
ALPHA-0: A SIMULATED COMPUTER AS TOOL FOR COMPUTER

ORGANIZATION COURSES

Gabriel A. Wainer.

gabrielw@dc.uba.ar

Departamento de Computación

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Pabellón I - Planta Baja - Ciudad Universitaria

(1428) Buenos Aires. Argentina.

ABSTRACT

The study of computer organization in Computer Sciences

courses leaves the students with an uncomplete

knowledge of the different subsystems studied. Alpha-0 is

a set of simulation tools built to study the different levels

of a computer system. The tools showed to help in the

fully comprehension of these complex systems. It also

allowed to make empirical comparison and performance

studies in the first years of undergraduate studies.

Keywords: Computer organization, computer system

levels, architectures, performance evaluation.

1. INTRODUCTION.

The theoretical study of computer architecture and

organization usually give the students an incomplete and

sometime erroneous view of how a computer system

works. Computer organization bibliography [1, 2, 3, 4]

usually emphasizes the basic behavior of the logical sub-

systems of a computer. The lack of practical experience

can make that the underlying complexity of the subsys-

tems, and their interaction could not be completely un-

derstood. The main problems are related with the exist-

ence of several levels used when studying computer or-

ganization. The levels usually analyzed include assembly

language, instruction set, microprogramming and digital

logic. The introduction of higher levels (programming

languages, Operating Systems) makes the task even more

complex.

The inter-level interaction can make the the system

execution as a whole to be confused. Also, the detailed

behavior for each of the subsystems can be complex to

analyze. The existence of hardware or software tools with

educational purposes in this area is reduced, making diffi-

cult to make the concepts clear through practice.

This work was partially supported by the project SECYT

EX-003 of the Universidad de Buenos Aires.

In this work we propose to analyze these complex

systems by using simulation to build a simple computer.

Alpha-0 is a simulated computer built with academic pur-

poses. It allows to understand the behavior of a computer

system from the architectural point of view, also permit-

ting to make performance analysis of the subsystems.

Each of the system's levels was simulated individually, so

a complete panorama of them can be obtained. It also

allows to understand the complete behavior of the system

and the interaction between levels. Different tools were

built for each of the levels, and they will be analyzed in

the following sections.

2. A DIGITAL LOGIC LIBRARY.

To understand the behavior of the basic circuits of

a computer [1], a Digital Logic Library was built. The

library was implemented as a C++ class library, allowing

hierarchical construction of complex circuits [5]. The idea

was to build complex circuits based on primitive compo-

nents: the logical gates AND, NOT, OR, NOR and XOR.

(the last two were derived from the first ones). Lower

physical levels (transistor level and their connection) were

not considered. Using the basic logical gates, higher level

circuits were built. The following were included:

. Comparator: it simulates a circuit comparing

two inputs (Figure 1a), and determining which one is dif-

ferent from the other (including also inequality compara-

tors).

. Multiplexor: input lines are detected, choosing

one of them to see if its status. This value is output, ignor-

ing the values of the rest (Figure 1b).

. Decoder: it activates the output line (2n outputs)

corresponding to the number composed by the input lines

(n inputs - Figure 1c).

. D-latch: these circuits simulate the storage of in-

formation into the processor. The d-latch stores one bit,

and it is driven by the pulse of a clock (Figure 1d).

. Adder: it adds two bits by considering a third in-

put representing the carry bit. The result of the addition

and the propagation of the carry are returned (Figure 1e).

. Shifter: it shifts a set of bits one bit to the left or

the right, filling the empty places with zeros (Figure 1f).

. Register: it is built by connecting several d-

latches (Figure 1g).

(a)

 (b)

(c)

(d)

(e)

(f)

(g)

Figure 1. Library Circuits (a)Comparator(b)Multiplexor

(c)Decoder (dD-Latch (e)Shifter (f)Adder (g) Register.

. One-bit ALU: the unit has only four one-bit op-

erations: ADD, AND, OR and NOT. The class was built

using the decoder and adder units, showing of the use of

simple circuits used to build complex ones (Figure 2).

Figure 2. One-bit ALU.

. N-bits ALU: it was built by connecting several

one-bit ALUs. A row of one-bit ALUs should be connect-

ed, linking the carry-out of each of them with the carry-in

of the next.

. Memory: a simple 4x3 bits' memory was imple-

mented. It is too specific and has little flexibility, but the

purpose is to show how a complex circuit can be built

from d-latches or registers and it can help to analyze the

behavior of a simple memory. It was not included in the

library, therefore, it cannot integrate other models. It use

input address, and q Read/Write line to indicate the de-

sired operation. An output line is used to show the present

value in the actual address.

The size of the circuits is dynamic, and the library

also has been provided with a graphical interface allowing

to see the circuit basic schemes (Figures 1 and 2 were

generated using the library). The interface also shows the

changes in the input lines' values, allowing to study the

detailed behavior for each circuit.

Performance checking routines were implemented.

Their goal was to compare the speed of the simulated

circuits with that of the real circuits. Each circuit was

measured using 10.000 operations, using 16 bits circuits

and variables (real and simulated). The were the follow-

ing:

. Left shifts using a simulated and a real shifter:

SHIFTER tests (seconds)

 Total Avg. per op. Std. dev.

Real 0,002 2,083x10-7 3.62x10-7

Simulated 0,237 2,374x10-5 3.97x10-7

Simulated (GUI) 0,289 2,899x10-5 4.12x10-7

. Assignment to a 16 bit register.

REGISTER tests (seconds)

 Total Avg. per op. Std. dev.

Real 0.002 1.579x10-7 6.12x10-7

Simulated 0.503 5.033x10-5 1.89x10-7

Simulated (GUI) 0.525 5.254x10-5 3.90x10-7

. Two values' addition using the real and simulated ALUs.

ADD tests (seconds)

 Total

time

Avg. per op. Std. dev.

Real 0.00197 1.971 x 10-7 3.554x10-7

Simulated 8.66677 0.0008666 2.058x10-6

. Bitwise OR for 16 bits operands (ALU).

OR tests (seconds)

 Total time Avg. per op. Std. dev.

Real 0.001785 1.786 x 10-7 7.029x10-7

Simulated 8.80792 0.00088079 2.089x10-6

3. MICROARCHITECTURE LEVEL

As a second step, the circuits in the digital library

were used to simulate the execution of a micropro-

grammed processor [6]. The microarchitecture compo-

nents are supposed to be connected by a single local bus.

The Control Unit executes a microprogram for each in-

struction, using a predefined language that allows to de-

fine the input and output flow between the processor's

components, and its communication through the local bus.

The main goal of this level is to define the behavior

for each of the instructions defined for the processor.

Though instruction set was based in that of the SPARC

processor (a RISC processor whose Control Unit should

be hardwired), the processor is microprogrammed with

instructional purposes.

Figure 3. Structure of the simulated microarchi-

tecture.

It is supposed that the memory, processor and in-

put/output subsystems are connected by synchronic buses.

The delays for each microoperation were also specified,

so the total execution time for each instruction can be

computed. Each microinstruction can be traced, showing

the status of the local bus and registers and the data path.

A cache memory with 64 bytes' cache was also

simulated [7]. It has 32 words divided in 8 blocks of 8

bytes each. Several algorithms were tested, including Di-

rect, Associative (FIFO, LFU, Random, LRU), and Set

Associative Mappings. Various tests were executed, com-

paring the execution time of the microcode operations

using the original simulator and the ones with cache

memory.

 Test 1 Test 2 Test 3 Test 4

Non-cached 3602 2157 2466 1691

DM 3285 1975 2272 1597

AM (FIFO) 3278 1969 2274 1585

AM (LFU) 3331 2008 2318 1619

AM (Rand.) 3285 1978 2286 1585

AM (LRU) 3279 1969 2274 1582

SAM (Rand.) 3200 1949 2235 1567

SAM (FIFO) 3179 1955 2229 1545

SAM (LFU) 3183 1958 2246 1562

SAM (LRU) 3182 1955 2240 1545

1500

2000

2500

3000

3500

N
o
n
-

c
a
c
h
e

d A
M

(L
F

U
)

S
A

M

(R
a

n
d

.)

S
A

M

(L
R

U
)

C
lo

c
k
 c

y
c
le

s Test 1

Test 2

Test 3

Test 4

Figure 4. Test results of caching with different

policies.

4. INSTRUCTION SET LEVEL ARCHITECTURE

The next level to be defined was the instruction set.

As stated earlier, a RISC computer was simulated, allow-

ing to use a RISC platform in low cost processors. The

SPARC architecture was chosen as reference to build the

simulator. It executes a subset of the SPARC instructions

and allows to follow the execution flow of a program. The

changes of values in registers and memory can be studied

step by step. The complexity of the simulator was reduced

by restraining the complexity of the SPARC architecture.

The simulated architecture has the following features [8]:

. It executes a subset of the SPARC instructions.

. It addresses one word at a time.

. It does not access to memory using delays.

. Delayed jumps are not implemented.

. The jumps use absolute addresses.

. The instruction set interpreter simulates the exist-

ence of a data and instruction memories.

The simulator uses this basic organization, also

based on the SPARC architecture. There are 520 registers

of 32 bits each, organized in overlapping windows. In any

instant there are only available 32 of the registers. The

available registers are shown in the Table 1, and are orga-

nized in four groups.

Name Group

%G0 .. %G7 Global registers.

%I0 .. %I7 Input parameters registers

%L0 .. %L7 Local registers

%O0 .. %O7 Output parameters registers

Table 1. General use registers.

The Table 2 includes the special purpose registers

chosen from the SPARC architecture:

Name Use

%G0 Always zero. No value can be assigned.

%I7 Return address to be executed when the pre-

sent procedure is finished.

%O7 Used to pass the return address.

Table 2. Special purpose registers.

As stated earlier, the instruction set was reduced.

The chosen subset includes the following instructions

(further information can be found on [8]): LD, ST, ADD,

ADD, SUB, SUBCC, BEQ, BNE, BLE, BLT, BGE,

BGT, B, CALL, RET.

There are two registers not available to the pro-

grammer. One is the Program Counter (PC), containing

the address of the next instruction to be executed. The

other is the Program Status Word (PSW). The execution

flow can be monitored by using the user interface defined

in the Appendix.

5. ASSEMBLY LANGUAGE LEVEL

An assembly language was also provided for the

Alpha-0 processor. The goal is to build user programs to

test each of the components. The assembly language was

built using a two-pass translator. Each program is com-

posed of Assembly language directives, data definition

directives, instructions, labels, constants, and comments.

The directives indicate to the translator how to manage

the following program lines. There are three directives:

#DATA, #PROGRAM, #END. The #DATA pseudo-

instruction is used to tell that the following lines are used

to define data in memory. Three kinds of data can be de-

fined: 32 bit words, word arrays, and character arrays.

Instruction lines cannot be included before the

#DATA directive, that can be used to define the memory

size. #PROGRAM tells that the following lines include

valid instructions of a program. The program execution

will start by the first instruction found after this directive.

The sentence also admits an optional parameter indicating

the size for the instruction memory, expressed as an in-

struction size. The default value is of 512 instructions,

and the sizes can be adjusted to execute larger or smaller

programs. Finally, #END indicates the program area's

end.

The translation is divided in two phases. First, it

parses each line and if a label is found, it stores it into a

symbol table together with its location. If the line contains

an instruction whose operand is a previously defined la-

bel, it verifies if is stored in the symbol table. If not, it

stores it and it also records this value into an auxiliary

table (to verify if it is external). The second pass reads

each program line and it stores the value for each label

(detecting external references, that remains unsolved and

added into a symbol table). Finally, it codes the instruc-

tion. The symbol table is used to make a linking pass,

parsing the symbol table and relating the parts. The table

contains the label for the symbol, and its relative address.

All the information recorded into the symbol table is

loaded into memory. Using this information an external

references table is created. The linker routine loads all the

executable code into an array, taking one object file at a

time. The executable code is copied, and the unsolved

external references are replaced (using the symbol table).

6. CONCLUSION

In this work a complete set of tools used to simu-

late a simple computer was presented. The tools can be

used in computer organization courses to analyze and

understand the basic behavior of the different levels of a

computer system. The interaction between levels can be

studied, and experimental evaluation of the system can be

done.

A basic instruction set and assembly language were

built. Both of them are based on the SPARC architecture,

 Status bar Command Line

Registers /

Memory

Program listing.

(1) File name

Interpreter messages

allowing to study the main features of this processor, ana-

lyzing features not existing in simpler processors. Several

basic circuits were also implemented, allowing to build

the computer by using them. Finally, both levels were

connected by using microprogramming.

The use of this set of tools allowed the students to

obtain a complete understanding of computer organiza-

tion. A tow-down or a bottom-up approach can be used to

build a part or a complete computer system. Experiences

with the top-down analysis allowed to obtain significant

results. For instance, some students groups discovered

microprogramming concepts before its conceptual defini-

tion in the course.

At present, the set of tools is being completed by

including a complete input/output subsystem set. The

main input/output devices, the input/output interfaces,

DMA controllers and channels will be simulated. Differ-

ent transference techniques (polling, interrupts, DMA)

will be considered to implement the input/output electron-

ics. The tools are public domain, and can be obtained at

"http://www.dc.uba.ar/people/materias/oc1".

7. REFERENCES

[1] TANENBAUM, A. S., Structured Computer Organi-

zation, 4th. edition, Prentice Hall, New Jersey, 1996.

[2] VAN DE GOOR, A. Computer Architecture and De-

sign. Addison-Wesley. 1989.

[3] STALLINGS, W. Computer Organization and Archi-

tecture. Macmillan, New York. 4th. Edition. 1996.

[4] HENNESY, J.; PATTERSON, D. Computer Architec-

ture: a quantitative approach. Prentice Hall International.

1994.

[5] FERRARI, A.; ROMANO, S.; WAINER, G. "Imple-

mentation of a digital logic library". (in Spanish). Pro-

ceedings of INFOCOM ARGENTINA ‘98. 1998.

[6] BEVILACQUA, R.; PATARO, G.; WAINER, G. et

al. Computer architecture and Operating Systems (in

Spanish). To be published by Nueva Librería S.A. 1996.

[7] ROMERO ZALIZ, L.; WAINER, G. "Implementation

of a simulated cache memory for the Alpha-0 processor".

(in Spanish). Internal report, Departamento de Com-

putación, FCEN/UBA. 1998.

[8] TROCCOLI, A.; WAINER, G. "CRAPS: a simulator

for the SPARC processor " (in Spanish). Proceedings of

INFOCOM ARGENTINA ‘98. 1998.

APPENDIX

Programa: test1.asm

 0000 add %L0, 1, %G0

 0001 add %L1, 2, %G0

 0002 add %L2, 3, %G0

 0003 add %L3, 4, %G0

 0004 add %L4, 5, %G0

 0005 add %L5, 6, %G0

 0006 add %L6, 7, %G0

 0007 add %L7, 8, %G0

 0008 add %I1, 9, %G0

 0009 add %I2, A, %G0

 Registros

 0 1 2 3 4 5 6 7

 G 00000000 07200720 07200720 07200720 07200720 07200720 07200720 8E00004D

 I 0720077E 07200720 07200720 07200720 07200720 07200720 07200720 07200720

 L 07200720 07200720 07200720 07200720 07200720 07200720 07200720 07200720

 O 07200720 07200720 07200720 07200720 07200720 07200720 07200720 07200720

Digame>

Estado IP: 0000 Flags cero:0 signo:0 Bloqueado:0

Figure 5. User interface organization.

