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ABSTRACT 

The present work presents the inclusion of several 
real-time services provided in real-time operating 
systems, and incorporates these features in a recent 
version of the MINIX operating system. The most 
recent extensions allow the incorporation of fault 
tolerant schemes. The services are being used in a 
bottle-filling plant prototype to test real-time 
capabilities of the operating system. 
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Scheduling Algorithms, Fault Tolerance. 

1. INTRODUCTION 
 
Real-time systems are those systems in which the 
correctness depends not only on the results 
obtained, but also on the time at which these results 
are produced. These timing constraints are usually 
attached to processes (or tasks). 
 
Real-time systems span from microcontrollers in 
automobile engines to very complex applications, 
such as aircraft flight control or process control in 
manufacturing plants. Nonetheless, a real-time 
system consists generally of a control system and a 
controlled system. Information about the 
environment is provided via sensors, and the 
system can in turn modify the state of the 
environment through actuators. Failure in meeting 
the tasks’ deadlines can lead to catastrophic 
consequences. 
 
As many other computer applications, real-time 
systems are usually built by using the services 
offered by an operating system. In this case, the 
services provided should be slightly different than 
the case for traditional applications. It should 
provide basic support for predictability, satisfaction 

of real-time constraints, fault tolerance and 
integration between time-constrained resources and 
scheduling. 
 
Existing real-time operating systems (RTOS) can 
be divided in two categories: 
• Systems implemented using somewhat stripped 

down and optimized (or specialized) versions 
of conventional timesharing OS 

• Systems starting from scratch, focusing on 
predictability as a key design feature. 

 
Research projects falling in the first category 
include RT Mach [1]; RT-Linux [2] and KURT [3]. 
Operating systems like Spring [4], Maruti [5] and 
YARTOS [6] were developed using the second 
approach. Though several commercially available 
systems, including LynxOS [7] and QNX [8], offer 
real-time performance and services to applications, 
they are too costly and proprietary to be used by 
research or academic institutions. 
 
Task scheduling in multitasking systems has been 
extensively studied in the operating system 
literature. Nevertheless, the traditional scheduling 
techniques used in general purpose systems (e.g. 
FIFO, Shortest Job First, Round Robin, etc.) are not 
adequate to be used in time constrained systems. 
These scheduling policies attempt to reduce certain 
performance metrics (i.e., the average response 
time), and do not deal with the timing constraints of 
the processes to be scheduled. 
 
On the other hand, scheduling policies for real-time 
systems need to guarantee that tasks will meet their 
deadlines in all circumstances. Such a set of tasks is 
called schedulable , with each task having a 
predictable behavior. Scheduling algorithms can be 
divided in two major models: preemptive, and non-
preemptive. The first one assume that any task can 



 
be interrupted during its execution, while non-
preemptive algorithms do not allow a running task 
to be interrupted. 
 
Most scheduling algorithms divide the schedulable 
tasks into two different classes: periodic and 
aperiodic (sporadic). The periodic tasks must run 
repeatedly, and within fixed times (known as 
period). The aperiodic tasks run sporadically, and 
only once, when they are invoked. 
 
Two well-known policies are broadly accepted for 
Real-Time scheduling: RMS (Rate Monotonic 
Scheduling) was shown to be optimal for 
scheduling fixed priority task sets. In dynamic 
priority systems, using EDF (Earliest Deadline 
First) policy, full processor utilization can be 
achieved. Real-time scheduling algorithms are a 
field of continuing research. 
 
Taking this base into account, the present project 
shows the results obtained building a new version 
of an extended Real-Time operating system. The 
Minix 2.0 [9] operating system was taken as a base, 
and it was extended it with several real-time 
services. The most important include task 
management capabilities (both for periodic an 
aperiodic tasks), real-time scheduling algorithms; 
new device drivers allowing A/D conversion, and 
improved fault tolerance features, specially, robust 
sensing algorithms incorporated inside the kernel. 
 
The rest of this work is divided as follows: Section 
2 describes the MINIX OS and the real-time 
extensions done to that operating system. Each 
added feature is presented and explained in detail. 
Section 3 is devoted to introduce current 
applications using the modified OS, while future 
work possibilities are listed in Section 4. 
  

2. REAL-TIME EXTENSIONS TO MINIX 
 
MINIX [9] (name that stands for Mini-UNIX), is a 
complete, timesharing, multitasking operating 
system. Inspired by UNIX, it was written from 
scratch by A. Tannenbaum. Though it is 
copyrighted, the source has been made widely 
available to universities for study and research in 
computer science courses. 
 

The work presented in [10] showed the results 
obtained in a research project devoted to use 
MINIX to implement real-time scheduling. Several 
changes was made to source code of the kernel, in 
order to provide the user with a set of system calls 
to create and manage tasks, both periodic or 
aperiodic.  
 
The project was devoted to provide programming 
facilities to develop hard real-time software. Under 
the changed MINIX OS, the programmer was 
allowed to define timing constraints for the tasks, 
letting the OS to execute them in a timely fashion. 
In this way, productivity, security and development 
costs can be improved. 
 
Several real-time services were added. First, RM 
and EDF scheduling were included. These 
strategies were later combined with other 
traditional strategies, such as Least Laxity First, 
Least Slack First and Deadline Monotonic. At 
present new flexible schedulers are being included.  
 
To allow these chenges several data structures in 
the operating system were modified (to consider 
tasks period, execution time and criticality). A new 
multiqueue scheme was defined, so as to 
accommodate real-time tasks along with interactive 
and CPU-bound tasks.  
 
A new set of signals was added to indicate special 
situations, such as missed deadlines, overload or 
uncertainty of the schedulability of the task set. 
 
All these services were made available to the 
programmer as a complete set of new system calls. 
A long list of tests demonstrated the feasibility of 
MINIX as a workbench for real-time development. 
 
Several work was done using the tool, spanning 
from the testing of new scheduling algorithms to 
kernel modifications. In despite of this fact, several 
additional features were identified to be added to 
original environment. Recently, the need to 
integrate the previous work in a new version for the 
operating system arised. This happened because 
new MINIX versions were released in the 
meantime. Some of those extensions are presented 
in the following paragraphs. 
 
 



 

Analogic- Digital Conversion 
 
The first group of changes was related with the 
need to acquire analogic data from the 
environment. As stated earlier, many real-time 
systems are used to control a real process, such as a 
production line or a chemical reaction. This implies 
a ‘sense and act’ attitude, i.e., sensing the 
environment and then changing it if necessary to 
keep control of the whole process. To sense the real 
world, a long list of sensors can be used, ranging 
from thermometers, pressure, infrared, etc.; many 
of them providing analogic signals. 
 
The game port interface in the PC allows 
connecting up to four analog and four digital 
inputs. Providing the OS with the ability to directly 
read the game port enhances the chance to connect 
different analog sensors. The possibility to use this 
feature from within MINIX was tested [11], and a 
device driver for the game port was written.  
 
When the new solutions were tested, it showed 
ppor performance when doing the readings. The 
device driver had to be completed rewritten, this 
time following the same framework used under 
Linux [12], with slightly changes. Resistive inputs 
(coordinates XY) and digital inputs (buttons) are 
aligned together in a byte (8 bits) that can be read at 
address 201h. Input pins from D-connector relates 
with that byte the following way: 
 

 
Figure 1. Game Port Data bus and pins correlation 
 
The device driver adds a new kernel task that 
provide the programmer with three basic operations 
(open, read, close) to access the game port as 
character devices (/dev/js0 and /dev/js1, for joystick 
A and joystick B, respectively). To read the axis, 
the task sends any value to that port (201h) and 
cycles reading the port, waiting for any of the 
resistive inputs to become 0. The number of times 
the cycle is run is proportiona l to the resistance 
(and thus position) of the joystick. Some scripts  

were also modified to make device creation a 
simple step. 
 
At present we ar working into the addition of new 
drivers for different A/D – D/A controllers. 
 
 
Joined Scheduling Queues 
 
A second set of changes was related with the task 
scheduler management. The original task scheduler 
of MINIX used three queues, in order to handle 
task, server and user processes in that order of 
priority.  Each queue was scheduled using the 
Round Robin algor ithm. 
 
The next figure shows the MINIX structure related 
to processes and message passing and the ready 
process queuing and handling: 
 
Level 3 INIT User 1 User 2 User n 
Level 2 Memory Manager 

(MM) 
File System (FS) 

Level 1 Disk 
Task 

Clock 
Task 

Printer 
Task 

Other 
Tasks 

Level 0 Process Manager 
Figure 2. Processes structure in MINIX [9] 

 
Each of these levels are described below: 

• Level 0 is in charge of three fundamental 
duties: process management; message passing 
and interrupti management. 

• Level 1 includes I/O processes or tasks (known 
also as device drivers). 

• Level 2 contains only two processes, FS and 
MM, bringing an extended machine able to 
manage system calls of certain complexity. 

• Level 3 comprises all the processes below the 
INIT process, the place for applications (like 
compilers, shell, editors) and user processes.  

 
The basic idea considered in joining the queues was 
related with the goal that a real-time task should not 
be interfered by low level interrupts (and its 
associated servers). The work presented in [13] 
worked on the hypothesis that server and user 
queues can be joined, allowing File System (FS) 
and Memory Manager (MM) processes to be 
moved from server to user process category.  
 
The expected result of such change is getting better 
response time from the operating system. The union 
of the queues avoids intereference of the Operating 



 
System tasks in the most critical real-time tasks. 
Several examples of possible scenarios are 
introduced. Through these case studies and their 
impacts in processing time, it became clear that the 
unification was feasible. Reducing the number of 
queues is also a step towards fault tolerance. 
 
When the availability of shared resources (such as 
FS or MM) are diminished, a deadlock problem is 
likely to appear quite often. A deadlock occurs 
whenever a process is blocked waiting for a second 
process, while the later is also waiting for the first 
one. 
 
Under the original scheduler in MINIX 2.0, a 
process requiring a service from FS or MM had it 
delivered immediately. This was that way because 
FS or MM had enough priority to start at any time 
without being preempted. An in-depth analysis was 
made to check the possibility of deadlock between 
FS and MM, first revisiting the semantics of them 
and then trying to measure the impact of the new 
scheduler (with the joined queues). 
 
The only possible communication between FS y 
MM (under the original source code) is done during 
system initialization, and that connection is 
unidirectional, thus avoiding the circular waiting 
case. A conclusion from that scheme is that FS and 
MM work independently, having relation only with 
processes of task category (the kernel itself or 
device drivers). Task level processes have higher 
priority and are not preempted because of that 
condition, with their  execution being considered 
instantaneous (and atomic) regarding a user 
process. 
 
The final conclusion is that deadlocks are not 
probable to occur due to the changed scheduler. 
User processes cannot communicate each other; FS 
does not communicate with MM; and the 
management of the task queue was not altered from 
the original code. This is a very good feature to 
achieve fault tolerance. 
 
 
Real-time Metrics  
 
Once the OS was extended with real-time services, 
the need arose to have several measuring tools. It is 
needed to test the evolution of the executing tasks 
according with the different scheduling strategies. 

The impact of the different workloads should be 
also considered.  
 
To do so, the kernel is in charge to keep a data 
structure that is accessible to the user via a system 
call. The structure includes the following items: 
  

struct rt_globstats { 
int actpertsk; 
int actapetsk; 
int misperdln; 
int misapedln; 
int totperdln; 
int totapedln; 
int gratio; 
clock_t idletime; 

}; 
 
with: 
actpertsk, acrtapetsk : number of active (running) 
real-time tasks, both periodic and aperiodic. 
 
misperdln, misapedln : number of missed deadlines, 
both periodic and aperiodic. 
 
totpertsk, totapetsk : number of total scheduled real-
time tasks instances, both periodic and aperiodic. 
 
gratio: guarantee ratio, i.e., the relationship 
between number of instances and deadlines met. 
 
idletime: time (in clock ticks) not used as compute 
time. 
 
Statistics also can be monitored online by means of 
a function key displaying all that information. 
 

Replicated Sensors  
 
Sensor replication is an area of growing interest in 
real-time processing. It enhances the fault tolerance 
potential of the whole system by exploiting 
redundancy. As earlier explained, MINIX has been 
expanded with sensor reading capabilities, and the 
existing serial and parallel ports can be connected 
to data acquisiton hardware. The main goal was to 
include standard fault tolerant strategies, allowing 
to to check the validity of different available 
sensing algorithms. 
 
The work presented in [14] introduces an important 
concept in order to tolerate sensor failure: the use of 



 
abstract sensors. An abstract sensor is a set of 
values that contains the present value of a physical 
variable of interest. Each abstract sensor is 
implemented using a concrete sensor (a physical 
device that reads a physical variable, i.e. a 
thermometer). The concrete sensor does not need to 
sense the physical variable of interest. For example,  
a temperature abstract sensor can be constructed 
using a manometer to sense pressure and then 
applying the Boyle’s law. 
 
Another important aspect of sensor replication is 
the ability to enhance the expected accuracy from a 
set of replicated sensors far beyond the obtainable 
using only one sensor. This leads to multisensor 
environments or the use of a distributed network of 
sensors. 
 
Data coming from the physical system may be 
faulty due to sensor’s failure, communication 
problems or noise. When using sensor replication, a 
method to combine data from several different 
sensors is needed. This action is called information 
integration, and it can be competitive or 
complementary.  
 
In the first approach, each sensor theoretically 
provides identical information (though this is not 
the case in practice). Complementary information 
integration is done when partial information is 
available from each sensor: that information is 
combined to get the necessary knowledge about the 
environment. 
 
Another advantage provided by the concept of 
abstract sensor is the capacity of data abstraction. A 
strategy of fault tolerance algorithms is to employ 
different kinds of redundant sensors. Thus, a real 
application could arrange different sensors (i.e., 
infrared, microwaves, and radar) that are not 
vulnerable to the same type of interference. To 
specify such a real-time system, only abstract 
sensors are considered, without concern of the type. 
 
Using the algorithms studied under [15], the idea 
was to extend RT-MINIX with the possibility to 
use several sensors from a fault tolerance 
perspective. First of all, the four algorithms were 
coded as a user application. The next step was to 
incorporate the ability to use real data. In this case, 
the environment was sensed by means of four 
potentiometers (using the four analogic inputs from 
the joystick port). The inputs were arranged as a set 

of concrete sensors (acting as position sensors for a 
simulated robotic arm).  
 
The algorithms worked as expected, providing a 
unique value from the replicated sensors and 
although one of them were faulty (the user had the 
chance to change data varying the potentiometers as 
desired). 
 
Finally, the algorithms were combined in the 
kernel, providing the programmer with a set of 
functions to work with abstract sensors. It is 
possible to create (indicating physical devices, such 
as /dev/js0 and type of algorithms) and then read an 
abstract sensor, even in the presence of faulty 
concrete sensors. 
 

3. CURRENT APPLICATIONS 

The present section is mainly devoted to show 
several applications that have been developed using 
this Operating System, and a new set of programs 
being built at present. 
 

Supervisory Control And Data Acquisition 
 
The first developed application was a SCADA 
program developed with academic purposes. It was 
written previously to run under MINIX and  later 
adapted to execute in a real-time environment.  
 
The SCADA is built as as a general application 
used to supervise a set of industrial processes. 
Different parameters can be defined for each 
process, including ports to be read, values to be 
recorded and alarms to be raised. Data acquired by 
the program can also be monitored from another 
computer through the serial ports. A history log file 
is generated, allowing the revision (and printout) of 
the activity that occurred during program execution.  
 
A SCADA tool is a good application to test RT-
MINIX with real processing conditions. It is 
composed of several periodic and sporadic real-
time tasks running concurrently. It also includes a 
set of soft real-time tasks combined with interactive 
processes. 
 
 



 

A Model of a Bottle -filling Line  
 
A prototype of a bottle -filling system (as described 
in [16]) is currently under construction, with the 
aim of using RT-MINIX as the RTOS to control 
such a real process. 
 
The proposed system modeled in that work consists 
in a number of bottle -filling lines fed by a single 
vat containing the liquid to be bottled. The bottle 
size may differ from line to line. The tasks of the 
control system are to control the level, the pH and 
the temperature of the liquid in the vat, to manage 
the movement and filling of bottles in the various 
lines, and to exchange and log information with 
human operators working with the individual lines 
and a supervisor monitoring the entire system. 
 
With several concurrent tasks (both periodic and 
aperiodic), this prototype will impose RT-MINIX 
with real-world constraints to play with. 

4. PRESENT WORK 
 
The sensor integration problem and tolerance of 
failures from replicated (redundant) sensors can 
now be studied in depth with help of RT-MINIX 
thanks to the incorporated sensing algorithms. A 
possible work line is deal with multidimensional 
sensors (replacing each interval corresponding to a 
physical value by a vector of intervals). 
 
The algorithms presented in section 1 are only two 
examples of a long and growing list of scheduling 
algorithms. Real-time guarantees in the presence of 
faults along with fault tolerant scheduling strategies 
are very interesting fields to extend the present state 
of RT-MINIX. Feasible Shortest Path (FSP) and 
Linear Time Heuristic (LTH) are models that can 
be studied and compared, with a future 
implementation in RT-MINIX depending on results 
to be obtained. 
 
One of the problems associated with scheduling 
algorithms is priority inversion. [17] presents a very 
clear example to definitely understand priority 
inversion, a case that occurred during the NASA 
Mars Pathfinder mission in 1997. 
 
Any task within RT-MINIX can have a priority: if 
new scheduling algorithms to be implemented will 
consider that value to pick a task instead of another 

one, care must be taken in order to handle this 
characteristic properly. It is possible that a task 
with medium priority be scheduled while a high 
priority task is waiting for a resource that is 
blocked by a low priority task. A solution to that 
dilemma known as priority inheritance was identify 
and proposed in [18]. Tasks should inherit the right 
value to avoid priority inversion and furthermore 
deadline missing, thus improving the overall 
performance of the scheduling algorithms.  
 

5. CONCLUSION 
 
MINIX proved to be a feasible testbed for OS 
development and real-time extensions that could be 
easily added to it. 
 
This “new” operating system (a MINIX 2.0 base 
with real-time extensions) has a rich set of features, 
which makes it a good choice to conduct real-time 
experiences. The added real-time services covered 
several areas: 
 
• Task creation: tasks can be created either periodic 

or aperiodic, stating their period, worst execution 
time and priority 

 
• Clock resolution management: the resolution 

(grain) of the internal clock can be changed to get 
better accuracy while scheduling tasks. 

 
• Scheduling algorithms: both RMS and EDF 

algorithms are supported, and can be selected on 
the fly. 

 
• Statistics: several variables about the whole 

operation are accessible to the user to provide 
data for benchmarking and testing new 
developments. 

 
• Supervisory Control and Data Acquisition: as a 

user application, it makes full use of real-time 
services. 

 
• Sensor Integration: tolerance of failures from 

replicated (redundant) sensors will be achieved 
due to the sensing algorithms added to RT-
MINIX. 

 



 
With these extensions, RT-MINIX can be used as a 
platform for real-time processing or as a starting 
point for adding more real-time services. 
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