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ABSTRACT 
 

This work describes some of the extensions included into a tool 
used to study, model and simulate cellular models. The environment is 
based on the Cell-DEVS paradigms. The main extensions are devoted 
to define generic cell spaces, and are based on the formal definitions 
for n-dimensional Cell-DEVS models. A cell specification language 
used to define the model's behavior was redefined to include these 
extensions. In this way, very complex cell based systems can be built 
in a simple fashion, allowing reductions in the development, checking 
and maintenance times of the components. 

 
 
 

INTRODUCTION 
 
The DEVS (Discrete EVents Systems specifications) formalism 

was proposed in (Zeigler 1976), with the goal of modeling complex 
discrete events models. Cell-DEVS (Wainer and Giambiasi 1998; 
Wain er 1998) is a paradigm that extended the DEVS formalism to 
improve the definition of cellular models. In this paradigm, each cell is 
defined as an atomic model using transport or inertial delays 
(Giambiasi and Miara 1976). A coupled model that includes a group of 
these cells constitutes a cellular model. 

 
Cell-DEVS atomic models can be specified as  

 
TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

 
X is the set of external input events; 
Y is the set of external output events; 
I represents the model's modular interface; 
S is the set of sequential states for the cell; 
θ is the cell state definition; 
N is the set of states for the input events; 
d is the transport delay for the cell; 
δint is the internal transition function; 
δext is the external transition function; 
τ is the local computation function; 
λ is the output function; and 
D is the state's duration function. 

 
 
A Cell-DEVS coupled model is defined by: 
 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 

 
Ylist is the output coupling list; 
Xlist is the input coupling list; 
I represents the definition of the interface for the modular model; 
X is the set of external input events; 
Y is the set of external output events; 
n  is the dimension of the cell space; 
{t1,...,tn} is the number of cells in each of the dimensions; 
N is the neighborhood set; 
C is the cell space; 
B is the set of border cells; 
Z is the translation function; and 
select is the tie-breaking function for simultaneous events. 

 
CD++ (Barylko et al. 1998) is a tool that allows implementing the 

theoretical concepts specified by the DEVS and Cell-DEVS formalisms. A 
specification language permits the creation of coupled models, the initial 
configuration for the atomic models, and the creation of external events to be 
used during the simulation. The original version of CD++ permits the creation 
of  two-dimensional cellular automata, where the state of a cell has a binary or 
three-state value. 

 
The goal of this work is to present a new set of extensions done to the 

CD++ tool. The extensions done are based on the theoretical concepts defined 
in (Wainer 1998). That work presented a formal definition for n-dimensional 
Cell-DEVS models, providing a sound base to develop cellular models. 

 
 
 
CD++ 

 
CD++ is a modeling tool that was defined using the basic concepts 

defined in (Zeigler 1984; Zeigler 1990; Wainer 1998). Two basic abstract 
classes were defined: Models and Processors. The first are used to represent 
the behavior of the atomic and coupled models, while the second implement 
the simulation mechanisms. 

 
The Atomic class implements the behavior of the atomic models. The 

Coupled-Model class implements the mechanisms of the coupled models. For 
the case of a cellular model, a special atomic model is used to represent to 
each cell. To do so, Atom icCell and CoupledCell are defined as subclasses of 
Atomic and Coupled respectively. AtomicCell extends the behavior of the 
atomic models, to define the functionality of the cell space. On the other hand, 
the CoupledCell class permits the management of a group of atomic cells.  

 
The simulation is based on the interchange of messages between the 

different processors. Each message contains information to identify the 
sender/receiver, the time of the event, and the content that consists in a port 
and a value for it. Different messages are used: X (which represents an 
external event), Y (represents the model output), * (represents an internal 
event), and done (indicating that the model has finished its task). 
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Figure 1. Cell-DEVS Models and Processors. 

 
 

EXTENDED CD++ 
 
The CD++ tool includes an interpreter for a specification 

language that allows describing the behavior of each cell of a cellular 
model, including its delay and neighborhood. In addition, it allows to 
define the size of the cell space and their connection with other DEVS 
models, the border and the initial state of each cell. To do so, the 
theoretical definitions of the Cell-DEVS formalism were used. 

 
The behavior specification for a cell is defined using a set of 

rules, each indicating the value for the cell's state if a condition is 
satisfied. The output of the model should be delayed by using a 
specified time. If the condition is not valid, the next rules in the list are 
evaluated until a rule is satisfied or there are no more rules. 

 
In the latter case, an error will be raised, aborting the simulation 

process. This error indicates that the model specification is incomplete. 
The existence of two or more rules with same condition but with 
different state value or delay is also detected, avoiding the creation of 
ambiguous models. In this situation, the simulation will be aborted. 
Instead, when two different rules are valid, but their result is the same, 
a warning is raised but the simulation continues. 

 
The original tool used three-state, based on the work presented in 

(Wainer and Giambiasi 1998). When the conditions of a rule are 
evaluated, a True, False or Undefined value can be obtained. In this 
case, if no condition is True but any is evaluated to Undefined, the state 

of the cell will be Undefined, and the default delay. In this situation, the tool 
alerts to the modeler, but the simulation is not interrupted. 

 
Taking this basic behavior as a basis, several modifications were 

introduced. Some details will be presented in the following sections. 
 
 

Extensions to the Specification Language  
  
The use of three-state logic constrained the models that can be 

implemented, limiting the use of the tool in more general problems. Hence, 
the definitions of (Wainer 1998) were considered, allowing a cell to have a 
value in the set R ∪ {Undefined}.  

 
The expansion of the set of values implied that the specification 

language should be modified. The complete grammar for the new language 
can be seen in (Rodríguez and Wainer 1999). The main operators available 
include: 

 
• Boolean; 
• Comparison; 
• Arithmetic; 
• Number types; 
• Neighborhood values; 
• Time; 
• Conditionals; 
• Angle conversion; 
• Pseudo-random numbers; 
• Error rounding;  
• Predefined constants: pi, e, grav, accel, light, planck, etc.  
 
In every case, it was considered that any expression including the 

Undefined value would be Undefined . Due to the inclusion of probabilistic 
functions as conditions into the rules, it is possible to obtain a False result. In 
this case, even the model can be well specified, t he condition would show an 
ambiguity. The tool automatically identifies this situation and assigns the 
Undefined value to the cell, informing this situation. 

 
 

External Event arrival 
 
The original version of CD++ followed a previous specification for 

external event management. In this case, when a cell is created, three ports are 
associated: In, Out and NeighborChange. The input port In connects external 
DEVS models with the cell. The input port NeighborChange define the input 
values arriving from the neigh bors. Finally, the Out port connects the cell with 
the neighbors and other DEVS models. When an external message arrives to 
the cell through the In port, its value is queued, and it will be used to compute 
the new cell state. 

 
The implementation has been modified to reflect the present 

specifications for Cell-DEVS models. First, the input ports In are created only 
for those cells connected with external DEVS models. On the other hand, the 
local computing function τ uses all the inputs, including the values sent by the 
neighboring cells, and the external messages arrived through the other input 
ports. The language was extended to define the actions to be taken for 
messages arriving from external models.  

 

 
Figure 2. New structure of an atomic cell. 



This mechanism is implemented by associating each cell with a 
list of tuples (portIn, inFunction, lastValue). PortIn contains the port 
name. InFunction identifies the function describing the behavior for a 
message arriving from portIn. Finally, lastValue contains the last value 
arrived to the port. 

 
 

Definition of output behavior 
 
As mentioned in the previous section, N-CD++ creates the In 

ports in a dynamic fashion, and they can be used to connect the cell 
space with other DEVS models.  

 
In CD++, the Out port connects each cell with the neighbors and 

with other DEVS models. The behavior was redefined in N-CD++, to 
follow the formal definitions of (Wainer 1998). In this case, several 
output ports can exist. The first one is automatically created, and it is 
called Out. It is used to connect the present cell with the neighbors. The 
Out port can also be used to connect a cell with other DEVS models, 
that will receive a new message each time the cell changes its internal 
state.  

 
The rest of the output ports are created dynamically only for the 

cells that will send state values for other DEVS models, and their name 
can be defined by the modeler. Therefore, the new scheme for the port 
connection in each cell is the following: 

 

 
 

Figure 3. New structure for an Atomic cell. 
 
Under certain situations, it is useful that a model can receive 

values different that those of the cell state. To permit this behavior, the 
send function was defined. It allows to specify the value to send 
through a port in a given moment. For instance, the rule: 

 
{ new_value + send(P, V) }  delay { condition } 

 
says that if the condition  is true, the new value for the cell will be 

the specified by the rule, and the V value will be sent through the P 
port. The cell is delayed as in the previous cases, using the kind of 
delay specified. The V value can be a constant or a complex expression 
to be evaluated at runtime. 

 
Send can be defined as: send(string, real) → 0, that is, the 

function always returns a 0 value. The idea is that the use of this 
function allows to send a value without change the value of the cell, as 
it can be seen following: 

 
{ (0,0) + send( port1, 15 * log(10) ) } 100 { (0,0) > 10 } 

 
The meaning of this expression is that, if the value of the present 

cell is greater than 10, the cell keeps the present value. It outputs the 
value of the expression 15*log(10) through the port1, and delays the 
output during 100 time units. Now, there are several output ports. 
Hence, when the internal transition function changes the cell state, the 
value is sent through the Out port. The remaining ports are reserved 
explicitly for values using the send function. 

 
The following modification of the Life game, is used to show 

several of the changes done to the tool: 

[top] 
components : life 
in : in 
out : outG1 outG2 
link : out1@life outG1 
link : out2@life outG2 
link : in in@life 
 
[life] 
type : cell 
width : 2 
height : 2 
delay : transport 
defaultDelayTime : 1 
border : wrapped 
neighbors : life(-1,-1) life(-1,0) life(-1,1) 
neighbors : life(0,-1)  life(0,0)  life(0,1) 
neighbors : life(1,-1)  life(1,0)  life(1,1) 
initialvalue : 0 
in : in 
out : out1 out2 
link : in in@life(1,1) 
link : output1@life(1,1) out1 
link : output2@life(1,1) out2 
portInTransition : in@life(1,1)  specialRule 
localtransition : nothing-rule 
zone : generateOut { (1,1) } 
 
[nothing-rule] 
rule : { (0,0) } 1 { t } 
 
[specialRule] 
rule: { portValue(thisPort) } 1 { t } 
 
[generateOut] 
rule:{(0,0)+send(output1,9.9999)} 1 {(0,0)>=10} 
rule :{(0,0)+send(output2,3.3333)} 1 {(0,0)<10} 

Figure 4. Example of use of the new features. 
 
The cellular model here defined uses the interconnection pattern shown 

in the following figure (the ports used to connect neighbors are not showed 
here). 

 

 
 

Figure 5. Coupling scheme of the previous example. 
 
As it can be seen, the higher level coupled model (top) uses one input 

and two output ports. Only one component is included (life), using a 2x2 cell 
space. The Link directive is used to create a coupling between the portOut and 
portIn ports for each of the models involved. After, the basic parameters for 
the model are defined: dimension, delay, border, neighbors and external 
coupling. Each of these constructs is mapped into one of the sets defined by 
the Cell-DEVS formalism.  

 
The portInTransition directive allows to define the name of the function 

to be used when a message arrives through the specified port. In this case, the 



specialRule is executed. The function portValue(x) allows to get the 
value of the last message arrived through the port x of the cell. Besides, 
the instruction thisPort returns the name of the port where the message 
has arrived.  
 

The local computing function, called nothingRule, does nothing. 
There is a special zone (generateOut), used to define a couple of cells 
that will be used to output values using the send function. 

 
 

Support for N-dimensional models 
 
The real systems that can be studied using cellular models are 

usually represented by using models in two or three dimensions. 
Several theoretical problems can be defined as cellular models with 
four or more dimensions. The original version of the tool only allowed 
to define two-dimensional cell spaces. This constraint reduces the use 
of the tool in more general problems. Therefore, the main modification 
done to the tool was devoted to allow the definition of n-dimensional 
models. In this case, the formal specification of (Wainer 1998) was 
again used to have a formal basis to specify the model behavior. 

 
CD++ was implemented by storing the cells states in a  two-

dimensional array of d1 . d2, where the element (x1, x2), x i ∈ [0, di -1], is 
in the position x1 + x2 . d1. In an analogous fashion, N-CD++ uses an 
array of Πi=1...n di to store the states for the cellular automata with 
dimension (d1,  d2, ..., dn), and in this case (x1, x2, ..., xn) occupies the 
position Σi=1...n  xi . ( Πk=1...i-1 dk ). 

 
As it was seen in the previous section, each cellular model is 

specified by using a language that allows to define its dimension, shape 
of the neighborhood, and initial values for the cells. The language was 
adapted to include references to cells in n-dimensional cell spaces. 

 
Another modification is related with the homogeneity of the 

cellular models. In CD++, the neighborhood for a cell only can be 
defined by adjacent cells. In addition, the shape of the neighborhood is 
the same in all the cell space. At present, N-CD++ allows to define a 
neighborhood that can be defined independently for each of the cells in 
the space. 

  
Another useful change allows to define different zones in the cell 

space. Each zone is defined by a set of cells determined by the cell 
range {(x1,  x2, ..., xn)...(y1, y2, ..., yn)}. Each zone is associated to a 
different set of rules. Using this capability, different zones into the 
same cellular model can present different behavior. Hence, a zone 
defined by a range of cells is defined by the set of cells (t 1, t 2, ..., t n) of 
the cellular automata, such that t i ∈ [min(xi, y i),max(x i, y i)] ∀i ∈ [1, n]. 

 
 
 

APPLICATION EXAMPLES  
 
This section is devoted to show the use of the tool through 

different application examples. The emphasis has been put into the new 
features provided and not in the applications. The first example defines 
a three-dimensional version for the Life game. After, a model of heat 
diffusion in a room will be considered. 

 
 

Modification of the Life game 
 
We will start to show the use of the tool and its main extensions 

by presenting a simple variation of the 'Life' game (Gardner 1970). In 
this case, we will consider a population of active cells represented by 
'1' values, distributed in an area of 7x7x3 cells. Some of them contain 
the '0' value, indicating the absence of life in the cell. A new being is 

born when the cell has over 10 living neighbors. Besides, a cell will remain 
alive when the neighborhood contains 8 or 10 living neighbors. Otherwise, the 
cell will "die". In this case, the neighborhood will have 3x3x3 cells.  

 
The following figure shows a description for this model using the cell 

description language: 
 

01 [top] 
02 components : 3dl 
03 
04 [3dl] 
05 type : cell 
06 dim : (7,7,3) 
07 delay : transport 
08 defaultDelayTime  : 100 
09 border : wrapped  
10 neighbors: 3dl(-1,-1,-1) 3dl(-1,0,-1)  
          3dl(-1,1,-1)  
11 neighbors: 3dl(0,-1,-1)  3dl(0,0,-1)   
          3dl(0,1,-1) 
12 neighbors: 3dl(1,-1,-1)  3dl(1,0,-1)   
          3dl(1,1,-1) 
13 neighbors: 3dl(-1,-1,0)  3dl(-1,0,0)   
          3dl(-1,1,0)  
14 neighbors: 3dl(0,-1,0)   3dl(0,0,0)    
          3dl(0,1,0) 
15 neighbors: 3dl(1,-1,0)   3dl(1,0,0)    
          3dl(1,1,0) 
16 neighbors: 3dl(-1,-1,1)  3dl(-1,0,1)   
          3dl(-1,1,1)  
17 neighbors: 3dl(0,-1,1)   3dl(0,0,1)    
          3dl(0,1,1) 
18 neighbors: 3dl(1,-1,1)   3dl(1,0,1)    
          3dl(1,1,1) 
19 initialvalue: 0 
20 initialCellsValue: 3dl.val 
21 localtransition: 3dl-rule 
22  
23 [3dl-rule] 
24 rule : 1 100 { (0,0,0) = 1 and  
        (truecount = 8 or truecount = 10) }  
25 rule : 1 100 { (0,0,0) = 0 and  
         truecount >= 10 }  
26 rule : 0 100 { t }  
 

 
Figure 6. Description of a variation of the Life game. 

 
The lines 1 and 2 are used to define the higher level coupled model, that, 

in this case, is defined by the model 3dl (Three dimensional Life). Lines 4 to 
19 are used to define the dimension parameters for the cell space. The kind of 
delay and the shape of the neighborhood are also included. The line 20 is used 
to define a file containing the initial values for the cells. Line 21 defines the 
name of the local computing function that is used to update the cells values in 
each phase of the simulation. This function is defined in lines 23 to 26. 

 
The results obtained when executing this model can be seen in the figure 

7 (dividing the three-dimensional space into three planes). In this case, the 
execution starts with a high number of living cells, but the initial distribution 
makes that the population is not stable, and its number turns to be reduced. 
Finally, in the instant 00:00:01:000, the population is extinguished. 

 
 



Time: 00:00:00:000 
     0123456      0123456      0123456  
    +-------+    +-------+    +-------+ 
   0|1      |   0|       |   0|1      | 
   1|1 1  11|   1|11   11|   1|  111  | 
   2| 1   1 |   2|   11 1|   2| 1 11  | 
   3|       |   3|  1  11|   3|     11| 
   4|  1  11|   4|  1 1  |   4| 1   11| 
   5|  11  1|   5|   1 1 |   5| 11  1 | 
   6|1  1  1|   6| 1   1 |   6| 1 11 1| 
    +-------+    +-------+    +-------+ 
Time: 00:00:00:100 
     0123456      0123456      0123456  
    +-------+    +-------+    +-------+ 
   0| 1    1|   0|11    1|   0| 1    1| 
   1|1 1   1|   1|1     1|   1|1 11  1| 
   2|11  1 1|   2|1    1 |   2|11   11| 
   3|    111|   3|  1 1 1|   3|    1 1| 
   4|       |   4|     11|   4|       | 
   5|1  111 |   5|1 111 1|   5|1  11 1| 
   6|       |   6| 1     |   6| 1  1  | 
    +-------+    +-------+    +-------+ 
Time: 00:00:00:200 
     0123456      0123456      0123456  
    +-------+    +-------+    +-------+ 
   0|1     1|   0|      1|   0|1     1| 
   1| 11  1 |   1| 1   1 |   1| 11  1 | 
   2|    11 |   2| 1    1|   2|       | 
   3|1   1  |   3|1   11 |   3|1   11 | 
   4|   1111|   4|   11  |   4|   1111| 
   5|1  1   |   5|1  1  1|   5|1  1  1| 
   6|11   11|   6|11   11|   6|11  111| 
    +-------+    +-------+    +-------+ 

.          .           . 
Time: 00:00:00:900 
     0123456      0123456      0123456  
    +-------+    +-------+    +-------+ 
   0|       |   0|       |   0|       | 
   1|       |   1|       |   1|       | 
   2|       |   2|       |   2|       | 
   3|       |   3|       |   3|       | 
   4|1    1 |   4|1    11|   4|1    1 | 
   5|       |   5|       |   5|       | 
   6|       |   6|       |   6|       | 
   +-------+    +-------+    +-------+ 

Figure 7. Execution results for the modified Life game. 
 
 

Heat Diffusion 
 
This example considers the air into a room represented by cellular 

automaton. Each cell of the space contains a temperature value. In each 
stage of the simulation, the temperature of the cell is calculated as the 
average of the values of the neighborhood, whose shape can be seen in 
the following figure.  

 

 
 

Figure 8. Neighborhood shape for the heat diffusion model 
 
In addition, a heater is connected to the cells (2,2,1) and (3,3,0). 

The heater simulator generates a flow of temperatures between 24º C 
and 80º C with uniform distribution. On the other hand, a refrigerator is 
connected to the cells (1,3,3) and (3,3,2). The corresponding model is 
used to create values in the range [10, 15] also with uniform 

distribution. Both generators create values after x seconds, where x follows an 
exponential distribution with mean 40 seconds. The model definition done 
using the specification language is shown in the following figure: 

 
01 [top] 
02 components : room Heater@Generator  
                Cooler@Generator 
03 link : out@Heater inputHeat@room 
04 link : out@Cooler  inputCold@room 
05 
06 [room] 
07 type : cell       08 dim : (4, 4, 4) 
09 delay : transport 
10 defaultDelayTime  : 100 
11 border : wrapped  
12 neighbors : room(-1,0,-1) room(0,-1,-1) 
13 neighbors : room(0,0,-1) room(0,1,-1) 
14 neighbors : room(1,0,-1) room(-1,1,0) 
15 neighbors : room(-1,-1,0) room(-1,0,0)  
16 neighbors : room(0,-1,0) room(0,0,0)    
17 neighbors : room(1,-1,0) room(1,0,0)    
18 neighbors : room(-1,0,1) room(0,1,0) 
19 neighbors : room(0,-1,1) room(0,0,1)    
                  room(0,1,1) 
20 neighbors : room(1,0,1) room(1,1,0) 
21 neighbors : room(0,0,-2)   room(0,0,2)    
                  room(0,2,0) 
21 neighbors : room(0,-2,0)   room(2,0,0)    
                  room(-2,0,0) 
22 initialvalue : 24 
23 in : HeatInput ColdInput 
24 link : HeatInput in@room(3,3,0) 
25 link : HeatInput in@room(2,2,1) 
26 link : ColdInput  in@room(3,3,2) 
27 link : ColdInput  in@room(1,3,3) 
28 localtransition : heat-rule 
29 portInTransition : in@room(3,3,0)  setHeat 
30 portInTransition : in@room(2,2,1)  setHeat 
31 portInTransition : in@room(3,3,2)  setCold 
32 portInTransition : in@room(1,3,3)  setCold 
33 
34 [heat-rule] 
35 Rule: {( (-1,0,-1)+(0,-1,-1)+(0,0,-1)+      
           (0,1,-1) + (1,0,-1) + (-1,-1,0) + 
    (-1,0,0) + (-1,1,0)  + (0,-1,0) +    
          (0,0,0)+(0,1,0)+(1,-1,0)+(1,0,0) + 
    (1,1,0) + (-1,0,1) + (0,-1,1) +   
          (0,0,1)+(0,1,1)+(1,0,1)+(0,0,-2) + 
    (0,0,2)+(0,2,0)+(0,-2,0)+(2,0,0) +  
              (-2,0,0) ) / 25 } 1000 { t } 
36 [setHeat] 
37 rule : { uniform(24,80) } 1000 { t } 
38 
39 [setCold] 
40 rule : { uniform(-45,10) } 1000 { t } 
41 
42 [Heater] 
43 distribution : exponential 
44 mean : 10 
45 initial : 1 
46 increment : 0 
47 
48 [Cooler] 
49 distribution : exponential 
50 mean : 10 
51 initial : 1 
52 increment : 0 

Figure 9. Definition of the heat diffusion model 



Here, lines 1 to 4 are used to define the upper level model, and the 
components. The couplin g between these models are also shown in 
these lines.  

 
The coupling scheme of the models is shown in the following 

figure. 
 

 
 

Figure 10. Coupling scheme of the heat diffusion model 
 
 
Lines 6 to 32 are used to define the model representing the room 

to be studied. It is composed by a cellular automata of 10x10x4 cells. 
Initially, every cell in the space has a temperature of 24° C (as seen in 
the line 22). Lines 34 and 35 are used to define the function used to 
compute the present value for the cell, as an average between all the 
neighboring cells.  

 
Lines 36 and 37 are used to define a function that generates a 

temperature value in the range [24, 80], using a uniform probabilistic 
distribution. These values are received through the In port of the cells 
(2,2,1) and (3,3,0), as it is defined in the lines 24 y 25. Likewise, lines 
39 and 40 are used to define the function that generates temperatures in 
the range [-45, 10] with uniform distribution. These values will be 
received through the In port of the cells (1,3,3) and (3,3,2). The 
remaining lines are used to define the heat and cold generators, which 
send temperature values with a frequency of x seconds. In this case, the 
values of x are defined by an exponential distribution, with an average 
value of 40 seconds. 

 
The following figure shows a part (first two levels) of the results 

generated by the tool when the model is executed: 
 

Time: 00:00:00:000 
      0    1    2    3       0    1    2    3  
 +--------------------+ +--------------------+ 
0| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0| 
1| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0| 
2| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0| 
3| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0| 
 +--------------------+ +--------------------+  
Time: 00:00:02:000 
      0    1    2    3      0    1    2    3       
 +--------------------+ +--------------------+ 
0| 24.6 24.0 24.6 23.8| | 24.0 24.0 27.1 23.8| 
1| 23.2 24.0 24.8 24.4| | 24.0 25.5 25.5 24.0| 
2| 24.6 25.5 26.1 25.4| | 27.1 25.5 25.5 25.4| 
3| 24.6 25.2 26.1 23.0| | 23.8 25.5 25.4 25.4| 
 +--------------------+ +--------------------+ 
        ...  ...  ...  
Time: 00:00:15:738 
0    1    2    3         0    1    2    3  
 +--------------------+ +--------------------+ 
0| 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2 24.2| 
1| 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2-24.0| 
2| 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2 24.2| 
3| 24.2 24.2 24.2-43.1| | 24.2 24.2 24.2 24.2| 
 +--------------------+ +--------------------+              
       ...  ...  ...  

Figure 11. Simulation results of the heat diffusion model  
 

 
 
In simulated time 00:00:01:000, the heater and cooler produce changes 

in the cells where they are connected. Consequently, the state of the neighbors 
of these cells will change in time 00:00:02:000. In the following stages, the 
rest of the cells will also change, following the rules of the model. Finally, in 
simulated time 00:00:15:738, the refrigerator will produce a change in the 
cells (1,3,3) and (3,3,2), adding the values -24 y –43.1. This values will 
produce future changes in the neighboring cells.  

 
 

CONCLUSION 
 
This work introduced an extension to the tool CD++ used for the 

modeling and simulation of Cell-DEVS models. This formalism allows 
hierarchical construction of the models, which improves the development, 
checking and maintenance phases. Ten-fold improvements in the development 
cycle could be achieved by using the tool for common problems. 

 
The extensions introduced to the tool allow to represent new models in 

other domains for the state variables. It also offers the possibility to use 
several functions, which permits the creation of complex models in a simple 
fashion. 

 
The new input/output port definitions allow to define multiple 

interconnection between Cell-DEVS or DEVS models. The main changes 
were devoted to include n-dimensional models, making the tool a general 
framework to define and simulate complex generic models. 

 
The tool is public domain, and it can be found at 

http://www.dc.uba.ar/people/profesores/wainer. It was constructed using a 
standard version of C++. At present, it is running into different platforms 
(including Windows 95/NT, Linux, AIX, HP -UX and Solaris). 
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