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ABSTRACT 

Multiple-input-multiple-output (MIMO) technology improves the capacity and reliability of wireless 

communication networks. However, high hardware complexity and energy usage often impact their 

scalability. Reconfigurable intelligent surfaces (RISs) act as a promising solution to tackle these challenges 

owing to their energy-efficient design, but the isolation between RIS elements limits the ability to control 

wave propagation fully. Integrating RIS with MIMO offers new ideas and solutions to these limitations. In 

the scenario where the base station (BS) and users are closely placed, the antenna operates in near-field 

regimes, causing wavefronts to exhibit spherical rather than planar ones, making traditional far-field 

optimization techniques ineffective. To overcome such challenges, we propose an advanced deep 

reinforcement learning approach to jointly optimize BS beamforming and RIS phase shifts to maximize the 

energy efficiency (EE) performance in a near-field network. The proposed approach achieves up to 10-22% 

improvement in EE compared to conventional methods.  
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1 INTRODUCTION 

The need for higher throughput, density, and diverse applications drives the development of sixth-genera-

tion (6G) networks. Massive multiple-input multiple-output (mMIMO) technology has gained considerable 

attention to meet these requirements. mMIMO increases the number of antennas, developing extremely 

large antenna arrays (ELAAs) [1], which change electromagnetic wave nature. Electromagnetic waves 

change from plane to spherical wavefronts, especially in the near-field region, which can be used for en-

hanced spatial resolution, precise control for beamforming, and better localization. However, studying near-

field effects requires accurate modeling and innovative solutions to manage increasing complexities and 

power requirements for future wireless communication systems. 

Reconfigurable intelligent surfaces (RIS) are an emerging solution to address these issues and offer a 

scalable and power-efficient feature to near-field systems [2]. RIS offers precise manipulation of 

electromagnetic waves by deploying a large number of controllable elements for optimal signal 

transmission and beamforming [3]. Each element in RIS could be individually adjusted for the phase and 

amplitude of incidence waves, intelligently shaping the transmitted wave’s direction and strengthening the 

transmission efficiency. This makes RIS a promising technology for addressing the traditional limitations 

of wireless communication networks. RIS is primarily used to optimize phase shifts for efficient signal 

reflection; however, the effectiveness of RIS significantly depends on the accurate channel state 

information (CSI), helping to determine the optimal configuration for beamforming and signal 

enhancement. Obtaining accurate CSI in RIS-aided networks is always challenging due to its passive 
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reflective nature. Therefore, advanced techniques are needed to unlock RIS's full potential in improving the 

performance of future wireless communication systems [4]. 

As the RIS elements are passive, minimum mean square error (MMSE)/least squares algorithms can be 

applied to estimate the cascaded channel link (i.e., BS-RIS-user) [5], [6]. RIS's location, elements, and 

reflective effects can be adjusted based on particular communication conditions, making it easy to scale 

and accommodate different requirements. RIS-assisted networks have a multiplicative fading impact; thus, 

the equivalent path loss is the product rather than the sum of two specific path losses (i.e., the path loss of 

the BS-RIS link and the RIS-user link [7]). Therefore, large-scale RIS deployments could significantly alter 

the propagation and manipulation of electromagnetic fields (EMF) [8]. 

EMF radiation patterns can be separated into far-field region and near-field region and can be determined 

by the Rayleigh distance (i.e., 2 𝐷2 𝜆⁄ ), where 𝐷  is the largest array aperture dimension, and 𝜆  is the 

transmission wavelength [9]. In the case of an RIS-assisted framework, if the array aperture of the RIS is 

not large and the Rayleigh distance is small, there is wave scattering in the far field of the RIS. However, 

this far-field assumption may not appear in some scenarios when the distance between the RIS and the user 

is short. Specifically, when the number of RIS elements increases, the array aperture becomes large, and 

the Rayleigh distance increases. Thus, it is essential to consider a near-field channel model to describe the 

transmission of the signal [10]. For instance, a near-field channel model was used to maximize the weighted 

sum rate for the RIS-assisted MIMO network [11]. Similarly, in [12], the channel estimation method was 

investigated for near-field networks to maximize the sum rate. In [13], energy efficiency (EE) performance 

was enhanced by optimizing the transmit power and RIS elements. All the methods above use a static model 

with fixed CSI, and an objective function is recalculated at the start of each iteration. This results in high 

computational complexity, high pilot overhead, and noise vulnerability, making such approaches less 

effective for dynamic scenarios. 

In these cases, we can use machine learning (ML), and especially deep learning (DL) [14], which is well-

suited for complex and data-driven tasks and has the capabilities of learning and feature extraction. In near-

field systems, DL models can be trained offline while the deployment can be done online, being effective 

for real-time applications [15]. For instance, in [16], the received signal strength was used to identify 

optimal near-field codewords to maximize the sum rate. In [17], the optimal angle and distance were jointly 

predicted for the near-field codebooks using a deep neural network (DNN). A transmission architecture 

using DL for near-field MIMO [18] was used to achieve a maximum sum rate while considering the effect 

of imperfect CSI. A convolutional neural network (CNN) was used to capture the features from the complex 

CSI and maximize the achievable rate [19]. However, these approaches do not scale well in dynamic 

scenarios, as a large amount of pilot overhead is needed for codebook optimization and accurate CSI 

estimation. To address this challenge, deep reinforcement learning (DRL) can learn policies directly from 

interacting with the environment, reducing reliance on extensive pilot signaling.  

Here, we propose an advanced near-field training approach for RIS-assisted MIMO networks. We introduce 

a low-complexity on-policy (i.e., proximal policy optimization (PPO)) algorithm, which adapts to real-time 

channel conditions without relying on prior historical data or environment-specific assumptions. We built 

the model into a simulation environment design that captures the near-field effects. The simulation 

framework builds the foundation, validates the mathematical model, and explores how near-field properties 

influence key system performance metrics (e.g., EE). This simulation framework complements the 

theoretical model, offering insights. The results to be discussed later show that based on simulation analysis, 

we can achieve up to 10-22% better EE performance than the traditional approach under similar conditions. 

2 SYSTEM MODEL AND PROBLEM FORMULATION 

We consider a near-field RIS-assisted communication network shown in Figure 1. We assume that a single 

multi-antenna BS serves multiple users with multiple antennas. Without loss of generality and avoiding 

confusion, we suppose a realistic environment scenario where several propagation obstacles obstruct the 

direct communication between the BS and the users, which is common in modern wireless networks and   
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                                                      Figure 1. RIS-Assisted Near-field MIMO Network 

 

results are derived solely from simulations; thus, RIS is required to facilitate such communication. The BS 

and user are equipped with 𝑁𝑏-elements and 𝑁𝑢-elements arranged in a uniform linear array, respectively. 

The RIS has passive reflecting elements and is composed of a uniform planar array configured with 𝑅 =
𝑅𝑥𝑅𝑦, where 𝑅𝑥 and 𝑅𝑦 are the number of elements along the horizontal and vertical axes. We use a near-

field channel model, where the system operates at a carrier frequency 𝑓𝑐  leading to the transmission 

wavelength 𝜆𝑐 = 𝑐 𝑓𝑐⁄ , such that 𝑐 indicates the speed of light. The array apertures for each element, i.e., 

BS, RIS, and user, is represented as 𝐷𝐵, 𝐷𝑅 and 𝐷𝑈 and can be expressed mathematically 𝐷𝐵 = (𝑁𝑏 − 1)𝑑, 

𝐷𝑅 = √[(𝑅𝑥 − 1)𝑑]2 + [(𝑅𝑦 − 1)𝑑]
2
, and 𝐷𝑈 = (𝑁𝑢 − 1)𝑑, respectively. 

2.1.1   Channel Model 

The channel characteristics for the proposed system model are categorized into two regions: the channel 

between BS and RIS and the channel between RIS and user, followed by the Rayleigh distance ℜ  

                                                                                 ℜ =
2𝐷2

𝜆
                                            (1) 

We consider a three-dimensional topology for the proposed communications system model where the BS 

antennas are located on the x-axis, which implies that the coordinates of the BS array's midpoint are (0, 0, 

0). This means that the coordinate of the 𝓷𝓫-th antenna at the BS can be represented as 

𝑞𝐵(𝓃𝒷) = (𝓃̃𝒷𝑑, 0, 0) (2) 

such that 𝓃̃𝒷 = 𝓃𝒷 −
𝑁𝐵−1

2
. Furthermore, we assume that the user antennas are parallel to the x-axis. Thus, 

the coordinates of the user midpoint array are (𝑥𝑈, 𝑦𝑈, 𝑧𝑈), where the coordinate of the 𝓃𝓊-th is defined as  

𝑞𝑈(𝓃𝓊) = (𝑥𝑈 +  𝓃̃𝓊𝑑, 𝑦𝑈 , 𝑧𝑈), (3) 

where 𝓃̃𝓊 = 𝓃𝑢 −
𝑁𝑈−1

2
 . Similarly, we assume all RIS elements are parallel to the 𝑋𝑌 plane. The RIS 

midpoint coordinates are denoted as (𝑥𝑅,𝑦𝑅,𝑧𝑅). Hence, the coordinates of RIS for the (𝑟𝑥,𝑟𝑦)-th elements 

can be represented as 

𝑞𝑅(𝑟𝑥 , 𝑟𝑦) = (𝑥𝑅 +  𝑟̃𝑥𝑑, 𝑦𝑅+  𝑟̃𝑦𝑑, 𝑧𝑅), (4) 

where 𝑟̃𝑥 = 𝑟𝑥 −
𝑅𝑥−1

2
 and 𝑟̃𝑦 = 𝑟𝑦 −

𝑅𝑦−1

2
. As a result of the above geometry, the channel path between BS 

and RIS can be modeled as follows: 

𝐺𝐵,𝑅 = [𝑔𝐵,𝑅
1 , … , 𝑔𝐵,𝑅

𝑟𝑥𝑦 , ⋯ , 𝑔𝐵,𝑅
𝑅 ]

𝑇
, (5) 

where 𝑔𝐵,𝑅

𝑟𝑥𝑦 = [𝓀𝑟𝑥𝑦
,1𝑒

−𝑗
2𝜋𝑐

𝑓𝑐
𝑑𝑟𝑥𝑦,1

𝐵

,⋯,𝓀𝑟𝑥𝑦
,𝑁𝐵𝑒

−𝑗
2𝜋𝑐

𝑓𝑐
𝑑𝑟𝑥𝑦,𝑁𝐵

𝐵

]
𝑇

 , and 𝓀𝑟𝑥𝑦
,𝑛𝑏  indicates the free space path 

loss between the BS 𝑛𝑏-th antenna and the RIS (𝑟𝑥,𝑟𝑦)-th elements. The distance between the BS 𝑛𝑏-th 
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antenna and the RIS (𝑟𝑥,𝑟𝑦)-th elements can be calculated as 

𝑑𝑟𝑥𝑦
𝐵 ,𝑛𝑏 = ‖𝑞𝐵(𝑛𝑏) − 𝑞𝑅(𝑟𝑥 ,𝑟𝑦)‖

2
, (6) 

We further expand 𝑑𝑟𝑥𝑦
𝐵 ,𝑛𝑏 as 

𝑑𝑟𝑥𝑦
𝐵 ,𝑛𝑏 = √(𝑥𝑅 + 𝑟̃𝑥𝑑 − 𝓃̃𝒷𝑑)2 + (𝑦𝑅 +  𝑟̃𝑦𝑑)

2
+ 𝑧𝑅

2  =√(𝑐𝑟𝑥𝑦
𝐵 )

2

+ (𝓃̃𝒷𝑑)2 − 2𝓃̃𝒷𝑑𝑐𝑟𝑥𝑦
𝐵 sin 𝛼𝑟𝑥𝑦

𝐵 sin 𝛽𝑟𝑥𝑦
𝐵  

(𝑎)
≈

𝑐𝑟𝑥𝑦
𝐵 − 𝓃̃𝒷𝑑 sin𝛼𝑟𝑥𝑦

𝐵 sin 𝛽𝑟𝑥𝑦
𝐵 +

(𝓃̃𝒷𝑑)2(1 − sin2𝛼𝑟𝑥𝑦
𝐵 sin2𝛽𝑟𝑥𝑦

𝐵 )

2𝑐𝑟𝑥𝑦
𝐵

 

(7) 

where 𝑐𝑟𝑥𝑦
𝐵  , 𝛼𝑟𝑥𝑦

𝐵   and 𝛽𝑟𝑥𝑦
𝐵   represents the midpoint distance (0,0,0) between BS and the RIS (𝑟𝑥 , 𝑟𝑦) - 

elements, the azimuth and elevation angle, respectively. The approximation (𝑎) is obtained by the Taylor 

series, i.e., √1 + 𝑎 ≈ 1 +
𝑎

2
−

𝑎2

8
.  

Similarly, the channel path between the RIS and the user can be represented as 

𝐺𝑅,𝑈 = [𝑔𝑅,𝑈
1 , … , 𝑔𝑅,𝑈

𝑛𝑢 , ⋯ , 𝑔𝑅,𝑈
𝑁𝑈 ]

𝑇
,  (8) 

where 𝑔𝑅,𝑈
𝑛𝑢 = [𝓀𝑛𝑢

,1𝑒
−𝑗

2𝜋𝑐

𝑓𝑐
𝑑𝑛𝑢,1

𝑈

,⋯,𝓀𝑛𝑢
,𝑅𝑒

−𝑗
2𝜋𝑐

𝑓𝑐
𝑑𝑛𝑢,𝑅

𝑈

]
𝑇

 , and 𝓀𝑛𝑢
,𝑟𝑥𝑦  represent the free space path loss 

between the RIS (𝑟𝑥,𝑟𝑦)-th elements and the user 𝑛𝑢-th antenna. The distance between the RIS (𝑟𝑥,𝑟𝑦)-th 

elements and the user 𝑛𝑢-th antenna is expressed by 

𝑑𝑛𝑢
𝑈 ,𝑟𝑥𝑦 = ‖𝑞𝑈(𝑛𝑢) − 𝑞𝑅(𝑟𝑥,𝑟𝑦)‖

2
, (9) 

We further expand 𝑑𝑛𝑢
𝑈 ,𝑟𝑥𝑦 as 

𝑑𝑛𝑢
𝑈 ,𝑟𝑥𝑦 ≈ 𝑐𝑟𝑥𝑦 

𝑈 − 𝓃̃𝓊𝑑 sin𝛼𝑟𝑥𝑦
𝑈 sin 𝛽𝑟𝑥𝑦

𝑈 +  

 
(𝓃̃𝓊𝑑)2(1 − sin2𝛼𝑟𝑥𝑦

𝑈 sin2𝛽𝑟𝑥𝑦
𝑈 )

2𝑐𝑟𝑥𝑦
𝑈

   (10) 

where 𝑐𝑟𝑥𝑦
𝑈 , 𝛼𝑟𝑥𝑦

𝑈  and 𝛽𝑟𝑥𝑦
𝑈  indicates the distance between the user array and the RIS (𝑟𝑥, 𝑟𝑦)-elements, the 

azimuth and elevation angle, respectively. In the case of near-field, the line-of-sight (LoS) channel for the 

BS-RIS and RIS-user links has degrees of freedom (DoF) given by 𝑙 = min{𝑁𝐵, 𝑁𝑈, 𝑅}. In large-scale 

arrays, 𝑙 will be significantly greater than 1, even without non-LoS paths. One of the main advantages of 

near-field communications is the higher DoF, allowing support for multiple data streams, 𝑞 > 1, without 

relying on abundant environmental scattering. This results in enhanced DoF in RIS-aided near-field 

communications. Considering the above details, the channel for the proposed system model is given as 

𝐺𝑖 = 𝐺𝐵,𝑅𝛩𝐺𝑅,𝑈 . (11) 

where 𝛩 represents the RIS phase shift matrix and can be expressed as Θ = diag(𝜙1, … 𝜙𝑟, … 𝜙𝑅), such 

that 𝜙𝑟 = 𝑒−𝑗𝜃𝑟 , and 𝜃𝑟 ∈ [0, 2𝜋] denoting the RIS phase-shift coefficient for the 𝑟 -th elements. The 

received signal of the user can be expressed as 

𝑦𝑢 = 𝑈𝐻𝐺𝑖𝑊𝑥 + 𝜂, (12) 

such that 𝑈 ∈ ℂ𝑁𝑈×𝑞  is the combing matrix, 𝑊 ∈ ℂ𝑁𝐵×𝑞  is the beamforming matrix, 𝑥 ∈ ℂ𝑞×1  is the 

symbol vector which satisfies 𝔼[𝑥𝑥𝐻] = 𝐼𝑞, and 𝜂~𝒞𝒩(0, 𝜎𝜂
2) indicates the additive white Gaussian noise 

(AWGN). The achievable data rate (𝛿) for the user can be expressed mathematically as 

𝛿𝑖 = log2 (1 +
|𝑈𝐻𝐺𝑖𝑊|2

∑ |𝑈𝐻𝐺𝑘𝑊|2 + 𝜎𝜂
2

𝑖≠𝑘

) . (13) 

We maximize EE's performance by jointly optimizing beamforming at the BS and phase shift matrices at 

RIS. We define the EE as the ratio of the total sum rate (𝛿𝑖) to the total power consumption (W). 

𝐸𝐸 =
∑ 𝛿𝑖

𝑈
𝑢=1

∑ 𝑃𝑇

 (14) 
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Where 𝑃𝑇 = 𝑃𝑡+𝑃𝑐𝑖𝑟𝑐𝑢𝑖𝑡 + 𝑃𝑅𝐼𝑆, such that 𝑃𝑡 represent total transmit power, 𝑃𝑐𝑖𝑟𝑐𝑢𝑖𝑡 indicates static circuit 

power and is equivalent to 𝑃𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 𝑃𝐵𝑆 + 𝑃𝑈, whereas 𝑃𝑅𝐼𝑆 denotes the RIS power consumption.  

2.2 Problem Formulation 

Codebook-based training schemes are typically employed in wireless communication networks' for near-

field beamforming and phase shift optimization. However, these methods usually have a large codebook 

size and incur large training overhead in near-field practical scenarios. In the near-field scenario, spherical 

wavefront propagation is considered, where the channel gain depends on both the distance and angular 

variation between the transmitter and receiver. To address this issue, our primary focus is to jointly optimize 

the BS beamforming (𝑊) and RIS phase shift (𝛩) directed toward the legitimate UE’s location. We aim to 

achieve optimal beamforming (𝑊) at BS and phase shift (𝛩) at RIS without relying on a predefined 

codebook to maximize the EE performance. The optimization problem using the beamforming matrix and 

phase shift is formulated as 

max 
𝑊,𝛩

𝐸𝐸 (15a) 

𝑠. 𝑡. ‖𝑊‖2 ≤ 𝑃𝑚𝑎𝑥 , (15b) 

𝛩 ∈ (0,2𝜋),     ∀𝑟 (15c) 

   𝛿𝑖 ≥ 𝛿𝑚𝑖𝑛 ,    ∀𝑢 (15d) 

such that constraint (15b) represents the maximum power value at the BS, while constraint (15c) ensures 

that the phase shift values at the RIS are bounded between 0 and 2𝜋, and constraint (15d) indicates the user 

QoS satisfaction. Unlike far-field scenarios, near-field phase shift designs must consider both focusing and 

steering effects, as the proximity between BSs, RISs, and UEs introduces spatial variations that impact 

signal propagation. 

The CSI of the proposed systems is updated at each time step 𝑡,  leading to increased network complexity, 

non-convexity, and significant non-linearity to solve the optimization problem. Furthermore, the channel 

model introduces additional DoF due to the channel's sensitivity to both distance and angle, increasing the 

challenge of the optimization problem. Traditional approaches, such as AO and exhaustive search methods, 

can be used to solve such optimization problems. However, such approaches require high computation 

capabilities and are not feasible when dealing with large and dynamic-scale network problems. Therefore, 

we introduce an advanced ML algorithm to tackle this issue. Specifically, we design a model-free DRL that 

can flexibly adapt to learn the behavior of the environment and find optimal beamforming vectors and phase 

shifts under complex channel conditions. 

3 PROPOSED SOLUTION USING DRL 

DRL is a sub-branch of DL, which relies on the learning process where agents interact with an environment 

and learn subsequently. This allows the agent to use DRL models for online learning by generating the 

sample independently. DRL algorithms can be categorized into value-based and policy-based and can be 

used to solve the discrete and continuous action space. In the case of the value-based, Q-learning, Deep Q-

learning, and Double deep Q-learning are standard algorithms used to solve the discrete action variable 

space problem. However, such algorithms are suitable to support the smaller action space problem. The 

policy-based DRL is the fine-tuning RL technique that can solve problems with continuous variables action 

space. In the case of policy-based, off-policy and on-policy are the two approaches for training the DRL 

algorithm. In off-policy approaches (e.g., deep deterministic policy gradient (DDPG)), the agent can learn 

from past experiences stored in a replay buffer, potentially accelerating learning by not strictly following 

the current policy during updates. However, such an approach is unstable due to discrepancies between the 

behavior and target policies. Moreover, the actor and critic network must be updated at each time step 𝑡, 

which can require significant computational resources. Furthermore, accurate hyperparameter tunning is 

also challenging in the case of dynamic and complex environments, leading to suboptimal performance. On 

the other hand, the on-policy approaches (e.g., proximal policy optimization (PPO)) tackle these challenges 
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by leveraging a clipped surrogate objective function, which helps update the present policy incrementally 

without deviating too far from the old policy, maintaining stability and reducing the risk of divergence. 

Furthermore, PPO does not rely on replay buffers, which simplifies implementation and reduces computa-

tional complexity. Therefore, we used the PPO approach to effectively solve the optimization problem de-

fined in (15). The following section explains the DRL formulation and proposed PPO approach.  

3.1 DRL Formulation  

DRL relies on the iterative learning process where an agent constantly interacts with the environment to 

optimize the performance. The agent observes the current state 𝑠𝑡 ∈ 𝒮 and execute an action 𝑎𝑡 ∈ 𝒜 at each 

time step 𝑡, where 𝒮 and 𝒜 indicate the set of possible states and actions, respectively. After executing the 

action, the agent receives feedback from the environment in the form reward 𝓇 and moves to the next state 

𝑠𝑡+1 by following the policy 𝜋. The state, action, and reward are modeled as a Markov decision process 

(MDP) and defined as {𝒮, 𝒜, 𝒫, 𝓇, 𝛾}, where 𝒫 is the transition state when the agent moves from one state 

to another, and 𝛾  is the discount factor. The agent aims to find the optimal policy to maximize the 

cumulative reward function over time. In this work, the agent is modeled as BS and RIS, and the state, 

action, and reward for our problem formulation are defined as 

• State space: At each time step 𝑡, the state space 𝒮 observes the environment and collects the CSI, includ-

ing the angle and distance information between BS-RIS and RIS-UEs. We express the state space as 

𝒮 = [𝐺𝐵,𝑅 + 𝐺𝑅,𝑈 + 𝛩𝑊] (16) 

• Action space: The action space 𝒜 contains the information on the angle and distance between BS-RIS 

and RIS-UEs, and the aim is to find the optimal beamforming matrix 𝑊 at the BS and phase shift 𝛩 at the 

RIS at each time step 𝑡, respectively. 

• Reward: The reward function 𝓇 is to maximize the EE performance and can be formulated as 

 𝓇 = 𝐸𝐸 =
∑ 𝛿𝑖

𝑈
𝑢=1

∑ 𝑃𝑇

 (17) 

3.2 Proximal Policy Optimization  

PPO is the advanced version of the DRL algorithm derived from trust region policy optimization (TRPO) 

and is less complex than TRPO regarding computational value [20]. The neural network used in the PPO 

algorithm is composed of the actor and critic network. The actor network is responsible for the action 

selection based on the current policy and generates the probability distribution over the possible action. The 

critic network evaluates and predicts the Q-value for taking action 𝑎𝑡 in a particular state 𝑠𝑡 and capture the 

impact of angle and distance factor within the Q-value function (i.e., 𝑄(𝑠𝑡 , 𝑎𝑡)) to enhance the performance 

of the near-field MIMO system. Following the actor and critic network, the objective function is defined as 

𝑔 = 𝔼 [∑ ∇𝜓 log 𝜋𝜓 (𝑠𝑡|𝑎𝑡)𝐴𝜋𝜓

𝑇

𝑡=1

] (18) 

where 𝔼[⋯ ] is the expectation used in the optimization process and approximated through sampling to 

empirically estimate the objective function's gradient. ∇𝜓 indicated the gradient of the policy parameters in 

DNN. 𝐴𝜋𝜓
 represents the advantage function that helps to prevent the algorithm from overfitting and 

minimize the variance at each time step 𝑡 and can be defined as 

𝐴𝜋𝜓
= 𝑄𝜋𝜓

(𝑠𝑡 , 𝑎𝑡) − 𝑉𝜋𝜓
(𝑠𝑡), (19) 

To mitigate the complexity of the KL-divergence constraint defined in TRPO, the PPO algorithm utilizes a 

clipped surrogate objective (CSO) function, which uses a clip function to limit policy updates to a specific 

range over multiple training steps, reducing the algorithm's complexity. The CSO is designed to prevent 

the more extensive weight update of the PPO algorithm and can be formulated as  
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where 𝜂𝑡(𝜓) represent the probability ratio and indicate the choices of selection of policies and defined as  

𝜂𝑡(𝜓) =  
𝜋𝜓(𝑎𝑡|𝑠𝑡)

𝜋𝜓old
(𝑎𝑡|𝑠𝑡)

 (21) 

𝜋𝜓old
 denotes the policy at 𝑡 − 1 instant. Clipping the probability ratio ensures the minimum required  

 

 similarity between two consecutive policies. σ is the clipped factor hyperparameter. Thus, the final 

objective function of the proposed algorithm is represented as 

𝘖𝐹𝑖𝑛𝑎𝑙
𝑡 (𝜓) = 𝔼𝑡 [𝘖𝐶𝐿𝐼𝑃

𝑡 (𝜓) − 𝑐1𝐻𝑡(𝜓) + 𝑐2𝔼𝜋𝜓
(𝑠𝑡)] , (22) 

where 𝑐1, 𝑐2 and 𝐻𝑡(𝜓) indicates the coefficients and value squared error loss and 𝐻𝑡(𝜓) = (𝑉𝜋𝜓
(𝑠𝑡) −

𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
2

.  The detailed pseudocode for the proposed framework is given in Algorithm 1. 

4 SIMULATION RESULTS ANALAYSIS 

In this section, we validate the simulation results for the proposed PPO algorithm and compare its 

performance with the benchmark schemes. The channel matrices for both channels are randomly generated 

following the near-field Rayleigh distribution (i.e., ℜ = 2𝐷2 𝜆⁄ ). The simulation parameters and 

hyperparameters for the proposed algorithm are defined in Table 1.  

4.1 Benchmark schemes 

We considered three benchmark algorithms and compared their performance with the proposed PPO 

approach. A brief overview of these benchmark algorithms is as follows: 

• Near-field beam training using DL: A CNN-based beam training method is proposed to solve the chal-

lenges in the ELAA system by optimizing beamforming in the near-field, where users experience a spher-

ical wavefront [19]. Although the CNN model avoids the complexity of codebook searches, it may 

Algorithm 1: Proposed PPO Algorithm 

1. Initialize actor and critic network parameters hyperparameters  

2. for episode 𝑒 ← 1 to ℰ do 

3.   Initialize environment and reset the initial state 𝑠o with CSI (𝐺𝐵,𝑅,𝐺𝑅,𝑈) 

4.   for timestep 𝑡 ← 1 to 𝑇 do 

5.     Observe the current state 𝑠𝑡 

6.     Sample action 𝑎𝑡 from the policy 𝜋𝜓, such that 𝑎𝑡~𝜋𝜓(𝑎𝑡|𝑠𝑡).     

7.     Execute action 𝑎𝑡, observe the reward 𝓇 and move to the next state 𝑠𝑡+1 

8.      Store all these experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in the replay memory 𝒟 

9.     Update policy and value function at every timestep from 𝒟 

10. 
    Compute the CSO by calculating the probability ratio and applying the clip factor to limit   

    policy updates for equation (20) 

11.     Calculate the final objective function for equation (22) following the squared error loss 𝐻𝑡(𝜓).  

12.      Calculate the advantage function using equation (19). 

13.     Update policy parameter 𝜓 with gradient ascent as 𝜓 ← 𝜓 + 𝛼∇𝜓𝘖𝐹𝑖𝑛𝑎𝑙
𝑡 (𝜓), 

14.     Repeat steps 5-13 until the algorithm converges. 

15.   End for 

16. End for 

𝘖𝐶𝐿𝐼𝑃
𝑡 (𝜓) = 𝔼𝑡 [min (𝜂𝑡(𝜓),𝑐𝑙𝑖𝑝(𝜂𝑡(𝜓), 1 − 𝜎, 1 + 𝜎))𝐴𝜋𝜓

] , (20) 
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                                                       Table 1. Simulation Parameters 

Parameter/Hyperparameter Value 

Noise power 𝜎𝜂
2 -105 dBm 

Carrier frequency 𝑓𝑐 45 GHz 

Transmit power 𝑃𝑡 40 dBm 

Clip factor 𝜎 0.2 

Total number of episodes ℰ 1000 

Number of time steps 𝑇 10000 

Antenna spacing 𝑑 𝜆𝑐 2⁄  

Experience replay buffer ℬ 100000 

Discount factor 𝛾 0.9 

Learning rate 𝛼 10-5 

Batch size 𝒟 64 

Number of hidden layers 3 

Neuron per hidden layer 256, 256, 64 

 

lack adaptability in dynamic environments where channel conditions are updated constantly. This means 

the model entirely relies on the predefined dataset, and its generalizability to unseen scenarios can be 

limited. Moreover, this approach does not handle joint optimization of beamforming and RIS phase shifts. 

• Hierarchical beam training using alternating optimization (AO): An OA algorithm solves the joint opti-

mization problem in RIS-assisted near-field MIMO networks [21]. In this case, the objective function is 

recalculated at the beginning of each iteration, leading to high computational complexity and convergence 

issues, especially in complex and dynamic scenarios. Moreover, a fixed codebook is designed for the spe-

cific channel models, leading to suboptimal performance when real-time adaptability is required or channel 

conditions change with the user mobilities. 

• Far-field optimization: In the case of far-field scenarios, beamforming methods permit the assumption 

that the electromagnetic waves exhibit planar wavefronts as the distance between the transmitter and the 

receiver far exceeds the Rayleigh distance. Most of the optimization techniques for the far field usually 

employ fixed, directionally focused codebooks or analytical beamforming schemes to steer beams toward 

the intended users' directions, helping to improve the signal quality [22] and [23].  

The simulation results for the behavior of the loss function across episodes under different power levels 

and SNR values are presented in Figure 2. The loss function decreases monotonically with increasing 

episodes. It can be observed from Figure 2 that when the episodes are close to 650-800, the loss function 

starts to converge, and optimization process becomes static, and no further improvement occurs. It can be 

revealed from the given result that a higher power (i.e., 𝑃𝑡=40dBm) obtains comparatively lower loss values 

than the lower power (e.g., 𝑃𝑡=20dBm) since a higher power value increases the signal strength and reduces 

the complexity of the optimization process for the proposed framework. Likewise, the impact of SNR is 

also shown. It indicates that the higher SNR value (i.e., 40dB) provides a much lower loss than the lower 

SNR value (i.e., 10dB), showing the importance of the channel conditions in reducing interference and 

noise. Figure 2 highlights that the higher values of power and SNR achieve the lowest loss and provide 

faster convergence compared to the lower values of power and SNR. Balancing power and channel quality 

significantly impacts the system’s performance. 

In Figure 3, we show a simulation result where all approaches converge. The proposed PPO approach 

achieves the highest EE with every increasing episode and starts to converge around 650 episodes with no 

further improvement. This highlights the ability of the proposed PPO approach to effectively and adaptively 

optimize the performance of EE in high-dimensional scenarios. The near-field DL approach achieves com-

paratively high EE performance and reaches 5.2 bits/J; however, it takes more episodes to converge  

(i.e.,750 episodes), indicating its limitation in solving highly complex problems. The other approaches (i.e., 

AO and Far-field) converge when episodes reach 600 and 500, respectively. This indicates that these two 

approaches require fewer episodes to converge; however, the achieved EE performance is much less than      
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                                                      Figure 2. Loss Function with respect to episodes 

 

                                             
                                                            Figure 3. Convergence Analysis  

 

the other ML approaches due to limited applicability in highly dynamic systems. This shows the effective-

ness of the ML approaches for highly dynamic scenarios. To conclude, this analysis demonstrates the su-

periority of PPO in achieving higher EE, although it takes more episodes to converge, making it a promising 

solution for RIS-assisted near-field MIMO. 

In Figure 4, simulation results show the performance of the objective function (i.e., EE) for our proposed 

method with respect to episodes and compare their performance with the benchmark approaches. It can be 

seen from the given Figure that the proposed PPO approach provides outstanding performance and sur-

passes the EE performance significantly over the benchmark approaches. This demonstrates the effective-

ness of the proposed PPO's approach suitability in the complex and dynamic environment. Moreover, the 

action function is evaluated more efficiently when employing the advantage function in PPO, facilitating 

the agent's efficient learning. This helps the PPO agent to identify and optimize the optimal beamforming 

and phase shift configurations, thereby improving the objective function (i.e., EE). On the other hand, mod-

erate EE performance is achieved using the DL beam training for near-field. Specifically, CNN is config-

ured based on various layers (e.g., padding and kernel size) to extract the CSI features. 

This approach primarily relies on pre-collected and offline training, limiting its effectiveness in a dynamic 

environment. Additionally, this approach is lacking in exploring and adaptively choosing appropriate beam-

forming and phase shift strategies for complex and dynamic scenarios. Meanwhile, the EE achieved by the 

traditional approach (i.e., AO) is relatively lower than all other approaches. The reason is that such ap-

proaches are effective when solving small and static network problems. However, such approaches always 

face difficulties when handling high-dimensional and non-linear optimization problems. Finally, the EE 

achieved by the far field is comparatively lower than all other approaches. This approach does not consider 

spherical waves and the spatial non-stationary characteristic of near-field beamforming, leading to subop-

timal performance. To conclude, the proposed PPO approach achieves higher EE performance on every 

episode than the other approaches, highlighting the effectiveness of the proposed PPO for the RIS-assisted  
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                                                       Figure 4. EE performance vs. episode 

                                             

                                            

                                                              Figure 5. EE vs. power  

 near-field MIMO networks. 

The performance of EE for all the approaches over the different power values is shown in Figure 5. It can 

be noticed from the results that the EE is increasing smoothly with increasing power values for all 

approaches. However, the proposed approach outperforms 10-22% then the other approaches on each power 

value. Moreover, once the power value reaches 40dBm, the performance of all the approaches becomes 

static with no further increment in the EE performance. This is due to the constraints' contradiction defined 

in (15b).   

Finally, the simulation results for EE versus RIS elements are presented in Figure 6. We observe that the 

EE constantly improves with increasing the RIS elements for all approaches. It can be noticed that the 

proposed approach achieves better EE performance by increasing the RIS elements and can effectively 

 

                                                 
                                                   Figure 6. EE versus the number of RIS elements 
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amplify the larger RIS size. This is because the PPO method finds better police to predict accurately channel 

characteristics and optimize the beamforming and phase shift to achieve near-optimal performance. On the 

other hand, the near-field DL approach achieves relatively higher performance than the other approaches. 

However, such an approach is based on the predefined channel model and limits its ability to adapt to 

dynamically changing environments or unknown channel characteristics. This limitation may result in 

suboptimal performance in scenarios where the channel deviates from the predefined model.  

5 CONCLUSIONS 

We investigated the performance of EE in RIS-assisted MIMO networks considering the near-field 

scenario. We solved the EE as a joint optimization problem (beamforming and phase shift) by leveraging 

the angular or distance information embedded in the received signal from BS-RIS and RIS-user links. The 

optimization problem was non-convex due to the outdated CSI at each time step 𝑡 and was challenging to 

solve using the traditional approaches. Thus, we leveraged an on-policy DRL approach (i.e., PPO) that 

efficiently approximates the optimal solution for beamforming at BS and phase shift at RIS in the 

formulated problem. The proposed algorithm's effectiveness and the mathematical framework's validity 

were demonstrated through comprehensive simulation results, and performance was compared with near-

field DL and traditional approaches (i.e., near-field AO and far-field approaches). The PPO approach took 

the benefits of clipping surrogates’ function during the training and utilized the clip parameter to restrict 

the policy update, preventing excessive policy shifts and enhancing training. This enabled PPO to enhance 

the performance of EE compared to other approaches. Based on the simulation results, the system 

performance was significantly improved, confirming the advantages of the PPO framework for near-field 

channels. 
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