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Abstract With the exponentially rising popularity of social media, and the provided 
convenience of digital advertising across various platforms, individuals have found 
ways to sustain a lifestyle by providing companies with a personalised platform for 
advertising their products. These individuals are popularly labelled as ‘influencers’. 
Determining the impact an influencer has on a product market is an important aspect 
in determining whether a company should invest in the influencer’s platform. The 
model presented in this paper, namely, the influencer model employs the Cell-DEVS 
formalism, an extension of cellular automata that can be used to build discrete-event 
spaces, implemented through the Cadmium tool to simulate the reaction of individ-
uals towards an influencer. The model simulates the rate of increase of follower count 
under various scenarios that exercise various reactions and employs an opinion-based 
approach that simulates an individual’s evolving opinion state towards a subject. 

Keywords CELL-DEVS modelling · Social media · Cellular automata ·
Behavioural modelling 

6.1 Introduction 

Social interactions of any kind play a role in the changing opinions of individuals 
and human behaviour itself. Social influence has been affected by the introduction 
of social media platforms. Social media has become an increasingly popular way 
to date, make friends, explore interests, share passions, and from certain points of 
view, improve our quality of life [1]. Bond et al. [2] study on Facebook message 
propagation determined that there was an influence of opinion in the recipients and
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their corresponding ‘neighbours’, which can be defined as close friends and or rela-
tives. Such behaviour has led to the recognition of social influencers, people who are 
‘opinion leaders’ and have the ability to affect buying habits or opinions of others by 
posting content (usually sponsored) on social media. From a marketing standpoint, 
influencers can directly reach more people than the average ad campaign and there-
fore have the potential to increase revenue. With the growing use of technology, more 
people spend time on their phones browsing social media, not only for entertainment 
purposes but also to connect to friends and family and explore various interests. As 
such, businesses have found it highly practical to employ social media and influ-
encers to expand their global market reach, it is important to understand just how far 
that reach can go and how impactful the use of influencers will be to their product 
campaign. 

The notion of evolving opinions cannot be verified or observed in real-time, as the 
product of the action founded by the evolved opinion would require constant super-
vision over unknown periods. Thus, modelling and simulation (M&S) presents itself 
as a useful tool that mitigates this drawback. The application of M&S allows for the 
prediction of future results based on events that took place in the past. Furthermore, 
M&S can be used to simulate certain specified events that have low probabilities of 
occurring in the natural environment. 

This paper presents a method to simulate the evolution of opinions and the 
resulting events regarding following or not following an influencer as a conclu-
sion of the influenced human behaviour. The model, referred to as the ‘influencer’ 
model, is based on the methodologies presented by Behl et al. [2], Wang et al. [3], 
and White et al. [4], which presented simulation strategies for opinion evolution, 
sentiment propagation, and the spread of COVID-19, respectively. This is a hybrid 
model [5] that uses multiple M&S techniques as well as different techniques to one 
or more stages in study [6]. The model presented in this paper combines network-
based information diffusion based on a differential equation model, its definition as 
a cell space using the Cell-DEVS formalism, a discrete-event specification based on 
the DEVS formalism and spatial modelling with explicit delays [7]. The model is 
built using the DEVS Cadmium tool [8]. The ‘influencer’ model is experimented on 
with different scenarios to analyse the behaviour of the model and the subsequent 
effects of its incorporated variables/parameters. Further experiments were performed 
to determine the effects of changing the rate at which individuals tend to follow an 
influencer as well as differing personality groups. 

6.2 Background and Related Work 

Social interactions can be represented using a network diffusion process that allows 
users to understand the dynamics and propagation of the process in the network 
(which could represent information, infectious disease, etc.). The method of prop-
agation can be either physical, verbal, communicated over the Internet, or planned 
group events, depending on the situation [9]. Network theory is part of graph theory
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and is a popular technique used to model the spread of infectious diseases and in 
the study of sociology. In a network, the individuals in a population are represented 
by nodes and the interactions among them as edges [10]. Network models aim to 
represent individuals within a population and the relationship between the identified 
individuals. 

Diffusion is defined by Rogers [11] as a special type of communication that trans-
mits innovation through channels consisting of individuals of a social system over 
a given period. Innovations can pertain to new ideas or technologies that are the 
result of these new ideas. Rogers first introduced such a process to explain the theory 
behind how new ideas and rates of innovation spread among the populous. The theory 
known as diffusion of innovation theory was first published in 1962 and is founded 
on five elements: the innovation itself, adopters, communication channels, time, and 
social systems, with another five stages to the adoption process: awareness, persua-
sion, decision, implementation, and confirmation. The theory further elaborates on 
techniques to achieve critical mass—the point at which enough people have adopted 
the innovation resulting in the adoption of the innovation to become self-sustaining 
with an important focus on ‘top officials’. 

Expanding on the idea of ‘top officials’ Rogers penned the term ‘opinion leaders’ 
defined as those individuals that create an informal leadership within society, and is 
a position earned by the individual’s technical competence, social accessibility, and 
conformity to the systems norms—system norms are described to be the behaviour 
patterns present in members in a particular social system. The idea of opinion leaders 
is largely founded on the two-step flow of communication presented by Katz and 
Lazarsfeld [12], a theory of information diffusion that defines the propagation of 
information from mass media to the opinion leaders and finally to the locals. Addi-
tionally, opinion leaders are more exposed to external communications, have a higher 
social status, and are more innovative on average. Opinion leaders tend to be the centre 
of their social communication network and hold a unique influential position, while 
serving as a potential social model, whose behaviour can be imitated by individuals 
within its social communication network. However, according to Rogers, opinion 
leaders can lose the respect they hold in their communication network if they deviate 
too far from the social norm, or in retrospect, may lose credibility if they are unable 
to keep up with the latest trends. An opinion leader can be monomorphic—is an 
opinion leader in one topic—or polymorphic—is well-informed about a variety of 
topics. 

Diffusion models are popularly used to simulate the propagation of information 
in social networks and the adoption of ideas by characterising the social interactions. 
Most diffusion models that implement social interactions as a process are extensions 
of the independent cascade and linear threshold models. The independent cascade 
model [13] focuses on the dissemination of information and interactions from indi-
viduals to their friends along a social network by considering the weak and strong ties 
between individuals. This is strongly correlated to the susceptible-infected-recovered 
(SIR) model for epidemic spread [14], which takes a similar approach to simulating 
disease spread through interactions between individuals based on strong and weak
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ties. The linear threshold model [15] describes a threshold-based perspective on influ-
ence propagation, that is, when enough of your peers have adopted a certain idea, 
you are more than likely to adopt it too. 

AlFalahi et al. [16] evaluated different, used to measure influence probability, 
focusing on (1) static models, (2) dynamic models, (3) diffusion models, and (4) 
models based on users’ behaviour. The research brought focus on how the study of 
social networks with the applications in graph theory while employing social network 
analysis to help trace sources and distribution of influence, can lead to a better 
understanding of the evolution of social networks, resulting in a better investigation 
of social structures and social influence in such networks. The research determines 
that the diffusion of influence can be modelled through probabilistic framework, with 
the probability of the individual embracing a new idea dependent on the neighbouring 
nodes within the network. 

In an effort to model information diffusion with consideration to how information 
can be exchanged between individuals, various research studies have explored the 
similarities between epidemic and information diffusion. Goffman and Newill [17] 
introduced the similarities between epidemic and information diffusion processed 
by focusing on the aspect that the epidemic process can be defined as a more 
generalised abstract process of transitioning from one state to another due to expo-
sure to an external phenomenon, with individuals susceptible to both diseases and 
ideas. Although epidemic and information processes are extensions of the general 
abstract process, there is one key difference. In the case of information diffusion, the 
phenomenon, in this case the information itself, is desired, whereas in the case of 
epidemic diffusion, the phenomenon is undesired. 

Different research has explored methods of modelling social interaction and the 
resulting human behaviour using diffusion models as a foundation. Wang and Li 
[18] explored the similarities of the epidemic spread models to create the online 
social networks information spreading (OSIS) with the implementation of cellular 
automata. They discussed the nature of opinions fading over time, and the inherited 
aspects of the state change equations from the SIR model (susceptible-infected-
recovered; a popular epidemic method). Similarly, Bouanan et al. [9] presented 
a method to simulate the spread of information across a network and the subse-
quent influence on their behaviour, with a focus on message propagation with trust 
factor dependencies and opinion characterisation using confidence bounds. Other 
social influence models focused on the strength of an individual’s influence rather 
than the network propagation. Peng et al. [19] presented a model to evaluate social 
influence based on entropy, which assesses the influence of individuals based on 
various methods of social media interactions and designs an algorithm to characterise 
propagation dynamics of social influence based on the individual’s entropy. 

Social interaction modelling can be made more accurate by considering the opin-
ions of the individuals. Opinions are an important aspect in predicting how an indi-
vidual makes decisions, their behaviour, and how they react to information. An 
individual’s opinions can evolve over time due to external social interactions or by 
new information diffused through the network. As such, it is important to define 
how to represent the evolution of opinion and its interactions with the social network
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formally. The resulting opinion calculation presented in this paper is founded on 
previous work done by Behl et al. [2] and Wang et al. [3]. 

Behl et al. [2] discussed the application of Cell-DEVS on modelling human 
behaviours based on social interactions, including social influence of human 
behaviour and its evolution considering the population size, the number of interac-
tions, the degree of influence of each interaction, and the threshold of an individual 
to adopt an opinion or change in behaviour. The opinion update equation is defined 
as: 

O(x) = O(x) +
∑

y in neighbourhood |O(x)−O(y)| ≤ Threshold 

influence × (O(x) − O(y)). 

(6.1) 

O(x) is the current opinion of the cell, O(y) is the current opinion of a neighbouring 
cell, influence is the degree of influence of y on x and Threshold is the threshold of 
x that determines if x can be influenced. 

An additional extension of how opinions can evolve over time was defined by 
Wang et al. [3], who presented a method to visualise public sentiments by analysing 
online posts and predicting future trends on a topic. As not all individuals contribute 
to the ‘comments’ section, a sentiment parameter was introduced. The evolution of 
sentiment offset is defined to be affected by: 

• Social emergencies and external stimulus—an individual’s interest in a topic can 
be influenced by an external stimulus other than neighbouring cells. 

• A topic can fade over time and the sentiment offset can therefore reduce. This is 
represented by Wang et al. as: 

mi(t)
' = mi(t) ×

(
1 − α 

mi (t) 
20

)
, (6.2) 

where α is the fading rate and mi represents the sentiment offset. 
• Influence between neighbours. 

Social interactions can be seen as similar to the spread of infectious diseases and 
thus can inherit model structures used by epidemiology studies. We designed the 
influencer model using an approach similar to Wang and Li [18], Bouanan et al. [9], 
and Peng et al. [19], which used infectious disease models to define features in social 
interactions. As in the case of Behl et al. [2], social interactions can be affected by 
differing personality traits, a subject that is applied to the influencer model. In an 
effort to simulate certain behaviour patterns in an attempt to assess the implications 
of different personality traits, research on how to create differing neighbourhoods 
and definitions of personality traits is needed. Research into the creation of various 
neighbourhoods to fulfil the requirement of simulating social divisions and different 
personality traits in the real world has been explored also in Khalil and Wainer [20] 
which included case studies on the spread of avian flu, interactions affecting the well-
being of organisms, and drug usage involving individuals with different personality
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traits. The case studies explored boundary conditions that manipulate a cell space and 
various personality definitions within the cell space. The research defined various 
dynamic states the agents could possess as well as the transition functions. 

An important foundation of the influencer model is thus the definitions of the 
transition functions. As previously mentioned, the design of social interaction equa-
tions can be adapted from physical interaction equations defined in infectious disease 
models. The influencer model was predominantly based on the state transition equa-
tions presented by various COVID-19 cellular automata models, in particular those 
defined by White et al. [4]. The local transition functions used to inspire the transition 
functions in this model are shown in Eqs. (6.3), (6.4), and (6.5). 

I t ij = (1 − ε) · υ · St−1 
ij · I t−1 

ij + St−1 
ij ·

∑

(α,β)∈V ∗ 

Ni+α,j+β 

Nij 
· μi,j 

αβ · I t−1 
i+α,j+β (6.3) 

St 
ij = St−1 

ij − υ · St−1 
ij · I t−1 

ij − St−1 
ij ·

∑

(,β)∈V ∗ 

Ni+α,j+β 

Nij 
· μi,j 

αβ · I t−1 
i+α,j+β (6.4) 

Rt 
ij = Rt−1 

ij + ε · I t−1 
ij (6.5) 

The key points to take note of are as follows and are used in the influencer model. 

• μ
i,j 
αβ is the product of μ

i,j 
αβ = mi,j 

αβ ·ci,j αβ ·υ, where mi,j 
αβ and c

i,j 
αβ are the movement and 

connection factors, respectively, between the main cell and the neighbouring cell 
(i + α, j + β). The parameters υ and ε are the virulence factor and the recovery 
factor, respectively. 

• The number of infected individuals I is the summation of infected individuals that 
have not recovered, susceptible individuals S affected by the infected individuals 
in the cell, and the susceptible individuals with the probability of being infected 
by neighbouring cells that have travelled to the current cell. 

• The number of recovered individuals R is the addition of currently recovered 
individuals from the previous time step and infected individuals with probability 
to recover in the current time step. 

• The connection factor considers various methods of transportation available to 
the individual that allows it to travel to other cells, whereas the movement factor 
is the probability of the individual moving to a neighbouring cell. 

The influencer model was defined using Cell-DEVS and was implemented using 
the Cadmium tool [8]. A brief explanation of Cell-DEVS is defined in the following 
section.
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6.3 Cellular Automata and Cell-DEVS 

Cellular automata (CA) is the usual form of cellular modelling that uses a regular 
uniform n-dimensional lattice structure, with discrete variables at each cell. The 
values of the variables for each cell are synchronously calculated every time stamp 
and is determined by the values of the variables of a finite state of neighbouring cells 
from the previous time stamp. Since the calculations for the new variable values occur 
in a synchronous manner, CA evolves in discrete time stamps. The neighbuorhood 
of a cellular model can be defined using various approaches, and the most popular 
configurations are the Moore neighbourhood or Von Neumann neighbourhood. The 
Moore neighbourhood comprises of the central cell and its eight closest neighbouring 
cells, while the Von Neumann neighbourhood comprises of the central cell and its 
nearest four neighbuoring cells. Both the neighbourhoods can be extended using their 
respective radius, and the calculations for the number of cells based on the radius are 
r2 + (r + 1)2 , (2r + 1)2 for the Von Neumann and Moore neighbourhood, respec-
tively. There are advantages and disadvantages of cellular automata, CA is simple 
enough to allow for detailed mathematical analysis while also allowing for simple 
mathematical calculations to be applied to the cells to create a complex mathematical 
system which make CA a popular method to model complex mathematical systems. 
However, CA does have its drawbacks, (1) performance and precision is lacking due 
to the discrete time-based calculations, (2) since CA is asynchronous in nature it 
requires the use of a synchronous digital computers, and (3) it is difficult to create 
time triggered events for the cells in the CA model. 

The discrete-event system specification (DEVS) formalism is a discrete-event 
system that employs modular hierarchal formalism for modelling and analysing 
systems which can be described by a set of states. With regard to hybrid simulations, 
the DEVS formalism is a popular M&S tool since it allows defining multiple models 
coupled to work together in a singular model by connecting their input and output 
messages [21]. The DEVS formalism can be defined as either an atomic model; 
which defines the behaviour of a system as transition between states as a result of 
external events or coupled model; which defines how subcomponents of the system 
interconnect. 

The Cell-DEVS formalism overcomes most of the limitations introduced by the 
CA model and is an extension if the DEVS formalism. Cell-DEVS models can be 
best described as an n-dimensional lattice of cells where every cell is an atomic 
model that is interconnected using the DEVS coupled formalism. Additionally, the 
cells within the cell space can not only interact with each other following the DEVS 
coupled model conventions but can also interact with DEVS models outside the cell 
space. When a cell receives an input, a local computation function is triggered, which 
calculates the future states of the cells. The output of the computation (the new states 
of the cell) is transmitted from the cells output port to other coupled cells after a 
defined delay elapses. The formalism includes a delay function and dictates when a 
change can occur once an external event is received from a neighbouring coupled cell, 
thus preventing any scheduled changes from occurring before the predefined time.
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When an output is received at the cell, the external transition function is triggered. 
An additional duration function controls the lifetime of the cell, once the lifetime has 
expired an event is triggered to invoke the internal transition function to update the 
states of the cell. According to the formalism, before the internal transition function 
is triggered the output function and the output events are generated. 

6.3.1 Cadmium Tool 

The Cadmium library provides the necessary libraries to translate conceptual Cell-
DEVS models to a computational model [22]. Cadmium is a header only C++, with 
the cells being defined in C++ and the cell space defined using JSON configuration 
files. The Cell < C, S, V> is an abstract implementation of the cell behaviour following 
the Cell-DEVS formalism. The local computation function is a virtual function that 
must be overwritten to represent the desired behaviour of the cell. If the new state is 
not equal to the current state, the Cadmium library adds the new state to the output 
queue that forwards the states to neighbouring cells. The Cadmium library uses 
a port-based approach when communicating state change messages between cells. 
Cells send scheduled state change messages that are present in the output queue 
to neighbouring cells via an output port and receive state change messages from 
external cells through an input port. 

6.3.2 Influencer Model Design 

The cells in the influencer model have three possible states, susceptible, influenced, 
and non-influenced. There are several assumptions that have been made in this model, 
which are listed below. 

1. All cells are vulnerable to being influenced since social media is publicly available 
and accessible. 

2. Individuals in the age group 13–40 are more vulnerable to being influenced. 
3. Once an individual is influenced, there is a chance they will unfollow the 

influencer. Only those who are influenced can become non-followers. 
4. Non-influenced individuals cannot refollow an influencer and hence cannot 

become influenced again. This assumption is made to demonstrate that individ-
uals made the decision to unfollow the influencer purposefully and are unlikely 
to follow an influencer they have lost interest in based on the fact that there is a 
multitude of other influencers available. 

5. The total population is static; hence, the population in each cell is always the 
same. 

6. Individuals cannot move from one cell to another, hence cell population will 
never change.
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7. The negative opinion can never have a probability of zero. The opinion parameter 
represents the probability of a positive opinion; hence, the negative opinion is 
the additive remainder of one. Hence, there can never be a zero probability of a 
negative opinion since we assume that the probability of a positive opinion will 
never be one. 

8. The frequency of upload by the influencer affects the follower count; more regular 
uploads keep the audience engaged, while lower frequency values cause the indi-
viduals to lose interest overtime. This assumption does not consider the quality 
of the content released by an influencer. 

9. There is no delay between changes in state for a given cell. The probabilistic 
values for each state are directly impacted on every time step and every 
interaction. 

Following these assumptions, the model is designed to replicate the environment 
of social platforms and the degree of connections between individuals. The current 
model’s configuration, however, does not simulate social groups, factions or social 
divisions, or types of social connections that can occur on social platforms, this would 
require a thorough social network analysis [22] with validated data from current 
social networks. The model implements a hybrid M&S approach with a combination 
of network-based information diffusion and agent-based modelling employed during 
the pre-simulation, and the Cell-DEVS formalism applied for the simulation of the 
model itself. 

1. Pre-simulation: The conceptual model is designed to simulate how individuals 
(agents) connected within a social network propagate opinion and information. 
Thus, to illustrate such a configuration of individuals or groups of individuals 
connected within a network, an agent-based model integrated in cellular automata 
is employed with agents connected with other agents to create a network structure. 

2. Simulation: To achieve results, the conceptual model is converted to use the Cell-
DEVS formalism and translated into C++ to conform with the Cadmium tool. 
The results are analysed, and various scenarios are created to further characterise 
the behaviour of the model. 

In accordance with the Cell-DEVS formalism cells are used to represent individ-
uals, the neighbouring cells, and the social connections between individuals. In the 
model, each cell represents a static population of 100, which is subdivided into four 
age groups representing the different generations within the population. The four age 
groups used are children, 0–16 years, adults, 17–35 years, seniors, 36–50 years, and 
elders, 51 + years. This configuration is used to represent how in social platforms, 
an individual’s ‘friends’ (the term used to represent an individual’s connections on 
social platforms) can be vast, whether they be close or distant connections, and these 
connections have further multitude of connections creating an extensive network of 
connections. Each cell in the influencer model has four dynamic states, susceptible, 
influenced, non-influenced, and opinion. The model is probabilistic in nature, with 
the value presented for each state determined by the values of the corresponding 
neighbouring cells. Each state is a set of values that represent the probability of that
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agent being in that current state. Each cell has several static attributes assigned to it 
that control the personality traits as well as how susceptible the cell is to neighbouring 
influence, these are, extrovert factor, tech adoption, and free time. The static traits 
differ per age group consequently varying the probability of how likely the associ-
ated age groups are to being affected, thus the number of influenced in a cell differ 
between age groups and between cells. The model configuration uses a single cell to 
represent the influencer in the simulation, with that cell having a static population of 
once since there is only one influencer within the cell. The model has the simulation 
begin with one influencer and the primary circle of neighbours around the source 
being ‘influenced’ for two of the major age groups, which are 17–35 and 36–50. 

Each cell has a neighbourhood configuration to simulate the relations and interac-
tions between cells. The model uses a Moore neighbourhood with r = 4, with each 
layer going outward having a reduced ‘connection’ factor, that is, r = 1 having the  
most favorable influence on the cell in question while r = 4 having the least influence. 
For this model, an extended Moore neighbourhood is implemented to demonstrate 
that social media increases the range a user can impact others. The number of cells 
for an extended Moore neighbourhood is calculated using (2r + 1)2 , with r being 
the range of the neighbourhood. The probability of connection from the centre cell 
to any of its neighbouring cells is based on the Moore radius. Furthermore, to imple-
ment assumption 1, the influencer cell is included as a neighbour in every cell’s 
neighbourhood configuration. 

The opinion of an individual can vary based on many different factors, for example 
negative publicity, global information sharing, and influence from friends and family. 
An individual’s opinion on a subject, in this case the influencer in question, would 
affect how likely the individual will choose to follow the influencer, and following 
that, how likely they are to unfollow the influencer. A positive opinion increases the 
chances of the individual becoming a follower; however, opinions can decrease over 
time and interest in the topic can fade, which would lead to a decreasing opinion, 
eventually resulting in a negative enough opinion to cause the individual to finally 
unfollow the influencer in which they have lost interest. There are also the rare cases 
that became more prominent and are widely referred to as ‘cancel culture’. Cancel 
culture occurs when a popular figure receives a negative response to their online 
presence, which leads to an avalanche of negative commentary as the opinions spread 
between individuals, eventually leading to a popular negative opinion to diminish 
the online support for the influencer. 

The main goal of the model is to determine the rate of influencer and non-influencer 
increase, as well as how other factors affect this rate change. Subsequently, the model 
implements state transition equations that calculate the evolution of the cells dynamic 
traits and updates these traits during the simulation. During each time step in the 
simulation, the state transition equations are used to calculate the evolution of the 
dynamic traits in every cell, however, if the cell is found to be an influencer, only 
the opinion dynamic trait is updated, since an influencer cannot follow or unfollow 
itself, but due to that fact that an influencer is part of every cells neighbourhood, its 
opinion can affect the corresponding cells opinion evolution, hence the influencers 
opinion must be updated in accordance with the opinion equation with respect to its
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own Moore neighbuorhood. This exception is implemented by adding an ‘influencer’ 
parameter to every cell, the parameter is Boolean and if set to true, the cell is defined 
to be an influencer. 

The overall flowchart that illustrates the progress of the model is depicted in 
Fig. 6.1. At each time step, the localComputation function is called; the function 
characterises the cell behaviour for the influencer. Accordingly, if the cell is defined as 
an influencer, the computation function determines the change in opinion; otherwise, 
if the cell is a default generated cell, the three dynamic states variables are updated 
based on the value variables of the cell itself and its influential neighbouring cells. 

Finally, in the interest of creating a model that can compare two influencers, the 
model was designed to work with one or two influencers defined in the environment. 
This was achieved by including a macro definition within the model. If the macro 
definition was enabled, the model followed a sequence of calculations with respect 
to both influencers. The model ensured that individuals were simulated to be able 
to follow the first influencer, the second influencer, or both influencers at the same 
time. This was achieved by adding a secondary set of dynamic traits with respect to 
the second influencer to every cell, however, it is important to note that this addition 
does not impact the static population of the cell, but rather the summation of each set 
of dynamic traits is still equal to the static population. Thus, a ratio of the population 
can be followers of the first influencer while still being susceptible to the second.

Fig. 6.1 Flow diagram for localComputation 
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Table 6.1 summarises the parameters used in the state transition equations with 
a brief description of their function, and Table 6.2 summarises the variables that are 
interdependent with state transition calculations. 

The opinion Eq. (6.1) is combined with the sentiment iteration Eq. (6.2) discussed 
earlier. The ‘new follower’ calculations are based on those presented in Eqs. (6.3), 
(6.4), and (6.5), and are represented by the following equations. Equation (6.6) defines 
the value of opinion for the next time step. This number cannot be greater than 1, 
since that would equate to having 0 negative opinions, based on the presumption that 
the negative opinion ratio is calculated using 1 − oi. 

newoi+1 = min
(
0.999, newoi'

)
(6.6)

Table 6.1 Summary of parameters used in the state change equations for the influencer model 

Parameter 
name 

Symbol Description 

Follower 
factor 

β This value is used to vary the probability of becoming a follower 

Extrovert 
factor 

χ This value is based on age and the individual and affects how much 
influence an individual has on others and vice versa 

Random γ Random value to mimic unplanned events 

Frequency μ This is the rate of online uploads by the influencer 

Susceptibility 
factor 

ν Represents how susceptible an individual is to outside influence (not 
necessarily the influencer) 

Non-follower 
factor 

τ The opposite of the follower factor, it controls the probability of an 
individual unfollowing 

Population ω Population of the cell 

Fading factor σ Used to reduce interest in a topic, affect the opinion on the subject 

Limit factors υ Used to schedule changes in the environment to imitate global events 

Neighbour 
vicinity 

δ This is the probability of connection between cells and is based on 
the Moore radius 

Tech adoption ε The comfort level of individuals using social media 

Free time φ The amount, on average, an individual browses social media 

Table 6.2 Summary of variables used in the state change equations for the influencer model 

Variable 
name 

Symbol Description 

Global 
impact 

α Variable used to mimic global trends and is based on the free time and 
tech adoption of individuals 

Opinion o Opinion of the individual 
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The first term of Eq. (6.7) calculates the influence the individual has on them-
selves in the evolution of their opinion, adjusted by a fading factor (decay in opinion 

1 − σ 
oi 

γ ), the extrovert factor χ, and the random variable γ , to represent random 
changes in individuals’ thought process. The second term determines the influence 
of neighbouring opinions and their additive difference oi − oi j, while applying the 
extrovert factor, decay of opinion, a randomised variable, and finally the probability 
of connection between the cell in question and the current neighbour δ. Finally, the 
total is multiplied by the susceptibility factor ν, and divided by the population of 
that cell ω, to determine the ratio of individuals with this new opinion value. That is, 
the opinion propagation between neighbours depends on the difference between the 
current cell’s opinion and its neighbours; the difference is then added to the current 
opinion. Additionally, the fading factor considers that with the overwhelming avail-
ability of information, the attention span on any given topic deteriorates with time 
(or is replaced by a more engaging topic). 

new oi
' =

(
oi ·

(
1 − σ 

oi 

γ

)
· χ · γ 

+
∑

neighbours=j

(
oi − oi j ·

(
1 − σ 

oi j 
γ

)
· χ · γ · δ

)⎞ 

⎠ × ν/ω (6.7) 

Equation (6.8) represents the final change in the cell’s opinion for the next time 
step. 

oi+1 = new oi' (6.8) 

Equation (6.9) is the newly predicted follower count and takes a similar approach 
to the new opinion calculation. The current number of susceptible individuals Si is 
multiplied by the influence an individual has on themselves, and the influence of the 
neighbouring cells on the current cell, to define a change in state from susceptible to 
influenced I. Both terms use the follower rate β, a randomised value that represents 
unobserved evolving individual behaviour, limit factors υ (if any are assigned for the 
phase), and the global impact defined as α = ε ×φ, which describes the individual’s 
propensity towards new technology and the likely amount of time they spend on it. 
The total is further multiplied by the frequency μ of content release provided by the 
influencer and the current opinion oi of the agent. 

new f i
' = Si × (

I i · ω · β · α · υ · γ 

+
∑

neighbours=j 

I i j · ω · β · α · υ · γ · δ 
⎞ 

⎠ × μ · oi · ν/ω (6.9)
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Equation (6.10) takes the result of Eq. (6.9) and ensures that the new ratio of 
followers is not greater than the current ratio of susceptible individuals. Equa-
tion (6.11) illustrates the final predicted number of new followers for the next time 
step, which subtracts the updated number of non-followers to ensure that the addi-
tive ratios of susceptible, followers, and non-followers equate to the static population 
value of the cell. 

new f i+1 = min
(
Si , new f i'

)
(6.10) 

I i+1 = I i + (
new f i+1 − newnoni+1) (6.11) 

In summary, the new number of influenced individuals is based on the neigh-
bouring cells, the cells current opinion and external factors. An important consid-
eration that is accounted for is that for any cell, the individuals that subscribe to be 
followers can never be greater than the current susceptible individuals. This ensures 
that all individuals in the cell have any of the three states, and the summation of 
all subclasses of individuals per state will equate to the total population of the cell, 
which is defined to be static. 

The calculation of the final two states of the cell, the susceptible and the non-
follower numbers are defined below. Similar to White et al. [4], the non-follower 
calculation adopts a variable that controls the rate of unfollowing an influencer τ— 
Eq. (6.12). Additionally, the equation includes the negative opinion of the cell by 
taking the additive inverse of the current cell opinion

(
1 − oi

)
. This reflects how a 

degenerating opinion can increase the likelihood of unfollowing an influencer. 

newnoni
' = I i · (

1 − oi
) · τ/ω (6.12) 

Similar to the accountability translated in the calculation for the new followers, 
the number of new non-followers can never be greater than the number of individuals 
that are currently followers—Eq. (6.13). 

newnoni+1 = min
(
I i , newnoni'

)
(6.13) 

Equation (6.14) defines the change in state for new non-followers and simply adds 
the new non-follower count to the existing number of non-followers. 

N i+1 = N i + newnoni+1 (6.14) 

The susceptibility number is the remainder of the ratio of individuals that are 
neither influenced nor non-influenced—Eq. (6.15), which can be summarised as the 
total population of the cell

(
Si + I i + N i

)
minus the new values of followers and 

non-followers
(
N i+1 + I i+1

)
.
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Si+1 = (
Si + I i + N i

) − (
N i+1 + I i+1

)
(6.15) 

6.4 Influencer Model Implementation 

Having defined the state transition equations and the overall flow of the influencer 
model, this section describes the implementation of the model in the Cadmium tool. 
Cadmium is a header only C++ library with the localComputation virtual function 
describing the desired behaviour of the cell which is called every time step. Figure 6.2 
shows a code snippet of the actions taken during each cell’s localComputation call. 

The localComputation is a Cadmium method that is activated on each cell 
following the Cell-DEVS formalism. The model incorporates phase changes to simu-
late how in the real-world external factors may directly affect the follower rate

sfn localComputation(sfn state, const std::unordered_map<std::vec-
tor<int>, 
NeighbourData<sfn, double>>& neighbourhood) const override { 

state.phase = limits->next_phase(clock, state); 
if (state.flag_inf) { 

std::vector<float> new_op_inf = new_opinion(state, neighbour-
hood); 

for (int i = 0; i < n_age_segments(state.flag_inf); i++){ 
state.opinion.at(i) = new_op_inf.at(i); 

} 
return state; 

} 
for (int i = 0; i < n_age_segments(state.flag_inf); i++) { 

float ratio = state.susceptible.at(i) + 
state.influenced.at(i) + state.noninfluenced.at(i); 

age_ratio.push_back(ratio); 
} 

std::vector<float> new_op = new_opinion(state, neighbourhood); 
std::vector<float> new_f = new_followers(state, neighbourhood); 
std::vector<float> new_n = new_nonfollowers(state); 
#ifdef SECOND_FOLLOWER 
std::vector<float> new_op2 = new_opinion(state, neighbourhood); 
std::vector<float> new_f2 = new_followers(state, neighbourhood); 
std::vector<float> new_n2 = new_nonfollowers(state); 
#endif 

for (int i = 0; i < n_age_segments(state.flag_inf); i++) { 
state.noninfluenced.at(i) = state.noninfluenced.at(i) + new_n.at(i); 
state.influenced.at(i) = state.influenced.at(i)+new_f.at(i)-
new_n.at(i); 
state.susceptible.at(i) = age_ratio(i) - (state.noninfluenced.at(i) + 

state.influenced.at(i)); 
state.opinion.at(i) = new_op.at(i); 

} 
return state; 
} 

Fig. 6.2 localComputation code snippet 
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Cell_states: Cell_states_second_influencer: 
Susceptible[] Susceptible_first_influencer[] 
Influenced[] Influenced_first_influencer[] 
Non-influenced[] Non-influenced_first_influencer[] 
Opinion[] Opinion_first_influencer 

Susceptible_second_influencer[] 
Influenced_second_influencer[] 
Non-influenced_second_influencer[] 
Opinion_second_influencer[] 

Fig. 6.3 Cell states with one and two influencers 

(economy, environment, etc.). Such phase changes are determined by state.phase 
= limits → next_phase (clock, state), a limit factor can be applied to affect the calcu-
lation of follower number based on global events. Additionally, the limit factors 
may affect the follower rate for a particular influencer. Then, we check if the cell 
is an influencer (if (state.flag_inf )); in that case, only the opinion will be computed 
using the new_opinion function. The new state of opinion for the influencer is then 
updated for each age segment (each cell has four distinct age groups; thus, the states 
of the cell must be updated per age segment) using the function new_op_inf.at and 
the state returned for the next time step. Instead, if the cell is not an influencer, 
the follower and non-follower counts are calculated. The ratio is then calculated as 
the sum ratio of all ratios for each age segment. This can be defined as the static 
population of the cell, and it represents

(
Si + I i + N i

)
in Eq. (6.15). The new_ 

opinion, new_follower and new_nonfollower function calls implement the equations 
described above: Eqs. (6.7), (6.9), and (6.12) which define the state transitions using 
the current inputs to the cell. Additionally, if SECOND_INFLUENCER is defined 
(which means the model includes two influencers), the state changes are re-calculated 
with respect to the second influencer. To illustrate the difference between the two 
sets of dynamic states, refer to Fig. 6.3. 

We then cycle and update the four distinct age groups. The new states for 
each cell are then applied for the next time step by equating state.influenced, 
state.noninfluenced, state.susceptible, and state.opinion that embodies Eqs. (6.8), 
(6.11), (6.14), and (6.15). The opinion calculation implements a pointer variable that 
is set based on whether the calculation is being done for the first or second influ-
encer. In each case, the pointer points to the correct opinion set required at the time. 
The same strategy is used for any other state transition functions when required. It 
is important to note that the ‘neighbourhood’ variable shown in Fig. 6.2 does not 
only represent the extended Moore neighbourhood but also includes the influencer/ 
influencers, this embodies assumption 1. An additional constraint implemented in 
the model is the difference of opinion between the cell and its neighbours, that is, the 
difference can never be negative, since the opinion of the cell can never be a negative 
value in this simulation.
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6.4.1 The Influencer Model 

In this section we show the execution of the influencer model including the previously 
defined transition functions, a single influencer, and an extended Moore neighbour-
hood with a radius of four. The neighbourhood around the influencer itself has a ratio 
that is predominantly influenced, assuming that close friends and families are more 
willing to follow the influencer. The model is used to find the initial values of the 
static variables and reflects a natural flow of how the rate of followers and, similarly 
non-followers would increase over time. 

Figure 6.4 shows a spatial visualisation of the Cell-DEVS model execution within 
a 500-day simulation. The cells are shaded from light to dark with respect to the 
probability value of becoming a follower. The plot on the left depicts the simulation 
at the beginning with just the influencer and its closest neighbours being influenced 
(followers), the middle plot depicts the transition of the simulation at the midpoint of 
the simulation as the influence of the influencer and its followers affect susceptible 
cells. The final plot on the right is at the end of the simulation with almost all cells 
having a probability of being a follower. 

Figures 6.5 and 6.6 plot the overall results of the original influencer model and 
the progression of the follower count within the same time scope as illustrated in 
Fig. 6.4. Figure 6.5 plots the total number of followers versus non-followers, while 
Fig. 6.6 plots the relationship between the three dynamic states.

Analysing Figs. 6.5 and 6.6, there is a slight increase in the number of followers in 
the first days from 0% to 0.1%. During the initialisation of the simulation, several cell 
ratios are already configured to be influenced (followers) within the Moore neigh-
bourhood of radius r = 1 around the influencer cell. This is achieved by setting the 
‘follower’ state of the neighbouring cells to a positive value in the model config-
uration file. This is purposefully done to model that individuals closely connected 
to the influencer are far more likely to become a follower. Next, we see a gradual 
increase in the number of followers, and the non-follower count increases at a slower 
rate (but parallel to the rate of follower increase). This is an expected feature, as 
the non-follower count cannot be larger than the current number of followers, thus

Fig. 6.4 Spread of influence using the DEVS viewer 
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Fig. 6.5 Follower rate increase 

Fig. 6.6 Relationship between susceptibility and follower rate for the default influencer model

a rate of increase in non-followers can only occur when there is a viable number 
of followers. Furthermore, the susceptibility count is inversely proportional to the 
number of followers, showing that the current susceptible ratio is determined by 
subtracting the follower ratio and non-follower ratio from the cell’s population. 

Although face value validation of the model is not feasible (as data about influ-
encers is not available), we conducted a formal analysis of the design of the model by 
comparing the behaviour with White et al. [4]. The transition functions for the influ-
encer model and those in Eqs. (6.3), (6.4), and (6.5) are related; the influencer model 
follower, non-follower, and susceptible can be seen as similar to the infected, recov-
ered, and susceptible for infectious disease (where the state ‘deceased’ is excluded). 
The main characteristic in White et al. [4], illustrated in Figs. 6.7 and 6.8, is that as 
the number of infected increases so does the number of recovered, with the suscep-
tibility being inversely proportional to that of infected + recovered. This is similar 
to the behaviour represented in Figs. 6.5 and 6.6.
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Fig. 6.7 Results for White et al. [4] model 

Fig. 6.8 Relationship between susceptibility and infection rate for the White et al. [4] model 

Firstly, there is a gradual increase in the number of followers as there is an increase 
in those infected. Secondly, as the number of followers increases, there is also a 
gradual increase in the number of non-followers as can be seen in Fig. 6.5 with the 
increase becoming more prominent after 200 days have elapsed; the same can be said 
about the number of recovered individuals with respect to the number of infected. 
As observed in the White et al. [4] model, there is a gradual decline in the number 
of infected as recovered individuals become immune. However, this behaviour is 
not present in the influencer model. This is because the influencer model observes a 
relatively slower growth in the number of non-followers—White et al. [4] model has 
a 0.9% recovered rate at 70 days, whereas the influencer model does not reach this 
value even after 500 days, since the influencer model has a lower non-follower rate 
when compared with the recovered rate in the model presented by White et al. while 
also taking into account negative opinions, an additional factor that is not included in 
White et al. model, which results in the number of susceptible cells still being higher
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than the number of non-followers, hence follower numbers can continue to rise until 
such a case occurs. 

When simulating the model for a longer time (Figs. 6.9 and 6.10), we can observe 
a gradual decrease in the number of followers at the intersection of the number of 
susceptible and non-followers depicted in Fig. 6.10. This behaviour is similar to the 
White et al. [4]: the number of infected also decreases once the number of susceptible 
intersects with the number of recovered. 

The final similarity between the models is the decrease in followers/infected once 
the number of susceptible has intersected with non-followers/recovered. Further-
more, since the influencer model and the White et al. [4] model have a shared 
assumption—the influencer model assumes that once an individual has become a 
non-follower, they can never become a follower again; White et al. [4] assumes that 
once an individual has recovered, they can no longer be infected—the number of 
followers/infected cannot increase again once the number of susceptible is lower

Fig. 6.9 Rate of increase of follower rate and non-follower rate during a longer simulation time 

Fig. 6.10 Relationship between susceptibility and follower rate during a longer simulation period 
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than the number of non-followers/recovered. It is also safe to assume that if the 
influencer model ‘non-follower rate’ variable and the calculation for the number of 
new non-followers identically matched White et al. [4] recovery factor and number 
of recovered calculations, the rate at which the number of non-followers increased 
would be extremely similar to the rate at which the number of individuals recovered. 

6.4.2 No Opinion Model 

To verify that the opinion of an individual plays a key role in determining whether 
the individual will become a follower or not, a modified ‘influence’ model was 
tested in which the new follower evaluation was adjusted to not be dependent on the 
individual’s current opinion. Equations (6.16) and (6.17) illustrate the difference in 
how new follower and new non-follower count is evaluated without consideration of 
the opinion. 

new f i
' = Si × 

⎛ 

⎝I i · ω · β · α · υ · γ +
∑

neighbours=j 

I i j · ω · β · α · υ · γ · δ 
⎞ 

⎠ × μ · ν/ω (6.16) 

newnoni
' = I i · τ/ω (6.17) 

The resulting rate of increase in follower count can be seen in Fig. 6.11. It is evident 
that disregarding the opinion of an individual would automatically create a scenario 
in which any individual would become a follower without the slightest inclination 
to think otherwise. Hence individuals will assuredly and without thought follow an 
individual once they are made aware of them. This resolves the importance of having 
an opinion-based model to interpret the probability of an individual becoming a 
follower. 

Fig. 6.11 Result of removing the opinion-based calculations from the model
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6.5 Varying the ‘Follower Factor’ Variable 

Using the original influencer model the value of the ‘follower factor’ variable is 
varied to determine the behaviour of the model in response to this change. A total of 
five different sets of the follower rate were tested, in each case, each set was randomly 
generated and simulated. Table 6.3 defines the different sets of follower rates used. 

Based on the results obtained using the random variables, the number of new 
followers is directly proportional to the ‘follower rate’, this does not come as a 
surprise, however, the behaviour resulting from the relationship between ‘follower 
rate’ and susceptibility can also be observed from this experiment. Building on this 
point, we must note that for this model, the susceptible ratio of the population per age 
group is defined as [0.1, 0.61, 0.22, 0.07], which implies that the most susceptible 
age group is between the ages of 17–35 years. If the follower rate augments the 
correct age group—in this case the adult age group—there will be a healthy growth 
in the number of new followers’ overtime. However, in the case the follower rate 
does not augment the age group that is the most susceptible, the rate of increase in the 
number of followers is less in comparison. We can observe this effect by comparing 
the results of the random sets 3 and 4 depicted in Figs. 6.12 and 6.13, respectively. 

Table 6.3 Random values 
used for determining the 
effects of follower rate 

Values 

Random 1 [0.269979, 0.745675, 0.227634, 0.26146] 

Random 2 [0.587839, 0.777752, 0.724959, 0.336366] 

Random 3 [0.009422, 0.777854, 0.252165, 0.614234] 

Random 4 [0.713371, 0.468194, 0.774718, 0.647773] 

Random 5 [0.23911, 0.214832, 0.274497, 0.512304] 

Fig. 6.12 Results of using random set 3 for follower rate
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Fig. 6.13 Results of using random set 4 for follower rate 

Fig. 6.14 Results for using random set 5 for follower rate 

In general, a low ‘follower rate’ in all age groups results in a weak increase in 
follower count, and this can be observed in the results of random set 5 visualised in 
Fig. 6.14. 

6.6 Introverts Versus Extroverts 

The goal of these tests is to determine whether a particular personality type is more 
vulnerable to becoming a follower or not. The experiment is carried out using two 
different methods, the first being two small groups of cells being defined as either 
introverted or either extroverted, while the second involved having all cells—except 
from the influencer cell and its Moore neighbourhood—being either introverted or 
extroverted. Both methods involve changing the ‘extrovert factor’ of the cell by
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randomising the values based on a particular range to simulate an introvert or an 
extrovert personality. For example, in the case of an introvert the randomisation 
range is set to 0–0.2 while for an extrovert the range is 0.6–0.9. 

For the first method, a group of cells was designated as introverted, while in the 
same configuration file, a secondary group is designated as extroverted. This method 
was tested three times, each with a random generation of values for the ‘extrovert 
factor’. Based on the results gathered from this first method, there is no definite proof 
that personality affects the increase in follower count. There are three reasons that 
could explain why this is the case, the first is that the two groups created were too 
small to observe a definitive behaviour and thus, the overall behaviour of the other 
cells overshadowed any relevant behaviour. The second reason could be that the 
cumulative behaviour of the cells simply results in an increase in the rate of number 
of followers, overshadowing any observable patterns that would result from different 
personalities. The final reason could be that personality differences have no effect 
on the rate of increase in follower count, however, to investigate whether there is a 
foundation to this reasoning the second method was implemented. 

The second method randomises the ‘extrovert factor’ for all cells, with once 
scenario having all cells set as introverts, while the second scenario has all the 
cells set as extroverts. Both scenarios randomly generate the ‘extrovert factor’, with 
three different sets, and both scenarios are simulated separately. In both scenarios, 
no discernible difference was observed in the rate of increase in follower count. 
Thus, the third reason introduced still holds, and based on these results different 
personalities do not seem to affect the rate of increase in follower count. 

6.6.1 The Pandemic Scenario 

Having defined the behaviour of the influencer model, the model is further experi-
mented with by applying it to realistic use cases. This section presents the application 
of the influencer model towards a scenario with a society that has been affected by 
pandemic regulations. 

The original influencer model is applied to a scenario that has been extended 
to include limit factors to simulate three general scenarios that appeared to occur 
during the pandemic. The three phases for this specific model can be described by 
the assumptions as follows. 

1. Before the pandemic—individuals have an active social life, reducing the free 
time they must have to browse social media. This results in an average interest 
on influencers, with an average rate of follower increase. 

2. During the pandemic—individuals have a reduced social life, with lockdowns in 
effect and limited physical activities. This results in an increase in free time as 
individuals try to find more relevant and entertaining forms of digital diversions. 
With the increased free time, individuals may also engage in personal growth 
activities, by finding hobbies and influencers that share their interests. Based on
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these assumptions, the model is designed to increase the follower rate during this 
phase to simulate the higher probability of becoming a follower. 

3. After the pandemic—as lockdowns and restrictions are lifted, individuals can 
be assumed to try to make up for the time they lost outdoors. Thus, individuals 
are more likely to engage in physical and social activities. This assumes that 
individuals would be mentally exhausted by the lockdown rules and regulations 
and would be anxious to get back to a sense of normalcy. Based on these state-
ments the follower rate would be lower when compared with during the pandemic 
phase. 

The limit factors and phase change factors are implemented using an incrementing 
simulation clock. During each cell iteration the simulation clock time is used to 
calculate which phase the simulation is currently in. Based on the calculated phase, 
the respective limit factor is applied to the state calculation, which directly impacts 
the rate at which the follower count increases. 

The importance of this model is to demonstrate how external environmental 
changes can affect how an individual responds to the influencer presence. 

The result of the pandemic scenario demonstrates how the follower count can 
drastically change due to changes in the global environment, as can be observed by 
the sudden spikes—at time 100 days—and drops—at time 400 days—in the follower 
count increase presented in Fig. 6.15. Figure 6.16 shows the dynamic behaviour of 
the states over the shared rate of time. 

The pandemic model is controlled by the limit rates and the scheduled phase 
changes, in this case the phase changes occur at timestamp 100 and 400. If a phase 
change is scheduled the corresponding limit rates are applied for that phase until the 
next phase change. For the first phase of this scenario, (time stamp 0–100), the limit 
factor is 0.5, for the second phase, (time stamp 100–400), the limit factor is 2, and 
finally, for the last phase the limit factor is 0.5. The effects of the limit factors can 
be observed in the simulation, in timestamp 100, there is a sharp spike in the rate

Fig. 6.15 Rate of increase for follower and non-follower rate for the pandemic scenario using the 
influencer model
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Fig. 6.16 Line plot comparing susceptibility and follower rate for the pandemic scenario using the 
influencer model

of increase in number of followers as the applied limit factor transitions to 2, and 
a sudden drop is observed at time stamp 400 as the limit factor transitions to 0.5 
illustrating the expected behaviour during each corresponding phase change. 

The limit factors are set to simulate the three phases defined for the pandemic 
scenario. Based on the results, the expected behaviour can be observed for each phase. 
However, these results only strengthen the assumptions made about social behaviour 
during a pandemic. This predefined behaviour may not occur and there may be other 
factors at play. It could be said that after the pandemic (third phase) there was never 
a drop in interest towards social media, and the effect of remote working further 
strengthened the attitude individuals had towards pursuing their personal growth 
objectives and hobbies, thus leading to a continued increasing follower count. It 
could also be said that during the pandemic individuals have created the habit of 
following influencers and browsing social media, and this trend continued even after 
the pandemic. There are several factors that can affect the follower count rate, hence 
this scenario does not fully represent the reality of the situation but demonstrates 
how the model can be used for such scenarios if more realistic data is present to 
corroborate the simulation. 

The DEVS simulation for the pandemic model is shown in Fig. 6.17. The affected 
cells are comparably not as many as the original influencer cell, this is because the 
pandemic scenario implements limit factors, that is, a reducing limit factor is applied 
during the first and last phases of the simulation.

6.6.2 The Academy Awards Scenario 

This scenario further extends the pandemic scenario applying the limit factors while 
simulating individual behaviour towards two separate influencers simultaneously.
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Fig. 6.17 Spread of influence across the cell grid using DEVS viewer

This scenario exemplifies how certain global changes can affect one influencer 
public status while having no effect on another. As in the case of the Academy 
Awards, by nominating a certain actor or actress, that influencer in question will 
be globally publicised, however, other artist may not receive the same amount of 
attention due to the lack of publicity. This is the reason using two influencers in the 
simulation is important to compare the differences certain factors that can have on 
the follower count, and how trends affect the probability of following an influencer. 

The scenario will have three phases as described below: 

1. Before the Oscars—it is assumed that both influencers in this case have a similar 
popularity rating, with low public recognition. The rate of increase in follower 
number will be muted but present. 

2. During the Oscars—this statement can be vague without specifying that range 
of time this takes place. This assumption made here is that the period is between 
announcements of the nominations to the end of the award ceremony. During this 
phase, the influencer publicised by the annual awards will experience a spike in 
follower rate, while the second influencer will continue to observe the same rate 
of increase. 

3. After the Oscars—once the Oscars are over, the promotion and movement to 
raise recognition for the first influencer loses traction. However, the popularity 
of the first influencer is still higher than the second. This assumes that, once a 
popular public personality has gained some amount of global awareness, their 
presence is widely spread through social media and social interactions. 

Overall, this scenario demonstrates how external factors can affect a single 
influencer instead of all current influencers. 

The implementation of this scenario was slightly more complicated when 
compared with the previous scenarios. Although the state transition equations do 
not change, the limit factors are applied based on the phase changes as described in 
the pandemic scenario. However, the possible state for each cell is doubled. Each cell 
in this case has eight dynamic states, the first four states, influenced, non-influenced,
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opinion, and susceptible remain unchanged, and four additional states are added to 
depict the states of the cells with respect to the second influencer, hence the four states 
added are influenced_second, non-influenced_second, opinion_second, and finally 
susceptible_second. The first four states are specifically for the first influencer and 
represent the ratio of individuals in the cell that are influenced/non-influenced by, 
susceptible to, opinion on the first influencer, while the last four states are equiva-
lent to the first four states but with respect to the second influencer. Furthermore, 
the calculations applied during each iteration is dependent on if the new state being 
calculated is for the first influencer or the second influencer. 

For the implementation to work on both the first and the second influencer without 
requiring additional duplicate code for the second follower, the base code is reused, 
and pointers are applied. The data the pointers point to change based on if the calcu-
lation is for the first or the second influencer. During each iteration, all eight new 
states of the cell are calculated starting with the first influencer and followed by the 
second influencer. After the states of the first influencer is calculated, a flag is set to 
ensure the pointers used to point to the state data points to the states for the second 
influencer. The state transition equations then calculate the new states using the new 
data that is being pointed to. 

This scenario’s main goal is to demonstrate that it is possible to simulate two 
influencers in the same scenario while also demonstrating that it is possible that the 
attitude of individuals towards different influencers are distinct. 

The plot for each influencer is separated and it can be observed that the behaviour 
of individuals towards the two different influencers are disparate. For the first influ-
encer there is a sharp spike at the beginning of the second phase—100 days—and a 
progressively increasing follower count after the third phase—400 days, whereas for 
the second influencer there are no predominant spikes and a mostly stable follower 
count growth. As previously done with the pandemic scenario there are three phases, 
and the values of the corresponding limit factors are 0.5 for the first, 2 for the second, 
and 0.8 for the third to simulate an average following before the Oscars, an increasing 
popularity during the Oscars after being widely recognised for their accomplish-
ments, and a continued vehemence for the influencer after the Oscars. The third 
phase assumes that individuals that adore the influencer will continue to propagate 
awareness of the influencer and endorse their future projects. Additionally, during 
the second phase the probability of connections between the general population and 
the influencer is doubled as individuals purposely look for the influencer in question 
on social media, and news circulations—relevant news associations would want to 
advertise the Oscar candidates and explore their lifestyle to participate and empha-
sise the significance of the Oscar’s—increase the probability of individuals becoming 
more aware of the influencer. 

Figures 6.18, 6.19, and 6.20 illustrate the expected behaviour during such a global 
event, however, as mentioned with the pandemic simulation, this behaviour was 
predetermined and does not reflect the reality of the situation. There are certainly 
other possible outcomes that can occur, for example the influencer being nominated 
for the Oscar could suddenly be impacted by negative publicity during the second 
phase of the scenario, and instead of having an enlarging limit factor, could see a
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sharp drop—or paradoxically a sharp increase as individuals become absorbed into 
the scandal—in popularity instead with a reducing follower count after the Oscar’s 
as popularity drops and the scandal fades away. 

In conclusion this scenario does accomplish its goal of illustrating how two influ-
encers can have different follower count patterns and are individually impacted by 
certain scenarios. 

The DEVS simulation of the scenario can be seen in Figs. 6.21 and 6.22 for both 
the influencers. As with the pandemic scenario the cells are shaded from light to dark 
with respect to the probability value of becoming a follower.

Fig. 6.18 Increase in follower and non-follower rate of the first influencer in the Oscar’s scenario 
using the influencer model 

Fig. 6.19 Rate of increase for follower and non-follower for the second influencer in the Oscar 
scenario using the influencer model



154 S. Nath and G. A. Wainer

Fig. 6.20 Line plot comparing the rate of increase of the follower rate for the first and second 
follower in the Oscar scenario

Fig. 6.21 Spread of influence with respect to the first influencer across the cell grid using DEVS 
viewer 

Fig. 6.22 Spread of influence with respect to the second influencer across the cell grid using DEVS 
viewer
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6.7 Conclusion and Future Work 

We presented a model that defines a network-based approach with an opinion evolu-
tion calculation. This is an important aspect of the model that predicts an individual’s 
opinion towards the influencer, the effects of the opinion towards the individuals’ 
actions, and the impact of the present individual’s opinion on its close susceptible 
neighbouring persons. The evolution of opinion ascertains that the rate of increase 
in follower count occurs in parallel to the rate of increase in the individual’s positive 
opinion, that is, as the probability of a positive opinion increases, the probability of the 
individual following the influencer increases. The model also takes into consideration 
the convenience/accessibility of social media platforms and the constant availability 
of influencers. Thus, influencers are treated as constant companions to the individ-
uals in the model. Additionally, we provided a relevant example on how the model 
can be applied to real-world scenarios. 

We employ the Cell-DEVS formalism, which has proved to be useful for simu-
lating the spread of infectious diseases, to create a working model that is capable of 
simulating the rate of increase in follower count pertaining to a certain influencer 
under various scenarios and possible timed events. 

In the future, we hope to extend the influencer model to use a threshold-based 
approach in determining the impact of neighbuoring agents on the opinion evolution 
of an individual. Furthermore, a quantitative approach could be taken to explore the 
real-time validation of the model, by collecting and mining for data that represents 
the rate of increase in follower count with respect to an influencer under certain 
conditions and available events. Another interesting approach would be to apply 
sentiment analysis in combination with machine learning to gather data from various 
social media platforms that can be used in the real-time validation of the model. By 
applying sentiment analysis machine learning techniques, we can further refine the 
behaviour of the opinion simulation in the influencer model. This could be useful— 
although not an abstract simulation—to further study the impact of influencers on 
social media. 

Finally, modifications can be made to the assumptions taken for this model, for 
example, removing assumption 4 by modifying the current model to have an addi-
tional transition function to determine the count of non-followers that transition to 
becoming susceptible again with a timed wait period. This would represent individual 
behaviour that occurs on social platforms, where individuals constantly contradict 
their previous decisions and are thus likely to refollow influencers given various 
reasons, such as a change in popular attitude towards the influencer or correcting a 
previous mistake.
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