
Improving the performance of local real-time
scheduling

Gabriel A. Wainer

Computer Sciences Department.
Facultad de Ciencias Exactas y Naturales.

Universidad de Buenos Aires.
Charcas 3960 7mo. 43 (1425).

Buenos Aires. Argentina.
PHONE: (054)1-832-2023. FAX: (054)1-783-0729.

E-MAIL: gabrielw@dc.uba.ar

Abstract

In this work we show the results of two simple strategies to improve the per-
formance of local real-time schedulers. The main goals are to increase system
stability under transient overloads and to improve the use of system
resources when tasks have stochastic execution times. To do so, we use
traditional schedulers combined with a multiple queue algorithm and an on-
line guarantee test. Results obtained through simulation allowed to detect
improvements in system time loading and stability.

Keywords: Real-Time scheduling.

1. INTRODUCTION

In Real-Time systems the moment when a result is
computed is as important as its logical correctness.
One way to meet systems' timing constraints is to
rely on a real-time scheduler. The scheduler should
study system predictability, but the diversity of
restrictions in these systems makes it an NP-hard
problem.

There are different ways used to lower the
complexity of the guarantee tests. Several solutions
consider all the system's restrictions (including
timeliness, criticality, precedence, concurrence,
communication, and so on) and employ heuristics
to reduce the search time. Another approaches use
simpler task models to solve less generic problems
(most of the local schedulers use this policy).
These simple task models are usually improved to
solve new problems, but the extra complexity (and

overhead) makes the solutions impractical. In this
work we present simple techniques to improve the
performance of traditional local real-time schedulers
without adding much overhead. The policies can be
combined with different existing task models, and
can be used with static or dynamic schedulers, but
the schedulability analysis must be on-line.

One goal is to improve stability allowing the
execution of the most crucial tasks when the system
is overloaded. We also want to increase resource
use when the execution times are below the worst
cases.

2. IMPROVING STABILITY

Several scheduling algorithms rely on a well-known
task model, usually called the periodic task's
model. It considers the existence of two different
kinds of tasks to schedule: the periodic and spo-

radic (aperiodic) ones. Periodic tasks have a
continuous series of regular invocations (whose
time is called the period), and a worst case
execution time (WCET). The task deadline is at the
beginning of the next period. Aperiodic tasks have
arbitrary arrival time and deadline, and a known
WCET. When they are invoked, they execute only
one instance. Some widely used algorithms with
this model include Rate Monotonic (RM), Earliest
Deadline First (EDF) [Liu73], and Least Laxity First
(LLF) [Mok79].

A transient overload exists when no schedule can
meet the timing constraints of every task in the
system. Algorithms such as EDF or LLF have
erratic behavior under transient overloads, because
they choose arbitrary tasks, avoiding the
completion of the most crucial ones. Other
algorithms (for instance, RM) are stable, but
presume that the most critical tasks are those with
short activation period. There are cases where this
is not adequate, as we need to run highly crucial
tasks with long activation frequency. Hence, our
first goal is to selectively lock tasks with little
criticality to improve the success of the most crucial
tasks.

Usually, real-time tasks are classified in hard and
soft real-time. For hard real-time tasks, to meet the
timing constraints is crucial (loosing deadlines may
lead to catastrophe). Soft real-time deadlines can be
missed occasionally with only a degradation in
performance (the system is still operative).
Recently, the term firm real-time has been defined
to include hard real-time systems that can tolerate
to miss deadlines with low probability [Lap93]. Our
goal will be to insure the timely execution of the
harder real-time tasks under transient overloads,
using a periodic task model.

First, we use any of the existing strategies
(including, for instance, value functions) to give a
criticality level to each task. Then, we use a multiple
queue algorithm to classify tasks accord ing their
criticality. Hard real-time tasks are kept in the first
queues, and the soft ones, in the low levels,
reducing the overhead for queue management.
When the system is not overloaded, tasks are
chosen using a traditional scheduler. The
multiqueue is implemented as a container divided in
levels, where tasks also are chained using a
traditional basic algorithm.

If the system is normally loaded, we use the base
scheduler. When an overload is detected, we use
the multiple queue, choosing tasks from the higher
levels. Tasks in the lower levels are chosen when
the upper levels are empty. As the least critical

tasks are kept in the lower level queues, they are
automatically delayed. When the overload finishes,
we return to the base algorithm, and the delayed
tasks are restored. The main advantage of this
strategy is the little overhead introduced to lock the
tasks to delay.

(a)

(b)

Figure 1. Basic structure of the scheduler. (a)
Multiqueue structure (used when there is an
overload); (b) Chained Process Control Blocks
divided in multiple queues.

To insure predictability, we choose the most critical
tasks using the basic guarantee tests, and keep
them on the high level queues. In this way, the
critical task set can run predictably. System time
loading is kept to the maximum, because if there are
no tasks in the high level queues, those in the lower
levels are chosen. When there is an overload, a new

task will be accepted only if it fits in the critical
class and the new critical set is still schedulable.

The least critical tasks could be sent to other
processors (if available) to insure their execution.
We also could run alternative imprecise tasks using
less processor time. The early detection of timing
failures allows to have enough time for these
procedures, meeting a higher number of deadlines.

One problem is how to divide the ready queue in
classes. The simplest way is to leave this decision
to the designer. At present we are experimenting
with different strategies to classify the system tasks
(they will be included in the final version).

3. SCHEDULING TASKS WITH VARIABLE
COMPLETION TIME.

The periodic task models use the WCET to study
the schedulability of the task sets. Even there are
techniques to estimate this time accurately due to
program structure the time can be over the actual
execution time.

Hence, if we use the WCET, processor time can be
wasted. A task set can be highly underloaded but a
new task can be rejected by the guarantee tests.
We made experimental studies of tasks' execution
time and could see that it behaves as a random
process with Gamma distribution (similar results can
be found in [Tia95]). We will increase processor use
an on-line schedulability test consid ering
stochastic execution times.

Let us call

. ω, to the total time of a time window, equal to the
l.c.m. of the periodic task's periods;
. T, the beginning of the time window;
. t ∈ [T, T+ω], the instant where the schedulability
analysis is done;
. τ = {τ1, ..., τn}, a task set consisting of n tasks;
. Tj, a task period (or deadline in the case of
aperiodic tasks);
. Cj ≤ Tj, a WCET (Cij, the exe cution time of the i-
eth instance of task τj);
. ε(t) = {j / instance τj finished in time t } = { j / j
∈ [0, t / Tj where τj is a periodic task} U { j / τj is
a sporadic task }, set of instances finished on time
t; and
. Cij' ≤ Cij, the actual execution time of the i-eth
instance of task τj (run before t).

Hence, if

Cij' + qj Cj >
i

•
∈∈ ∈
∑∑ ϖ

j [1,n], j [1,n]ε(t)

(where qj = 1 if τj is an aperiodic task to run in the
window but not yet completed, and qj = ω / Tj -
 t / Tj for periodic task τj in instant t), the task set
is not schedulable.

The first term represents the total time executed by
instances of τj up to the instant t . The second term
is total of WCETs from t up to the end of the
window. If this inequality holds, there is at least
one instance (the last in the window) that cannot
meet its deadline. Hence, the task set is not
schedulable. For Earliest Deadline algorithms, this
is a sufficient and necessary condition for
schedulability [Wai96].

The routine can be used for both sporadic and
periodic tasks. The strategy is specially useful to
include sporadic tasks in overloaded systems.
When a sporadic instance arrives, the
computations made using the actual processor time
could admit it and run it predictably.

To allow predictability for hard real-time tasks, we
must combine this technique with other
approaches. For instance, we could use a
probabilistic schedulability test, such as the one
presented in [Tia95], and reject the tasks with high
chance to lose deadlines. In the present case, we
will lock the least critical tasks using the strategies
of section 2. When both strategies were compound,
the system achieved higher resource use and
number of deadlines met.

4. RESULTS

The stated strategies were applied to the three
traditional algorithms mentioned in section 2, using
the schedulability tests provided by those ap-
proaches. The algorithms were tested using AgaPé-
TR, a tool to analyze real-time schedulers [Wai96].
We used this tool to generate two kinds of load.
The first one used a Gamma distribution for
execution times with a mean close to zero. The
second one used a Gamma dis tribution with a mean
close to the WCET.

The tool simulates different task loads and collects
information about several metrics. To do so, it uses
an experimental frame generating task loads using
the Hartstone benchmark [Wei89]. The metrics
include the relative success ratio (relationship
between the successful instances and total
instances), time loading (percentage of useful
processing), preemptions, context switches and idle

processor time. The stability is analyzed computing
the relative guarantee ratio weighted by the tasks'
criticality.

Below, we can see some figures related with the
results obtained by simulation. M is the simple
Multiqueue algorithm and C is the M one with
stochastic execution times close to the WCET. R is
the combination between M and random execution
times close to zero. Each figure represents a
different metric with a variable degree of offered
system loading (represented on the X axis). The
offered load measures the load as declared by the
system designer. We studied the worst case values
for each case. When considering the guarantee
ratios, we use the minimum ones; when studying
measures related with the system overhead, the
maximum cases are presented.

(a)

(b)

(c)

(d)

Figure 7. Guarantee ratio behavior. (a) Periodic
Harmonic tasks. (b) Periodic Harmonic tasks
(weighed G.R.). (c) Periodic Non Harmonic tas ks. (d)
Periodic Non Harmonic tasks (weighed G.R.). (TM:
Rate Monotonic; LF: Least Laxity First).

(a)

(b)

(c)

(d)

Figure 8. Guarantee ratio behavior. (a) Periodic and
Aperiodic Non Harmonic tasks. (b) Periodic and
Aperiodic Non Harmonic tasks (weighed G.R.). (c)
Only Periodic Non Harmonic tasks (weighed G.R.).
(d) Only Aperiodic Non Harmonic tasks (weighed
G.R.). (DF: Earliest Deadline First).

(a)

(b)

(c)

Figure 9. Overhead related measures. (a) Pre-
emption percentage. (b) Context switch percentage.
(c) Idle time. (DF: Earliest Deadline First).

As we can see, the R versions behave better in
every case. This is an obvious result, as we run
tasks leaving idle time. In this case, the new
strategy allows to include a higher number of tasks
and to meet their deadlines. We also can see there
is almost no difference between C and M versions,
specially in cases when running harmonic periodic
tasks. The difference is more noticeable when
running non harmonic tasks. This happens because
when we run periodic harmonic tasks a 100% of
guarantee ratio can be achieved. As the M
algorithm selects the most critical tasks, the
processor is loaded up to 100%. This is not true for
the non harmonic cases where there are more tasks
delayed (and several deadlines missed).

In every case, the difference increases when we
study the weighed guarantee ratio. This is another
obvious result, as the solutions are oriented to
increase this metric in overloaded systems. The
differences are higher when we combine our
strategies with unstable algorithms such as EDF or
LLF.

In some cases the guarantee ratio of the M version
behaves worse than the base one (this is not true
for the weighed ratio). This problem occurs because
we have used pure criticality values without paying
attention to task periods or deadlines. This problem
can be avoided using techniques such as Sporadic
Servers [Spr89] or value functions (BEF, D*, and
others [Mar95]).

Context switches and preemptions have been
highly reduced. A singular behavior can be seen in
Figure 9: task preemptions and context switches
reduce when the overload increases. This happens
because when the task set is highly overloaded
there are several tasks that cannot even start its
execution, reducing the number of preemptions and
context switches.

Finally, we have studied the idle time available.
Again the R version provided good results and the
behavior of M and C solutions are alike. They also
produced higher idle time than the original
algorithms. When techniques to run alternate
routines are employed, the overhead introduced by
these approaches can be reduced as we will have
more time to run mandatory tasks.

5. PRESENT WORK AND CONCLUSION.

In this work we have presented schemes to improve
the performance of traditional schedulers. To test
them, we have mixed the new policies with

traditional algorithms with significant
improvements.

The goal of our policies was to increase processor
allocation, enhancing the merit of local algorithms.
System predictability could be increased, attaining
to a higher number of time critical tasks meeting
their deadlines. Besides, the time loading also
increased, permitting the completion of task sets
that, otherwise, could not have been executed.
Finally, system stability was also enhanced. The
association of both strategies presented allowed to
meet these goals.

At present we are studying the influence of running
tasks with precedence constraints. We are also
simulating the use of different value functions to
select the most critical tasks combined with the
stochastic task model. We also have started to
study how to mix the strategies with fault-tolerant
scheduling techniques.

6. REFERENCES

[Lap93] LAPLANTE, P. "Real-Time systems. Design
and analysis. An engineer's handbook". IEEE Press.
1993.

[Liu73] LIU, C.; LAYLAND, J. "Scheduling al-
gorithms for multiprogramming in a Hard Real Time
System Environment". Journal of the ACM, Vol. 20,
No. 1, 1973, pp. 46-61.

[Mar95] MARTINEAU, P.; SILLY, M. "On -line
scheduling algorithms for overloaded Real-Time
Systems". Proceedings of the 3rd. IFAC/IFIP
Workshop of Algorithms and Architectures for
Real-Time Control. (5) 1995.

[Mok78] MOK, A.; DERTOUZOS, M.
"Multiprocessor scheduling in a hard real-time
environment". Proceedings of the Seventh Texas
Conference on Computing System. 1978.

[Spr89] SPRUNT, B.; SHA, L.; LEHOCZKY, J.
"Aperiodic task scheduling for hard real-time
systems". J. Real-time systems, Vol. 1, No. 1, 1989.
pp. 27-60.

[Tia95] TIA, T.; DENG, Z.; SHANKAR, M.;
STORCH, M.; SUN, J.; WU, L.; LIU, J. "Probabilistic
performance guarantee for real-time tasks with
varying computation times". Proceedings of the
1995 IEEE Real-Time technology Applications
Symposium. Chicago, Illinois. May 1995.

[Wai96a] WAINER, G. "AgaPé-TR: a tool to
simulate real-time scheduling algorithms".
Submitted to AARTC '97. (1996).

[Wai96b] WAINER, G. "Techniques to improve
local real-time scheduling". Internal report. FCEN-
UBA. (1996).

[Wei89] WEIDERMAN, N. "Hartstone: synthetic
benchmark requirements for Hard Real-Time
applications". Technical Report CMU/SEI-89-TR-23.
Carnegie Mellon University. Software Engineering
Institute.

