| mplementing Real-Time servicesin MINIX

Gabriel A. Wainer
Departamento de Computacién. Facultad de Ciencias Exactasy Nat urales.
Universidad de Buenos Aires.
Pabellon |. Ciudad Universitaria.
Argentina.
gabriedlw@dc.uba.ar

Abstract

In thiswork we present the results of a project devoted to provide programming facilities
to develop hard real-time software. We have used MINIX operating system as atool for
our experience. We allow the programmer to define timing constraints for the tasks,
letting to the Operating System the work of running these tasks in a timely fashion. In
this way, we can improve productivity, security and costs in the system development
cycle.

1. Introduction

In these days the exising number of Hard Red-Time systems is growing rapidly. These
systems must control events occurring in the rea world, and each task in the sysem must
respond to these events within a maximum time (the task deadling).

At present, most of the generd purpose operating systems does not provide support to
develop this kind of systems. They usudly entitle concurrent programing, task synchronization
and communication, resource sharing and other services, but do not include primitives to
define timing congtraints. Due to these reasons, rea-time designers ill develop red-time
gpplications usng "ad-hoc" techniques.

With this sight, we started a project devoted to provide facilities to ease the work of a reat
time programmer through services in the Operating System. To avoid developing software
from scratch, we decided to extend the services provided by MINIX Operating System
[Tan87]. We sdlected using MINIX motivated by many factors. First of dl, we wanted to use
our results with academic purposes. Hence, the availability of the hardware and software in
our Department was a key issue. Another decisive point was our previous experience in the
subject.

We devote the rest of this work to present the sketch of our project, the changes we made,
and some experimentd results we got.

2. Real-Time scheduling



The red-time scheduling theory rdaes with the way of meeting the timing condraints of the
tasks in a reattime environment. We can recognize two kinds of tasks periodic and
aperiodic (sporadic). The periodic tasks must run repeatedly, and within fixed times. The
gperiodic tasks run sporadicdly, and only once when we invoke them. To avoid unpredictable
behavior, we aso must schedule the distribution of the system resources. To attain to these
gods we must carefully synchronize the tasks in the system. Other issues to consider include
the precedence congtraints between tasks, and the criticdity of each task.

As we can see, red-time scheduling is very complex. We must execute the system tasks within
ther timing congraints, responding to the high critica tasks firs. We must consder the
precedence dependencies, and aso should make sure that the tasks will have the necessary
resources in the moment they need them. The scene is even more intricate in distributed
systems.

The scheduling dgorithms of many operating systems used at present for red-time processing
ae ample extensons of those used in Time-Sharing sysems. Mogt of them use priority
agorithms, letting the programmer to adjust the task priorities to fulfill the timing congraints.
Moreover, the designer must map many conflicting condderations (timing congtraints,
criticdity, task dependencies and others) in only one number: the task priority. The only way
to guarantee predictable behavior is through exhaudtive testing.

The use of these Operaing Systems leads to high development cods and lack of flexihility.
Any changes made to the system implies a new round of exhaustive testing. The god of area
time scheduler isto decide if there is a schedule to meet the timing congtraints of atask set. In
that case, we will say that such set is schedulable. We aso will say that each task in the set has
a predictable behavior, or that we can guarantee the task timing condraints. A rea-tme
scheduling dgorithm must insure [Sha90]:

1. Predictable response time of tasks.

2. High degree of resource employment (schedulability), while keeping predictable
responses.

3. Stability under transent overloads. In these cases, the scheduler must guarantee the
response time of a selected group of critica tasks.

Most of the redl-time schedulers aso use priorities schemes (static or dynamic). Insteed, the
dynamic gpproach dlows the task priority to change during the program execution. It is dso
important to the scheduler to be preemptive. A non preemptive scheduler could lead to run a
low priority task while ahigh priority task is waiting.

When we gpply a static scheduler we assume prior knowledge of the task congtrains for the
controlled system. These schedulers have little overhead, but are very rigid. Sometimes we use
them to make off-line scheduling. Instead, dynamic schedulers must work on-line This
goproach is more flexible because in every moment the tasks have a priority reflecting their
properties. In this kind of system, the overhead can be sgnificant. Every time we cal the
scheduler, it must compute task priorities.



We decided to implement redl-time scheduling dgorithms for centrdized systems and andyze
the properties stated earlier. We choose two traditional ones: the Rate-Monotonic and the
Deedline-Driven dgorithms ([Liu73], [Che88], [Sha90]). Both of them can guarantee
predictable execution of atask set if the processor load is below a given bound. In that case
the designer can run the tasks in the set without consider the activities performed by every task
in eech moment. This fact eases the work involved in the development, testing and
mai ntenance process, reducing the costs involved.

The Rate-Monotonic agorithm schedule periodic independent tasks. Each task has a fixed
priority, inversely proportiond to its execution period. Instead, the Deedline-driven is a
dynamic priorities adgorithm. The tasks with earlier deadlines run before those with later
deedlines. Both agorithms are preemptive.

In the following section we will explain the changes we made to the MINIX kernd to provide
real-time services.

3. MINIX kernel changes.

MINIX uses a Round-Robin user task's scheduler (100 millisecond time-out), that we have
changed to dlow the execution of periodic and aperiodic rea-time tasks.

The sporadic tasks will have only one instance, with a certain deadline to meet. Instead, to set
up scheduling points for periodic tasks, the clock driver must decide which ingance gart in
each clock tick. Asthe periodic tasks start under the timer control we included a set of system
cdls to change its activation rate. The granularity changes can lead to more overhead, as we
can seein figure 1. The overhead does not dter the behavior of the system up to 10000 ticks
per second, alowing us to handle a precision of 100 microseconds (insteed of the origina 20
milliseconds). We aso added asmple cdl dlowing to measure time in clock ticks. In thisway,
we can program, in a very smple way, tasks with tighter timing congraints. Origindly, the
MINIX system calls have a precision measured in seconds.

|+o ——i) —&—ii) +iv)|

120

100 30 +
80 254

60 20 +

Execution time

40 54

20

0

Mini RT- 100 200 500 1K 2K 5K 10K 20K 30K
X 50

0+ } } } } } } t } } |
Ticks per second Minix RT-50 100 200 500 1K 2K 5K 10K 20K 30K

Cpubound task sets. Ticks per second/task Task mix. i) CPU-bound; ii)-iii) Interactive; iv)
mixed
compl etion time (seconds).



Figure 1. Analysis of overloads produced by reductionsin the cdlock granularity

We as0 changed the main structure of the task scheduler to suit our task modd. We have
used a preemptive multiqueue scheduler with three ready queues in total. We can see the
scheduler sketch in Figure 2. The firgt queue keeps real-time instances ordered using redl-time
scheduling agorithms. The second level queue devotes to schedule interactive tasks using
Round-Rohin (200 ms. quantum) and Priorities (fixed or variable) agorithms. We aso added
athird queue to run CPU-bound tasks in backgr ound (Round- Robin; quantum=200 ms). The
tasks exceeding the Round- Robin quantum of the Interactive queue goes to this queue.

Blocked
Instatices

Sending’
Receiving

Figure 2 New scheduler structure.

The clock task manages a new queue for blocked instances, used to delay reaktime tasks.
When anew period starts for atask, the clock driver removesits Process Control Block from
the queue and insertsit in the red- time ready queue.

We dso paid specid attention to the management of these queues to avoid extra overhead.
We made big efforts to keep this overhead to a minimum, using efficient data structures.
Surprisingly, the results of the benchmark tests did not show improvements. We studied the
queue gatisticaly usng a M/M/1 modd, and we could see that for typica MINIX workloads
there are between two and five tasks in the queue. This adds only 100 microseconds of
overhead to the clock interrupt.

After changing the scheduler operation, we built libraries to use the new services of the
Operating System. We can see a summary of the functions provided in Table 1. First, we
show the cdlls related with the reatime clock management. Then, we show the functions used



to define periodic and aperiodic tasks. The primitives include periods or deadlines of the tasks,
and worst cases of execution. We dso show a set of cdls to sdect different schedulers.
Findly, we show some cdls used to count deadline misses.

| System call Function provided |
set_grain(ticks); Changes the granularity of the timer.

ticks=get_grain(); Reads present granularity value from the timer

clock(); Tellsthetimein clock ticks.

set_per(Ti, Ci); Setsarunning task as a Real-Time periodic task. Ti=task period; Ci=worst

execution time.

set_aper(DlI, Ci); Sets arunning task as real-time aperiodic. DI: task's deadline.

inst_end(); Marks the end of a periodic task instance.

set_pri_int(pri); Setsthe priority of an interactive task.

set rt sch(kind); Selects a new real-time scheduler.

set int sch(kind); Selects anew interactive scheduler.

start count(); Start a new count for deadline missing.

c=miss _result(); Returns the number of deadlines missed.

Table1 - New systemcalls

On the bass of the information provided by the system cdls, the scheduler executes a
guarantee routine alowing to know if we can schedule in atimely fashion. To do so, we used
Theorem 2 in [Sha90], and Theorem 4 in [Liu73]. In the case that we detect that we cannot
predictably execute a task set, we send anew sgnd, SIG_UNCERTAIN, to the conflicting
task. In thisway, the programmer can run an dternate task with softer timing requirements.

In the case that we detect an overload, we send asigna SIG_OVERLD to the task st. Inthe
moment an instance finish, the scheduler analyzes the deadline missing. In that case, we send a
sgna SIG DL_MISS, so the task can take the proper action. We summarize the signals
added in Table 2.

| Signa Event occurred |

SIG OVERLD An overload is detected
SIG DL_MISS A deadline was missed
SIG_ UNCERTAIN The scheduler tellsit is uncertain to meet the task set deadlines.

Table 2 - New dgnals

We decided to add the new servicesingtead of changing the old ones. This gpproach dlowsto
keep the origind semantics of the UNIX System V system callst.

In the next section, we will explain some tests we made, and their results.

1 Unix isatrademark of AT&T.



4. Some empirical results

We have built aframework to test scheduling dgorithms. Using the theoreticd basis, atask st
satifying certain restrictions should run predictably. Our idea is to use our framework to
andyze the theory in an experimental way. We paid specid attention to implementation issues
and performance overheads of the classcd adgorithms. We run tasks not respecting the
theoretical bounds, analyzing their behavior. We want to study the problemsin detail, to adlow
the proposa of new solutions.

Our main god isto andyze the rdiability of the scheduling dgorithms to run predictably a given
task set. With this purpose, we studied the guarantee ratio of each task st (i.e, the
relationship between scheduled ingtances and deadline missing). We can see some of the
results we obtained in the Appendix.

Firgt, we andyzed the performance of the origind time-sharing dgorithm when running reg
time tasks. Then, we compared these results with those got using the new CLOCK system
cdl. Findly, we compared the results got againgt a rea-time scheduling dgorithm (in this case,
the rate-monotonic).

We built different task sets, some of them consigting of different number of tasks with the same
period and execution times, and other with variable periods. We used these task sets to
compare the two rea-time scheduling dgorithms. Findly, we tested the results of running
sporadic tasks.

Our firg results concern with the development and testing times. We can see the figures in
Table 3. These figures involve very smple reg-time tasks, used with benchmarking purposes.
Even, the differences are sgnificant. The increase of the development times relates with the
manual tuning of the developed tasks under the origind environment.

Time-Sharing Schedul er Real- Timeschedulers
1-O bound tasks Equal Period Variable Period Equal Period VariablePeriod
5 tasks 17 2 1 11
15 tasks 21 27 11 1.2
CPU-bound tasks
5 tasks 21 24 12 13
15 tasks 25 2.9 1.2 14

Table 3. Developing times of real-time tasks using different environments (man-hours)

The different benchmark tests we run let us conclude that [Wai94]:



- The Round- Robin scheduler does not work properly when scheduling red-time tasks. The
difference is much grester when the task execution time is greater than the quantum.

- The differences reduce when we use the CLOCK sarvice, and the tasks periods are aike.
Thisis not a good solution even we were careful while developing the system. If atask period
must change, the resultswill be uncertain. The agorithm behaves less predictably when running
tasks with different periods.

- When there is an overload in the system, the rate-monotonic agorithm behaves better than
the deedline- driven because it runs first the most critical tasks (i.e., those with smaller periods)
in a gable fashion.

- When the overload reduces, the deadline-driven agorithm behaves better. This happens
because it has amore relaxed bound for CPU utilization.

- The vaues for both agorithms are the same (100% of guarantee ratio) when we respect the
theoretical bounds. The overheads do nat influence the dgorithm performance.

- The dtuation changes when introducing sporadic tasks. The rate-monatonic behaves better
when there are overloads (both for periodic and aperiodic tasks).

- Instead, the deedline-drivenagorithm has better guarantee ratio when the overload reduces.
The difference is even higher when the sporadic tasks have shorter deadlines than the periodic
task's periods.

To finish with this section, we must say that the results dways meet the theoretica bounds
After finishing each benchmark, we analyzed the results using the corresponding theorems.
Where we respected the theoretical bounds, the benchmarks showed predictable execution.

5. Present work and conclusion.

We have used MINIX operating system to build a framework to test redl-time schedulers. We
provided new services, dlowing the programmers to define tasks with time redtrictions, and
leaving the scheduler to run them at the needed times We avoided the programmer
intervention in matters related with time control. In this way, he can pay gregter atention to
solve the goplication problem, reducing the problems rdaed with accomplishing the timing
condraints. Finaly, we could show advantages and disadvantages of using different red-time
schedulers.

We have just tested the properties of two classic scheduling agorithms. Our next step will be
to experience with different schedulers. Our last god is trying to find new solutions, and test
them empiricaly.



We could see that the red-time scheduling agorithms we implemented have some problems.
The Rae Monatonic agorithm bases its results in the notion that the criticdity of a task
depends on its period. This nation is not dways true, for example with emergency aperiodic
tasks with long execution times. This dgorithm aso has low time-loading.

The deadline-driven dgorithm is more dynamic, and dlows to run gperiodic tasks more safdly.
The main disadvantage is that the agorithm behaves badly in cases of overloading.

Our find god is to propose scheduling dgorithms to run dynamicaly reg-time tasks, assuring
high guarantee ratio. We will use our framework to test them comparing them with the results
we have presented in this work.

Even these traditiond agorithms have some disadvantages they are much better than
traditiond time-sharing schedulers to run real-time tasks. We got better guarantee ratio, and
the development times aso have shown to be much lower, and the overheed is so smal that
we suggest to use them. For example, we could implement the rate- monatonic dgorithm in any
operding syslem having a preemptive priorities scheduler, as a red- time executive devoted to
schedule real-time tasks.

At present, we are trying to test some solutions that improve the performance of these
agorithms. We are addressing some important issues, induding:

1. Sporadic tasks: We are implementing some known agorithms, such as sporadic servers and
aperiodic servers. We will compare these solutions with the results we got running gperiodic
tasks.

2. Schedulability: We used the agorithms in a dynamic fashion, to make online scheduling.
This fact dlowed good time loading. We dso implemented a multiqueue scheduler, dlowing
higher time-loading and resource utilization. Now, we are implementing a mixed scheduler to
increase the time-loading while reducing the deedline missratio. We use a heuridtic that entitles
the selection of different schedulers depending on the actua workload conditions.

3. Stability: We have incorporated new signas to inform that a task could not reach a
deadline. In this way, the programmer can run aternate routinesin an emergency sete. If there
is a trangent overload, we can gratefully degrade the system doing imprecise computations.
Thiskind of solution consumes less CPU time, alowing timely execution of a higher number of
tasks. We will compare this solution with other dgorithms, such as period transformation and
imprecise computation models. We have provided facilities letting the user to use multiple
verson methods, that we will compare with other known solutions.

In the future, red-time systems will have the same gpplication areas than the present systems.
However, the systems will be more complex. They will be digributed and with inteligent,
adaptive and dynamic behavior [Sta884]. So, the scientific and engineering problems handled
to develop these systems will be greater. The current ad-hoc solutions will not suffice.



With this work we tried afirst approach to solve such kind of problems. To do so, we built a
framework to develop red-time software, running a predictable times in dynamic
environments.

6. BIBLIOGRAPHY

[Che88] CHENG, S; STANKOVIC, J; RAMAMRITHAM, K. "Scheduling Algorithms for
Real-time sysems: abrief survey”. In "Rea Time Systems’, IEEE Press, 1993. pp. 150-173.

[Liu73] LIU, C.; LAYLAND, J. "Scheduling agorithms for multiprogramming in a Hard Red
Time System Envirorment”. Journa of the ACM, Val. 20, No. 1, 1973, pp 46-61.

[Liu9]] LIU, W.S. et d. "Algorithms for scheduling imprecise computations'. IEEE Computer.
May 1991.

[Sha90] SHA, L.; GOODENOUGH, J. "Rea-Time Scheduling Theory and Add'. |IEEE
Computer, April 1990. pp 53-62.

[Sta88] STANKOVIC, J "Misconceptions about Redl- Time computing”. IEEE Compuiter,
October 1988. pp 10-19.

[Tan87] TANNENBAUM, A.. "A Unix clone with source code for Operating Systems
courses’. Operating Systems Review, vol. 21, January 1987.

[Tan9l] TANNENBAUM, A. e d. "MINIX 15 Reference manud". Prentice Hal,
Englewood Cliffs, New Jersey 07632. 1991.

[Wa92] WAINER, G. "A survey of the results of usng Minix as a tool for teaching in
Operating Systems Courses'. Proceedings of the XII International Conference of the SCCC.
Editorid dela USACH. 1992.

[Wa94] WAINER, G. "Experimentd Evaduation of Red-Time Scheduling Algorithms in a
Time-Sharing Operating Systent'. Internal report, Computer Sciences Department. Submited
to "Sigmetrics and Performance '95".

[Wai94b] WAINER, G. "Incluson de mecanismos de Tiempo Real en un Sistema Operativo
de Tiempo Compartido". Proceedings of the I Encuentro Chileno de Computacion. 1994.






APPENDI X - Some guaranteeratio results

[—0—rs0 ——o50 —A—ma0—X—rs —K—ox —O—ma]

100%
A%
80%
0%
60%
50%
A%
3
20%
10%
@

13 8 DR B B 20 30 37 4 5 6 8 10 17 18 200 220 420 50

| —@— 100+ —ll— 100-c —f— 1K+ —>E— 1K< |

W A2 N/ W . )
N N ZAN N 7N T 1
Tek Raiads 10 20 30 70 100 150 200 1000

(@ (b)
Figurel. Different clock grains (each curvein graphics). r: real-time scheduler; m: Minix scheduler; ¢: Minix with
clock() service. () Taskswith the same period (b) variable periods.

|+m1m — I —dd100 —f—msk —¢—ddsK | |+m-5m —— dd500 —A—miK —¢—ddiK |

1 20 80 95 13 200 210 220 800 12K 2K 2IK 47K &K 5K 10 30 0 80 90

(a (b)
Figurell. Comparison between Rate-Monoatonic (rm) and Deadline Driven (dd) algorithms. (a) taskswith same
period; (b) variable periods.

[~y S e —— [—@—mp —l— ma —A&—dd-p —<— do-a

5 20 40 80 160 170

Figurelll. Mix of periodic and sporadic tasks. Variable periods. (a)Period equal to sporadic deadline. (b) Sporadic
deadline smaller than period.



