices.

Although these research results have some relation 
to ours, their objectives are different to the ones we 
outlined in the Introduction: we want the need for Fog 
services to run simulations for different models; our 
focus is on mobility, saving computations cycles, 
avoiding installing specific software locally on the 
device and saving power and storage.

2.3. Fog computing applications

Fog computing-based applications main purpose is to 
enhance users’ quality of service by bringing some 
computation close to users like in the case of health-
care systems or transportation systems such as (Giang 
et al., 2016; Hou et al., 2016). In those type of systems, 
based on Internet of Things (IoT), the scalability in the 
number of mobile devices is essential. IoT mainly 
deals with interconnecting any number of mobile 
nodes (e.g., sensors, vehicles and phones) via the 
Internet, with high mobility support, geographical dis-
tribution, location awareness, and low latency 
(Bonomi et al., 2012). However, as it has been realised 
in recent years that these requirements go against the 
nature of clouds, which mainly exist in centralised 
datacentres. In this case, all devices (regardless of 
their locations) need to go to the centralised cloud 
datacenters to consume their services.

Healthcare sector-based applications process data 
from a large number of spread devices, like in 
(Mahmud et al., 2018), which proposes an IoT health-
care-based system to optimise data communications 
and power consumption; or (Rahmani et al., 2018), 
which uses fog computing layers between the sensor 
nodes and the cloud, in which the fog layers perform 
partial sensor computation on behalf of the cloud. 
Smart Cities also apply Fog computing technology. 
For example, IoT-based connected vehicles develop 
smart transportation systems providing driving direc-
tions in an urban area (Giang et al., 2016). Others use 
vehicles as the means of computation and communi-
cation, and they use the vehicle resources (Hou et al., 
2016).

As can be seen that other related work is mainly 
used to collect, store, or communicate data. In con-
trast, we apply here the Fog computing technology to 
allow mobile devices to setup and execute simulation 
experiments as services.

2.4. Fog computing infrastructure

In this category, researchers proposed methods for 
resources allocation such as (Pooranian et al., 2017; 
Taneja & Davy, 2017) and for Fog collaboration such 
as (Alsaffar et al., 2016; Al-Zoubi & Wainer, 2020a). 
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Resource allocation methods mainly deal with allocat-
ing and scheduling VMs to compute tasks. For exam-
ple, in (Taneja & Davy, 2017), the algorithms deploy 
applications modules, as needed, onto Fog layers close 
to users and improve their user experience and quality 
of service. Energy-based dynamic resources allocation 
can be used to improve energy use in the Fog comput-
ing centres as in (Pooranian et al., 2017), where groups 
of VMs are allocated in the physical servers, and the 
VMs are selected based on energy-related parameters 
in each computation iteration.

Fog collaboration mainly deals with where to exe-
cute jobs. This requires coordination between Fog and 
Cloud resources. For example, a linearised decision 
tree can be used to balance users submitted jobs, 
categorising each job using three parameters: size, 
completion time, and VM capacity (Alsaffar et al., 
2016). Those methods then decide where to execute 
a job either on the Fog or on the Cloud. Similarly, Fog 
collaboration can execute heterogeneous simulation 
jobs, if allocating VM(s) only is not enough but ensur-
ing that those servers also support the tools to run the 
simulation based on users’ requirements (Al-Zoubi & 
Wainer, 2020a). This means that servers/VMs cannot 
be compared to each other based merely on comput-
ing capabilities.

This research focuses on enhancing mobility sup-
port on the Fog to conduct simulation experiments 
using mobile devices. However, we reused the M&S 
resources discovery and management from our 
research in (Al-Zoubi & Wainer, 2020a), which stu-
died on large scale in (Al-Zoubi & Wainer, 2020b). It 
is important to note that migrating experiments, in 
our case, are not expensive since they are usually few 
files defining experiment settings and other files like 
model scripts; hence, we ruled out VM migrations 
early in the project. In our case, each Fog is responsible 
for one or more geographical zones; the mobile Apps 
embed their device locations within their regular 
requests sent to experiments, and based on this, con-
tacted Fog decides what to do about this device and 

the subject experiment. If an experiment is migrated to 
another Fog, the new URI for that experiment is 
passed to that device. This is complex process as multi-
ple devices could be connected to the same experiment 
from same or multiple Fogs, the experiment could be 
active and running simulation over distributed 
resources, and so on.

3. Mobile simulation experimnets

This section presents the novel concept of mobile 
simulation experiments over the Fog architecture. 
We first present the overall experiments organisation 
over the Fog architecture; we then discuss the factors 
(like the experiment state) used in determining on 
how to move an experiment to another Fog. Finally, 
we discuss the procedures taken by the system to 
complete experiment travelling between Fogs.

3.1. Experiment Fog architecture and 

requirements

Figure 2-1 shows the relationship between users and 
experiments. Each user is an account with username 
and password. Users can create any number of experi-
ments where each experiment is exposed to the out-
side world as URIs with defined RESTful API, as 
described later. This makes experiments independent 
from each other regardless of their owners. It is worth 
to point out that mobile experiments move with 
devices, thus, it is possible for a user experiments to 
spread out over multiple Fogs.

Devices (i.e., mobile Apps) access simulation experi-
ment services through Fogs (Figure 2), and to be spe-
cific, via experiment URIs that are exposed via Ingress 
Fog servers. In our case, those Fog servers are addressed 
by the same floating IP address, hence seen by the 
outside world as a single server. For discussion simpli-
city, we refer to those group of servers as Fog server 
throughout this paper. Experiment URIs are prefixed 
with the <Fog-Server-base-URL>, which contains the 

Figure 2. Overall experiment Fog/Cloud architecture.
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ingress Fog server-specific information like the IP 
address; hence, it serves the client’s (e.g., mobile App) 
pointer to a certain Fog. As a result, this part is the only 
one changes in an experiment URI when it moves to a 
different Fog. This makes sense, because from a client 
perspective, the only thing changes is the server gateway 
of that experiment. However, the rest of the experiment 
URI structure stays the same regardless of its actual 
location. This will further be discussed in more details 
in Figure 4 (Section 3.2). It is worth noting that Figure 2 
simplifies the overall picture. However, in practice 
experiment might be distributed over different loca-
tions (i.e., experiment partitions) as in the case of dis-
tributed simulation, see details in (Al-Zoubi & Wainer, 
2015).

Based on above, when an experiment is moved to a 
different Fog, the device only needs to be updated with 
the new Fog base URI so that it can attach it to the 
beginning of the URI string when it interacts with the 
experiment.

For an experiment to be mobile (i.e., that can 
move), users, devices, and Fogs should support experi-
ment mobility, as follows:

(1) Usernames. User accounts are a single user or a 
team. If users choose to support mobility, the 
primary copy of their information (e.g., creden-
tials) is stored on the Cloud (while cached on 
Fogs, as needed).

(2) Mobile device (i.e., phone App). If supports 
mobility, it includes its geographical location 

coordinates within its regular requests to 
experiments. In our case, this location is sent 
within the XML message that is usually sent via 
HTTP POST and PUT requests, while it is sent 
in the query parameters for the HTTP GET 
requests. For example, a device is willing to 
move the experiment, if it includes the follow-
ing in its request <mobile><location> 
<X > 32.491998</X> <Y > 35.988219</Y> 
</location>ile>. This allows device holders to 
disable experiment mobility on their devices if 
they do not grant location access for the mobile 
App.

(3) Fogs should be configured to be responsible for 
one or more geographical zones. This allows a 
server upon a request receipt to determine if a 
device current location is inside or outside its 
Fog zone. To simplify this calculation, in our 
case, Fog zones are always ensured to be 
defined as quadrilaterals (Figure 3-1).

The Fog zone (Figure 3-1) is limited to four points 
to reduce unnecessary computation overhead when 
determining a device still within a Fog zone or outside 
of it. To do so, Fogs first need to pre-calculate the area 
of their zones. In our example, the area of the shown 
quadrilateral in Figure 3-1, which is the sum of the two 
triangles of ABD and BCD (i.e., by connecting points B 
and D). After that, upon a message receipt from a 
device, each pair of points in the Fog zone are con-
nected to the device reported location P. This leads to 

Figure 3. Example of determining a device inside or outside a specific Fog zone.

Figure 4. Experiment state machine.
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the formation of four triangles: APB, BPC, CPD and 
APD, as shown in Figure 3-2 and Figure 3-3. Figure 3- 
2 shows when the reported location P is inside the Fog 
zone; hence, the sum of the four formed triangles 
(with respect to P) equals the Fog zone precalculated 
area. Otherwise, it is outside the Fog zone (Figure 3-3), 
hence, the area of the four formed triangles larger than 
the Fog zone area.

3.2. Moving experiment deciding factors

Based on the above requirements, we assume that all 
experiments are moveable, as our focus here is on 
mobile experiments. Of course, moving a specific 
experiment from a Fog to another depends on several 
factors. The first of those factors is obviously the 
experiment state. Each experiment can only evolve in 
different states independently from other experiments 
(Figure 4) regardless of their owners.

Figure 4 shows the three possible composite states 
of an experiment: Not Present, Active, and Inactive 
states. Not Present state indicates that the experiment 
does not exist on the contacted Fog by a device (but 
might exist on other Fogs). An experiment in the 
Active state indicates that this experiment is currently 
executing simulation; hence, M&S resources have 
been allocated to this experiment where those 
resources might exist on the contacted Fog, other 
Fogs, or the cloud backbone. The Inactive state indi-
cates that the experiment exists (on the contacted 
Fog), but simulation is not currently being executed 
on this experiment; hence, M&S resources are not 
allocated to run simulation.

The Inactive state (Figure 4) contains two internal 
states: Incomplete and Runnable substates. The experi-
ment goes into the Incomplete substate upon the 
experiment creation request is received from a user. 
Creation request is HTTP PUT on URL <Fog-Server- 
base-URL>/users/{user}/experiments/{experiment} 
where {user} is user’s username and {experiment} is the 
experiment given name by the user. However, before 
creating the new experiment, the Fog needs to make 
sure that the experiment does not exist in some other 
Fog, as discussed later in Table 1 and Figure 8. The 
Runnable substate indicates that simulation can be 
executed for this experiment. This happens when all 
required settings and data have been uploaded onto 
the experiment. From this time forth, simulation can 

be executed within this experiment. This done by 
sending HTTP PUT request to create URL . . . /{experi-
ment}/simulation. This moves the experiment into the 
Starting substate (within the Active state).

The Starting substate ((Figure 4)) indicates that the 
experiment is in the process of discovering and select-
ing M&S resources that can execute the simulation. 
Those resources may exist anywhere on the local Fog, 
on other Fogs, on the cloud backbone, or mixed 
between them. Here, we reuse the scheduler compo-
nent from our previous research in (Al-Zoubi & 
Wainer, 2020a) to carry out the discovery & selection 
operation. After those resources are allocated, the 
experiment (on Fog) creates other experiments (like 
any other experiment) on those found servers to run 
the simulation. Accordingly, the experiment becomes 
in the Running substate (where live results could be 
read by the mobile App, if required). Of course, read-
ing live results from a running simulation needs to be 
supported by that specific simulation environment 
since our proposed platform is independent from 
any specific simulation tool. For example, the CD++ 
(Wainer, 2009) version that supports this feature 
requires clients to include in their HTTP requests the 
simulation time window (i.e., start and end time) that 
they need results for. For example, window [t1, �) 
extracts results from t1 until last available simulation 
time. This is according to REST principles that clients 
should include all needed information to perform 
their requests. Thus, it becomes the responsibility of 
the clients to keep track of the last simulation time 
they got results for and how to advance time in the 
following requests. This means that they also control 
the frequency of sending those requests, as it is related 
to the situation of their internal processing. The main 
advantage of this approach is that experiments are 
decoupled from local specifics of clients. For instance, 
multiple clients can easily be served by same experi-
ments without complicating experiment states and 
management on the server side.

At this point, the experiment goes back to the 
Inactive state through one of the following three sub-
states: Stopping (i.e., if user intentionally aborts simu-
lation), Logging Errors (i.e., if user’s simulation model 
contains errors), and Saving Results (i.e., if simulation 
is completed, results then stored on URL . . . /{experi-
ment}/results), hence, results are always available for 
future download and simulation replay by clients.

To put above discussion in a simple example, 
Figure 5 shows a simple use case interactions between 
a client and the Fog/Cloud platform. In step #1, the 
client (mobile app) sends request to the nearby Fog 
(Fog-A) to create experiment. The client assumes the 
nearby Fog is the one that had cached its accessed URI 
(Fog-A in our example). For simplicity, we assume that 
this request was received from a device within the 
receiving Fog zone, and the experiment does not 

Table 1. Mobile experiment cases.

Case
Experiment 

State
Experiment 

Type
Mobile Device 

Location
Action 
Taken

1 Not Present N/A Inside/Outside Fog 
Zone

Figure 8

2 Inactive Primary/ 
Mirror

Inside/Outside Fog 
Zone

Figure 9

3 Active Primary/ 
Mirror

Inside/Outside Fog 
Zone

Figure 11
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exist on this Fog or elsewhere across the entire Fog/ 
Cloud platform (i.e., this is because experiments can 
move as discussed soon in Section 3.3). As a result, the 
experiment main URI is created; hence, the client can 
then update and build this experiment via this URI as 
desired (step #2). Now, when the client decides to start 
the simulation in this experiment (step #3), the experi-
ment then needs to (1) discover the resources that can 
execute the simulation. For instance, if an experiment 
can only be executed by CD++, we only then need to 
find servers with CD++ capabilities. (2) select out of 
those found resources best ones to execute simulation 
considering factors like load, utilisation, and locations. 
Our work in (Al-Zoubi & Wainer, 2020a) have fully 
described this platform resources management includ-
ing resources orchestration, discovery, and selection. 
As a result, resources to execute the simulation could 
be found on a Fog or on the cloud backbone. In this 
example (step #3.3), the simulation is offloaded to the 
Cloud. In this case, the experiment on the Fog, creates 
a temporary experiment on the cloud to run the simu-
lation. At this point, URI . . . /{experiment}/simulation 
is used to interact with running simulation. Now, 
when simulation is completed, results are retrieved 
from the cloud and stored on the local Fog (in URI 
. . . /{experiment}/results). It further deletes all allo-
cated resources on the Cloud. As can be seen that a 

request might be received from a device that has 
moved away from its original Fog. For example, Step 
#4 shows that the device has moved from Fog-A to 
Fog-B zone. This is detected by Fog-A based on the 
geo information in the device request that was just 
requesting the experiment results, as will be discussed 
soon. As a result, a new Fog (Fog-B) is found for that 
experiment based on its location. The new Fog URI is 
slipped back to the device along with the response to 
the original request. From now on, the device contacts 
Fog-B for that experiment.

In addition to the experiment state, the second 
factor that also plays a role in determining on how 
to move an experiment is the experiment usage 
within the current Fog zone. Of course, we do 
not want to abandon other devices that still in the 
current Fog zone because simply another device 
has moved. At the same time, we do not want to 
ignore the device that has moved to a different Fog 
zone. Because of this, we designed two types of 
experiments: Primary and Mirror experiments. 
Mirror Experiment is a cached-in experiment on a 
foreign Fog to serve devices within that foreign Fog 
zone. However, the Primary Experiment is the main 
experiment that exist on the home Fog to serve 
devices within the home Fog and to keep track of 
its mirror experiments on other foreign Fogs.

Figure 5. Simplified example of client/experiment interactions.
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It is worth noting that for obvious scalability and 
performance reasons, the experiment does not directly 
track connected devices. However, we measure the 
experiment usage factor by tracking how the experi-
ment has recently been used (by devices) from the 
current Fog. In our approach, as shown in Figure 6, 
each experiment counts received requests from 
devices within its home zone at each tick (i.e., default 
is 5 minutes) over a retention period (i.e., default is 12 
ticks). For example, Figure 6 shows an experiment 
with retention of five ticks, hence, the retention box 
moves one tick at a time, which always maintains five 
ticks in the retention box. Figure 6(left) shows 590 
requests in the retention box. Now, on the next tick, 
the retention box moves one more tick to contain 670 
requests, as shown in Figure 6(right).

Experiment usage factor (Figure 6) is mainly used to 
determine when to create mirror experiments on other 
Fogs, as discussed later. It further determines which 
experiment should be the primary experiment and 
which ones should be the mirror experiments 
throughout the Fogs. In our case, the primary experi-
ment periodically performs voting among all its mirror 
experiments by asking them to report their usage 
metric (Figure 6). If a mirror reports usage more 

than the primary, this mirror experiment becomes 
the primary one.

In addition to experiment state and experiment 
usage, the third factor in determining how to move 
an experiment is the experiment type (i.e., primary or 
mirror) upon a request receipt from a device located 
outside its Fog zone.

3.3. Travelling experiment cases

As discussed above, the required taken actions on how 
to move an experiment is based on the combinations 
of multiple conditions. Those cases are summarised in 
Table 1. The taken actions based on those cases are 
carried out by number of components in the control 
plan (shown in Figure 7) via exchanging XML control 
messages using RESTful API.

Figure 7 shows the control plan components. In 
Figure 7, Fog Mobile Controller is a single component 
per Fog that contains location information about all 
primary experiments on its local Fog. Cloud Mobile 
Controller is the component that contains location 
information about all primary experiments on all 
Fogs. It further contains information about Fogs geo-
graphical zones.

Figure 6. Measuring experiment usage.

Figure 7. Control plan components.
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Figure 8. Not-present experiment use case.

Figure 9. Inactive experiment use case.
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Table 1 summarises the required taken actions 
based on the experiment state and experiment type. 
These cases are discussed next. Note that as previously 
stated that the Fog server term in our discussion is 
multiple servers with the same floating IP address.

3.3.1. Case 1: Handling “not present” experiments
Case #1 (in Table 1) is the situation when a request is 
received to an experiment that does not exist on the 
receiving Fog server. However, before this server can 
decide on what to do about this request, the server 
needs to know if this experiment does not actually 
exist or indeed exist somewhere else. This situation 
manages the possibility of an old device that is una-
ware of deleting the subject experiment or unaware of 
moving it to different Fog. The taken actions based on 
Case #1 (in Table 1) are illustrated in Figure 8.

As shown in Figure 8, if a request is received from a 
device that is located outside the current Fog zone to 
an experiment that does not exist, the Fog server reads 
the device location (i.e., Action #1, Figure 8) and sends 
Find Experiment request to the Fog Mobile Controller. 
The Find Experiment is an XML message sent via 
HTTP POST method to the Mobile Controller URL, 
which includes information like the subject experi-
ment URL and device location.

The Fog Mobile Controller (i.e., Action #2, Figure 8) 
tries to lookup this experiment info based on the own-
er’s username. If found on local Fog, the new experi-
ment URL is returned to the Fog server. The Fog 
server (i.e., Action #3, Figure 8) then returns this new 
URL to the device to retry the request again. However, 
if the experiment still not found on the Fog, the 
request is then forwarded to the Cloud Mobile 
Controller to check if another Fog has this experiment.

Upon requesting receipts on the Cloud, the Cloud 
Mobile Controller (i.e., Action #4, Figure 8) tries to 
lookup it up based on owner’s username. If experi-
ment is found, the experiment new URL is then sent 
back until it reaches the receiving Fog server. The Fog 
server (i.e., Action #3, Figure 8) then returns this new 
URL back to the device to retry the request again.

However, if the experiment still not found and the 
device location is known, the Cloud Mobile Controller 
(i.e., Action #5, Figure 8) finds a new Home Fog for the 
mobile device based on its location and then responds 
back with the found Fog base URL. When this 
response reaches the Fog server, it updates (i.e., 
Action #6, Figure 8) the device with the new home 
Fog URL to retry the request again with the newfound 
Fog. Otherwise, if cloud could not find a new home 
Fog for this device, the Cloud Mobile Controller replies 
with “New Fog Not Found” response.

Once the “New Fog Not Found” response is 
received by the Fog server, the Fog server (i.e., 
Action #8, Figure 8) creates the experiment and 
updates the Fog Mobile Controller with the experiment 

creation event, which in turn updates the Cloud 
Mobile Controller. This causes experiment to go into 
the Inactive state (as discussed in Figure 4). However, 
if the device original request was other than creation, 
the Fog server (i.e., Action #9, Figure 8) responds to 
the device with an HTTP error.

It is worth noting that the Fog server allows 
experiments creation for devices outside its zone if 
the Cloud Mobile Controller was not able to find a Fog 
for this device. In this case, the Fog server (i.e., Action 
#7, Figure 8) temporary adopts this device. This 
means that the device UUID is cached in the experi-
ment in a list called adopted devices for some config-
ured grace time (i.e., 6 hours by default). The device 
is removed from this adopted list when the grace time 
expires for this device. After that, if a request is 
received from this device and is still outside the Fog 
zone, the taken actions will be according to Table 1 
listed cases.

3.3.2. Case 2: Travelling experiments during 
inactive state
Case #2 (Table 1) deals with the case when a request is 
received by an experiment in the Inactive state. The 
taken actions based on this case are illustrated on 
Figure 9. During the Inactive state (see Figure 4), 
mobile devices use experiment URIs to read informa-
tion (e.g., cached simulation results) or to update 
experiment (e.g., simulation model), hence, simula-
tion is being executed.

As shown in Figure 9, if the experiment receives a 
request from a device inside the current Fog zone, it 
simply serves the device request (i.e., Action #1, Figure 
9). The steps for serving the device request are illu-
strated in Figure 10. In this case, if the request does not 
change the experiment, the request is granted and 
response is sent back to the device (i.e., Action #1, 
Figure 10). However, if this request changes the 
experiment settings, the next action depends on the 
experiment type. If this experiment is mirror, the 
request is then forwarded to the primary experiment 
to deal with it (i.e., Action #2, Figure 10). On the other 
hand, if the experiment is primary, it grants the 
request and updates all mirror experiments, if any (i. 
e., Action #3, Figure 10), apply changes, and replies to 
the device (i.e., Action #4, Figure 10).

To continue with Figure 9, when a request is 
received from a device outside the current Fog zone, 
in addition the device is currently being adopted, the 
experiment simply serves the device request (i.e., 
Action #1, Figure 9), as previously discussed in 
Figure 10.

However, if the device is not adopted, the next 
action depends on the experiment type. If this experi-
ment is mirror, the request is forwarded to the pri-
mary experiment to deal with it (i.e., Action #2, 
Figure 9).

10 K. AL-ZOUBI AND G. WAINER



However, if the experiment is primary, a request is 
sent to the Cloud Mobile Controller to find a new home 
Fog for this device based on its location (i.e., Action #3, 
Figure 9). If the new Fog is not found, the Fog server 
temporary adopts this device (i.e., Action #4, Figure 9), 
and serves the device request (i.e., Action #1, Figure 9), 
as previously discussed in Figure 10.

On the other hand, if the new Fog was found for 
this device while this primary experiment has not 

recently been used (see Figure 6), the primary 
experiment is then transferred to the new Fog (i. 
e., Action #7, Figure 9). It further (i.e., Action #8, 
Figure 9) inserts the new primary experiment URL 
in the device response (to be used by the device in 
future requests), updates the Cloud Mobile 
Controller, and serve the original device request (i. 
e., Action #1, Figure 9), as previously discussed 
Figure 10.

Figure 10. Serving-received-request composite state (see Figures 9 and 11).

Figure 11. Active experiment use case.
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In contrast, if the new Fog was found for this device 
while this primary experiment has recently been used 
(see Figure 6), a mirror is then created on the new Fog 
(i.e., Action #5, Figure 9). It further (i.e., Action #6, 
Figure 9) includes the new mirror experiment URL in 
the device response (to be used by the device in future 
requests) and serve the original device request (i.e., 
Action #1, Figure 9), as previously discussed Figure 10.

3.3.3. Case 3: Travelling experiments during active 
state
Case #3 (Table 1) deals with the case when a request is 
received by an experiment in the Active state (see 
Figure 4). In this state, simulation is running in the 
experiment, hence, M&S resources are allocated and 
being used by the experiment. During this state, 
mobile devices use experiment RESTful API (on the 
nearby Fog) to manipulate running simulation, where 
simulation could be distributed over allocated 
resources on Fog, Cloud, or both.

As shown in Figure 11, if the experiment receives a 
request from a device inside the current Fog zone, it 
simply serves the device request (i.e., Action #1, Figure 
11), as previously discussed in Figure 10. It also serves 
the device request (i.e., Action #1, Figure 11) for 
adopted devices even if they are located outside the 
Fog zone. Otherwise, the next action then depends on 
the experiment type.

If mirror experiment, the request is then forwarded 
to the primary experiment to deal with it (i.e., Action 
#2, Figure 11). However, if this experiment is primary 
and the allocated resources to execute the simulation is 
fully or partially running on the home Fog, the device 
is temporarily adopted by this Fog (i.e., Action #4, 
Figure 11), and the device original request is served 
(i.e., Action #1, Figure 11).

However, if the simulation allocated resources only 
exist on the cloud, a request is sent to the Cloud Mobile 
Controller to find a new home Fog for this device (i.e., 
Action #2, Figure 11). If Fog is not found, the device is 
then adopted (i.e., Action #4, Figure 11) and the ori-
ginal request is served (i.e., Action #1, Figure 11), as 
previously discussed in Figure 10. However, if a new 
Fog is found for this device, a mirror experiment is 
setup on that found Fog (i.e., Action #5, Figure 11), 
inserts the mirror experiment URL with the response 
to the device (i.e., Action #6, Figure 11), and the 
original request is served (i.e., Action #1, Figure 11).

4. Use cases

This section main purpose is to show how users view 
simulation results on their mobile apps. In this case, 
the mobile App retrieves results from the experiment 
resource on the Fog/Cloud side. This could happen 
during live simulation using URI . . . /simulation, or 
after simulation have been completed via URI . . . 

/results to download cached results for replay on client 
side, as previously discussed in Figures 4 and 5. Thus, 
in this case, the mobile app is used to view (and 
visualise) the simulation results while the actual simu-
lation is executed on one or more middlewares that are 
installed on VMs across the Fog/Cloud platform. It is 
worth noting that the experiment view on the client 
side sees any experiment on the Fog/Cloud side as URI 
that begins with the Ingress server URI (called <Fog- 
Server-base-URL> in Figure 4), which is the only part 
of an experiment URI that gets updated when it moves 
from a Fog to another. Of course, the Fog/Cloud plat-
form mechanism is the one that makes the decision to 
move an experiment from a Fog to another (as dis-
cussed earlier), by simply overriding the experiment 
URI on the mobile side. This RESTful API mechanism 
simplifies the client side and relieves it from many 
complex details on the Fog/Cloud side.

To this end, mobile Apps (on mobile devices) are 
RESTful clients, allowing users to access their experi-
ments through the nearby Fog according to a defined 
RESTful API. Experiment framework related API has 
already been discussed in Figure 4 (in Section 3.2). As 
previously discussed, experiment URIs are URI tem-
plates, which means they have the same URI structure 
but with two variables: {username} and {experiment 
name}. This ensures experiment URI uniqueness for 
the same user and across different users. This also 
allows users to list and view their existence experi-
ments and switch between those experiments.

Now, when a device needs to send to a request to an 
experiment, it builds the experiment URI string 
according to the URI template string (see Figure 4). 
The differences between experiments URIs are the 
{username}, the {experiment name}, and the <starting 
base URI>. The <starting base URI> needs to be 
attached at the beginning of the URI string to reach 
the services. This basically is the Fog entry URI that 
previously discussed. Of course, each Fog has a unique 
entry URI; hence, in our case we use the IP addresses 
to ensure this uniqueness. Thus, if an experiment is 
moved to another new Fog, the old Fog embeds the 
new Fog entry URI in its regular response to the 
device, allowing future requests to go to the new 
home Fog. This is smooth transition since RESTful 
requests are stateless, which means requests are inde-
pendent of each other and contain all necessary infor-
mation to conduct the service.

Based on above, mobile Apps do not require simu-
lation engines to be installed on devices. However, 
they need to know how to parse simulation results to 
visualise the simulation. In our case, those results are 
received as text format (e.g., Figure 12).

Therefore, from the mobile App viewpoint, it owns 
the experiment by itself regardless of the number of 
other devices communicating with the same experi-
ment. It further assumes the experiment is fixed in one 
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location that is reachable through the con-
structed URI.

For the remaining of this section the simulation will 
be shown on the handheld device Apps (i.e., client 
side) using two platforms: Android and Windows 
phone. The Android mobile App is developed in Java 
for the Android phone platform while the Windows 
phone platform is built in C#. Further, the actual 
simulation on the Fog side will be conducted using 
the CD++ simulation tools (Wainer, 2009), that is 
provided via RESTful-based middleware (Al-Zoubi & 
Wainer, 2013).

4.1. Forest fire simulation on android

As a case study, we present a model to simulate forest 
fires. In this model, fire propagation considers certain 
parameters such as heat, density, fuel type, vegetation 
size, wind speed, terrain topology and humidity. The 
GPS and compass values (obtained from the mobile 
device sensors) are used to advise fire fighters for the 
best way to move.

Figure 12 shows an example of the forest fire simu-
lation results sent from the Fog to the App. The App 
then draws these results (i.e., fire propagation) on top 
of Google Maps (see Figure 13). The mobile App 
visualises the fire propagation to advise fire fighters 
of the best way to move in case of being too close to a 
dangerous area.

Figure 13 shows the simulation and Google Maps 
visualisation. It also shows the simulation major con-
trol buttons: Play, Pause and Recommend Direction. 
The first two buttons are used to start and stop the 
animation playback. The third button (Recommend 
Direction) calculates the user position with respect to 
the fire location and suggests the direction the user 
should go.

Figure 14(right) shows the state of the screen 
once the Recommend Direction button is pressed, 
which is waiting for GPS response. Figure 14 (mid-
dle) shows a “go Ahead” direction suggestion, while 
Figure 14(left) shows a “turn left” direction sugges-
tion. The way that this Android App manages 
visualisation is as follows: The mobile App sends 
a request to the experiment (via nearby Fog) to 
read simulation results. Upon results receipt, the 

App extracts the time, the fire spread rate, and 
the coordinate position. The coordinate position is 
then converted to geographic location. This conver-
sion is done by method getProjection() in the 
MapView class (this class is part of Google 
Android API (Google APIs for Android, 2020)). 
Afterwards, the cells that contain fire are converted 
to red cells (see Figures 13 and 14). This overlay 
code is sub-classed from class Overlay in package 
com.google.android.maps (a part of Google Android 
API (Google APIs for Android, 2020)). This also 
used to draw the direction arrows shown on Figure 
14. The Time class (see Google Android API 
(Google APIs for Android, 2020)) is used to 

Figure 12. Snippet of simulation results sent from Cloud to the Android App.

Figure 13. Forest fire simulation visualisation on android 
device.
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provide fire spreading animation. This also allows 
the simulation to be played faster (or slower) than 
the real-time simulation.

Further, when the Recommend Direction is pressed, 
the app gets position updates from GPS, and gets 
orientation updates from the compass. With each 
update, the distance between the user and nearby 
cells with fire (i.e., red cells on the screen) are calcu-
lated. Based on this, it calculates the angle between the 
handheld device direction (as indicated by the com-
pass), and the vector starting at the closest cell with fire 
(as indicated by simulation and GPS position), as 
shown in Figure 15. Now, if this angle is less than 30 
degrees (i.e., an arbitrarily chosen value), the app 
suggests moving ahead for the user to flee the fire. 
Otherwise, it suggests turning right or left, depending 
on whether the angle is positive or negative.

The bearingTo() method (in the Location class in 
package android.location (Google APIs for Android, 
2020)) returns α angle in Figure 15. Further, the 
Compass angle is obtained via the SensorManager 
class (Google APIs for Android, 2020), which continu-
ously updated with any change of the handheld device 
orientation. This information is used to determine β in 
Figure 15, which is the device orientation around the Z 

axis. The GeomagneticField class is used to compute δ 
in Figure 15, where it is the magnetic declination from 
true north. With those three variables, the application 
then calculates the angle between the line from the 
closes fire cell to the GPS location and the compass, as 
shown in Figure 10. As a result, the angle of the arrow 
(Figure 14) is given by (α-(β + δ)). If result is zero, the 
direction of the user (i.e., given by compass) is moving 
away from the fire (i.e., given by simulation and GPS), 
hence the arrow becomes green. The arrow rotates 
right or left as a reaction to the user rotating the device 
around the Z-axis. Likewise, the arrow turns red if the 
arrow angle gets larger than 30.

4.2. Ant Colony simulation on windows phone

Ant Colony model shows the behaviour of ants in an 
environment with random obstacles and food loca-
tions. Thus, the model studies how ants find the hid-
den food locations, and how they find their way back 
to the nest once a food location is found.

Ants live in what is called superorganism, which 
means that ants interact with each other to define the 
overall behaviour of the entire colony. This is shown in 
the way they search for food, avoid obstacles, choose 
the location of their nest, and in the way they find the 
shortest path to go back to their nest.

In this model, ants search randomly by smelling 
nearby food. They further mark their path by leaving 
behind chemical traces called pheromones, allowing 
them to find their way back to the nest (Dorigo, 2006). 
Further, the closer ants get to previously found food, 
the stronger pheromones substance smell becomes. In 
doing so, ants eventually form lines between the nest 
and food locations (Dorigo, 2006).

Figure 16 shows a snippet from the simulation 
results produced by the CD++ simulation engine. 
The “Y” result lines represent the visual aspects of 
the experiment where ant(x, y) represent the next 

Figure 14. Forest fire simulation visualisation with direction recommendation on android device.

Figure 15. Recommended direction calculation.
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coordinate, and the value between the parentheses “()” 
represents the encoded data. This encoded data indi-
cates cell state information, such as pheromones 
strength in the cell, ant direction, amount of food, 
the load that an ant carries, and so on.

Figure 17 shows the Windows Phone visualisation 
based on received simulation results (Figure 16) from 
the Fog. The App uses Microsoft’s XNA game studio 
framework to visualise the simulation results. In 
Figure 17, the pink spots and the leaf symbolise the 
food, while the yellow rectangles symbolise the pher-
omone that ants leave behind.

4.3. Cancer spread simulation on windows phone

This model (Figure 18) studies the spread of cancer 
cancerous cells in tissues. The simulation rules decide 
on new cancer cells being created or dead. In this 
model, the simulation starts with the initial values 
defined in the input initial values (i.e., CD++ VAL 
file (Wainer, 2009)). The Cell-DEVS dimensions for 
this model was defined as 20 by 20 where they need to 
be fit on 480 × 800 pixel screen. To resolve this issue, 
the screen was cropped so that an area of 480 by 480 
was used, which was done by multiplying each posi-
tion by 24 and then subtracting 160 out of the y 
coordinate. Figure 18 shows a snippet of the cancer 
simulation spreading in tissues.

4.4. Fire spreading simulation on windows phone

The Fire model is used to predict how a fire spread. 
This model considers certain parameters such as heat, 
minerals, density, fuel type, vegetation size, wind 
speed, territory inclination and humidity. In this 
model, the user can speed up or slow down the simu-
lation. The user can also pause the simulation, zoom in 
and zoom out to get a better idea about the location of 
the fire.

This model has different parts to it: the Bing 
Map, the User Control buttons, and the Fire 
Spread state. The Bing Map was loaded using 
Silverlight. The Bing Map uses touch controls, 
zoom levels, and several types of map views 
(Aerial and Road). The User Control buttons (i.e., 
Play, Pause, Fast Forward, Speed and Sound 
Effects) were also loaded using Silverlight. This 
allows users to start, pause, fast forward, simulation 
sound and change the fire spread speed. The Fire 
Spread cells were constructed using XNA. These 
cells have used a polygon to adapt to the fire 
shape and a gradient colour was used to fill in the 
polygon. These polygons are pined onto the map 
(drawn on the map using geo coordinates) where 
the size can change by zooming in or out. Each 
polygon represents an area of 1 km2 on the map.

The fire spread state is drawn based on the received 
simulation results from the running experiment on the 

Figure 16. Snippet of simulation results sent from Cloud to the Mobile App.

Figure 17. Windows phone visualisation for Ant Colony simulation.
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Fog. For example, the following line was taken from 
the simulation results:

Message Y/13:08:169/forestfire(18,15)(558)/out/ 
14.13617 to forestfire(02)

The first part of this line shows the message type 
and simulation time. The coordinates represent the 
location of the fire. These coordinates (x, y) are then 
converted to Geo Coordinates (on the Bing Map) by 
the mobile app as follows: (x/3-130 + 0.25, y/3 + 40). 
The “Y” message value (which is 558 in the above 
example) is then converted and scaled to fit within 
the range of the gradient colour factors by the 
mobile app.

This model targets Canadian forests as shown in 
Figure 19(left). Figure 19 (right) shows a snippet of a 
running simulation over a forest in British Columbia, 
Canada. As the figure shows, the user can slow, fast, 
zoom in, zoom out and pause the simulation.

5. Mobility support evaluation

This section focuses on the evaluation for the mobility 
support aspects of the overall Fog/Cloud system as it is 
within the scope of this paper. However, it is worth 
noting that our work in (Al-Zoubi & Wainer, 2020a) 
have fully evaluated the performance and scalability of 
the Fog/Cloud collaboration algorithms that dealt 
with the resources management, and with the M&S 
discovery & selection to run experiments on best and 
compatible resources (that could be allocated some-
where on the Fogs or Cloud backbone). In addition, 
the scalability of those algorithms on large size was 
additionally evaluated in our work described in (Al- 
Zoubi & Wainer, 2020b).

Figure 18. Windows phone visualisation for cancer spread 
simulation.

Figure 19. Windows phone visualisation for forest fire simulation.

16 K. AL-ZOUBI AND G. WAINER



The mobility support is evaluated here with 
respect to the followings: (1) Changing Fogs for a 
moving mobile device according to the previously 
defined scenarios in Section 3.3 (this discussed 
soon in Figures 22 and 23), (2) balancing executed 

simulation tasks between Fogs and the Cloud back-
bone (this discussed soon in Figure 25), and (3) the 
response time for clients served by the nearby Fogs 
and the Cloud backbone (this discussed soon in 
Figure 24).

Figure 20. Real system setup & configuration.

Figure 21. Simulated system setup & configuration.
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Figure 20 shows the real physical and configuration 
setup that we used to collect the presented results in 
this section. As can be seen that the actual system is 
like a container that you can put into it your available 
hardware, and accordingly create your middleware (i. 
e., which are created quickly via OpenStack since they 
are based on a VM image that is already had all 
required software installed on it). This comes from 
our knowledge as we experienced with many different 
setups like the shown one in Figure 20. However, as 
can be seen we were always faced with two practical 

constraints: the available computing hardware for us, 
comparing to real-world clouds, and (2) the geogra-
phical area size. For example, the setup, shown in 
Figure 20, spreads within a single city and its suburbs, 
which then places Fogs and Cloud in a range of 50– 
60 km from each other.

Because of this, in addition to the real system setup 
(in Figure 20), we will be using our simulated setup 
shown in Figure 21 to study some issues on larger scale 
and wider geographical area, as needed. This model 
was built and simulated by CD++ to study our Fog/ 

Figure 22. Example of experiment creation cost using real system setup.

Figure 23. Example of mobility support during active/inactive experiment.
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Cloud platform on large scale. The full details of this 
model and its validation was presented in our work in 
(Al-Zoubi & Wainer, 2020b).

To this end, the presented results were gathered 
using two environment setups: (1) The real system 
setup (shown in Figure 20) contains the Cloud back-
bone (with 12 VMs and 6 physical machines), cre-
ated, and controlled by OpenStack (as previously 
discussed in Figure 1). It also contains four Fogs, 
each of the Fogs contains one physical machine; 
hence, this machine contains the entire OpenStack 
solution. Each of Fog 1 and 2 contains one VM 
while each of Fog 3 and 4 contains two VMs. 
Finally, all middleware’s (VMs) on the Fogs and 
Cloud have exposed the CD++ simulation services. 
Further, each experiment has run with the fire forest 
model (discussed in Section 4). (2) The simulated 
system setup (shown in Figure 21) contains a cloud 
with 500 VMs and 10 Fogs where each contains 30 
VMs. Fogs and Cloud are simulated with 1000s of 
kilometres apart.

In the first defined scenario in Section 3.3, when a 
client (Figure 8) sends a request to an experiment that 
does not exist, the receiving Fog server assumes that 
the subject experiment may exist on some other Fog. 
This could happen for many reasons like a device has 
outstanding experiments in one of its old Fogs. 
Therefore, our proposed solution has added extra 
cost to verify an experiment existence, comparing to 
a simple client/server system when a server has all 
needed information locally. Figure 22 (using the real 
system setup) looks at this added cost by considering 

the case of creating new experiment, hence perform-
ing step #8 action in Figure 8. Figure 22 compares the 
simple client/server system to the Fog/Cloud platform. 
In case of the simple server, the decision is local, and 
the experiment URI is accordingly created. However, 
in the Fog/Cloud platform with mobility support, the 
Fog server must first make sure the experiment does 
not exist elsewhere before honouring the request. As 
can be seen in Figure 22-1, there is a cost of about 100 
msec to verify that an experiment does not exist under 
low load pressure (comparing to the simple server 
case). This cost gets a little bit larger under high 
pressure (Figure 22-2), but the gap is also got closer 
between the two systems. This tells us that this value 
has maintained its stability while staying at a low level 
comparing to the low-pressure case.

To study the system when a mobile device changes 
Fog zones, a mobile device was placed in a travelling 
car where the car path was intentionally planned to 
cross through the four Fog zones of the real system 
setup. The mobile periodically transmitted a simple 
request each minute to check the experiment status, 
hence, the device also embedded its current location in 
those requests, allowing the contacted Fog to know if 
this device is within its zone or outside. This test was 
repeated twice: one for inactive experiment (i.e., an 
experiment with no running simulation as discussed 
in Figure 9), and the other one for active experiment 
(i.e., an experiment with running simulation as dis-
cussed in Figure 11). Figure 23-1 shows the case of 
inactive experiment. Specifically, the previous dis-
cussed case of step #7 & step #8 in Figure 9 whereas 

Figure 24. Example of Fogs/Cloud client response time.

Figure 25. Example of balancing simulation tasks between Fogs and Cloud.
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the experiment is transferred to the new Fog. Figure 
23–2 shows the case of active experiment. Specifically, 
the previously discussed case of step #5 & step #6 in 
Figure 11 where a mirror experiment gets created on 
the found Fog (to avoid actual simulation migration). 
As can be seen on both cases (in Figure 23), the spike 
(of about 70–100 msec) in the last request before 
changing the Fog is because of the time to find the 
new Fog and experiments transfer coordination 
between Fogs and the Cloud. The current Fog 
responds to the device and slips the new Fog URI in 
the response. After this, the next request transmission 
will go through the new Fog. It is worth mentioning 
that the actual transfer of experiment settings and files 
occurs concurrently with the device response to 
reduce delay.

Figure 24 compares requests response time when 
clients served by the Fog or when served by the Cloud 
backbone. Figure 24-1 shows the response time using 
the real system setup. In this test, the client has sent 
about 100 requests to Fog 1 (from its zone) and 
repeated those requests to the cloud backbone. In 
our case, clients are not allowed to contact the cloud 
directly for security reasons, but we forced it in this 
case to conduct this test. As can be seen, the gap is not 
big (i.e., about 40 msec) since those Fogs are relatively 
placed close to each other (within the same city). 
Because of this, we repeated this test using our simu-
lated system. In this model, we placed Fogs and Cloud 
1000s of kilometres apart. As expected, the difference 
has jumped substantially as shown in Figure 24-1. This 
case is more practical as Fogs are expected to be 
located closer to users while clouds could be located 
somewhere around the globe.

Figure 25 looks at balancing simulation tasks 
between the Fogs and the Cloud backbone. This is 
more related to the Fog/Cloud collaboration and 
scheduling methods that we presented in (Al-Zoubi 
& Wainer, 2020a) rather than the presented mobility 
support in this research. However, it is still impor-
tant enough to not ignore. The idea here is to keep 
evenly adding simulation tasks onto the system via 
all Fogs. This means starting simulation experi-
ments, which lead to allocating resources to run 
the simulation. Figure 25-1 shows how the real 
system behaved under these circumstances. As can 
be seen, Fogs tried to handle all tasks until a certain 
point. After that, the cloud backbone starts getting 
involved (i.e., at 28 experiments). At the end, Fogs 
reached their ability where the Cloud backbone got 
more involved. This behaviour was also shown in 
Figure 25-2 using the simulated system. This tells us, 
the more resources invested in the Fogs, the more 
capability they would have to serve clients without 
going to the Cloud. This is more important to know 
since Fogs are expected to be built from privately 
owned resources while the Cloud backbone are 

generally expected to be paid services on public 
clouds located somewhere around the world.

6. Conclusion

Indeed, providing Modelling and Simulation (M&S) 
as a service via clouds enables users to take advantage 
of such massive computing resources. However, this 
approach lacks true mobility support since clients 
normally contact the same centralised clouds regard-
less of their locations. This means that mobility sup-
port goes beyond simply having users consume 
services from the Cloud using their mobile devices 
(as in current M&S works). As discussed in this 
paper, mobility support means several things like ser-
vices should be aware of clients’ geo-locations (as in 
the cases of mobile devices), allowing them to con-
sume services from nearby locations (to enhance local 
resources utilisation and quality of service). Fog com-
puting comes with the promise of enhancing mobility 
support in Clouds, decentralising cloud resources, and 
of allowing users to utilise their local resources. Fog 
computing decentralises such cloud resources by 
building mini clouds, called Fogs, near to the users 
to perform full or partial computations on behalf of 
the main cloud backbone. This lends itself to enhance 
clouds mobility support and quality of service. 
However, as we previously discussed, M&S research-
ers have so far approached the Fog computing tech-
nology by developing models or complete simulation 
tools to simulate Fog and Cloud related issues.

In this paper, we have built a complete Fog/Cloud 
infrastructure out of privately owned resources. In this 
system, each VM contains a RESTful middleware that 
can expose different simulation environments. This 
means when a user (via mobile App) starts an experi-
ment, the nearby contacted Fog need to find the 
appropriate simulation environments to run the sub-
ject experiment. We used mobile Apps to conduct 
experiments through nearby Fogs that discover 
needed M&S resources to run that experiment. 
Mobile Apps visualise returned results once received. 
We fully presented the novel concept of the mobile 
simulation experiment: if a device moves away from its 
home Fog, the experiment moves with the device to a 
closer Fog. We further showed several use cases that 
we conducted using actual mobile devices over an 
actual existing Fog system.

We finally presented evaluation for those presented 
methods. We have showed how such methods can 
work in practice and how experiments can change 
Fogs when executed by a moving a mobile device (i. 
e., placed in a moving car). We further studied the 
response time when experiments conducted on the 
nearby Fog comparing to the Cloud backbone. These 
results showed that the geographical distance can 
affect the clients’ response time. We furthermore 
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showed how resources allocations are balanced 
between Fogs and the Cloud backbone. These results 
showed that tasks are executed on nearby Fogs until a 
certain point, which then offloaded to the cloud back-
bone. This means the more capabilities you put into 
the Fogs; the less tasks are offloaded to the cloud 
backbone. This is important to know since Fogs are 
expected to be privately owned while Clouds might be 
privately owned or leased on public clouds.
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