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Abstract 
 
In this work we present the results of a project devoted to provide programming facilities 
to develop hard real-time software. We have used MINIX operating system as a tool for 
our experience. We allow the programmer to define timing constraints for the tasks, 
letting to the Operating System the work of running these tasks in a timely fashion. In 
this way, we can improve productivity, security and costs in the system development 
cycle. 

 
 
 
 
1. Introduction 
 
In these days the existing number of Hard Real-Time systems is growing rapidly. These 
systems must control events occurring in the real world, and each task in the system must 
respond to these events within a maximum time (the task deadline). 
 
At present, most of the general purpose operating systems does not provide support to 
develop this kind of systems. They usually entitle concurrent programing, task synchronization 
and communication, resource sharing and other services, but do not include primitives to 
define timing constraints. Due to these reasons, real-time designers still develop real-time 
applications using "ad-hoc" techniques. 
 
With this sight, we started a project devoted to provide facilities to ease the work of a real-
time programmer through services in the Operating System. To avoid developing software 
from scratch, we decided to extend the services provided by MINIX Operating System 
[Tan87]. We selected using MINIX motivated by many factors. First of all, we wanted to use 
our results with academic purposes. Hence, the availability of the hardware and software in 
our Department was a key issue. Another decisive point was our previous experience in the 
subject. 
 
We devote the rest of this work to present the sketch of our project, the changes we made, 
and some experimental results we got. 
 
 
2. Real-Time scheduling 



 
The real-time scheduling theory relates with the way of meeting the timing constraints of the 
tasks in a real-time environment. We can recognize two kinds of tasks: periodic and 
aperiodic (sporadic). The periodic tasks must run repeatedly, and within fixed times. The 
aperiodic tasks run sporadically, and only once when we invoke them. To avoid unpredictable 
behavior, we also must schedule the distribution of the system resources. To attain to these 
goals we must carefully synchronize the tasks in the system. Other issues to consider include 
the precedence constraints between tasks, and the criticality of each task.  
 
As we can see, real-time scheduling is very complex. We must execute the system tasks within 
their timing constraints, responding to the high critical tasks first. We must consider the 
precedence dependencies, and also should make sure that the tasks will have the necessary 
resources in the moment they need them. The scene is even more intricate in distributed 
systems. 
 
The scheduling algorithms of many operating systems used at present for real-time processing 
are simple extensions of those used in Time-Sharing systems. Most of them use priority 
algorithms, letting the programmer to adjust the task priorities to fulfill the timing constraints. 
Moreover, the designer must map many conflicting considerations (timing constraints, 
criticality, task dependencies and others) in only one number: the task priority. The only way 
to guarantee predictable behavior is through exhaustive testing.  
 
The use of these Operating Systems leads to high development costs and lack of flexibility. 
Any changes made to the system implies a new round of exhaustive testing. The goal of a real-
time scheduler is to decide if there is a schedule to meet the timing constraints of a task set. In 
that case, we will say that such set is schedulable. We also will say that each task in the set has 
a predictable behavior, or that we can guarantee the task timing constraints.  A real-time 
scheduling algorithm must insure [Sha90]: 
 
1. Predictable response time of tasks. 
2. High degree of resource employment (schedulability), while keeping predictable 
responses. 
3. Stability under transient overloads. In these cases, the scheduler must guarantee the 
response time of a selected group of critical tasks. 
 
Most of the real-time schedulers also use priorities' schemes (static or dynamic). Instead, the 
dynamic approach allows the task priority to change during the program execution. It is also 
important to the scheduler to be preemptive. A non preemptive scheduler could lead to run a 
low priority task while a high priority task is waiting. 
 
When we apply a static scheduler we assume prior knowledge of the task constrains for the 
controlled system. These schedulers have little overhead, but are very rigid. Sometimes we use 
them to make off-line scheduling. Instead, dynamic schedulers must work on-line. This 
approach is more flexible because in every moment the tasks have a priority reflecting their 
properties. In this kind of system, the overhead can be significant. Every time we call the 
scheduler, it must compute task priorities.  



 
We decided to implement real-time scheduling algorithms for centralized systems and analyze 
the properties stated earlier. We choose two traditional ones: the Rate-Monotonic and the 
Deadline-Driven algorithms ([Liu73], [Che88], [Sha90]). Both of them can guarantee 
predictable execution of a task set if the processor load is below a given bound. In that case 
the designer can run the tasks in the set without consider the activities performed by every task 
in each moment. This fact eases the work involved in the development, testing and 
maintenance process, reducing the costs involved. 
 
The Rate-Monotonic algorithm schedule periodic independent tasks. Each task has a fixed 
priority, inversely proportional to its execution period. Instead, the Deadline-driven is a 
dynamic priorities' algorithm.  The tasks with earlier deadlines run before those with later 
deadlines. Both algorithms are preemptive. 
 
In the following section we will explain the changes we made to the MINIX kernel to provide 
real-time services.  
 
 
 
3. MINIX kernel changes. 
 
MINIX uses a Round-Robin user task's scheduler (100 millisecond time-out), that we have 
changed to allow the execution of periodic and aperiodic real-time tasks.  
 
The sporadic tasks will have only one instance, with a certain deadline to meet. Instead, to set 
up scheduling points for periodic tasks, the clock driver must decide which instance start in 
each clock tick. As the periodic tasks start under the timer control we included a set of system 
calls to change its activation rate. The granularity changes can lead to more overhead, as we 
can see in figure 1. The overhead does not alter the behavior of the system up to 10000 ticks 
per second, allowing us to handle a precision of 100 microseconds (instead of the original 20 
milliseconds). We also added a simple call allowing to measure time in clock ticks. In this way, 
we can program, in a very simple way, tasks with tighter timing constraints. Originally, the 
MINIX system calls have a precision measured in seconds. 
 

Ticks per second

E
xe

cu
tio

n 
tim

e

0

20

40

60

80

100

120

Mini
x

RT-
50

100 200 500 1K 2 K 5K 10K 2 0 K 3 0 K

0

5

10

15

20

25

30

Minix RT-50 100 200 500 1K 2K 5K 10K 2 0 K 3 0 K

i) ii) iii) iv)

 
              Cpu-bound task sets. Ticks per second/task  Task mix. i) CPU-bound; ii)-iii) Interactive; iv) 

mixed 
     completion time (seconds).     



 
Figure 1. Analysis of overloads produced by reductions in the clock granularity 

 
 
We also changed the main structure of the task scheduler to suit our task model. We have 
used a preemptive multiqueue scheduler with three ready queues in total. We can see the 
scheduler sketch in Figure 2. The first queue keeps real-time instances ordered using real-time 
scheduling algorithms. The second level queue devotes to schedule interactive tasks using 
Round-Robin (100 ms. quantum) and Priorities (fixed or variable) algorithms. We also added 
a third queue to run CPU-bound tasks in background (Round-Robin; quantum=200 ms). The 
tasks exceeding the Round-Robin quantum of the Interactive queue goes to this queue. 
 
 

 

Figure 2. New scheduler structure. 

 

 
The clock task manages a new queue for blocked instances, used to delay real-time tasks. 
When a new period starts for a task, the clock driver removes its Process Control Block from 
the queue and inserts it in the real-time ready queue. 
 
We also paid special attention to the management of these queues to avoid extra overhead. 
We made big efforts to keep this overhead to a minimum, using efficient data structures. 
Surprisingly, the results of the benchmark tests did not show improvements. We studied the 
queue statistically using a M/M/1 model, and we could see that for typical MINIX workloads 
there are between two and five tasks in the queue. This adds only 100 microseconds of 
overhead to the clock interrupt. 
 
After changing the scheduler operation, we built libraries to use the new services of the 
Operating System. We can see a summary of the functions provided in Table 1. First, we 
show the calls related with the real-time clock management. Then, we show the functions used 



to define periodic and aperiodic tasks. The primitives include periods or deadlines of the tasks, 
and worst cases of execution. We also show a set of calls to select different schedulers. 
Finally, we show some calls used to count deadline misses. 
 

System call                       Function provided 

set_grain(ticks);    Changes the granularity of the timer.  
ticks=get_grain();   Reads present granularity value from the timer 
clock();             Tells the time in clock ticks. 
set_per(Ti, Ci);     Sets a running task as a Real-Time periodic task. Ti=task period; Ci=worst 

execution time. 
set_aper(Dl, Ci);    Sets a running task as real-time aperiodic. Dl: task's deadline. 
inst_end();          Marks the end of a periodic task instance. 
set_pri_int(pri);    Sets the priority of an interactive task. 
set_rt_sch(kind);    Selects a new real-time scheduler. 
set_int_sch(kind);   Selects a new interactive scheduler. 
start_count();       Start a new count for deadline missing. 
c=miss_result();     Returns the number of deadlines missed. 

 
Table 1 - New system calls 

 
 
On the basis of the information provided by the system calls, the scheduler executes a 
guarantee routine allowing to know if we can schedule in a timely fashion. To do so, we used 
Theorem 2 in [Sha90], and Theorem 4 in [Liu73]. In the case that we detect that we cannot 
predictably execute a task set, we send a new signal, SIG_UNCERTAIN, to the conflicting 
task. In this way, the programmer can run an alternate task with softer timing requirements. 
 
In the case that we detect an overload, we send a signal SIG_OVERLD to the task set. In the 
moment an instance finish, the scheduler analyzes the deadline missing. In that case, we send a 
signal SIG_DL_MISS, so the task can take the proper action. We summarize the signals 
added in Table 2. 
 
 
      Signal                   Event occurred 

SIG_OVERLD           An overload is detected 
SIG_DL_MISS          A deadline was missed 
SIG_UNCERTAIN       The scheduler tells it is uncertain to meet the task set deadlines. 

 
Table 2 - New signals 

 
 
We decided to add the new services instead of changing the old ones. This approach allows to 
keep the original semantics of the UNIX System V system calls1. 
 
In the next section, we will explain some tests we made, and their results. 
 

                                                                 
1 Unix is a trade mark of AT&T. 



 
4. Some empirical results  
 
We have built a framework to test scheduling algorithms. Using the theoretical basis, a task set 
satisfying certain restrictions should run predictably. Our idea is to use our framework to 
analyze the theory in an experimental way. We paid special attention to implementation issues 
and performance overheads of the classical algorithms. We run tasks not respecting the 
theoretical bounds, analyzing their behavior. We want to study the problems in detail, to allow 
the proposal of new solutions. 
 
Our main goal is to analyze the reliability of the scheduling algorithms to run predictably a given 
task set. With this purpose, we studied the guarantee ratio of each task set (i.e., the 
relationship between scheduled instances and deadline missing). We can see some of the 
results we obtained in the Appendix. 
 
First, we analyzed the performance of the original time-sharing algorithm when running real-
time tasks. Then, we compared these results with those got using the new CLOCK system 
call. Finally, we compared the results got against a real-time scheduling algorithm (in this case, 
the rate-monotonic). 
 
We built different task sets, some of them consisting of different number of tasks with the same 
period and execution times, and other with variable periods. We used these task sets to 
compare the two real-time scheduling algorithms. Finally, we tested the results of running 
sporadic tasks. 
 
Our first results concern with the development and testing times. We can see the figures in 
Table 3. These figures involve very simple real-time tasks, used with benchmarking purposes. 
Even, the differences are significant. The increase of the development times relates with the 
manual tuning of the developed tasks under the original environment.  
 
 

 Time-Sharing Scheduler Real-Time schedulers 

I-O bound tasks  Equal Period Variable Period Equal Period Variable Period 

5 tasks 1.7 2 1 1.1 

15 tasks  2.1 2.7 1.1 1.2 

     

CPU-bound tasks     

5 tasks 2.1 2.4 1.2 1.3 

15 tasks  2.5 2.9 1.2 1.4 

 
Table 3. Developing times of real-time tasks using different environments (man-hours) 

 
 
The different benchmark tests we run let us conclude that [Wai94]: 



 
- The Round-Robin scheduler does not work properly when scheduling real-time tasks. The 
difference is much greater when the task execution time is greater than the quantum. 
 
- The differences reduce when we use the CLOCK service, and the tasks' periods are alike. 
This is not a good solution even we were careful while developing the system. If a task period 
must change, the results will be uncertain. The algorithm behaves less predictably when running 
tasks with different periods. 
 
- When there is an overload in the system, the rate-monotonic algorithm behaves better than 
the deadline-driven, because it runs first the most critical tasks (i.e., those with smaller periods) 
in a stable fashion. 
 
- When the overload reduces, the deadline-driven algorithm behaves better. This happens 
because it has a more relaxed bound for CPU utilization.  
 
- The values for both algorithms are the same (100% of guarantee ratio) when we respect the 
theoretical bounds. The overheads do not influence the algorithm performance. 
 
- The situation changes when introducing sporadic tasks. The rate-monotonic behaves better 
when there are overloads (both for periodic and aperiodic tasks). 
 
- Instead, the deadline-driven algorithm has better guarantee ratio when the overload reduces. 
The difference is even higher when the sporadic tasks have shorter deadlines than the periodic 
task's periods. 
 
 
To finish with this section, we must say that the results always meet the theoretical bounds. 
After finishing each benchmark, we analyzed the results using the corresponding theorems. 
Where we respected the theoretical bounds, the benchmarks showed predictable execution.  
 
 
 
5. Present work and conclusion. 
 
We have used MINIX operating system to build a framework to test real-time schedulers. We 
provided new services, allowing the programmers to define tasks with time restrictions, and 
leaving the scheduler to run them at the needed times. We avoided the programmer 
intervention in matters related with time control. In this way, he can pay greater attention to 
solve the application problem, reducing the problems related with accomplishing the timing 
constraints. Finally, we could show advantages and disadvantages of using different real-time 
schedulers. 
 
We have just tested the properties of two classic scheduling algorithms. Our next step will be 
to experience with different schedulers. Our last goal is trying to find new solutions, and test 
them empirically. 



 
We could see that the real-time scheduling algorithms we implemented have some problems. 
The Rate Monotonic algorithm bases its results in the notion that the criticality of a task 
depends on its period.  This notion is not always true, for example with emergency aperiodic 
tasks with long execution times.  This algorithm also has low time-loading. 
 
The deadline-driven algorithm is more dynamic, and allows to run aperiodic tasks more safely. 
The main disadvantage is that the algorithm behaves badly in cases of overloading. 
 
Our final goal is to propose scheduling algorithms to run dynamically real-time tasks, assuring 
high guarantee ratio. We will use our framework to test them comparing them with the results 
we have presented in this work.  
 
Even these traditional algorithms have some disadvantages they are much better than 
traditional time-sharing schedulers to run real-time tasks. We got better guarantee ratio, and 
the development times also have shown to be much lower, and the overhead is so small that 
we suggest to use them. For example, we could implement the rate-monotonic algorithm in any 
operating system having a preemptive priorities' scheduler, as a real-time executive devoted to 
schedule real-time tasks.  
 
At present, we are trying to test some solutions that improve the performance of these 
algorithms. We are addressing some important issues, including: 
  
1. Sporadic tasks: We are implementing some known algorithms, such as sporadic servers and 
aperiodic servers. We will compare these solutions with the results we got running aperiodic 
tasks. 
 
2. Schedulability: We used the algorithms in a dynamic fashion, to make on-line scheduling. 
This fact allowed good time loading. We also implemented a multiqueue scheduler, allowing 
higher time-loading and resource utilization. Now, we are implementing a mixed scheduler to 
increase the time-loading while reducing the deadline miss ratio. We use a heuristic that entitles 
the selection of different schedulers depending on the actual workload conditions. 
 
3. Stability: We have incorporated new signals to inform that a task could not reach a 
deadline. In this way, the programmer can run alternate routines in an emergency state. If there 
is a transient overload, we can gratefully degrade the system doing imprecise computations. 
This kind of solution consumes less CPU time, allowing timely execution of a higher number of 
tasks. We will compare this solution with other algorithms, such as period transformation and 
imprecise computation models. We have provided facilities letting the user to use multiple 
version methods, that we will compare with other known solutions. 
 
In the future, real-time systems will have the same application areas than the present systems. 
However, the systems will be more complex. They will be distributed and with intelligent, 
adaptive and dynamic behavior [Sta88a]. So, the scientific and engineering problems handled 
to develop these systems will be greater. The current ad-hoc solutions will not suffice. 
 



With this work we tried a first approach to solve such kind of problems. To do so, we built a 
framework to develop real-time software, running at predictable times in dynamic 
environments.  
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APPENDIX - Some guarantee ratio results 
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   (a)      (b) 

Figure I.  Different clock grains (each curve in graphics). r: real-time scheduler; m: Minix scheduler; c: Minix with 

clock() service. (a)  Tasks with the same period (b) variable periods. 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 20 80 95 150 200 210 220 800 1.2K 2K 2.1K 4.7K 5K 5.1K

rm-100 dd-100 rm-5K dd-5K

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 30 70 80 90 200 250 300

rm-500 dd-500 rm-1K dd-1K

 

   (a)      (b) 

Figure II. Comparison between Rate-Monotonic (rm) and Deadline-Driven (dd) algorithms. (a) tasks with same 

period; (b) variable periods.  
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Figure III. Mix of periodic and sporadic tasks. Variable periods. (a)Period equal to sporadic deadline. (b) Sporadic 

deadline smaller than period. 


