q

Check for
updates

A DEVS-Based Methodology for Simulation
and Model-Driven Development of IoT

Iman Alavi Fazel®™ ® and Gabriel Wainer

Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
{imanalavifazel,gwainer}@cmail.carleton.ca

Abstract. The Internet of Things (IoT) has emerged as a promising technology
with diverse applications across industries, including smart homes, healthcare
services, and manufacturing. However, despite its potential, [oT presents unique
challenges, such as interoperability, system complexity, and the need for efficient
development and maintenance. This paper explores a model-driven development
(MDD) approach to design IoT applications by employing high-level models to
facilitate abstraction and reusability. Specifically, we adopt a methodology based
on Discrete Event System Specification (DEVS), a modular and hierarchical for-
malism for MDD of I0T. In our work, different DEVS models are developed to
address distinct functional aspects of the devices, encompassing data retrieval,
data serialization/deserialization, and network connectivity. The developed mod-
els, along with a DEVS simulator, are then used for both simulation and deploy-
ment. To create a comprehensive simulation environment, the paper introduces
two additional models for simulating the MQTT protocol, including its Quality of
Service (QoS) mechanism.

Keywords: IoT - DEVS - Model-driven development - MDD

1 Introduction

The Internet of Things (IoT), characterized as an internet-accessible network of sensors
and actuators, has emerged as a promising solution in numerous areas. In addition to
its established application within home automation, IoT has been used in sectors such
as healthcare, supply chains, and manufacturing [1]. What is referred to as the fourth
industrial revolution, or Industry 4.0, is backed by IoT technologies which results in
more autonomy and enhanced efficiency of industrial plants and processes.

Due to the nature of these systems, it is challenging to design, implement, and verify
their components and their interconnections, in particular interoperability, the ability
of these systems to properly work and communicate together [2]. In addition, there
are various difficulties related mainly to the distributed nature, heterogeneity, and the
presence of “human-in-the-loop” in these systems [3]. To help with the design, different
life cycle phases should be automated, as manual efforts for development, deployment,
and maintenance of the plethora of devices are prone to errors [4].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024
Published by Springer Nature Switzerland AG 2024. All Rights Reserved

J.-L. Guisado-Lizar et al. (Eds.): SIMUtools 2023, LNICST 519, pp. 317, 2024.
https://doi.org/10.1007/978-3-031-57523-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57523-5_1&domain=pdf
http://orcid.org/0009-0009-4007-6775
http://orcid.org/0000-0003-3366-9184
https://doi.org/10.1007/978-3-031-57523-5_1

4 I. A. Fazel and G. Wainer

Model-driven development (MDD) approaches can overcome these challenges.
Using these methods, the code for devices is designed using high-level models instead
of platform-specific programs. These models can be expressed in various formats such
as graphical and textual or with formal or informal semantics. However, the goal of all
of them is to create an abstraction over specific code implementation. After their design
and analysis, these models will eventually be transformed into executable code that can
be run on the hardware. In MDD, the use of high-level models provides abstraction,
separation of concern, and reusability to the development cycle [5, 6].

This paper presents a methodology based on Discrete Event System Specification
(DEVS) for model-driven development of IoT devices. To achieve this, a series of DEVS
models were developed, each performing a specific functional aspect of the devices.
These tasks encompassed capabilities such as retrieving data from ADC channels, seri-
alizing/deserializing the data (such as to and from JSON or XML), and providing network
connectivity. These models, alongside a DEVS simulator, would then be flashed onto
the devices for deployment. We developed prototype models for the widely used ESP32
microcontrollers, but they can be extended to other platforms. For simulation purposes,
we include two models for MQTT brokers and clients, replicating MQTT at a high level
(including its acknowledgment mechanism for Quality of Service - QoS). The models
for MQTT communication facilitate the collection of information about network traffic
and the feasibility of an event within a specified time frame.

An advantage of using DEVS lies in the ability to reuse models with similar interfaces
and behavior, for both simulation and deployment on the device. Furthermore, if the
DEVS models perform hardware-independent tasks, the same implementation code for
the models can be used for both scenarios. Utilizing DEVS for model-driven development
additionally enables us to leverage a set of techniques and methods that have been
developed for the verification and validation of their behavior [7-9].

The rest of the paper is organized as follows. In Sect. 2, some previous work on
model-driven development of IoT alongside a short description of DEVS is presented.
Section 3, provides the DEVS specification of the developed models. A simple case study
comprising of moisture sensor and an irrigation system is presented in Sect. 4. In Sect. 5,
the implementation of the DEVS models is discussed. Lastly, Sect. 6, summarizes the
paper and discusses future directions.

2 Related Work

High-level models have found diverse applications in the design and development of
IoT technologies. These models have been employed to capture the characteristics of
specific components of the infrastructure, such as network connectivity and resource
allocation schemes, as well as to model the complete behavior of a node. The models
were then used for purposes such as simulation, verification, and code generation. In
this section, we present some of the previous research that used high-level models in the
context of IoT [10].

Authors in [11] developed a framework called IFogSim, which used models of sen-
sors and actuators to simulate different resource management strategies within the fog
computing paradigm. This framework is an extension of CloudSim and is based on

A DEVS-Based Methodology 5

discrete-event simulation (DES). Another CloudSim-based simulator [12] considers the
big data aspect of these devices using MapReduce. SimTalk [13], a simulation soft-
ware, facilitates the emulation of environments that can be a combination of virtual and
interconnected IoT devices using graphical representations of the actuating systems in
the network. A survey by [14] presents 31 simulators for Wireless Sensor Networks
(WSNs) which employ a form of model for the sensor nodes, propagation medium, or
communication technologies.

The use of models in the form of model-driven development (MDD) of IoT appli-
cations was the focus of other works in the literature. The authors used various kinds
of models such as the one based on visual notations, to textual formats with domain-
specific languages (DSLs) to design IoT applications. These models also differed in their
semantics being formal, expressed as mathematical techniques, or informal, such as the
one that uses plain language [15]. Some research in this category further used models for
verification using methods such as simulation and model checking to ensure the correct
behavior of the system. In what follows, some of these works are presented.

In[16], the authors presented a DSL that allows developers to define ports, properties,
and Statecharts in text-based format, and later use a set of tools to automatically trans-
form models and generate code. In [17], a UML-based approach was used to generate
wrappers, enabling the integration of diverse IoT elements. Research in [5] introduced
a framework to enable node-centric and rule-based programming through a DSL, pro-
viding reusability, flexibility, and maintainability. Authors in [18] presented a method
for designing and analyzing IoT applications to verify their correctness and QoS using
SysMLA4IoT, a framework consisting of a SysML profile and a model-to-text translator
that converts the models for a model checker.

In our work, we applied the DEVS formalism for model-driven development and
simulation of [oT devices. DEVS can be viewed as finite-state machines where transitions
between states occur based on new input to the system or expiration of their lifespan
[19]. A model of interest can be broken down into atomic models, each responsible for
specific behavior. The atomic models can then be coupled together to create the complete
model of interest. The modular nature of DEVS enables us to design and test atomic
models individually, and then integrate them with the other models.

Some authors have previously applied DEVS formalism to the IoT domain. In a study
by [20], the authors proposed methods to simulate moving IoT nodes more efficiently,
and used DEVS for modeling the wireless communications aspect of the devices. In
[21], a novel approach was introduced, aimed at improving energy efficiency in smart
buildings based on user location. Authors in [22] used DEVS for modeling botnets using
Markov Chains. Their model behaved similarly to the spread of Mirai and Torii botnets. A
DEVS model of smart home networks, was used to determine the optimal working hours
for energy consumption [23], as well as a DEVS-based IoT management system that
provides users with metrics of power consumption [24]. Research in [25] explored a sim-
ulation acceleration method for a DEVS-based hybrid system using multiple CPUs and
GPU cores. Their simulation environment was a fire-spreading application comprised
of IoT sensor networks. DEVS was also used to model a Fog computing environment
and showed that combining fog and cloud computing can enhance the user experience
by offloading tasks to the fog nodes [26].

6 I. A. Fazel and G. Wainer

Our work differs from the previous research in that we employed DEVS to develop
models for simulation, and ultimately for deployment on the devices. We also modeled
the MQTT protocol using DEVS, another key contribution of this work.

3 Methodology

As discussed earlier, our goal was to apply DEVS for the simulation as well as the
operation of IoT devices. To achieve this, we developed two sets of DEVS models
with identical interfaces, state variables, and state transitions. One set of models was
designed to be used for the simulation environment, and the other set for deployment.
Moreover, any model that performed a hardware-agnostic task was reused in both sets.
For simulating the DEVS models, we adopted Cadmium, a header-only C++ library!.
Cadmium has the advantage of having a real-time version, which we later used to execute
the DEVS model on the IoT device. In this study, we chose the ESP32 microcontroller
for devices which is a popular choice in the industry.

3.1 Deployment Models

ADC Model

ADC is a model that periodically reads the ADC channel of the device and transmits
its value through an output port, defined as a floating-point number proportional to the
analog input signal, depicted in Fig. 1. This model can optionally receive a Boolean
input to toggle its state between outputting data or becoming passive.

inStop<Boolean> outData<Double>

> ADC >

Fig. 1. The ADC atomic model.

Wrapper Model

The Wrapper model receives raw data and creates a set of values consisting of a value
(for instance, from the ADC), an ID, and a type of channel. Then, it sends this set as its
output. The input and output ports of this model are depicted in Fig. 2.

inData<Double> outData<Message>

Wrapper

A

Fig. 2. The Wrapper atomic model.

! Source code for the Cadmium library can be found at https://github.com/SimulationEvery
where/cadmium.

https://github.com/SimulationEverywhere/cadmium

A DEVS-Based Methodology 7

In the implementation, we used instances of a user-defined C++ class named Message
to represent this information. For example, an object of this type could be comprised of
the following fields:

e data (as Double): 24.0
e id (as String): “adcl”
e type (as String): “temperature”

Base Model

The Base model performs the main computation of the IoT device. For instance, for
IoT sensor nodes, this model is responsible for collecting different ADC channels and
creating a final output to be later transmitted over the network. In other applications, this
model can receive commands that have been transmitted from the network and control
the connected actuators to the board. Hence, the definition of the internal and external
transition functions of this model is dependent on the specific application. However, its
interface, i.e., the input and output ports, is the same among its different applications.
This model has two sets of input and output ports. One set of ports is defined to provide
communication with ADC and/or actuator models of the device, and the other set is for
sending and/or receiving objects of type MOQTTMessage. The fields of this type contain
the data (as a JSON string), the MQTT topic, and the desired QoS level for the MQTT
message. For instance:

e data (as String): {data: 25.4, type: “temperature”, unit: “C”}
e topic (as String): /home/garden/sensor1
e QoSLevel (as Integer): 2

In an example of the sensor node, this Base model can receive sensor readings for
one or more ADC channels and then perform some form of sensor fusion algorithm. This
operation can involve simple averaging or any other complex computations. Eventually,
the result of the computation is set as the data field of the MOQTTMessage object out of
the model.

The input and output ports of this model are depicted in Fig. 3.

inData<Message> outBroker<MQTTMessage>
—_—————> >

outData<Message> Base inBroker<MQTTMessage>
— <

Fig. 3. Base DEVS model

Connection Model

The Connection model provides network connectivity for the board. This model receives
MQTTMessage objects as input, which are produced by the Base model, and then trans-
mits them to an MQTT broker accessible on the network. Conversely, it can also receive
data from an MQTT Broker and dispatch as MOQTTMessage instances to the Base model.
Moreover, on the ESP32 board, the implementation of this model causes the device to
initially connect to a Wi-Fi Access Point during initialization.

8 I. A. Fazel and G. Wainer

3.2 Simulation Models

In what follows, the descriptions of the equivalent simulation models are discussed. The
ADC model in the simulation environment has the same specification as the deploy-
ment model, except it produces pseudo-random numbers in its output function. The
Wrapper and Base models are identical for both simulation and deployment. For the
Connection model, a coupled model mimics the functionality of an MQTT client in
the simulation environment including the state changes in its connections. This model
was complemented by the Network Medium and MQTT Broker model. The Network
Medium model is a queueing network model that captures the latency of the network
transmission, and the MQTT broker provides communication for multiple MQTT clients
connected to it. The subsequent sections provide details about these models.

MQTT Client

The MQTT Client establishes communication with the device model on one end and
with the MQTT broker on the opposite one. The type of data exchanged with the device
is MQTTMessage, as discussed in the previous section, while with the broker, it is of
type MQTTPacket. Objects of type MQTTPacket contain fields such as the packet ID
and packet type, in accordance with the MQTT protocol specification. The exchange of
objects of this type allows us to perform proper state changes similar to how they occur
in actual implementations of this protocol. MQTTPacket objects are comprised of:

e type (as an MQTTPacketType): Specifies the type of the MQTT packet, such as
PUBLISH, PUBREL, PUBREC, etc.

e body (as a map of String to String): Depending on the type of the packet, maps the
required fields, such as “packetID” and “Payload”, to their corresponding values.

o newPublishPacket (as a Boolean): A flag that designates whether the packet is a
newly created PUBLISH packet for the client, or it is a PUBLISH packet that was
received from the broker.

For instance, an MQTTPacket object has the following fields:

e type: PUBLISH
e body:

{
{"packetID", 100-},

{"topic", "/home/kitchen/sensor"}

{"DUPFlag", true}

{"QoSLevel", 2}

{"retain", true}

{"payload", "{ data: 10, sensor_type: \"temperature\"}"}

}

o newPublishPacket: true

The MQTT client is a coupled model composed of two atomic DEVS models: the
Base and the Acknowledgement Buffer. The Base model transmits and receives MQTT

A DEVS-Based Methodology 9

packets to and from the Broker. In this process, whenever a packet with a QoS level of 1
or 2 is received, the Base model also sends a copy of the packet to the Acknowledgement
Buffer model. The Acknowledgment Buffer stores information about packets and their
connection states by maintaining a variable that maps each packet ID to its current
connection phase. Additionally, this model keeps track of the last timestamp at which the
packets arrive. Whenever the timer for a particular packet expires, the Acknowledgment
Buffer generates a new acknowledged packet and sends it to the Base model. The Base
model will then forward any received packets from the Acknowledgment Buffer to the
clients. The MQTT client model is depicted in Fig. 4.

Acknowledgement ,
Buffer

InAckBuffer / outPacket <MQTTPacket>

OutAckBuffer / inPackel <MQTTPacket>

i
inData<MQTTMessage> ! inData<MQTTMessage>
>

0UDAIa<MQTTMessage> | oj(Data<MQTTMessage>
« Bl

Base outBroker <MQTTPacket> | outBroker <MQTTPacket>

i
inBroker <MQTTPacket> | inBroker <MQTTPacket>

Fig. 4. MQTTClient DEVS model

Network Medium

The network medium is connected by an array of input and output ports to the MQTT
clients and by one set of input and output ports to the broker. The model receives
MQTTPacket objects from clients and then adds them to a queue. The packets in this
queue will be dispatched after a certain time interval, which is determined by the expo-
nential distribution function. This model sends objects of type BrokerMessage to the
MQTT broker, which contains the MQTTPacket objects and the index of the input array
in which the packets have arrived. Similarly, the Network Medium model can receive
objects of type BrokerMessage from the MQTT broker model, which, after the expiry
of the service time, will be forwarded to the intended client. The MQTT broker distin-
guishes between different clients based on the index of the input/output array with which
they communicate. Therefore, during the simulation, clients should remain connected
to specific input and output ports of the model (Fig. 5).

10 1. A. Fazel and G. Wainer

(0] <MQTTPacket> !

n[1] <MQTTPacket> |
Inf2] <MQTTPacket> |

outbiroker <BrokerMessage>

Receiving Buffer

In[N] <MQTTPacket> |

101[0] <MQTTPacket> |

oul[1] <MQTTPacket>}

oulzl ‘MQ"P"'C““"‘ inBroker <BrokerMessage>

Sending Buffer

outN] <MQTTPacket>!

Fig. 5. Network Medium DEVS model.

MQTT Broker

The MQTT Broker receives BrokerMessage objects from the Network Medium model.
Depending on the packet type, it performs the appropriate connection state change or
broadcasts it to different clients. Similar to the MQTT client model, the MQTT Broker
is a coupled model comprised of two atomic models: the Base and the Acknowledgment
Bugfer. The Base model stores the list of topics to which clients are subscribed and updates
this list upon receiving a new SUBSCRIBE packet. Alternatively, when a PUBLISH
packet arrives, the Base model inspects the topic of the packet and broadcasts a set of
PUBLISH messages to every client that was previously subscribed to that topic. Other
types of packets, including the newly generated PUBLISH packets with QoS levels 1 or 2,
are then forwarded to the Acknowledgment Buffer. The Acknowledgment Buffer, in turn,
updates the connection state for the packet ID, generates an appropriate acknowledgment
packet, and sends it to the Base model. The Base model simply forwards any packet it
receives from the Acknowledgment Buffer to the clients. In the Acknowledgment Buffer,
a state variable is also present to keep track of the last timestamp when the packet was
received. Upon its expiry, the model regenerates the acknowledgment packet for the
Base model. The input and output ports of this model are depicted in Fig. 6.

A DEVS-Based Methodology 11

inBroker <BrokerMessage> ackBufferOut <BrokerMessage>
e —

Acknowledgement

Base Buffer

ackBufierln <BrokerMessage>

outBroker <BrokerMessage=>
-

Fig. 6. MQTTBroker DEVS model

4 Implementation

To implement the DEVS model in Cadmium, the first step was defining the model’s
state using a user-defined C++ type. For instance, the state for the Sensor nodes in our
implementation was defined as:

struct SensorState {
double sigma;
ConnectionPhase phase;
Message<double> newMessage;
vector<string> topicsToSubscribe;
vector<string> topicsToPublish;

SensorState(vector<string> topicsToPublish,
vector<string> topicsToSubscribe = {})
sigma(std: :numeric_limits<double>::max()),
newMessage(),topicToPublish(topicToPublish),
listOfTopicsToSubscribe(listOfTopicsToSubscribe) {
if(listOfTopicsToSubscribe.size() > 0) {
phase = ConnectionPhase::
DATA_AVAILABLE_FOR_SUBSCRIBE;
sigma = 0;
}
}

Where ConnectionPhase is an enum with the following definition:

12 1. A. Fazel and G. Wainer

enum class ConnectionPhase {
IDLE,
DATA_AVAILABLE_FOR_PUBLISH,
DATA_AVAILABLE_FOR_SUBSCRIBE

}s

An instance of SensorState holds information about sigma, a variable that was used
in the time advance function, its connection phase, and other data used as state variables
in this model. After defining these data types for different states, the DEVS models were
created by declaring classes inherited from Cadmium’s Atomic template class. In the
case of the Sensor model, the class was declared as:

class Sensor : public Atomic<SensorState>

{/* . */}

To complete the definition of the DEVS model, the input and output ports were then
defined, and the virtual member functions of the Atomic class, such as the internal and
external transition were overridden. The type of Port objects specified using a template
argument determines the values they send or receive. These types can be primitive types,
such as double and int, or any other user-defined types. In the example of the Sensor
model, these ports were defined as:

Port<MQTTMessage> outMQTT;
Port<MQTTMessage> inMQTT;

In our implementation, a list of ports that send and receive objects of the same type
was represented using a ‘std::vector’ of ports. For example, the ports of the buffer models
in the Network Medium model were declared as:

std: :vector<Port<MQTTPacket>> receivingBufferln;
std: :vector<Port<MQTTPacket>> sendingBufferout;

After defining the ports, the models were coupled together using Cadmium’s add-
Coupling function. Furthermore, to facilitate the coupling between the MQTT client and
broker, a function was defined that kept track of the coupled ports and assigned free ones
to the models. The signature of the function was as follows:

void assignFreePort(std::shared_ptr<MQTTClient> mgttClient,
std: :shared_ptr<MQTTBroker> mqgttBroker,
std::shared_ptr<PropagationMedium> networkMedium);

The final step was to create a top model consisting of all inner submodels cou-
pled together. Then, to execute the models in the simulation, an object of type
RootCoordinator was instantiated, and the start() member function was called. For
instance:

A DEVS-Based Methodology 13

auto model = make_shared<TopLevelModel>("top");

auto rootCoordinator = cadmium::RootCoordinator(model);

auto logger = make_shared<cadmium::CSVLogger>("log.csv", ";");

rootCoordinator.setLogger(logger);

rootCoordinator.start();

rootCoordinator.simulate(std: :numeric_limits<double>::
infinity());

rootCoordinator.stop();

In contrast, if we wanted to run the models for their operation on the devices, an
object of RealTimeRootCoordinator was created. This was done via:

auto realTimeRootCoordinator =
cadmium: :
RealTimeRootCoordinator
<cadmium: :ChronoClock<std: :chrono::steady_clock> >
(model, clock);

realTimeRootCoordinator.start();
realTimeRootCoordinator

.simulate(std: :numeric_limits<double>::infinity());
realTimeRootCoordinator.stop();

5 Measuring Levels of Soil Moisture

A case study was conducted in which a sensor node periodically captured the moisture
levels of the soil using its ADC channel, and an actuator that triggered the irrigation
system when the moisture fell below a specified threshold. Communication between the
sensor and the actuator was established using the MQTT protocol. Before deployment
on the boards, these models were executed in a simulation environment. This section
provides information about the simulation setup and presents the results. Furthermore,
to complete the simulation environment, an additional DEVS model was developed to
simulate the behavior of gardening soil. This model stored the moisture value, as well
as transitions to change this value. The sensor node was connected to this model to
retrieve moisture readings, while the actuator sent irrigation commands to this model.
Specifically, when the actuator initiated a command to start irrigation, the model’s inter-
nal transition function consistently incremented the moisture level, unless a subsequent
signal was received, indicating the termination of irrigation. The input and output ports
of the soil model are depicted in Fig. 7.

At the beginning of the simulation, the actuator first subscribes to the topic /gar-
den/moisture_sensor, and the sensor model starts reading the moisture value from the
soil model and publishes them to the same topic. Whenever the moisture level falls below
15, the actuator sends a signal to the soil model to initiate the irrigation system.

14 1. A. Fazel and G. Wainer

senseMoisture <bool> moistureln <double>

infgationOn <bool>

Soil

moisture <doubles irrigationOff <bool>

Fig. 7. Soil DEVS model

5.1 Simulation Result

The simulation ran for 10 sensor readings. To showcase the packet retransmission mech-
anism, an additional simulation was run with a condition added to a buffer of the Network
Medium, causing intentional packet drops based on a certain probability. Namely, pack-
ets with a packet ID divisible by 3 had a 50% chance of being dropped. Table 1 depicts
the timestamp of the PUBCOMP packets being received by the Broker when data was
being published to the actuator model in both simulation runs.

Table 1. Timestamp of the received PUBCOMP message from the sensor node

Packet ID | Timestamp of the | Timestamp of PUBCOMP | Timestamp of PUBCOMP
PUBLISH without retransmission with retransmission

1 1 1.55052 1.48447

2 2 2.47999 291148

3 3 3.60933 7.56755

4 4 4.52406 4.38234

5 5 5.74917 5.60835

6 6 6.59165 11.7505

7 7 7.65689 8.83374

8 8 8.38723 8.97219

9 9 9.59758 11.5696

10 10 10.2355 11.7876

As Table 1 shows, the PUBCOMP packets that required retransmission were received
by the broker with a significant delay. The total number of packets exchanged between
models is shown in Fig. 8.

By applying realistic conditions for packet drops, we can estimate the arrival of
the packets at the destination. Furthermore, the total number of packets that need to be
transmitted to and from the device can be used to estimate the power consumption of
the devices.

A DEVS-Based Methodology 15

70

60 II I I
0 I I II

PUBLISH PUBREC PUBREL PUBCOMP

[
o

N
o

w
o

N
o

-
o

W # of tramission with packet drop m # of tramission without packet drop

Fig. 8. Number of packets exchanged in the simulation with and without retransmission.

6 Conclusion

In this work, we applied Discrete Event System Specification (DEVS), a modular and
hierarchical formalism for the model-driven development of IoT devices. We developed
two sets of models to be used in both simulation and deployment on the device. Each
model was responsible for a specific functional aspect of the device, and their compo-
sition created the complete application. In our case study, we applied the models in a
simulation environment that included a sensor node and an actuator for an irrigation
system. The results of the simulation showed timestamps for different events occurring
in the system and provided metrics related to packet transmission in the MQTT protocol.

For our future work, we aim to develop models that implement more functionalities
of IoT devices and for a wider range of hardware. The conditions that cause packet
retransmission can be further investigated to be based on real scenarios. Hence, the
metrics obtained from the simulations would more closely resemble the deployment
environment.

References

1. Da Xu, L., He, W,, Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inf.
10(4), 2233-2243 (2014)

2. Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in Internet of Things: taxonomies
and open challenges. Mob. Netw. Appl. 24, 796-809 (2019)

3. Udoh, I.S., Kotonya, G.: Developing IoT applications: challenges and frameworks. IET Cyber-
Phys. Syst. Theory Appl. 3(2), 65-72 (2018)

4. Patel, P, Cassou, D.: Enabling high-level application development for the Internet of Things.
J. Syst. Softw. 103, 62-84 (2015)

5. Nguyen, X.T., Tran, H.T., Baraki, H., Geihs, K.: FRASAD: a framework for model-driven [oT
application development. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),
pp- 387-392. IEEE (2015)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

1. A. Fazel and G. Wainer

. Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, 1., Mostarda, L., Muccini, H.: A

model-driven engineering framework for architecting and analysing wireless sensor net-
works. In: 2012 Third International Workshop on Software Engineering for Sensor Network
Applications (SESENA), pp. 1-7. IEEE (2012)

Saadawi, H., Wainer, G.: Verification of real-time DEVS models. In: Proceedings of the 2009
Spring Simulation Multiconference, pp. 1-8. Citeseer (2009)

. Labiche, Y., Wainer, G.: Towards the verification and validation of DEVS models. In: Pro-

ceedings of Ist Open International Conference on Modeling & Simulation, pp. 295-305.
Citeseer (2005)

Olsen, M.M., Raunak, M.S.: A method for quantified confidence of DEVS validation. In:
SpringSim (TMS-DEVS), pp. 135-142 (2015)

Manrique, J.A., Rueda-Rueda, J.S., Portocarrero, J.M.: Contrasting Internet of Things and
wireless sensor network from a conceptual overview. In: 2016 IEEE International Conference
on Internet of Things (iThings), pp. 252-257. IEEE (2016)

Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: IFogSim: a toolkit for modeling
and simulation of resource management techniques in the Internet of Things, Edge and Fog
computing environments. Softw. Pract. Experience 47(9), 1275-1296 (2017)

Sotiriadis, S., Bessis, N., Asimakopoulou, E., Mustafee, N.: Towards simulating the Inter-
net of Things. In: 28th International Conference on Advanced Information Networking and
Applications Workshops, pp. 444-448. IEEE (2014)

Lin, Y.-W,, Lin, Y.-B., Yen, T.-H.: Simtalk: simulation of IoT applications. Sensors 20(9),
2563 (2020)

Nayyar, A., Singh, R.: A comprehensive review of simulation tools for wireless sensor
networks (WSNs). J. Wirel. Netw. Commun. 5(1), 19-47 (2015)

Arslan, S., Ozkaya, M., Kardas, G.: Modeling languages for Internet of Things (IoT)
applications: a comparative analysis study. Mathematics 11(5), 1263 (2023)

Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code generation
framework for heterogeneous targets. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, pp. 125-135 (2016)
Thramboulidis, K., Christoulakis, F.: UML4loT—a UML-based approach to exploit IoT in
cyber-physical manufacturing systems. Comput. Ind. 82, 259-272 (2016)

Costa, B., Pires, PF.,, Delicato, F.C., Li, W., Zomaya, A.Y.: Design and analysis of [oT
applications: a model-driven approach. In: 14th International Conference on Dependable,
Autonomic and Secure Computing, pp. 392-399. IEEE (2016)

Zeigler, B.P., Prachofer, H., Kim, T.G.: Theory of Modeling and Simulation. Academic Press
(2000)

Im, J.H., Oh, H.-R., Seong, Y.R.: Simulation of a mobile IoT system using the DEVS
formalism. J. Inf. Process. Syst. 17(1), 28-36 (2021)

Maatoug, A., Belalem, G., Mahmoudi, S.: A location-based fog computing optimization of
energy management in smart buildings: DEVS modeling and design of connected objects.
Front. Comp. Sci. 17(2), 172501 (2023)

Barakat, G., Al-Duwairi, B., Jarrah, M., Jaradat, M.: Modeling and simulation of IoT bot-
net behaviors using DEVS. In: 2022 13th International Conference on Information and
Communication Systems (ICICS), pp. 42-47 (2022)

Albataineh, M., Jarrah, M.: DEVS-IoT: performance evaluation of smart home devices
network. Multimed. Tools Appl. 80, 16857-16885 (2021)

Albataineh, M., Jarrah, M.: DEVS-based [oT management system for modeling and exploring
smart home devices. In: 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security IOTSMS), pp. 73-78. IEEE (2019)

25.

26.

A DEVS-Based Methodology 17

Kim, S., Cho, J., Park, D.: Accelerated DEVS simulation using collaborative computation
on multi-cores and GPUs for fire-spreading IoT sensing applications. Appl. Sci. 8(9), 1466
(2018)

Etemad, M., Aazam, M., St-Hilaire, M.: Using DEVS for modeling and simulating a Fog
Computing environment. In: 2017 International Conference on Computing, Networking and
Communications (ICNC), pp. 849-854. IEEE (2017)

	A DEVS-Based Methodology for Simulation and Model-Driven Development of IoT
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Deployment Models
	3.2 Simulation Models

	4 Implementation
	5 Measuring Levels of Soil Moisture
	5.1 Simulation Result

	6 Conclusion
	References

