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ABSTRACT

Experiment sharing and reproducibility are vital in modeling and simulation, facilitating collaboration and
ensuring credibility. However, the nuances of experimentation are often lost, hindering reproducibility and
sharing. The DEVS formalism addresses this by formally defining models and their experimental frames.
Yet, the diversity of DEVS simulators introduces interoperability challenges, as models remain tool de-
pendent. This research proposes DEVSMap: a language-agnostic representation of DEVS models. DEVS-
Map introduces a Map data structure using key-value pairs to represent DEVS tuples. It also defines exper-
iments and experimental frames, formally specifying the model creation context. The representation is
implemented in JSON, facilitating model repositories for broader sharing. Ultimately, this work aims to
establish a comprehensive, language-agnostic DEVS model representation that could serve as a foundation
for standardization within the DEVS community.

1 INTRODUCTION

Creating reusable software is of great importance for the reliability, maintainability and reducing the cost
of a software project [1]. However, reusability is a complex endeavor [2]: “In order for Computer Science
research to be reproducible, several hurdles have to be cleared: the source code and test case data have to
be available, the code has to build, the execution environment has to be replicated, the code itself has to
run to completion, and accurate measurements (with respect to performance or other metrics) have to be
collected.” So, combining the experimental description, which involves test data, experimental context,
execution environment etc., with the source code, should allow for experiment sharing and reproducibility.

In the area of Modeling and Simulation (M&S), this task is more complex due to the added complexities in
system dynamic definition, simulation algorithm implementation, middleware, and experiments to be con-
ducted. The Discrete Event System specification (DEVS) formalism has shown promising results in this
area, as it not only rigorously formalizes the model and the experimental frame (EF) under which the models
are built and results obtained, but it also provides algorithms that deterministically solve these models
within such EF [3]. Furthermore, DEVS supports models across different platforms, and they can be im-
plemented in various execution environments (desktop, RT, parallel, embedded, distributed) without the
loss of fidelity in its behavior. This is due to the fact that the DEVS simulation algorithm has been formally
verified, ensuring its correctness. This rigorous foundation makes it ideal for safety-critical systems and
large engineering projects. A methodology for systems development called Modeling and Simulation Based
Engineering (MSBE) proposes DEVS [4] as one of the suitable formalisms for this purpose.

Although they are based on the same foundations, DEVS simulators also suffer from a lack of model and
experiment sharing in the M&S community. Despite the simulation algorithm being the same, different
simulators implement the algorithm in different languages and for different purposes. One simulator might
be in Java to promote platform independence, while the other might be in C++ to enable embedded devel-
opment. This poses the problem of lack of code/model/ experiment sharing and reproducibility when mov-
ing from one simulator to another. Even though the model code may be different, the underlying formalism
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and hence the models themselves can be abstracted away from the code. A standard, language agnostic
representation of models that can be parsed into code for any DEVS simulator could foster model sharing
and formalize experiment reproducibility, allowing modelers to start from pre-defined, pre-validated mod-
els, and reusing them. This would also allow modelers around the globe to use the same model to conduct
a variety of experiments (i.e., forest fires, migration of fauna, etc.) allowing for further validation, verifica-
tion and calibration of the model to be a closer representation of the source system [5]. Another important
feature of DEVS is the separation of model from simulator, which allows us to ignore the simulator (and
hence the plethora of tools available) and focus solely on the representation of DEVS models.

To deal with these issues, we propose a language-agnostic representation of DEVS models using a structure
of a collection of {key: value} pairs. Such a collection of key-value pairs (generally referred to as a Map
or a Dictionary [6]), was named DEVSMap. Further, reflecting the hierarchical and modular nature of
DEVS itself, DEVSMap is hierarchical in that the data structures maybe nested and modular in that the data
structures can be re-arranged as necessary, for example, the DEVSMap of a leaf can be included in a DEVS-
Map of a tree in a forest, or the DEVSMap of a shrub. Further, to interoperate easily, The JavaScript Object
Notation (JSON) file format is used to store and share the DEVSMap.

2 DEVS MODEL REPRESENTATION: DEVSMAP

As mentioned earlier DEVSMap is a proposed standard for representing Parallel DEVS (PDEVS) models
and experiments. At its core, the standard is built around the Map or Dictionary data structure. Unlike
traditional maps, DEVSMap restricts all the keys and values to strings.

The standard promotes the idea of a centralized model repository, allowing modelers with any DEVS sim-
ulator to fetch, modify, execute, and update models. In doing so, DEVSMap extends the advantages of open-
source collaboration to the DEVS domain.

The DEVSMap standard defines seven types of JSON files that must be created either by an application or
by the user:

<model name>_ atomic.json

<model name> coupled.json
<experiment name>_experiment.json
<set name>_definition.json
<identifier> init state.json
<identifier>_ param.json

<name of model> metadata.json

All placeholders enclosed in angular brackets (<>) are to be replaced by the user or customized by the
application producing these files.

All definitions of atomic models in your project must be within the <model name>_atomic.json, where the
<model name> should be appropriately specified. All definitions of coupled models within your project
must be within the <model name>_coupled.json. The experiments to be carried out must be defined in the
<experiment name>_experiment.json, where <experiment name> helps differentiate between multiple ex-
periments to be run. All the sets used in your model and EF (domains of state variables, domains of ports
etc.) are to be defined in <set name>_definition.json. Since the standard tries to adhere to the mathematical
formalism and remain language agnostic, you have to define sets instead of datatypes. An interpreter of this
standard would convert the sets to datatypes. <identifier>_init _state.json and <identifier>_param.json de-
fine the initial conditions of the model (initial states and parameters) under test. And finally, the <name of
model>_metadata.json provides important information regarding the model itself, like model name, author,
date etc. The specific files required depend on whether the goal is to share models, share experiments, or
upload content to a model repository.
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For the sole purpose of model sharing, each of the atomic model JSON definitions are standalone and can
be sent to other modelers along with (if required) the <set name>_definition.json files corresponding to the
atomic model. For sharing entire experiments, all the different file types are necessary to ensure that the
experiment does not fundamentally change between users. The <name of model> metadata.json is most
important for indexing in a model repository.

3 ATOMIC MODEL REPRESENTATION

The <model name>_atomic.json is a JSON file that represents an atomic DEVS model. The entire DEVS-
Map definition in JSON format can be found in the Appendix along with an example. The following para-
graphs will walk through the definition in detail. A DEVS atomic model[3] is defined as:

AM, =<X,Y, S, 8int, ext, Scon, A, ta>

Where AM,, is an atomic model, whose parameters are 'p', X is the set of input ports, Y is the set of output
ports, S is the state set, din is the internal transition function, dex is the external transition function, dcon 1S
the confluent transition function, A is the output function, and ta is the time advance function. Building on
these foundations, we propose a key-value pair-based representation of this model.

Following, we define and explain the various components of this representation. The topmost hierarchy
contains three keys. They are: "<name of the atomic model>", "parameters", and "include sets".

The first key is the name of the atomic model itself. Per the template, it is "<name of the atomic model>",
and it is to be replaced by the appropriate name. This key will be different for different atomic models. The
name will be used to reference the atomic model within the coupled model. For example, if an atomic model
is called counter, "<name of the atomic model>" is to be defined in the <model name>_atomic.json as:

"counter": {..}

The value associated with this key is an object that contains the definition of the atomic model as per the
octuple. Which are: "x", "y", "s", "delta_int", "delta_ext", "delta_con", "lambda", and "ta". All these must
be defined in the <model name>_atomic.json within "<name of the atomic model>".

"x" is used to define the input ports of the atomic model. As its value, "x” expects a collection of key-value
pairs that list out the various ports and their corresponding domains, as follows:

x": {<name of the input port>: <domain of the input port>, ...}

Here, "<domain of the input port>" must be a mathematical set. Further, this set must be defined in the <set
name>_defintions.json (explained further below). For example, if we have an atomic model whose inputs
are:

X={cd inc|cd €{0, 1}, inc ER™"
Then:
"x": {"cd": "boolean", "inc": "unsigned R"}

Where set boolean and set unsigned R have been defined in a JSON file(s) that has been included in "in-
clude_sets".

", s

v is used to define the output ports of the atomic model, using a collection of key-value pairs that list out
the various ports and their corresponding domains, as follows:

"y": {<name of the output port>: <domain of the output port>, ...}

For example, if you have an atomic model whose inputs are Y = {count value | count value € R}, then:

"y": {"count value": "R"}
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"s" is used to define the state variables of the atomic model. As its value, "s"” expects a collection of key-
value pairs that list out the various state variables that make up the state set, as follows:

"s": {<name of the state variable>: <domain of the state variable>, ...}
For example, if you have an atomic model whose state set is defined mathematically as:
S = {(count, delta, inc_dec, )| count€R, delta€ R"’, inc_dec €{0, 1}, c ER""}

Then:

"s": {"count": "R", "delta": "unsigned R", "inc dec": "boolean", "sigma": "unsigned R"}

"delta_int" is used to define the internal transition function. It expects a collection of key-value pairs. The
keys within "delta_int" are required to be expressions of state variables that compute to either true or false,
and the values are again a collection of key-value pairs that represent a new state set. For any given state,
one and only one of the keys should evaluate to True, all the others must evaluate to False. Furthermore,
"otherwise" is a valid key that evaluates to True if all the other keys evaluate to False. "otherwise"” is man-
datory to promote model completeness.

"delta int": {

"<expression of state variables that evaluate to true or false>": ({
"<state variable name>": "<expression to compute new value>",... },
"otherwise": {
"<state variable name>": "<expression to compute new value>",... }

}
For example, if we have an internal transition function defined as:

5. (count, delta, inc_dec, &) = {(count + delta, delta, inc_dec, 0), inc_dec =0
mt ’ e (count — delta, delta, inc_dec, o), inc_dec =1
Then:
"delta int": {
"inc_dec == 0": { "count": "count + delta"},
"inc_dec == 1": { "count": "count - delta"},

"otherwise": {"inc_dec": "0"}

}

Note that within the new state set, if state variables are omitted, their values remain unchanged through the
transition. A list of valid operators is given in the Appendix. Further, if required, the conditions are allowed
to be nested as such:

"delta int": {

"condition 1": {
"condition n": {
"<state variable>": "<expression to compute new value>",... },
}l
}I
"otherwise": {
"<state variable>": "<expression to compute new value>",... }

}

The "delta_ext" follows the same pattern and is used to define the external transition function. It expects a
collection of key-value pairs, where the keys are an expression of state variables, elapsed time and inputs,
and the values are the new state set, as follows:

"delta ext": {

"<expression of s, e and x that evaluates to true or false>": ({
"<state variable name>": "<expression to compute new value>",... },
"otherwise": {
"<state variable name>": "<expression to compute new value>",... }
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}

For example, if you had an external transition function defined as:

(count,delta, cd, o — e), inc=0,cd @

6ext((count, delta, inc_dec, ), e, (inc, Cd)) =< (count, inc, inc_dec,o — e), inc # @,cd =@
(count,inc,cd,o — e), otherwise
Then:
"delta ext": {
"inc value.bagSize() != 0": {"delta": "inc value.bag(-1)"},
"change dir.bagSize() != 0": {"inc dec": "change dir.bag(-1)"},
"otherwise": {
"inc_dec": "change dir.bag(-1)",
"delta": "inc value.bag(-1)"

}

Note that .bagSize() and .bag(<index>) are operators used to manipulate a message bag. The rules of in-
dexing a bag are described further in the Appendix, but they are similar to the indexing rules of /ists in the
Python language.

"delta_con" is similar to both "delta _ext" and "delta_int", and is used to define the confluent transition
function. It expects, as its value, a collection of key-value pairs, where the keys are an expression of state
variables and inputs, and the values are the new state set. Per the PDEVS formalism, it is mandatory to
define the confluent transition function. In DEVSMap, the confluent transition function is defined as:
"delta con": {
"<expression of s and x that evaluates to true or false>": ({
"<state variable name>": "<expression to compute new value>",... },
"otherwise": ({

"<state variable name>": "<expression to compute new value>",... }

}

"lambda" is used to represent the output function. The keys are expressions of state variables that compute
to True or False. However, unlike the transition functions, the values are themselves a collection of key-
value pairs that map output ports to expressions of state variables used to compute the output at that port.
Like the transition functions, "otherwise" is a valid keyword:

"lambda": {
"<expression of s that evaluates to true or false>": {
"<output port name>": "<expression of s to compute output>", ... by
"otherwise": {
"<output port name>": "<expression of s to compute output>",... }

}
For example, if you had an output function that could be defined as A(s) = count

Then:
"lambda": {
"otherwise": {
"count value": "count" }

}
Note that here, since no conditions are imposed on the output, the "otherwise” keyword is used to always
put the output count at port count_value.

"ta" is used to represent the time advance function of the atomic model. "ta” like "lambda" expects key-
value pairs as its value, where the keys are expressions of s that compute to true or false. But unlike the
output functions, the values are expressions that compute the time advance of the state. Because of this the
expression to compute the time advance value must result in a value that belongs in R*’:

Htaﬂ: {
"<expression of s that evaluates to true or false>": "<expression of s>"
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"otherwise": "<expression of s>"

}
For example, if you had a time advance function that can be defined as ta(s) = o

Then:
neans
"otherwise": "sigma" }
Coming out of "<name of the atomic model>", the following keys are again in the topmost hierarchy.

The include_sets key uses an array of either local or remote <set name>_definitions.json files. These files
define all the sets that are used within the atomic model. For example: if you have an integer state variable,
you are required to include "integer definitions.json" in your <model name>_atomic.json where "inte-
ger_definitions.json" contains the definition for set Z:

"include sets": [<set repository file>, <set repository file>, ..]

It is essential to include all set definitions required for the atomic model, ensuring that the domain sets of
each state variable, parameter, input port, and output port are included in this array.

The parameters key has, as its value, an object that contains all the parameters of the atomic model along
with the corresponding domains. If the model is not parameterized, this object can be left blank:

"parameters": {<parameter name>: <parameter domain>, ..}

For example, if your atomic model had a parameter delay time € R, and num_outputs € N:

"parameters": {"delay time": "R", "num outputs": "N"}

3 COUPLED MODEL REPRESENTATION

The <model name>_coupled.json is a JSON file that represents a coupled DEVS model. Again, the entire
DEVSMap definition in JSON format can be found in the Appendix along with an example. The following
paragraphs will walk through the definition in detail. A DEVS coupled model is defined as:

CM=<X,Y, D, Mg, EIC, EOC, IC >

Where CM is the coupled model, X is the set of input ports, Y is the set of output ports, D is the set of
component names, M, for d € D are DEVS models, EIC is external input coupling, FOC is external output
coupling, and /C is internal couplings. A coupled model representation has two topmost keys: "<name of
the coupled model>", and "include sets". The first key is the name of the coupled model itself. For exam-
ple, if your coupled model is called counter display, then this key would be defined as:

"counter display": {..}

The value associated with this key is an object that contains the definition of the coupled model as per the

septuple. Which are: "x", "y", "components”, "eic", "eoc"”, "ic". Like the atomic model definition, "x", and

".,n

'y" are keys that define the port names, and the domain associated with the values coming into or going out
of the port.

x": {<name of the input port>: <domain of the input port>, ...},

y": {<name of the output port>: <domain of the output port>, ...}

The "components" key defines the various components that make up the coupled model. As its value it
expects a collection of key-value pairs that associate a DEVS model with a unique alphanumeric component
identifier. This identifier is required to be unique to allow for hierarchy and modularity. The "components”
key satisfies the role of D and M, in the coupled model definition:
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"components": {
"<name of the DEVS model as defined in its JSON file>": "<unique component identifier>",...}

", N

The "eic"” key is used to represent the external input couplings of the DEVS model. As its value, "eic
expects an array of collections of key-value pairs:

"eic": [
{
"port from": "<an input port of this coupled model>",
"port to": "<an input port of a component defined in "components">",
"component to": "<identifier of the component whose input port is in "port to">"

b

1y
14 ”

The "eoc” key is used to represent the external input couplings of the DEVS model. As its value, "eoc
expects an array of collections of key-value pairs:

"eoc": [
{
"port from": "<output port of a component defined in "components">",
"port to": "<an output port of this coupled model>",
"component from": "<identifier of the component whose output port is in "port from">",

}l

1,
The "ic" key is used to represent the input couplings of the DEVS model. As its value, "ic” expects an array
of collections of key-value pairs. "ic" is to be defined in the <model name>_coupled.json as:

wa

ic": [

{

"port from": "<output port of a component defined in "components">",

"port to": "<an input port of a component defined in "components">",

"component from": "<identifier of the component whose output port is in "port from">",
"component to": "<identifier of the component whose input port is in "port to">"

}7

] r

4 DEFINING DOMAIN SETS

All the sets used in the model definitions (for example, as domains of the state set) have to be defined in
the <set name>_defintions.json file. There are a few basic sets that we do not have to specifically define,
these are: integer (7), unsigned_integer (Z°), floating point (R), boolean ({0, 1}), char (Set of character
ASCII values) etc., the exhaustive list can be found in the Appendix.

The topmost key in this file is: "<name of the set>" which is to be replaced by the appropriate name. As its
value, it expects a collection of key value pairs. The keys are the elements of the set, and as its value, it
expects four parameters: "domain" which is the domain of the element, "min" and "max" which is the range
of the element and "dimension" which defines the algebraic dimension of the element as an array. The
contents of the file are as follows:

{
"<name of the set>": {
"<element of the set>": {
"domain": "<domain of this element>",
"min": "<smallest value in the set>",
max": "<Largest value in the set>",

"dimension": ["integer value or n", ..]

}l
}
}

For example, if you had a set defined as: 4 = {(w, t)| w€ R™, t€ R"?} then:
{
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AT g
llwll . {
"domain": "floating point",
"min": "—inf", -
"max": "+inf",
"dimension": ["n", "n"]1},
lltll . {
"domain": "floating point",
"min": "O", -
"max": "+il’1f",
"dimension": ["1"]}

}
}

Note that in the example, the dimension of element w is set to be nxn. This would signify a dynamic array
(for example, std.:vector<> in C++, or ArrayList in Java).

5 EXPERIMENTAL FRAMES AND EXPERIMENT REPRESENTATION

We have gone through a normalized notation that includes all that is required for model sharing. However,
we need a few more file types if we want to share experiments. The first aspect to take into consideration
when building a DEVS model is to provide context and considering the model’s EF, which can be defined
as a specification of the conditions under which the system is observed or experimented with [3].

An EF can be formalized as: <7, I, C, O, £2, 2, SU>, where T is a time base, / is a set of input variables
that influence the system, C is a set of run control variables, O is a set of output variables that the system
of interest influences, €1 is a set of admissible input segments (acceptable input values for a given time),
Q)¢ is a set of admissible control segments, and SU is the summary mappings [5].

Further, the realization of such a frame can be done using three main DEVS models: generator, acceptor,
transducer. The generator is an active DEVS model that generates values y at time ¢, such that (y, t) € Q.
The acceptor is a passive DEVS model that accepts input values x at time ¢, such that (x, #) € Qc. The
transducer is a passive DEVS model that realizes a summary mapping € SU.

Traoré and Muzy [7] extended this and provided a generalization of EFs and follows the DEVS specifica-
tion hierarchy to introduce frame interface, frame behavior, and frame system. The final level of the hier-
archy proposed in [7] is the frame system defined as: <7, Iy, Ig, Oum, Of, Qu, (2, 2, D, C4, CPIC, EICC,
POCC, CEOC, CCC>, where T is a time base, /i is a set of frame-to-model input variables, I is a set of
input variables to the EF, Oy is a set of model-to-frame output variables, O is a set of output variables of
the EF, y is a set of admissible input segments of the model, € is a set of admissible input segments to
the EF, £ is a set of admissible output segments expected of the model, D is the set of indices of frame
component models, Cy is the set of models itself, CPIC is the Control-to-Plug-in-Input coupling, EICC is
the External-Input-to-Control coupling, POCC is the Plug-in Output-to-Control coupling, CEOC is the
Control-to-External-Output coupling, and CCC is the Control-to-Control coupling. The realization of this
is no different from that mentioned earlier (since it is an extension). Additionally, the generator, acceptor,
and transducer would be the components defined in D and Cj.

Finally, Denil et.al. in [8] extended Traore and Muzy’s work to add a few more components as seen in
Figure 1. It includes a set of Solver(s) for the source system and the EF, with Pg being the set of parameters
required by the solvers. Next, the Experimental Setup is the frame itself with Og and I¢ per Traore and
Muzy’s definition, Sg is the set of signals that facilitate white box testing, P is the set of parameters of the
EF, and ICg is a set of initial conditions of the EF. Next, we see the Model/System with input and output
ports Iy and Og, model parameter set Pw, set of initial conditions ICy, and Sw is a set of signals that facilitate
white-box testing. Finally, the Observation Collector is an element that does white-box testing, with Cum
and Cg being the ports through which the signals from the model and EF are sent through.
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The Solver(s) and Observation Collector definitions are intended for future consideration, but P, ICg, Pu,
and ICy are important to be considered in the DEVSMap representation. DEVSMap considers the latest EF
definition as provided by Denil et. al. We have decided to split the EF into two: a coupled model definition
of the EF (with appropriate atomic model files) and an experiment file.

To draw parallels between a DEVS coupled model and the frame system, consider a coupled model E =
<X, Y, D, Cq, IC, EIC, EOC>, where X equivalent to /g, Y is equivalent to Og, D and Cq are atomic models
generator, acceptor and transducer, CCC is IC, EICC is EIC, CEOC is EOC. This model E is then to be
represented as a DEVSMap coupled JSON file. The remaining attributes: T (which is real since we are
dealing with DEVS) CPIC, POCC, Iy, Om, but Pg, ICg, Py, and ICy are defined in the <experiment
name>_experiment.json. [8] also points out that the definitions by Zeigler, Traore and Muzy neglect time
span of the experiment, hence, this is added to the <experiment name>_experiment.json as well.

Observation collector
Cnr Cg

s S o
07 10
1
D—[] Model / System []—D
1

Solver(s)

Figure 1: Experimental Frame per [8].

<experiment name>_experiment.json has five keys in its topmost hierarchy: "model under test", "experi-

mental_frame","cpic","pocc”, "time_span".
The "model under test” key is used to represent the model which can be experimented on. It expects a
collection of key-value pairs that represent the top model files, the initial condition file, and the parameters
file. It is defined as such:

"model under test": {
"model": "<filename of top coupled model>",
"initial state": "<filename of initial state of model>",
"parameters": "<filename of parameters of model>"

}
The "experimental_frame" key is used to define the EF. It expects a coupled model file, an initial condition
file, and parameters. It is defined as:

"experimental frame": {
"model": "<filename>",
"initial state": "<filename>",
"parameters": "<filename>"

}
The "cpic"” key is used to represent the couplings between the output of the EF and the input to the top
coupled model. It is defined as:
"cpic" [
{ "port from": "<an output port of the EF model>",
"port to": "<an input port of the model under test>" Yoo
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Similarly, the "pocc” key is used to represent the couplings between the output of the top coupled model
and the input of the EF. It is defined as:

"pocc": [
{ "port from": "<an output port of the model under test>",
"port to": "<an input port of the EF model>" },..
1

Finally, "time_span" is used to represent the length of the experiment. As its value, it either a rational value
or inf.

"time span": "a rational number or inf"

EF coupled.json

Generator Acceptor Transducer

gen_atomic.json acc_atomic.json transd _atomic.json

Figure 2: DEVSMap Experimentation setup

Figure 2 shows the complete experimental setup per the DEVSMap specification. Here, we see the
EF _coupled.json, which is the DEVSMap that defines the EF coupled model. Within the coupled model,
we see three atomic (could also be coupled) models representing a generator, acceptor and transducer.
Along with the atomic models, we can also see Pg, ICq, P4, IC4, Pr, ICr, which are the parameters and
initial conditions of the EF. The inputs and outputs of the EF depicted as Og and Iz. Above the EF coupled
model, we see the model of the source system which is being experimented on. The inputs and outputs of
this model are depicted using Iy and Ou. Py and ICy represent the parameters and initial conditions of the
model under test. Finally, the couplings between the model and the EF is shown using CP/C and POCC.

Drawing parallels between the diagram given in Figure 2 and DEVSMap, we see that the EF is defined in
its own coupled model file EF coupled. json, the model under test is also its own coupled model file
<model _name>_coupled.json and the interface between the model under test and the EF, done using CPIC
and POCC is defined in the <experiment name>_experiment.json file. The file also defines Pg, ICg, Pa,
ICA, PT, ICT, PM, and ICM

6 PARAMETER AND STATE INITIALIZATION

The initial conditions (states) and the parameter values of the model are defined in the <identi-
fier>_init_state.json and <identifier>_param.json files. The <identifier> is to be replaced with an appro-
priate name to help one differentiate between multiple files. The structure of both these files are identical.
Starting off with initializing the parameters, the topmost key is "parameters"” within which, as its value, are
a collection of key value pairs that represent, hierarchically, the different models that constitute the top
coupled model. Here is a prototype representation:

{

"parameters": {
"<name of the top coupled model>": {
"<component id of an atomic model>" : {"<name of parameter>": "<value of parameter>", ..},
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"<component id of an atomic model>" : {"<name of parameter>": "<value of parameter>", .},
"<component id of a coupled model>": {..}, ..

H

"<component id of a coupled model>": {..}, ..

}
}

Here, component id refers to the id given to the model within the coupled model definition file. It is im-
portant to use the component_id and not the model's name to differentiate between multiple "instances" of
the same atomic or coupled model. Another thing to note is that the component_id of the top coupled model
is never defined, and so the name of the top coupled model is used in the topmost level. Moving down the
hierarchy, when an atomic model is reached, the parameter and its value is defined.

Similarly, <identifier>_init state.json represents the initial states of the models as follows:

{

"init_ states": {
"<name of the top coupled model>": {
"<component id of an atomic model>" : {"<state variable>": "<value>", .},
"<component id of an atomic model>" : {"<state variable>": "<value>", .},
"<component id of a coupled model>": {..}, ..
}l
"<component id of a coupled model>": {..}, ..

}
}

We see that the topmost key is "init states”, and as its value it expects a collection of key-value pairs
representing the hierarchical structure of a DEVS model.

7 META DATA AND INDEXING

In addition to formally representing models and experiments, it is equally important to provide a human
readable description for documentation purposes and to facilitate indexing in a model or experiment repos-
itory. Research in various fields[9] have also shown that such meta-data description is important for repro-
ducibility of experiments, and to document small, extremely critical details that would otherwise be lost.

This descriptive model data is represented in <model name>_ metadata.json as such:

{
"model": "<name of the model>",
"model description": "<description of the model>",
"experiment": "<name of the model>",
"experiment description": "<description of the experiment>",
"developer name": "<name of the developer>",
"developed date": "<date of model creation>",
"organization": "<organization/ affiliations of the model developer>",
"keywords": ["<keyword that can be used to index the model>", ...],
"top model hierarchy": ["<component id of atomic/ coupled model in the top model>", ...]

8 CONCLUSION

In this research, we have addressed the issues of reusability and reproducibility of DEVS models, by pro-
posing the DEVSMap representation. Researchers [11] convey the importance of such platform independ-
ent representations and point out two main types of reusability and interoperability: simulator based in-
teroperability and model based interoperability.

Various researchers have proposed numerous representations of DEVS models for model based interoper-
ability, chief among them being DEVSML [10]. DEVSML proposed an eXtensible Markup Language
(XML) based representation of DEVS atomic and coupled models, and rides on the JAVAML canonical
representation of Java source code. This not only allows for platform independence, but it also allows for
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integration with Service Oriented Architecture (SOA) framework, which then promoted simulator interop-
erability. DEVSMap, being model representation as key-value pairs, also can be represented as XML files,
hence making it compatible with the DEVSML framework with minor modifications. However, it extends
on DEVSML by defining and proposing a representation of experimental frames along with their models.
This allows for true reproduction of the experiment as the modeler intended, since the modeler can provide
the context in which their model is valid.

DEVSMap proposes a representation for atomic and coupled models, experimental frames and experiments,
along with model metadata allowing it to be indexed within a model repository, as proposed in [12]. It also
promotes model reuse, as DEVSMap allows flexibility of experiment definition. That is, DEVSMap inher-
ently allows the modeler to 'mix and match' models and experiments. This modularity does come with the
cost of increased files per model or experiment, but with modern advancements in computing technology,
this is no longer an issue.

In the future, we would like to extend our work to implement simulator interoperability, analyzing its com-
patibility with the DEVS/SOA [13] simulation platform. Hence, we would like to propose this representa-
tion as a standard to unify the DEVS experimentation process.

A APPENDIX

An example model representation is described in this (https://github.com/Sasisekhar/DEVSMap parser.git)
GitHub repository. The code in the repository is a work-in-progress (as of March 2025) C++ Parser library
to parse DEVSMap into DEVS models. The repository also contains an example of the implementation of
the Parser for the Cadmium V2 DEVS simulation environment.
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