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A Parallel Algorithm to Accelerate DEVS
Simulations in Shared Memory Architectures

Guillermo German Trabes 'Eh Gabriel A, Wainer @,

Absiract—We propose a new algorithm for the executlon of
Discrete Event System Specification (DEVS) simulations on paral-
lel shared memaory architectures, Our approach executes parallel
discrete-cvent simulations by executing all tasks In the PDEVS
simulation protocol in paraflel. The algorithm works by distribut-
ing the computations among different cores on shared memory
architectures. To show the benefits of our algorithm, we present
the results of a set of experiments using a synthetle benchmark
and a real-world scenario using two independent computer archi-
tectures, The resulls obtalned show how oar algorithm accelerates
simulations up to eight times, iImproving previous approaches. In
addition, we show that our approach scales when we Increase the
number of CPLU-cores used.

Index Terms—IMscrete-event, parallel algorithms, simulation,
shared memory.

I. INTRODUCTION

ODELING and simulation (M&S) became an cssential
M tool to represent problems in vanous disciplines and con-
duct scientific explorations. Although many M&S methodolo-
gies have been developed, discrete-event simulation (in which
system behavior is modeled as a chronology of events in con-
tinuous ime} is now widely used to study a wide varicty of
problems [ 1].

Formal M&S methodologies allow defining the models pre-
cisely, to conduct formal checks and to build simulators that are
casicr o verify. In particular, the Discrete Event System Specifi-
cation (DEVS) formalism [2] has provided a formal theoretical
framework for the development of discrete-cvent M&S. DEVS
has been used in numerous application areas since its inception.
The formal definition of DEVS offers the ability to separate the
definition, implementation. and experimentation of the models.
Meodels are defined using a formal notation and then they are
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simulated using algorithms that have been formally verified.
This separation of concerns facilitates reuse and improved the
verfication of models |2].

There has been a growing demand to simulate complex DEVS
maodels in different fields of study, leading o increasing exe-
cution times. To tackle this problem, there have been multiple
altempts Lo achieve parallel executions of DEVS using parallel
discrete-event simulation (PDES) approaches [3], [4]. [5]. [6].
However. in practice, these algorithms result in complex simu-
lation architectures. and they give rise o various issues related
to zero lookahead loops and correciness [4].

A different approach (o accelerate DEVS simulations was
proposed in [7]. which allows the execution of the simulation
protocol in parallel. The main idea behind this approach is to
allow a simple and error-Imee algorithm by executing simultane-
ous events in parallel. In this approach, the authors identified
two situations where the simulation protocol can execute in
parallel: 1) when two or more componenis exceute their out-
pul functions: and 2) when two or more components execute
their state transition functions. However, this approach showed
limited acceleration in real-world applications [8].

Here we define an algorithm that provides additional parallel
execulion opportunities. In our approach. the complete algo-
rithm executes in parallel. obtaining the same results as in the
sequential version in all scenarios. The algorithm 1s intended to
execute in shared-memory computer architectures, which can
use systems resources efficient and have low communication
latency compared (o distributed memory systems.

The idca is 1o decompose tasks and assigning them Lo a group
of threads that accelerates the execution. Afler each task is com-
pleted, the threads synchronize o ensure the completion of a task
before starting a new one. To test our approach. we present an ex-
permental evaluation to show how this algonthm can accelerate
the execution of DEVS models. using a benchmark designed for
Cellular DEVS models [9] and a real-world case study. Our real-
world case study is an epidemiological model that simulates how
dizeases spread among populations. The results presented show
how we can accelerale up to eight imes and thal our algorithm
scales when we increase the number of CPU-cores used. Finally.
we show how our proposed approach improves performance
compared with the previous approach presented in the literature.

The rest of the paper is orgamized as follows. Section 1 pro-
vides a literature review on the execution of DEVS simulations
and parallel programming for shared memory compuoters. On
Scction Il we present our proposed paralle] algorithm. Next
on Section 1V we show an experimental evalvation for our
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Fig 1. PDEVS model example with s comesponding FIDEVS abstract sim-
alator.

algorithm. Finally, on Section ¥V we present the conclusions and
future work.

I1. BAUKGROUND

Following the ideas from classical DEVS [2]. PDEVS [10]
makes a clear separation between model and simulation. Users
only need to follow the specifications provided by the formal-
ism to define their models. Then. to execute simulations. there
exists a general mechanism. This mechanism is based on a data
structure known as the PDEVS abstract simulator [11]. Given
a PDEVS model, the PDEVS abstract simulator creates a data
structure lo mimic its behavior and execute simulations. The
structure consists of three types of components: simulators,
coordinators. and rool-coordinator. Each atomic model is as-
sociaied with a simulater and each coupled model is associated
with a coordinator. One root-coordinator is placed at the root of
the structure hierarchy. We can see an example of the PDEVS
abstract simulator in Fig. 1.

Once the abstract simulation structure is created. there is
d mechanism o execute simulations. known as the PDEVS
simulation protocol [11]. This algorithm works by exchanging
several messages between the components between “Proces-
sors . which can be classified into Coordinators. Simulators.
and Root-Coordinator. There are messages for initialize a model
(1), execute an outpul function (@), execute siate lransitions
(=), send outputs (y). add event to a bag (q). and to schedule
the mext internal event (done). At the top of this hicrarchy.,
the Root-coordinator starts a sequence of simulation steps by
communicating to the top-most Coordinator. Coordinators at the
different levels interchange messages with their parent Coordi-
nator and with the Processors one level below. The messages
disseminate through the tree structure levels by coordinators
until reaching Simulators at the leaves of the tree. The details
for this algorithm can be found in | 1 | |. This protocol was proven
lo be correct, and it was widely accepted and implemented in
many simulators.

One problem in the execution of the PDEVYS simulation proto-
col above is that the hierarchical message passing across several
levels on the tree might involve a large overhead, increasing
excculion ime in the coordination of components at the different
levels. To improve this hierarchical communication overhead, a
Nattening algoathm was proposed in the DEVS literature [ 12],
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Fig. 2. Hierarchical DEVS simulator snd its corrcsponding flsttencd DEVS
simulaior

[ 13]. The idea of this algorithm is to transform the hierarchical
PDEVS structures into flat data structures where all intermediatc
coordinators are eliminated. The resulting structure has only
one coordinator that holds all the information about couplings
among simulators. We can see an example of this transformation
in Fig. 2.

Ewery flat abstract PDEVS simulator has the same basic siruc-
ture. One root-coordinator oversees the simulation, advances
global simulation time. and determines when the simulation
ends. Below the mot-coordimator there is a Mat coordinator.
This component is responsible for the message interchange
among simulators, triggers the computation of events on the
simulators, and determines the minimum time for the next events
on all simulators. Finally. at the leaves of the tree there are
|D} components, where ID is the sel of atomic models. These
companenis are responsible 1o execute the behavior of the atomic
models defined by the modelers. They execute output, transition,
and time advance functions. In addition, they reply to their parent
component when they receive messages.

There arc several reasons (o use a flattened PRXEVS absiract
simulator approach. In first place, the number of messages
transmitted between components is reduced by eliminating all
intermediate levels in the tree hierarchy. Second. the execution of
the PDEVS simulation protocol on this structure 1s simpler, and
therefore easier Lo understand. analyze and implement [ 14]. [15].
In third place. there is empirical evidence showing the benefits
of applying this method and how this can accelerate simula-
tion's executions in practical implementations [13]. [16], [17].
| 18]. Finally, since any hierarchical PDEVS abstract simulator’s
structure can be transformed into an equivalent fat PDEVS
abstract simulator. the improvements made on the execution of
flai PDEVS simulations can be used to improve performance on
any PDEVS simulation.

A. Parallel Discrete Event Simulation { PDES)

In addition to the technigues to reduce the overhead on the
hierarchical structure, several technigues have been proposed
to parallelize DEVS simulations. The main technigques ap-
plicd were adapted from the Parallel Discrete Event Simulation
(PDES) field. The reader can find the main efforts on PDES in
the Proceedings of the PADS conferences between 1990 and
219, and an introduction to this field can be found in [19].
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The most important method in the PDES field consists of the
concepl of Logical Processes (LPs). LPs work as simulation en-
tities, sharing no state variables, and interacting with cach other
through time-stamped event messages. The biggest challenge in
PIDES is being able to produce the same resalts as in a sequential
exccution. Synchronization between LPs is violated when one
of the LPs receives an event that is older than the current clock
ol the reeeiving LP. Such a violation is known as a cawsality
error. To deal with causality crrors. different synchronization
technigques have been proposed [19]. [20]. The techniques for
the synchronization of LPs can be classified in four calegories.

The first category is called conservative synchronization [21 ]
These algorithms strictly avoid any occurrence of cawsality
errors. To do so, the LPs are blocked from further processing
of events until it can make sure they are safe from fulure events
arnavals from other LPs with smaller imestamps. The basic
problem for a conservative parallel simulator is how to determine
if it 15 safe for a processor to execute events. To deal with this
issoe; several technigaes were proposed which can be further
classified into four categones [5]: methods with deadlock avoid-
ance. deadlock detection and recovery, synchronous operation,
and conservative lime windows. The main drawback in this
technique is that to guarantee stricl causality error avoidance,
very complex synchronization mechanisms must be executed.

The second category is called optimistic synchronization [21].
These algonthms are based on the detection of straggler events.
The stragglers events are those whose Hmestamp is less than
the current time of the LP. When a strageler is detected. a
rollback mechanism corrects the state of the simulation by
reselling it o a previous time. The most famous and widely
used optimistic algonithm is called Time Warp and was applied
to DEVS simulations [3], [6].

There exists a third category called approximated synchro-
nization algorithms [22]. which are a special version of the opii-
mustic algorithms. In this technigue, the occurrence of strageler
cvents 15 ignored, and the LPs continue with their execution.
This way, the execution time s accelerated but the precision in
the results of the simulation is sacrificed. This technique was
applied to DEVS simulations [23], [24]. The drawback of this
approach is that the ermors in the resulis are highly dependent on
the model simulated.

Finally. there exists a more recently proposed technigue called
hybrid PDES [25]. Hybrid PDES dynamically switches between
conservative and optimistic synchronization protocols based on
the simulation runtime characteristics. The advantage of this
technique is that it can take advantage of the best charactenstics
of both synchronization technigues. However, the disadvantage
inis that methods to measure runtime vanables muost be deployed
to determine il the synchronization protocol must be switched.

B. Parallel Eventy in the PDEVS Simulation Protocel

The problem with the LPs approaches is that only some
conservative technigques have been proven o exactly represent
the behavior of the DEVS sequential simulator [7]. for example
the ones presented in [26], [27]. This feature distinguishes DEVS
from the many other simulation engines derived from the LP
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approaches, the behavior of the sequential DEVS simulalor
cannol be reproduced in all scenarios.

A different approach proposed in [7] enables the execution
of simultancous events in parallel. The main idea behind this
approach is to exceute in parallel the independent simultaneous
events occurting in the PRDEVS simulation protocol. The idea is
to apply a parallel execution in two situntions:

* When multiple output functions must be computed at the same
time.

* When multiple transition functions must be computed at the
same lime.

Furthermore, in [7] a theoretical analysis was made with this
idea. concluding that speedups are related to specific model
characteristics, such as the level of activity. defined as the
probability of execute a transiion function on each component.
This theoretical analysis concludes that this protocol can achieve
an execution time 60% higher on average than the best possible
parallel execution, wsing this simple parallel implementation.
This idea was wsed in [B], where the authors show a practical
implementation in a simulator. However, the speedup obtained
was limited and did not scale when increasing the number of
threads. In this work we propose to improve this idea by defining
an algorithm thal introduces additional parallelism.

III. RELATED WORK
A Cadmium Simulator

The software we use as a base implementation is the Cad-
mium simulator [28], which is an open-source simulator written
in C4++. Cadmium was designed to execute in a seguential
algorithm the PDEVS simulation protocol [29] and thercfore
guarantecing commect simulation results. Cadmium uses typed
messages and typed ports, a ime representation independent of
the model implementation and it includes automated checking
of some properties of the DEVS models, for early error detec-
tion. Cadmium implements the PDEVS simulation protocol and
therefore guarantees correct simulation resulis.

Asin many DEVS simulation tools, Cadmium was developed
in a way that the user only defines the models and does not necd
o know the mechanism to execute simulations. The simulations
are executed by invoking ‘2 ROOT-COORDINATOR compo-
nent. which creates a SIMULATOR for each atomic model
and COORDINATOR for each coupled model. SIMULATOR
components manage Lhe state of the atomic models and execute
their functions. and COORDINATOR handle intercommunica-
tion and synchronization between subcomponents, which can be
COORDINATORs or SIMULATORS. We can see an example
of Cadmium’s architecture in Fig: 3.

The main distinclive Cadmium’s feature is that all message
passing is performed by functions call and returns. This way,
Cadmium reduces the overhead caused by message passing
and synchronization between components. This design was pro-
posed to guarantee predictable execution traces and to achieve
efficient performance. with the goal of make it suitable for
real-time execution.
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Fig. 3. Coadmium’s archileciune cxample.
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Fiz. 4. Flatiened PDEYS abstract strmniator.

1! ROOT-COORDINATOR |

21 wariables: FLAT-COORDINATOR, next_time;

i:  execute_simulation(initial time, sipulation_time){
4: FLAT-COORDIMATOR  inditialize(initial_time);

5 next_tine = FLAT-COORDINATOR  next_time();

B while{next _tise<simelation_time] {

7: FLAT-COOADTHATOR, execute output Functions(next time);

B FLAT-CODADTHATOR , FoUtE_messages| )

a9 FLAT-CODADTMATOR . execute state transitions (next time);
la: next time = FLAT-COORDINATOR. next_timel);

11t 1 44 end while
12:  } J// end execute-simulation
13 § /) end ROOT-COORDINATOR

Hg 5 Pseadocode for ROCOT-COORDINATOR component.

In addition. Cadmiuvm was extended 1o execute flat-
tecned PDEVS simulations efficiently. For this, a FLAT-
COORDINATOR component was added. With this component.
the simulation slgorithm is simplified and there is no need to
call recursive functions along the simulation structure. This
algorithm is implemented in three types of components: ROOT-
COORDINATOR, FLAT COORDINATOR and SIMULATOR.
We can see a graphical representation for the structure used in
this algorithm in Fig. 4.

In Fig: 5 we can see a definition for ROOT-COORDINATOR.
We use a FLAT-COORDINATOR component and a variable
lo store the next simulation time. Simolations begin with the
execute_simulation function (with mitial time and simulation
time limit). Functions initialize and next_time only execute at the
beginning of the simulation. The initialize function executes the
time advance function on all SIMULATORs. Then, next_time
determines the minimum of all those times.

IFEE TRANSACTIONS ON PARALLEL AND INSTRIBUTED SYSTHEMS, VO, 34, NO. 5, MAY 2023

1: FLAT-COORDINATOR {

2: wvariables: subcomponents, dnternal couplings, next timej
3;  imitialize{initial_time}{

4:  Ffor each SIMULATOR in subcomponents:

a3 STRULATOR. indtialize(initial _tinn);

[ end-for

7: Wfend Initiallze;

8: edecute output functions{next_time){

9:  far each SIHULATOR in subcomgonents:

ia: SIMULATOR. execute_output_function(next tima),
11: end-for

12: }//end execute_output_functions;

13: route_messages(){

14: for each coupling in imternal_couplings:

151 outhox = coupling.origin.get_outbox(};
163 if{coupling.origin.get_outbou{) 1= empty)
174 coupling.destiny.add to_inbox{outhbox);
13 end-if

19: end-for

2@} ffend routo_messages

21: execute_state transitions{nest time}{

22 For each STHULATOR in subcomponents:

px H SIMULATOR . execute_state transitlon{next_time))
24:  end-for

251 Jfend execute_state_transitions

26:  pext_time|){

27:  npext_time = subcomponents.first.next_time(};
28: for each SIMULATOR in subcomponents:

29 LF(SIMULATOR . next_time() < next time)
£ H next_time = SIMULATOR, next_time(};
Eh end-if

32 end-for

EEH return next_time;

3 Pfend next_time

35:; }dend FLAT-COCRDTHATOR

Fig. 6. Pscodocode for FLAT-COORDINATOR componenl

After these two tasks. a simulation loop starts, executing i
finite sequence of simulation cycles until the time himit for the
simulation is reached or there are no more next events in Lthe sim-
ulation. Each cycle is composed by four tasks. First, we execule
the cutput functions on the imminent SIMULATOR s (i.e.. those
with an event scheduled on the next simulated time ). Next, we
call the route_messages function on FLAT-COORDINATOR.
which transmits the results from the output functions computed
on the previous tasks 1o the receiver components (using the
couplings defined by the user). Following, we call the ex-
ecule_state transitions function lo update the state on those
components that are imminent and/or receivers. As mentioned,
the imminent components are those whose time for the nextevent
iz equal to the next simulation time. The receiver components are
those who received a message from an imminent component in
the previous task. Finally. we call to next_time to determine the
time for the next events by comparing the next times scheduled
im all SIMULATORS.

The next component we need to execute this algorthm is a
FLAT-COORDINATOR. We can see the pseudocode for this
component in Fig, 6.

FLAT-COORDINATOR uses a set of subcomponents, which
are all SIMULATORSs; the intemnal couplings according to the
model’s specification; and a varable lo store the next time. In
addition. FLAT-COORDINATOR has five functions.

The initialize function takes the imitial time for the sim-
ulation as parameter. This function calls the initialize fumc-
tion on cach SIMULATOR subcomponent with the initial time
as parameter. The execute_outpul_functions roeling calls the
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i STIMULATOR
variables: inbox, euwtbox, last, next, nodel]
initialize(t) [
last = t;
next = t + model,time_advanca(};
} ffend inltialize
executes_output_function(t) {
if {next==t) {
outbox = model . owrtput_functiond )

B e B e

11: } ¢/ end execute_output_function
12: state_transition(t) (

13:  iF {t == mext) {

1d: if (inbox == empty) (

15: model ., internal _transition };

16: } else {

17: model . confluent_transitionit - last, inbox};
18:

1z last = t;

o next = last + model. time advance{);

23: 1 else {

22: if (inbox I= empty) |

3 model.external_transitiem(t - last, Llnbox))
24: last = ©;

25: next = last + model.time advance();

16: }

P

}
2B:  inbox= empty;
2% oputbox = empty;
¥a: )} 4/ end state_ transition
31 next_time() {
32: return next;
33: ) &7 end next_time
M get_outbox(){
i5: riuturn outhbox;
6. 1 4/ end get_outbox
37:  add_to_inbox{message)q{
1E: inbox. add{message);
3n: | Jfend add to inbowx
48: }//end SIMULATOR

Fiz. 7. Psewdocode [or SIMULATOR component.

exccute output function on every SIMULATOR subcomponent.
The route_messages function checks the outboxes on SIM-
ULATOR subcomponents. If the owtbox is not empty, then
it adds that outbox o the inbox of the receiver component.
Then, execute_transition_fanctions calls the execute_transition
function on every SIMULATOR subcomponent. Finally. the
next_time function is used on each SIMULATOR subcomponent
to compares the values obtained to determine the minimum of
them.

To conclude this algorithm, must analyze the SIMULATOR
component. In Fig. 7 we can see the pscudocode for this com-
ponent.

In this case, the inbox variable is used to receive messages
from components coupled to its input. The outbox varable is
used o send messages to components coupled o its outpul
Then. there is a last variable vsed to store the time for the last
event in the component as well as a next variable, which we use
to store the time for the next event. Finally, there is a reference
to the atomic model simulated by this component.

The initialize function here stores the time received as param-
cler m the last vanable and then calculates the time_advance
function to determine the time for its next event. The exe-
cute_output_function checks if the time for next event in the
componentiseqgual to the next time in the simulation. Ifthis is the
case, then SIMULATOR executes its output function and stores
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it in ils oultbox variable. The stale tramnsition function performs
two checks. First, 1o see if the component is imminent (i. c. if
the time for the next event in the component is equal to the next
simulution ime). Then. it checks whether its inbox is empty or
nol. According to the results of these checks. we define which
actions o execute:

® [f the component is imminent and the inbox is empty. the

component executes the intemal transition function.
® [f the component is imminent and the inbox is not empty.
the component executes the confluent transition function.

® [f the component is not imminent and the inbox is not
emply. the component execules the external transition fune-
Lion.

* In any other case, the component does not execute a state

transition.

To conclude, the mput and ootput variables are reset to
empty. Then. the next_time function returns the value of its
next scheduled time. The gel_outbox function retums the value
of the putbox. Finally, the add_to_inbox function receives as o
parameter 4 message and adds it to the inbox vanable.

The algorithm in Cadmium works by the interaction among
one ROOT-COORDINATOR and FLAT-COORDINATOR
components: and a set of SIMULATOR components, through
function calls and returns: The advantage of this algornithm is that
allows to exccute DEVS simulation in a simple way in shared
memory architectures. The modular components are defined
according to the PDEVS abstracl simulator, and the algorithm
follows the PDDEVS simulation protocol.

B. Shared Memery Parallel Programming

Owr research focuses on efficient algorithms to execute DEVS
simulations on parallel shared-memory computers. To do this it
15 imporiant to understand the parallel computer architectures
and how we can program them to obtain high performance.
Parallel shared-memory computers have become the main trend
in the past decades due to the limitations in the improvement
of single processor machines. These muli-processors consist of
tightly coupled processors whose coordination and usage are
typically controlled by a single operating system. They share
memory through a shared address space [30]. The most common
design for modem multi-processors is called multicore. where
several processors (called cores). are placed inside a single
computer chip.

To develop programs for multicore computers, the natural
programming model is the thread model, where all threads
have access to shared variables. From all the libraries and tools
available, OpenMP [31] stands over the rest by providing a
simple way to implement multi-threaded programs and is there-
fore the tool of choice for our research. OpenMP is a portable
standard for the programming of shared memory systems [32].
The programming model of OpenMP is based on cooperating
threads running simultaneously on multiple processors or cores.
OpenMP provides with directives to synchronize threads, de-
clare shared and private variables. loop parallelism, scheduling
algorithms. and mechanism to assign threads to specific cores
in the architectures.
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1: PARALLEL-ROOT-COODRDINATOR |

2: variables: PARALLEL-FLAT-COORDIMATOR, next_time;

3: o execute_simulatien{initial time, simulation time) {

4: Create threads, shared variables:

PARALLEL-FLAT -COORDINATOR, nekrt_time
FARALLEL-FLAT-COORDINATOR initialize(initial_time);
next_time = PARALLEL-FLAT-COOADINATOR, next_time{);
while(next_time<sinulation_time) {
PARALLEL-FLAT-COORDIRATOR . execute_sutput functions
{rext_timel;

a: PARALLEL-FLAT-COORDINATOR . route_sessages( )

1a: PARALLEL-FLAT-COORDINATOR. execute_state traasitions

{mext_time);

11: next time = PARALLEL-FLAT-COORDINATOR . next timel);

12: } [/ end while

i3: Destroy threads

14: )}/ end execute-csimulation

15:} /4 end PARALLEL-ROOT-COORDINATOR

Fig ¥ Psesdocode for PARALLEL-ROOT-COORIANATOR componenl

IV. A PARALLEL ALGORITHM TO ExXEcure PDEVS
SIMULATIONS

As discussed earlier. the main contnbution of this work is (o
propose an algorithm to execute the PDEVS simulation protocol
in parallel shared memory computers. The main advantage of
shared memory computers 15 that the complete simulation data
iz available for all computation cores. By contrast, in distnbuted
memory platforms. simulation components must be distnbuted
on different nodes in the platform.

The algorithm we propose takes as a base the seguential
algorithm for fattened PDEVS abstract simulators presented
in Section 111 We add paralle]l execution in all the tasks required
o execute the PDEVS simulation protocol. The main ideais to
exceute each of the tasks in parallel using threads. Each thread
calls and executes in paralle] a subsel of the lunctions needed
lo perform the tasks. After cach task, the threads perform a
synchronization to guarantee the complete execution of a task
before starting the next one:

To define this algorithm, we propose specialized versions
for the components wsed in the flattened PDEVS simulation
algorithm in Cadmium. We propose the PARALLEL-ROOT-
COORDINATOR. PARALLEL-FLAT-COORDINATOR and
PARALLEL-SIMULATOR components, as an extension of the
ROOT-COORDINATOR, FLAT-COORDINATOR and SIMLI-
LATOR in the sequential version, respectively.

In Fig. 8 we can see a definition for PARALLEL-ROOT-
COORDINATOR. The definition is similar o the sequen-
tal version. but here execote simulation starts by creal-
ing threads that share two varables: a PARALLFEL-FLAT-
COORDINATOR component. and the next_time vanable. Af-
ter this; the threads execute in parallel the same lasks as
in the sequential version. The difference is that the threads
call and execute Functions in parallel. The threads call and
cxecute the initialize and mext_time functions in parallel on
the PARALLEL-FLAT-COORDINATOR. component. Like in
the sequential version, after these two tasks. a simulation
loop starts, and cach cycle exccuotes the threads in paraliel
four functions: execute_outpul_functions. roule messages, ex-
ecute state transitions, and next time.
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1: PARALLEL-FLAT-CODRDINATOR {

2: warlables! subcomponents, internal couplings, outibos,
inbox, next time;

3t initialize{initial_time}|

4:  parallel-for each PARALLEL-SIMULATOR in subcomponentst

LH TARALLEL-SIMULATOR . initialize{inltial time);

B:  end-parallel-for

T:  synchronization

&: l//end dinit;

8:  execute_output_functions (next_time){

ip:  parallel-for cach PARALLEL-SIMULATOR in subcomponents:

11: PARALLEL-STMLIL ATﬂR.u:llﬂl.ltt_wtput_'funtt {uri[nru't__ti iyt

12: end-parallel-for

13: synchronization

14: }fend execute_sutput_functlons)

15:  route messages(){

16:  parallel-fer cach coupling In internal couplings:

i7: outboy = coupling.origin, get_outbox(};
1E: if{coupling.origin.get_outbox() != empty)
18: coupling.destiny.add_to_inbox{outhoux’;
Fi:H end-if

#1:  end-parallel-for

1i:  synchronization

23}

4 ewecute_state_transitions{next_time)(

#5:  parallel-for each PARALLEL-SIMULATOR in subcomponents:
FiH PARALLEL-SIMULATOR. execute_state_transition(next_time);
i8:  end-parallel-for

28 synchronlzation

3B }//end execute state_transitions

11: newt_time()]

32: mext_time = subcomponents. Fiest, next_time();

33:  parallel-for-reduction each PARALLEL-SIMULATOR in

subcomponents:
34 AF{PARALLEL-STMULATOR. next_time{) < next_time)
351 next_time = PARALLEL-SIMULATOR.mext time();
367 end-if

17: end-parallel-for-reduction

38z synchronization

34: return next time;

48:  }iend next_time

41: }4jend PARALLEL-FLAT-COORADINATOR

Fig. 4. Pscudocode for PARALLEL-FLAT-COORIDINATOR componenl.

The next eomponent we need to execute this algonthm is
a PARALLEL-FLAT-COORDINATOR. We can sec the pseu-
docode for this component in Fig. 9.

The initialize function and takes the initial time for the simu-
lation as parameter. Like in the sequential version, this function
calls the miialize function on each subcomponent. The differ-
ence is that in this version, we do this in parallel by assigning
the functions to different threads. Fach thread is responsible
for executing the function on & subsct of the PARALLEL-
SIMULATORs. These functions are independent and therefore
can execute in parallel. To finish this function. the threads
perform a synchronization to guarantee that all of them finished
before starting the next task. The execute_output_functions rou-
tine calls the execute_outputs function on every PARALLEL-
SIMULATOR subcomponent in parallel. To do this. cach thread
is responsible for executing on a subset of the PARALLEL -
SIMULATORs. Once again. these functions are independent
tasks and therefore can execute in parallel. To finish this function,
the threads perform a synchronization. These tasks are indepen-
dent and can execute in parallel. However, a data race can occur
if more than one thread is adding a message on the same input
variable al the same time. We solved this issue adding a lock on
the inbox of the PARALLEL-SIMULATOR components. Like
in the other functions in this component, the threads perform
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PARALLEL -SIMULATOR {
variables: inbox, outbox, last, next, model;
Inde{t) {
last = t;
next = t + model.time_advance(};
}
execute_output_function(t) {
if {next=-=1t) [
outbox = model.owtput_function{);

[l . T R S P R

18: }

1
12:  state_transition(e) [
13:  iF (t == next]) {
1d: if (inbox == empty) {

15: model. internal_transition(};

16: boelse |

17: mode] eonfluent_transition(t - last, inbox);
1E: I

19 lest = t;

i\ next = last + model.time advance():

FiH 1 else |

i2: if (inbox = empty) {

23 model.external_transition{t - last, inbox});
24 last = t;

15 next = last + model.tisme_advance();

FI-H 1

e i
2B: Inbox= ampty;
29 outbox = empty;

I
11: newt_time() |
32: FETURN I"IEJH'.J',

}
34:  get_outhau(}{
35: return outhox;

}
37:  add_to_inbox{message){
38: lock({inbox);
3w:  inbox.add{meszsage);
48 unlock({inbox;

R |
42: Y fend PARALLEL-SIMULATOR

Fig. 1 Psomlocode for PARALLEL-SIMULATOR componenl.

2 synchronization before they finish this function. The exe-
cute_transition_functions roetine calls the execute transition
function on every PARALLEL-SIMULATOR subcomponent in
parallel. To do this. each thread is responsible for executing on
a subset of the PARALLEL-SIMULATORs. Once again, these
functions are independent tasks and therefore can executed in
parallel. Finally, the next_time function obtains the next_time for
cach PARALLEL-SIMULATOR subcomponent and compares
the values obtained to determine the minimum of them. This is
implemented in parallel through a parallel reduction. A parallel
reduction is a type of operation used to reduce the elements of an
array into & single result. In this function, each thread calculates
a partial minimum result on a subset of imes and saves ilona
private copy of the vaniable. Once they finish, the partial results
are compared to obtain the minimum of all of them. After this,
the threads perform a synchronization.

To finish the description ol our parallel algorithm in Fig. 10
we can sec the pseudocode for the proposed PARALLEL-
SIMULATOR. component.

The vanables and functions in PARALLEL-SIMULATOR
are the same as in the SIMULATOR component in the seguential
version presented on Section I The only differcnce is in the
definmition of the add to_inbox function. In thiz function we
added a lock on theinbox vanable. Each thread adding a message
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Fg 11, Synthetic benchmark model example:

first locks the inbox, then adds the message and finally unlocks
the inbox. I more than one thread 15 trying o add a message at the
same Lime, they will perform this one at the time, guaranleeing
a comect execution.

As we saw in the pseudocode of the proposed components,
this algorithm works by the inleraction among a PARALLEL -
ROOT-COORDINATOR., a FLAT-COORDINATOR. and a set
of PARALLEL-SIMULATOR components. This algorithm ex-
tends previous work by providing additional parallelism in the
exccution of the PDEVS simulation protocol. In [7] only par-
allelism in the execution of output and transition functions is
mentioned. As we saw. here we extend this idea by executing
in parallel three addition tasks: imitialize components, obtain
the times for next events, and route messages. Furthermore. the
main advantage of this algorithm is that it allows a simple parallel
execulion. It does not require complex synchronization mech-
anism like in the methods derived from the Logical Processes
approach. In addition, it allows (o obtam the same resulis as in
the sequential version in all scenanios. In the next section we
present an expenimental evaluation to show how this algorithm
performs.

V. EXPERIMENTAL EVALUATION

A Experimental Setup

Our experimental setup used to perform our evaluation used
two independent models: one communication intensive and the
second one 1s compuotation intensive. The first model is built us
a synthetic benchmark. The model uses a 21 cell space with a
one-digit value as the state of each cell. Each cell uses a Von
Neumann neighborhood with five neighbors. including itsclf.
The rules the cells evaluate are simple. they start with a zero
vatue in their state. and change their state from zero to one, and
vice versa throughout the simulation, as seen in Fig. 11.

All cells change their stale on every simulation cycle. As we
can sec. the main effort in executing simulations for this model
is in communicating the state value Lo the neighbors. To evaluate
our algorithm on several scenario sizes for this problem. we used
cell spaces ranging from 10000 to 100000 cells. All scenanios
were executed for 500 simulation steps. We chose this problem
dimensions and number of steps to evaluate model scenarios that
require large amounts of time 1o execute, and therefore require
accecleration. In addition, we replicated all experiments 10 times
and calculated the average times. All scenarios were executed
for 500 simulation steps, and we replicated the results on each
scenario [ times and calculated the average times. We designed
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Deskiop compuier archilectone.

our experiments to evaluate this problem on arange of cell space
sizes and executing several simulation steps.

The second experiment uses an epidemiological model Lo sim-
ulate epidemic spreading. This model divides the population into
three classes of individuals: those that are Susceptible, Infected,
and Recovered from the disease (SIR). Each cell represents a
subset of the population and the state for each cell stands for the
portion of SIR individuals in the cell. Due to its implementation
with the Cell-DEVS formalism, only those cells that are about
o change their state will transmil messages 1o their neighbors,
therefore not all of them will execute in every step (which is the
case in the benchmark model presented in Fig. 11). InFig. 12 we
can see that the center cell is initialized with infected population,
and the disease spreads [tom there.

All the details for this model can be found in [36]. The
equations in this model muost be solved in each cell {a com-
pute intensive model). In a similar way as with the benchmark
problem. to evaluate this problem over several cell space sizes.
we performed experiments with scenarios ranging from 10000
o (00000 celis. All scenarios were executed for 500 simulation
steps. and we replicated the resulls on each scenanio 10 times
and calculated the average times. Similar as with the benchmark
problem. we designed our experiments Lo evaluate this problem
on & range of cell space sives and executing several simulation
steps.

To evaluate our implementation. we use two modern multicore
architectures: a desktop computer with an intel octa-core i7-9700
processor and 64 Gb of RAM memory, which we can seec on
Fig. 13; and a server equipped with two octa-core Xeon E5-2609
vd, miving atotal of 16 cores. and 24 Gh of RAM memory, which
we can sec on Fig. 14 [34].

The simulator we use to perform our experimental evaluation
is the Cadmium simulator, presented in Section 1. Our paraliel
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Fig. 15,  Time resulis for the synthetic benchmark problem executed on Diesk-
Lo cormpraler.

algorithm was programmed with the OpenMP library and was
added as an extension for Cadmium.

To compare the results obtained we use two reference points.
First. a naive parallel implementation. This version uses the
ideas presented inm [7]. It is implemented in the same way as our
algorithm, but only executes in parallel two tasks: the output and
state transition functions. The rest of the algorithm is executed
sequentially. The second reference point we use to compare the
results obained in our algorithm 15 the theoretical ideal speedup
limit. This is determined by the number of processors or cores
in a parallel computer: It indicates the acceleration limit we can
obtain using the best possible parallelization.

B. Experimental Resulis

{) Execution Time: In this section we show the results for the
execution time obtained on the baseline sequential algorithm and
on our proposed parallel algorithm. The results show the times
obtained increasing the number of cells and the number of cores
used on the parallel algonithm. In Fig. 15 we can see the resulls
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obtained for the synthetic benchmark problem executed on the
Diesktop computer.

Asexpected. the ime increases when the problem dimension
increases for every number ol cores used. This is because there
are more cells, and this requites larger computations to route
messages, perform state transitions and calculate the next time
on cach step of the simulations. In addition, we can see that our
algorithm scales, ime decreases when we increase the number
of cores used. We perform more computations in parallel and the
best results are obtained using all cores available in the computer.
Similarly, in Fig: 16 we can see the resulis obtained for the
synthetic benchmark problem executed on the Server computer.

In this architecture we can also see. 8s expected. thal time
increases when the sive ol the problem increases for every
number of cores wsed. Once again, this is because when the
problem size increases there are more cells, and simulations
require larger computations to communicale messages, perform
state transitions and calculate the next ime on each step of the
simulations. In addition, we can sce that this algorithm also
scales in this computer, ime decreases when we increase the
number of cores used. This is because of the additional parallel
computations the computer performs when using more cores.
The best resulis are obtained using all sixteen cores in the
architecture.

Mext. we conducted the second set of experiments on the
epidemiclogical model. In Fig. 17 we cansee the times results for

1617

Tirme [serondst

Ll b =y

[t e = Lrrs i W e

Rymbsr ol ealli

—— prjuonial & ddmim =@ dimuy - Beindin — %= 18 o

Fig. 15 Time resolts (or the epidemiclogical problem exccuted on Server
COMTEpOLET-
W
i _,-'-"'
-
& "
% [ __'_,.I-"'FFH- 653
L e T
x e EX:H -
= e
3 gy e -::."..."_'":'1
o T m
e :;'_hm.
L&
1
H i £ 1
Humber af sores [|og scata|
il Dpakiog  ~—=cfprapr  —a— ilepl
Fig. 19, Average specdup for the synthetic benchmark problem uang different

pumber of cores.

the sequential version and our parallel algorithm using different
number of cores on the Desktop computer.

Like in the previous resulls presented, time increases when
the problem dimension increases, and time decreases when we
increase the number of cores used. as expected.

Finally. in Fig. I8 we can see the times results for the sequen-
tial version and our parallel algorithm using different number of
cores on the Server computer.

Once again, like expected, the ime increases when the prob-
lem dimension increases in all versions. In addition, like in the
synthetic problem, we can see that the time decreases when we
increase the number of cores used in the architecture. The best
results are obtained wsing all cores available in the computer.

2) Speedup: As we saw in the previous section, time de-
creases when we increase the number of cores used. However,
we want to analyze how much acceleration we obtain using
different number ol cores with our algorithm. In Fig. 19 we can
see the average speedup resulis for the synthetic benchmark.

As we can see, the speedup increases when we increase the
number ol cores used in both architeciures: This is because the
algorithm benefits from more computing resources o exccule
the computations, and therefore it reduces the execution time.
To compare our results. we show the ideal speedup that can
be oblained for each number of cores. Even though the over-
head of executing in parallel does not allow us to achieve the
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ideal speedup. our algorithm improves the performance of the
seguential version by accelerating the simulations.

Mext, in Fig. 20 we can see the average speedup resulis for
the epidemiological problem.

Like on the results for the synthetic benchmark, specdup
increases when we increase the number of cores. This is because
our algorithm can use more cores to execule compulations
in parallel. To compare ouwr results, we show the theoretical
parallelization limit that can be obtained with cach number of
cores. In this problem we can see that the speedup with 2 and
4 cores is almost linear. However. with 8 and 16 cores is close
to P/2x, where P is the number of cores used. This is duc to the
higher overhead in synchronization when we use more cores.

Here we can also see that even though the overhead ol exeeut-
ing in paralle] in a real application does not allow us to achieve
the ideal speedup, our algorithm improves the performance of
the sequential version by accelerating the simulations.

It is interesting to note that the speedup for the epidemio-
logical problem is higher than the obtained for the synthetic
benchmark. This is because the cpidemiological problem is
more computing intensive than the synthetic benchmark. In the
synthelic benchmark, each cells performs a very simple update
on the digit of its state. By contrast, in the epidemiological
problem cach cell must perform a more complex computation
lo update its state with the received state from their neighbors.

3) FParallel Efficiency: As we saw in the previous seclion
our algorthm allows to accelerate the execution times of the
sequential algorithm However, we want 1o evaluate as well how
efficiently our algorithm uses the cores on the architectures. To
achieve this, in this section we present an analysis of the parallel
efficiency obtained by our algorthm. In Fig. 21 we can see the
parallel efficiency resulis for the synthetic benchmark .

We can notice a similar behavior in both architectures. parallel
efficiency decreases when we increase the number of cores. This
iz expected on a synchronous algorithm like the one we present
in this work. Even though all tasks on the algonthm execute in
parallel, the overhead of coordinate and synchronize the threads
decreases the utilization of the cores. Next, in Fig. 22 we can see
the parallel efficiency results for the epidemiological problem.

Like on the results obtained on the benchmark problem, both
architectures follow the same pattern. As we discuss previ-
ously this is expected in a synchronous algorithm. This 15 a
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limitation for our approach. explicit synchronization becomes
more expensive with more cores. and this overhead reduces
the performance compared with the optimal core utifization.
However, the big advantage of owr approach is that it allows
to accelerate execulion several times, while guarantee correct
results in all scenarios.

4) Comparison With Previens Approach: To conclude owur
experimentation, we perform a comparson for our approach
with the previous ideas proposed. In Fig. 23 we can sec a
comparison of the average speedup obtained with our algorithm
against the naive parallelization approach.

As we can sec, the average specdup for the naive paralleled
approach using both architectures to execute the two problems
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evaluated is smaller than the one we oblained with our algorithm.
The naive approach offers very limited acceleration. between
1.03 and .| speedup in our experiments. This is becawse there
is a small benefit on the computations performed on parallel to
exccute the outpul and stale transition [unctions, compared with
the overhead created to execute in parallel in this version. By
contrasl, as we show in our experimental evaluation. our algo-
rithm accelerates several times the execution for both problems
in the two architectures considered. Our speedup results using all
cores on the architectures range from 335 to 8 for the different
problems executed on both architectures. This is because our
algorithm executes completely in parallel and allows o also
accelerate the message routing and the caleulations for the next
times in the simulations.

V1L Concrusion ann FUTurg WoRK

We presented an algorithm to execute DEVS simulations
cfficiently on parallel shared-memory architectures. This work
extends the previous ideas in the literature by adding mech-
anisms o execute in parallel additional tasks in the PDEVS
simulation protocol. As we mentioned, in previous works il 1s
only considered the cxecution in parallel of simultaneous output
and transition functions. Here, we extended this approach by
parallelizing additional tasks: the imitialization, the routing of
messages. and the mechanism (o obiain the time for the next
events. This way. the algorithm we presented takes advantage of
parallel exccution on all tasks in the PDXEVS simulation protocol.
Each of these tasks are distributed among the cores in shared
memory architectures and this way, we accelerate simulations.
The main advantage of this algorithm is that il allows (o execole
in parallel in a simple way and achieves the same resulis as in
the sequential version in all scenanos.

In addition, the experimental results we obtained show how
we can accelerale the execution several times for both a syn-
thetic benchmark and a real-world problem in two independent
computers, with different hardware characteristics. We showed
that our algorithm scales when we add cores 1o ils execulion.
Even though parallel efficiency decréases when we increase the
number of cores, our algonthm aceelerates the execution several
times. while guarantecing correct results in all scenanos. Finally,
we show how this idea improves the performanee over the
previous works in the parallelization of the PDDEVS simulation
protocol.

As future work, we plan lo evaluale performance on archi-
Llectures with more cores, as well as adding new case studies. In
addition, we plan to evaluate the energy used by compuler archi-
tectures when using different number of cores. and to implement
this algorithm on Graphic Processing Units (GPLU) o extend
the algorithm’s usability in a broader range of shared-memory
computing platforms.
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