
CELL-DEVS MODELS WITH TRANSPORT AND INERTIAL DELAYS

Gabriel A. Wainer § *
gabrielw@dc.uba.ar

Norbert Giambiasi §
Norbert.Giambiasi@iuspim.u-3mrs.fr

§ DIAM-IUSPIM
Université d'Aix-Marseille III

Av. Escadrille Normandie Niemen
13397 Marseilles Cédex 20 - FRANCE

* Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires
Pabellón I - Ciudad Universitaria

Buenos Aires (1428) - ARGENTINA

not exist in asynchronous automata, that evolve in continuous
time. The use of a continuous time base allows to achieve
higher time precision, periods of inactivity are skipped, and
the use of the computer resources is improved.

KEYWORDS

Object-oriented modelling; Discrete simulation; grid models.

ABSTRACT Transport and Inertial Delays are two basic constructions
usually employed in the circuit design domain. Transport
Delays reflect the straightforward propagation of signals over
lines of infinite bandwidth. Inertial Delays, instead, allow to
define preemptive semantics in the models. These
constructions also can be used to model other physical
phenomena that can be described as cell spaces (i.e., fire
propagation in a wood, behavior of fishes in the sea, urban
traffic, ecological systems, etc.).

In this work new paradigms for complex modeling are
presented. The new formalisms are based on the DEVS and
Cellular Automata formalisms. To reduce the complexity of
the models, Inertial Delays and Transport Delays
constructions are also included. The combination of these
modeling techniques makes available a set of tools to model
complex problems. The utility of the formalisms is shown
through a simple model used to simulate the behavior of a
complex real system. In this work, several formalisms to describe cell spaces are

analyzed. The paradigms are based on the DEVS and
Asynchronous CA formalisms, and are combined with
transport or inertial delays constructions.

INTRODUCTION

Computer simulation techniques are widely used to study
complex systems. In this way, they help researchers and
designers to understand the dynamic behavior of real systems
where analytic solutions are impossible to find. Several
modeling techniques are independent of the simulators,
improving the software development through validation of
the models.

FORMAL DESCRIPTION OF DEVS CELLS MODELS

In (Wainer and Giambiasi 1997) several formal descriptions
of CELL DEVS models were defined. These specifications
allow to describe a cellular model as DEVS cells with
multiple inputs and a transport or inertial delays for each cell.
In this section the main aspects of these formalisms are
recalled.One of such formalisms, known as DEVS (Discrete Events

Systems Specification) is based on discrete events, and was
proposed by Zeigler (Zeigler 1976, Zeigler 1990). It allows
modular description of the phenomena to model, and attacks
the complexity using a hierarchical approach. This
hierarchical modeling strategy allows the reuse of created and
tested models, enhancing the security of the simulations,
reducing the testing time and improving productivity.

A transition delay modular Cell-DEVS atomic model is
formally described as:

TDC = < I, X, S, Y, N, δint, δext, d, τ, λ, ta >

Cellular Automata (CA) formalism is also well suited to
describe complex systems with different description levels
(Wolfram 1986). A conceptual CA is an infinite regular n-
dimensional lattice. Each cell state is discrete and is modified
in discrete time steps. To do so, it uses a local transition
function based on the present cell state and a finite set of
nearby cells (called the cell's neighborhood).

I = <η, Px, Py> defines the model interface. Here, η ∈ N is
the neighborhood size, and, for I =X or I =Y, PI is a port
definition (input or output respectively), where PI ={ (Ni

I,
Ti

I) / ∀ i ∈ [1, η], Ni
I ∈ [I1, Iη] (port name), and Ti

I

=binary (port type)};

X = {0, 1} is the set of input external events;

This formalism uses discrete time basis, posing restrictions in
the precision of the model. In the particular case of complex
CA, large amounts of compute time will be required. Besides,
for several cases, at each time step most cells of the
automaton will not need actualization. These problems does

S is the state set, where S ={(s, phase, σqueue, σ) / s ∈ {0,1},
phase ∈ {active, passive}, σqueue = { (a1,...,am) / m ∈ N and
∀ i ∈ [1,m], i ∈ N, ai ∈ R0

+ ∪ ∞ }, and σ ∈ R0
+ ∪ ∞ } ;

Y = {0, 1} is the set of output external events;

N ∈ {0, 1}η, is the set of the neighborhood's binary states; consumed. These must recorded and later executed by the
internal transition functions. The behavior of both transition
functions is similar of those defined in (Ghosh and Giambiasi
1996).

δint: S→S is the internal transition function;

δext: QxX → S is the external transition function, where Q is
the state set defined by Q = { (s, e) / s ∈ S, and e ∈ [0,
ta(s)]};

In this definition, insert, first, tail and empty are the
traditional functions employed to manage a FIFO queue. The
external transition function schedules a new time for an
internal transition function. To do so, it uses the value of the
transport delay, that is queued in the σqueue. The local
transition function is started when σ=0. The λ function will
only execute if the status has changed. Therefore, the state
change is recorded in a flag variable that can be accessed by
the λ function, that activates only if there was a change.

d ∈ R0
+ is the transport delay for the cell;

τ: SxN → S is the local transition function;

λ: S →Y is the output function; and

ta: S → R0
+ ∪ ∞, is the time advance function.

The Inertial Delay constructions allow to represent a behavior
with preemptive semantic. The construction says that, if an
input value is not kept a certain period (the inertial delay), the
state change is not recorded. Instead, if the value is kept
during that time, the state changes after the delay.

The formal specification of a cell with inertial delays only
changes the state definition:

S = { (s, phase, f, σ) / s ∈ {0,1}, phase ∈ {active, passive}, f
∈ {0,1}, and σ ∈ R0

+ ∪ ∞ } ; To model this kind of delays, the transition functions have
been redefined.

Variable f states for the "feasible" future state for the cell.
That is, if the input is kept during the inertial delay, the
future state will be f. Another change is in the semantic of
variable d that now represents the value for the inertial delay.

δext((s, phase, σqueue, σ), e, x) = (s', phase, σqueue, σ),
where

s' = s;
if (phase = passive) then {

phase = active;
δext((s, phase, squeue, s), e, x) = (s', phase, squeue, s), where σ = d; } /* Inertial Delay */

s = s'
else

if (phase = passive) then {
{ σ = σ - e;

phase = active;
if (σ > 0 .AND. f != x) σ = d;σ = d; } /* Transport Delay */
 /* Preemption */ }else { for (ai ∈ squeue) ai = ai - e;

f = x;
σ = σ - e; }

σqueue = insert(σqueue, d); δint(s, phase, σqueue, σ) = (s', phase, σqueue, σ), where
s' = τ(f, N);

δint(s, phase, σqueue, σ) = (s', phase, σqueue, σ), where if (s != s') changed = TRUE;
s' = τ(s, N); else changed = FALSE;
if (s != s') changed = TRUE;
else changed = FALSE; if (e = 0) { phase = passive;

σ = ∞; }
for (ai ∈ σqueue) ai = ai - first(σqueue);
σqueue = tail (σqueue); Figure 2. External and internal transition function for

inertial delays models.
if empty(σqueue) {

phase = passive; The last arrived event can be preempted if a new external
event (with different value) arrives before the end of the
inertial delay. If a new external event has the same value of
the old one, the result is equivalent to have a unique external
event.

σ = ∞; }
else {

phase = active;
σ = first(σqueue); }

Figure 1. Definition of transition functions. The atomic cell models can be coupled with other cell
models, forming a multicomponent cell model. Any of these
models can be also combined with DEVS models, allowing
the definition of complex hierarchical models. The coupled
cell models are defined as:

The transport delay model allow to introduce a delay between
the occurrence of an external transition function and the state
change of the cell. Only when the transport delay is
consumed, the internal transition function is executed and the
system changes its state. The σqueue is introduced because
new external events can occur while the transport delay is

GCTD = < I, X, Y, Xlist, Ylist, η ,N, {m, n}, C, B, Z, Zij,
select >

I = <η, Px, Py> represents the definition of the modular
model interface, defined as in atomic models, but considering
PI = { (N(f,g)I, T(f,g)I) / ∀ (f,g) ∈ Xlist, N(f,g)I = I(f,g)k
(port name), and T(f,g)I = binary (port type)};

The specification models here presented are independent of
the simulation technique used. Therefore, they allow to
specify the system behavior independently of the
implementation details of the chosen simulation technique. In
the following section an example will show the application of
the formalism to model a complex system.X = {0, 1} is the set of input external events;

AN APPLICATION EXAMPLEY = {0, 1} is the set of output external events;

In this section the main aspects presented in the previous
section are shown through an example of application.
Coupled cell models can be mixed with other basic models in
a DEVS hierarchy. In this way complex models consisting of
several submodels with different behavior can be built using
different paradigms or abstraction levels.

Ylist = { (k,l) / k ∈ [0,m], l ∈ [0,n]} is the list of output
coupling;

Xlist = { (k,l) / k ∈ [0,m], l ∈ [0,n]} is the list of input
coupling;

η ∈ N is the neighborhood size;
In this case, several models are integrated to simulate the
complex behavior of the traffic in a section of urban
population.

N is the neighborhood set, defined as N = { (ip,jp) / ∀ p ∈ N,
p ∈ [1,η] => ip, jp ∈ Z ∧ ip, jp ∈ [-1, 1] };

{m, n} ∈ N is the size of the cell space;

C is the cell space set, defined as C = {Cij / i ∈ [1,m], j ∈
[1,n]}, where

 Cij = < Iij , Xij , Sij , Yij , δij , dij , λij , τij , taij>

is a cell-DEVS component;

B is the border cells set, where B = { ∅ } ∪ {cij / ∀ i = 1∨ i =
m ∨ j = 1 ∨ j = n, cij ∈ Cij is a self-generating state cell};

Z is the translation function, defined by:

Figure 3. Coupling different DEVS modelsZ: Pij
Yq → Pkl

Xq, where Pij
Yq ∈ Iij , Pkl

Xq ∈ Ikl, q ∈ [0, η]
and, ∀ (f, g) ∈ N, k = (i+f) mod m ; l=(j+g) mod n;

Model A is a Cell-DEVS model representing particles of
smoke on the air of a residential neighborhood. It is used to
study pollution (depending on influences of the traffic in the
highway, and smoke of the factory). Model B represents the
traffic movement in a commercial neighborhood, to study the
traffic flow (i.e., to improve semaphore synchronization).
Model C represents a one-way highway passing across
neighbors A and B (to study the traffic flow in the highway).
Atomic model D represents a factory: trucks arrive from the
highway, and new trucks filled with products get into the
highway. It is used to schedule the flow of trucks to the
factory. Finally, atomic model E represents the entrance to a
ferry-boat that connects the city with an island. It is used to
determine the optimal number of boats depending on the
hour.

Zij: Y(f,g) i → X(k,l)j ∀ (f,g) Ylisti, and (k,l) Xlistj.; and

select, is the tie-breaking selector function, with the
restriction that select ⊆ mxn → mxn / ∀ E ≠ { ∅ }, select(E) ∈
E.

It can be see that the models only allows binary states, but the
definition can be extended by considering X and Y (and the
corresponding I/O ports) as sets in Z or R. The transition
functions should compute their results using any of these
domains.

If an event occurs in one cell, the neighbors are influenced
through the execution of the Z function. Besides, certain cells
in the space are chosen as input and output cells, and will be
included in the Xlist and the Ylist respectively. Xlist is a list
of cell's positions where the inputs to the model are received.
Ylist records the cells whose outputs will be sent to the other
models in the hierarchy.

To build the simulation, the behavior of each submodel must
be defined. We will only concentrate in the definition of the
cell models (behavior of traditional models such as D or E
will be skipped).

When a cell-DEVS model is executed, the Zij function
translates inputs into outputs by using both lists. The names
of the input and output ports are also defined by using the
contents of the Xlist and Ylist.

The first step to build the simulator for a cell space is to
define the behavior for each cell in the model. The basic
behavior is defined by the local transition functions. To do so,
a simple declarative specification language has been defined
(Wainer and Giambiasi 1997). The language only allows bi-

nary or three-states, and a compiler translates the specification
to the internal behavior representation of the cell-DEVS
models.

Each sentence is a boolean expression including relational
operations and calls to predefined functions (including
transport and inertial delay functions). The results for each
cell are computed by analyzing each sentence, and considering
the present state for the cell and its neighborhood. In the
following figure the behavior for each cell is shown. The aij
variables define a 9x9 matrix representing the cell
neighborhood. The neighborhood state is taken as
precondition for the local transition function. The result is the
new state for the neighborhood.

Figure 5 - Definition of cell space for model A, and
input/output cells of the model.

Model A (Residential Neighborhood) After the definition of the cell behavior, X and Y lists should
be defined for each model. Let us analyze the complete
definition of the cell space A (supposing that the components
are numbered in ascending order using their letter name).

Result Neighborhood state
aij:=1
in_delay(wind)

a22 = 1

According with the previous definition for the interface and
port names,Model B (Commercial Neighborhood)

Result Neighborhood state I = <5,Px,Py>, where Px={X(1,15), X(2,15) };
Py = { Y(5,15) };a22:=1

a32:=0
tr_delay(sp.)

a22 = 0 AND a32 = 1
/* Normal flow - Northbound */

m = 9; n = 10;
a22:=1
a23:=0
tr_delay(sp.)

a22 = 0 AND a32 = 1
/* Normal flow - Westbound */ N = { (0,0}, (-1,0), (1, 0), (0,1), (0,-1) };

B = {∅ };a22:=1
a23:=0
tr_delay(sp.)

a22 = 0 AND a23 = 1
/* Crossing the car on the right passes */

C is the cell space set, defined as C = {Cij / i ∈ [1,9], j ∈
[1,10]}, where each Cij is the cell-DEVS pollution
component;Model C (Highway)

Result Neighborhood state Z function is defined by the cells' neighborhood.
a22:=1
a32:=0
tr_delay(sp.)

a22 = 0 AND a32 = 1
/* Normal flow */ Let us suppose that Xlist2 = { (20,5) } is the cell in model B

where cars from the neighborhood enters into the highway.
Ylist2 = {(1,1)} is the connection from the neighborhood into
this entrance to the highway. Let us suppose that cell (1,15)
receives pollution from the factory, and cell (2,15) receives
similar values from the highway. These values are diffused
through the cell space to simulate the pollution of each block
in the neighborhood.

a22 := 1
a33 := 0
tr_delay(sp.)

a22 = 0 AND (a32 = 0 AND a33 = 1
AND a23 = 1)
/* Surpassing by the left */

a22 := 1
a31 := 0
tr_delay(sp.)

a22 = 0 AND (a32 = 0 AND a31 = 1
AND a21 = 1)
/* Surpassing by the right */

Hence, Xlist1 = { (1,15); (2,15) }; Ylist1 = { (5, 15) }.
Therefore, the Zij function for this model will be defined as:

Figure 4 - Specification of local transition rules

The example has been simplified by adding several
constraints (although the rules can be easily extended to
represent more complex phenomena). First, it is supposed that
the highway is one-way. The commercial neighborhood also
has one-way streets (Northbound or Westbound), and no
semaphores are modeled. In the pollution model, if a particle
stays in a cell for certain time, it is diffused to the neighbors.
The transport delays allow to model the acceleration delay of
the cars. The inertial delay has been used to model the
pollution diffusion (if a particle is removed by wind, pollution
does not expand).

Z12: Y(5,15)1→ X(20,5)3
Z21: Y2→ X(1,15)1

Y(1,1)2→ X(2,15)1

Output port Y(5,15) should be connected with the input port
X(20,5). An output port in model D should be connected with
X(1,15). Output port Y(1,1) of model C should be connected
with input port X(2,15).

Wolfram, S. 1986. Theory and applications of cellular
automata. Vol. 1, Advances Series on Complex Systems.
World Scientific, Singapore.

Zeigler, B. 1976. Theory of modeling and simulation. Wiley.

To complete the specification of the model, the user should
define the behavior of the border cells. To do so, the
specification language also can be used. Finally, the priorities
to treat simultaneous events should be specified. These are
used to classify the imminent cells in the cell space. It is used
to define the Select function of the DEVS specification (or the
dcon function if the R-DEVS (Chow and Zeigler 1994) forma-
lism is used).

Zeigler, B. 1990. "Object-oriented simulation with
hierarchical modular models". Academic Press.

Initial conditions for the cells and conditions to stop the
simulation cycle be defined. With these parameters, an array
of atomic cell objects is created, the influencees for each cell
are defined, and the simulation can proceed (Wainer et al.
1997).

CONCLUSION

This work was devoted to the presentation of paradigms for
cellular DEVS models. Inertial Delays and Transport Delays
constructions are also included, allowing to easily define
complex behavior of real systems.

The combination of these modeling techniques allows to
build tools to model complex problems. The specifications
allows the automatic definition of a complete DEVS model
with different submodels. These specifications are completely
independent of the simulators, and can be used to validate the
correctness of the model.

The use of a discrete events formalism as a basis improves
the precision of the models, and also reduces the execution
times of the simulations. At present, a simulation
environment based on these formalisms is being implemented
[Wai97b], and performance improvements have been
considered based on parallel implementations of the
simulators.

REFERENCES

Chow, A. and Zeigler, B. 1994. "Revised DEVS: a parallel,
hierarchical, modular modeling formalism". Proceedings of
the. Winter Simulation Conference.

Ghosh, S. and Giambiasi, N. 1996."On the need for
consistency between the VHDL language constructions and
the underlying hardware design". SCS pp. 562-567.

Wainer, G. and Giambiasi, N. 1997. "Modeling and
simulation of Cell-DEVS models". Technical Report TR-97-
004, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires. Argentina.

Wainer, G.; Frydman, C.; Giambiasi, N. 1997. "An
environment to simulate cellular DEVS models". Proceedings
of the SCS European Multiconference on Simulation. Istanbul,
Turkey.

