
AN ENVIRONMENT FOR CELLULAR DEVS MODEL SIMULATION

Gabriel A. Wainer § *

gabrielw@dc.uba.ar

Norbert Giambiasi §

Norbert.Giambiasi@iuspim.u-3mrs.fr

Claudia Frydman §

Claudia.Frydman@iuspim.u-3mrs.fr

§ DIAM-IUSPIM

Université d'Aix-Marseille III

Av. Escadrille Normandie Niemen

13397 Marseilles Cédex 20 - FRANCE

* Departamento de Computación

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Pabellón I - Ciudad Universitaria

Buenos Aires (1428) - ARGENTINA

ABSTRACT

In this work we present the features of a simulation

framework for cellular DEVS models. The goal is to al-

low the users the easy development of simulations based

on cellular DEVS models with high efficiency. To do so,

several changes to the basic DEVS class hierarchy and

modifications to the abstract simulation methodology are

introduced. The framework will execute these models in

parallel or distributed architectures to improve their

execution times.

1. Introduction

To build flexible, complex and highly precise automated

systems with a cost effective approach, tools and me-

thodologies for computer simulation are frequently used.

Simulation allows to manage high degree of complexity,

helping researchers and developers to model complex

phenomena that otherwise cannot be studied.

At present there are several different formalisms to spe-

cify simulation models. In this paper we are interested in

one of these paradigms, known as DEVS (Discrete

EVents Systems specification). It is a discrete event for-

malism proposed by Zeigler [Zei76], that allows modular

description of the phenomena to model and attacks the

complexity using a hierarchical approach. This approach

was later integrated with the notions of Object Oriented

programming [Zei90].

The model is described as a set consisting of a time base,

inputs, states, and outputs. Functions to compute the next

states and outputs are also included. The DEVS formal

representation of discrete event systems can be

mathematically handled (in the same sense of the diffe-

rential equations for continuous systems).

A DEVS model can be composed of atomic behavioral

submodels. Basic models are composed to conform

structural models called coupled models. As the forma-

lism is closed under closure, coupled models can be in-

tegrated to the simulation hierarchy. The use of hierar-

chical modeling allows the creation of a model Data

Base, permitting the reuse of created and tested models.

In this way the security of the simulations is enhanced,

reducing the testing time and improving productivity.

The Cellular Automata formalisms [Wol86] are well

suited to describe some kind of real complex systems

with different description levels. In general, time, space

and system states are discrete. A conceptual cellular au-

tomaton is an infinite regular n-dimensional lattice where

each cell in the lattice can take one value of a finite set.

The states in the lattice are updated according with a local

rule in a simultaneous and synchronous way. The cell

states change in discrete time steps according with a local

transition function using the present cell state and a finite

set of nearby cells (called the cell's neighborhood).

Figure 1. Sketch of a Cellular Automaton

Formally, a cellular automata is defined as CA=<S,N,T>.

S  Z is the set of values for the state, N is the

neighborhood, and T is the global transition function. The

local transition function is defined as follows. If aij(t) is

the state for cell (i,j) in simulated time t (two-dimensional

cellular automata), the automaton evolves according

with:

aij (t+1) = [ai-r,j-r(t),..., ai,j(t),..., ai+r, j+r(t)]

where  denotes the local transition function for the au-

tomaton. The parameter r specifies the region affected by

a given site (i.e., the neighborhood).

The use of cellular automata to simulate complex systems

requires large amounts of compute time, but in general, at

each time step there are several cells where actualization

is not needed. The use of a discrete time base also poses

restrictions in the precision of the model. The

asynchronous cellular automata formalism allows to

avoid these problems [Ove93].

The main aspect of asynchronous automata is their evo-

lution in continuous time. Events are instantaneous and

can occur asynchronously at unpredictable times. Higher

time precision can be achieved and periods of inactivity

in the simulation are skipped but explicit synchronization

of the cells must be done. In some cases this overhead of

event list handling can make the synchronous approach

behave better than the asynchronous one, specially when

there are a high number of active cells.

The goal of our project is to provide a framework to si-

mulate asynchronous cell spaces consisting of DEVS cell

models (one atomic model in each cell). The designers

should only know the underlying formalisms and build

the local transition functions, avoiding other im-

plementation questions. In this way, safety and deve-

lopment costs can be improved.

2. An environment for cell-DEVS simulation

Our goal is to build a simulation framework for cellular

DEVS models. Two different points of view have been

taken into account. From the user point of view, the idea

is to provide a user-friendly environment such that the

simulation activities can be accomplished in a safe and

cost-effective fashion. To do so, three aspects of Cell-

DEVS models have been taken into account: dimension,

influencees and behavior.

Figure 2. Modified class hierarchy.

From the designer's point of view, the environment is

based on the asynchronous automata formalism. This

approach has been taken because this formalism allows

better representation of the time, and also allows to

reduce the CPU time requirements. The DEVS formalism

is also used, taking as a basis a previously defined tool to

simulate DEVS models [Gia95]. We have modified the

class hierarchy defined in that framework (similar of

those of [Zei90]) to allow the definition of a complete

cell-space model in a parametric way.

The changes can be seen in the redefinition of the original

class hierarchy presented in figure 2. Recalling the

functionality of this hierarchy, we can see two main

classes derived of Entity class: Models and Processors.

Each model can be Atomic or Coupled. The new Atomic

Cell class redefines the Atomic one.

2.1. BASIC CELL BEHAVIOR

Each cell has a state set, a behavior and an actualization

delay. To represent the behavior of each cell, a simple

specification language for local transition functions has

been defined. In this way, the user of the environment can

define complete simulation models without

programming.

At present, this language only allows binary states and

transport-delay definition (in the future it will include

other discrete states different than binary values, and de-

lays with preemptive semantic). A compiler translates the

specification to the internal behavior representation of the

cell-DEVS models.

When an input message occurs, the external transition

function queries the state of each neighbor, and computes

the state of the cell. After that, the cell state affection is

delayed according with the transport delay of the cell (it

is added in the next-events list).

When the delay time has been consumed, it is verified if

the state has changed. In this case, the internal transition

function must be executed (otherwise, it is not activated).

Before calling the internal transition function, the output

function is executed and the new state is sent to the

coordinator. This is repeated for every input event stored

in the waiting queue. When this queue is empty, the cell

passivates. The coordinator sends the changes to every

cell in the neighborhood (as changes in one cell in-

fluences the neighbors).

2.2. HIERARCHICAL CELL SPACES

2.2.1. Hierarchical description

Following, the question relates with the dimension and

coupling of the models. A complete DEVS cell space is

automatically filled out by defining:

o Neighborhood: it defines the coupling of model

components (cells). The neighborhood can be lately

overloaded in the definition for each cell. In this

way, general cell spaces with non-uniform neighbo-

rhoods can be defined.

o Cell-space size.

o Borders (wrapped cell-spaces or self-state generating

borders).

o Initial state for the cell space.

o Priorities to treat simultaneous events: these are used

to classify the imminent cells in the cell space. It is

used to define the Select function of the DEVS

specification (or the con function if the R-DEVS

[Cho94] formalism is used).

With these parameters, an array of atomic cell objects is

created and the influences for each cell are defined. To

build a simulator the user only need to define these pa-

rameters and the local transition function (using the spe-

cification language).

The initial parameters for the DEVS cell space are loa-

ded, defining the coupling of the component sub-models.

This coupling is carried out using the information pro-

vided by the neighborhood. The internal coupling is de-

fined for each cell as a cell pair, with each cell in the in-

verse neighborhood. This is made because a cell is in-

fluenced by its inverse neighborhood [Zei76].

2.2.2 Simulation Processors

Processor sub-classes have also been redefined. As we

can see, there are different coordinators. First, the stan-

dard coordinator is associated with hierarchical coupled

cell models. When a coupled cell model is defined, the

internal coupling is set up (as previously stated), and a

hierarchical coordinator is associated with the coupled

model. Flat coordinators will be explained later.

Model interaction is carried out as in other coupled mo-

dels. The coordinator chooses the imminent model (in

this case, one cell), and sends its simulator a *-message.

When the simulator receives the message, the internal

transition function is activated. When an external mes-

sage arrives, an X-message is sent and the external tran-

sition function executed. The simulators return done and

Y-messages that are converted to new * and X-messages,

respectively. The messages are translated using the cell

coupling.

2.3. FLAT CELL SPACES

In hierarchical models, the interaction between models is

done through coordinators that communicate through

message passing. This message interaction increases

overhead of a hierarchical simulation.

To avoid this interaction, the model should be flatten.

The goal of a flat simulator is to avoid the interaction of

the translation functions, and to improve execution times.

A flatten simulator is implemented as an array of regis-

ters associated with the cells, including states, informa-

tion about the cell's influencees and other fields indica-

ting change of state. A next-event list is also maintained.

Here, the message interaction is not needed, as the cells

array is used to detect changes in the cell space, updating

the next-event list. The differences between the two

approaches can be seen in Figure 3.

The simulator starts detecting quiescent states for the cell

space initial state. Non-quiescent cells (v.g., those whose

state can change) are added in the next-events list ordered

by next-event time.

When the local transition function executes, it is checked

if the cell state has changed. In that case, the next event

time for the cell is created and added in the next-event list

for each cell lin the neighborhood. Previously, a Y-mes-

sage containing the cell state is created and transmitted to

the upper level coordinator. The coupling between cells is

done by using the inverse neighborhood (coupling

functions are avoided).

2.4. CELL MODELS IN THE MODEL HIERARCHY

To allow the integration of flat models with other DEVS

models, a new flat coordinator hass been also defined.

The idea is to allow the integration of flat cells models

with other models in a model hierarchy. In this way, the

outputs of a flat cell model can be the inputs of other

DEVS models through model coupling. The other models

can be also flat cell models, allowing the integration of

several devs models with different local transition

functions.

The flat coordinator is activated when a *-message is re-

ceived, and activates the corresponding cell simulator. X-

messages are simply added in the next-event list of the

simulator. Y-messages received from the flat simulator

(a) (b) (c)

Figure 3 - Cell space structures. (a) Basic cell space. (b) Definition using hierarchical coupled models. (c)

Definition using flat models.

 (a) (b)

Figure 19. Coordinator reaction to messages (a) Hierarchical (b) Flat.

are transmitted to the upper level coordinators (see figure

4).When the simulation finishes, a done-message is

created. This message can be sent to other models in the

system.

When a cell coupled model is saved in the model data

base we only record parameters for the model. When it is

reloaded, the model is converted in a flat one.

As the execution of this kind of models can be time

consuming, other extensions to allow parallel execution

are presented in the following section.

3. Parallel simulation of Cell-DEVS models

When complex systems are simulated, usually a high

number of computations are carried out. If the computa-

tions are carried out sequentially, it is difficult to obtain a

significant sample to study the desired problem.

Moreover, in this case, models that are inherently paral-

lel, must be executed sequentially. This is the case for

cell-DEVS models.

To improve the utilization of system resources, the en-

vironment will allow the execution of the cell models in

parallel. At present, many solutions to improve the per-

formance of the simulations using parallel and distributed

approaches (see, for instance, [Fuj90]). At present there

are two main approaches for asynchronous parallel

discrete event simulation: pessimist [Cha79] and optimist

mechanisms [Jef85]. Our goal is to study their perfor-

mance for Cell-DEVS models.

As stated earlier, cellular automata are inherently parallel.

As most cellular automata's formalisms rely on discrete

time steps we need to use asynchronous approaches such

as those ones presented in the previous section. The idea

is to improve execution times implementing coordinators

in a parallel or distributed fashion.

A flat coordinator is associated with to each processor,

syncrhonizing through optimist or pessimist approaches.

Each coordinator is coded as a logical process including

three event lists: a local event list, and input and output

links. The simulation is divided according with the power

of each processor to allow balanced distribution.

The coordinator selects locally the imminent cells to

simulate and produces an internal transition. Also X-

messages can arrive to each processor, locally or remo-

tely. As a result, Y and done-messages are generated and

transformed as explained in section 2. If the new event

belongs to the local processor, it is added in the local

next-event list. If destination cell does not belong to the

local processor, the message is added to the output queue,

and forwarded to other processor. There, it is added as an

input message.

As we could see in figure 2, different approaches

(optimist and pessimist) will be included using the re-

cently presented strategies. In this way, the chosen ap-

proach can be fitted to the application, obtaining impro-

ved results for each case.

4. Design and implementation: present status

We have organized the analysis and development of the

environment in stages proposing a layered design orga-

nized in four layers (see figure 5).

Layers 2 and 3 include the class hierarchy presented in

section 2. A main goal of layer 2 will be to provide an

interface between the DEVS class hierarchy and the avai-

lable operating environment. In this way, changing the

parallel layer the tool can run in different programming

plattforms with few changes. This layer will execute the

functions defined in section 3, and optimize the execution

of the cellular DEVS models distributing the execution

load.

At present, our work is focused in developing Layer 3.

The implementation of atomic cellular models and cou-

pled cellular models, and the implementation of the abs-

tract simulator are being finished.

Figure 5. Layered design of the environment

Layer 2 will be implemented as a class library using op-

timist and pessimist approaches. As stated earlier, the

Cell-DEVS coordinator will run in parallel and we will

test several of the proposed heuristics. To improve pa-

rallel execution, the environment will be implemented

using the R-DEVS formalism [Cho94], that allows pa-

rallel execution of the DEVS models.

Several conditions will also be tested: Optimist vs. pes-

simist approaches, influence of the processing order of

the local and external event lists, and self-adjustment of

parameters of a Rollback Number model that has been

defined.

Finally, Layer 4 will be devoted to test the efficiency of

the algorithms, using complex cellular models. We have

put into consideration the simulation of cellular com-

munications, urban traffic, hydrology problems and rou-

ting in massively parallel computers. This layer will

provide an environment used to test a specific problem,

and to see the efficiency of the previously implemented

algorithms and the parallel framework.

The applications will have as main goal to test the newly

developed environment, and to analyze its performance.

Special emphasis will be put in significant metrics, such

as acceleration of the parallel models, throughput and

execution performance. Rollback number, null messages

(to study the merit of the parallel algorithms imple-

mented) and finally, application development and

maintenance times also will be studied.

5. Conclusion

In this work, the definition of an environment to simulate

cellular models in an efficient fashion has been presented.

The DEVS and asyncrhonous Cellular Automata

formalisms have been employed as a base.

The utilization of a discrete events formalism such as

these ones can provide better precision and performance.

The use of a formal modelling technique is also crucial to

improve development and maintenance costs of the

simulators. Its use can also provide better system un-

derstanding.

To improve execution times, the hierarchical models has

been flattened. They also can run in parallel. To do so,

traditional optimist and pessimist approaches will be

used, and they will be adapted to run this kind of models.

As a result, a high performance environment for cellular

models will be provided. The developer is free of the

implementation details of the underlying formalisms. He

only must be concerned with the definition of a parameter

set and a local transition function defined through a

specification language, allowing him to concentrate in

high-level decisions and avoiding implementation issues.

References

[Cha79] CHANDY, K; MISRA, J. "Distributed simula-

tion: a case study in design and verification of distributed

programs", IEEE TOSE, September 1979.

[Cho94] CHOW, A.; ZEIGLER, B. "Revised DEVS: a

parallel, hierarchical, modular modeling formalism".

Proceedings of the. Winter Simulation Conference.,

1994.

[Fuj90] FUJIMOTO, R. "Parallel Simulation of Discrete

Events". CACM Vol. 33. No 10. 30-53. 1990.

[Gia95] GIAMBIASI, N.; FRYDMAN, C.; ESCUDE, B.

"Hierarchical/Multi-view modeling and simulation". In

Proceedings of the 7th. European Conference on

Computer Simulation. 1995.

[Jef85] JEFFERSON, D. "Virtual Time". ACM TOPLS,

7(3): 404-425. July 1985.

[Ove93] OVEREINDER, B.; SLOOT, P.; HERZ-

BERGER, L. "Time-Warp on a Transputer platform: pilot

study with asynchronous cellular automata". Technical

Report, University of Amsterdam. 1993.

[Wol86] WOLFRAM, S. “Theory and applications of

cellular automata”. Vol. 1, Advances Series on Complex

Systems. World Scientific, Singapore, 1986.

[Zei76] ZEIGLER, B. "Theory of modeling and simula-

tion". Wiley, 1976.

[Zei90] ZEIGLER, B. "Object-oriented simulation with

hierarchical modular models". Academic Press, 1990.

