
This work was partially supported by the UBACYT research project TX-004, “Concurrency in distributed systems”.

NEW EXTENSIONS TO THE CD++ TOOL

Daniel A. Rodríguez and Gabriel A. Wainer
Departamento de Computación

Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
(1428) Pabellón I. Ciudad Universitaria. Buenos Aires. Argentina.

e-mail:{drodrigu,gabrielw}@dc.uba.ar

Keywords : Modeling methodology: DEVS models, cellular automata,
Cell-DEVS models, Simulation methods: Discrete-event simulation,
Simulation tools.

ABSTRACT

This work describes some of the extensions included into a tool
used to study, model and simulate cellular models. The environment is
based on the Cell-DEVS paradigms. The main extensions are devoted
to define generic cell spaces, and are based on the formal definitions
for n-dimensional Cell-DEVS models. A cell specification language
used to define the model's behavior was redefined to include these
extensions. In this way, very complex cell based systems can be built
in a simple fashion, allowing reductions in the development, checking
and maintenance times of the components.

INTRODUCTION

The DEVS (Discrete EVents Systems specifications) formalism

was proposed in (Zeigler 1976), with the goal of modeling complex
discrete events models. Cell-DEVS (Wainer and Giambiasi 1998;
Wain er 1998) is a paradigm that extended the DEVS formalism to
improve the definition of cellular models. In this paradigm, each cell is
defined as an atomic model using transport or inertial delays
(Giambiasi and Miara 1976). A coupled model that includes a group of
these cells constitutes a cellular model.

Cell-DEVS atomic models can be specified as

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X is the set of external input events;
Y is the set of external output events;
I represents the model's modular interface;
S is the set of sequential states for the cell;
θ is the cell state definition;
N is the set of states for the input events;
d is the transport delay for the cell;
δint is the internal transition function;
δext is the external transition function;
τ is the local computation function;
λ is the output function; and
D is the state's duration function.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

Ylist is the output coupling list;
Xlist is the input coupling list;
I represents the definition of the interface for the modular model;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{t1,...,tn} is the number of cells in each of the dimensions;
N is the neighborhood set;
C is the cell space;
B is the set of border cells;
Z is the translation function; and
select is the tie-breaking function for simultaneous events.

CD++ (Barylko et al. 1998) is a tool that allows implementing the

theoretical concepts specified by the DEVS and Cell-DEVS formalisms. A
specification language permits the creation of coupled models, the initial
configuration for the atomic models, and the creation of external events to be
used during the simulation. The original version of CD++ permits the creation
of two-dimensional cellular automata, where the state of a cell has a binary or
three-state value.

The goal of this work is to present a new set of extensions done to the

CD++ tool. The extensions done are based on the theoretical concepts defined
in (Wainer 1998). That work presented a formal definition for n-dimensional
Cell-DEVS models, providing a sound base to develop cellular models.

CD++

CD++ is a modeling tool that was defined using the basic concepts

defined in (Zeigler 1984; Zeigler 1990; Wainer 1998). Two basic abstract
classes were defined: Models and Processors. The first are used to represent
the behavior of the atomic and coupled models, while the second implement
the simulation mechanisms.

The Atomic class implements the behavior of the atomic models. The

Coupled-Model class implements the mechanisms of the coupled models. For
the case of a cellular model, a special atomic model is used to represent to
each cell. To do so, Atom icCell and CoupledCell are defined as subclasses of
Atomic and Coupled respectively. AtomicCell extends the behavior of the
atomic models, to define the functionality of the cell space. On the other hand,
the CoupledCell class permits the management of a group of atomic cells.

The simulation is based on the interchange of messages between the

different processors. Each message contains information to identify the
sender/receiver, the time of the event, and the content that consists in a port
and a value for it. Different messages are used: X (which represents an
external event), Y (represents the model output), * (represents an internal
event), and done (indicating that the model has finished its task).

Atomic

AtomicCell

TransportDelayCellInertialDelayCell

CoupledCell

FlatCoupledCell

Coupled

Processor
Model 1. . *

+ch i ld

1. . *

Port

0..*0..*

Simulator Coordinator

CellCoordinator

FlatCellCoordinator

M o d e l P rocesso r

Figure 1. Cell-DEVS Models and Processors.

EXTENDED CD++

The CD++ tool includes an interpreter for a specification

language that allows describing the behavior of each cell of a cellular
model, including its delay and neighborhood. In addition, it allows to
define the size of the cell space and their connection with other DEVS
models, the border and the initial state of each cell. To do so, the
theoretical definitions of the Cell-DEVS formalism were used.

The behavior specification for a cell is defined using a set of

rules, each indicating the value for the cell's state if a condition is
satisfied. The output of the model should be delayed by using a
specified time. If the condition is not valid, the next rules in the list are
evaluated until a rule is satisfied or there are no more rules.

In the latter case, an error will be raised, aborting the simulation

process. This error indicates that the model specification is incomplete.
The existence of two or more rules with same condition but with
different state value or delay is also detected, avoiding the creation of
ambiguous models. In this situation, the simulation will be aborted.
Instead, when two different rules are valid, but their result is the same,
a warning is raised but the simulation continues.

The original tool used three-state, based on the work presented in

(Wainer and Giambiasi 1998). When the conditions of a rule are
evaluated, a True, False or Undefined value can be obtained. In this
case, if no condition is True but any is evaluated to Undefined, the state

of the cell will be Undefined, and the default delay. In this situation, the tool
alerts to the modeler, but the simulation is not interrupted.

Taking this basic behavior as a basis, several modifications were

introduced. Some details will be presented in the following sections.

Extensions to the Specification Language

The use of three-state logic constrained the models that can be

implemented, limiting the use of the tool in more general problems. Hence,
the definitions of (Wainer 1998) were considered, allowing a cell to have a
value in the set R ∪ {Undefined}.

The expansion of the set of values implied that the specification

language should be modified. The complete grammar for the new language
can be seen in (Rodríguez and Wainer 1999). The main operators available
include:

• Boolean;
• Comparison;
• Arithmetic;
• Number types;
• Neighborhood values;
• Time;
• Conditionals;
• Angle conversion;
• Pseudo-random numbers;
• Error rounding;
• Predefined constants: pi, e, grav, accel, light, planck, etc.

In every case, it was considered that any expression including the

Undefined value would be Undefined . Due to the inclusion of probabilistic
functions as conditions into the rules, it is possible to obtain a False result. In
this case, even the model can be well specified, t he condition would show an
ambiguity. The tool automatically identifies this situation and assigns the
Undefined value to the cell, informing this situation.

External Event arrival

The original version of CD++ followed a previous specification for

external event management. In this case, when a cell is created, three ports are
associated: In, Out and NeighborChange. The input port In connects external
DEVS models with the cell. The input port NeighborChange define the input
values arriving from the neigh bors. Finally, the Out port connects the cell with
the neighbors and other DEVS models. When an external message arrives to
the cell through the In port, its value is queued, and it will be used to compute
the new cell state.

The implementation has been modified to reflect the present

specifications for Cell-DEVS models. First, the input ports In are created only
for those cells connected with external DEVS models. On the other hand, the
local computing function τ uses all the inputs, including the values sent by the
neighboring cells, and the external messages arrived through the other input
ports. The language was extended to define the actions to be taken for
messages arriving from external models.

Figure 2. New structure of an atomic cell.

This mechanism is implemented by associating each cell with a
list of tuples (portIn, inFunction, lastValue). PortIn contains the port
name. InFunction identifies the function describing the behavior for a
message arriving from portIn. Finally, lastValue contains the last value
arrived to the port.

Definition of output behavior

As mentioned in the previous section, N-CD++ creates the In

ports in a dynamic fashion, and they can be used to connect the cell
space with other DEVS models.

In CD++, the Out port connects each cell with the neighbors and

with other DEVS models. The behavior was redefined in N-CD++, to
follow the formal definitions of (Wainer 1998). In this case, several
output ports can exist. The first one is automatically created, and it is
called Out. It is used to connect the present cell with the neighbors. The
Out port can also be used to connect a cell with other DEVS models,
that will receive a new message each time the cell changes its internal
state.

The rest of the output ports are created dynamically only for the

cells that will send state values for other DEVS models, and their name
can be defined by the modeler. Therefore, the new scheme for the port
connection in each cell is the following:

Figure 3. New structure for an Atomic cell.

Under certain situations, it is useful that a model can receive

values different that those of the cell state. To permit this behavior, the
send function was defined. It allows to specify the value to send
through a port in a given moment. For instance, the rule:

{ new_value + send(P, V) } delay { condition }

says that if the condition is true, the new value for the cell will be

the specified by the rule, and the V value will be sent through the P
port. The cell is delayed as in the previous cases, using the kind of
delay specified. The V value can be a constant or a complex expression
to be evaluated at runtime.

Send can be defined as: send(string, real) → 0, that is, the

function always returns a 0 value. The idea is that the use of this
function allows to send a value without change the value of the cell, as
it can be seen following:

{ (0,0) + send(port1, 15 * log(10)) } 100 { (0,0) > 10 }

The meaning of this expression is that, if the value of the present

cell is greater than 10, the cell keeps the present value. It outputs the
value of the expression 15*log(10) through the port1, and delays the
output during 100 time units. Now, there are several output ports.
Hence, when the internal transition function changes the cell state, the
value is sent through the Out port. The remaining ports are reserved
explicitly for values using the send function.

The following modification of the Life game, is used to show

several of the changes done to the tool:

[top]
components : life
in : in
out : outG1 outG2
link : out1@life outG1
link : out2@life outG2
link : in in@life

[life]
type : cell
width : 2
height : 2
delay : transport
defaultDelayTime : 1
border : wrapped
neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) life(0,0) life(0,1)
neighbors : life(1,-1) life(1,0) life(1,1)
initialvalue : 0
in : in
out : out1 out2
link : in in@life(1,1)
link : output1@life(1,1) out1
link : output2@life(1,1) out2
portInTransition : in@life(1,1) specialRule
localtransition : nothing-rule
zone : generateOut { (1,1) }

[nothing-rule]
rule : { (0,0) } 1 { t }

[specialRule]
rule: { portValue(thisPort) } 1 { t }

[generateOut]
rule:{(0,0)+send(output1,9.9999)} 1 {(0,0)>=10}
rule :{(0,0)+send(output2,3.3333)} 1 {(0,0)<10}

Figure 4. Example of use of the new features.

The cellular model here defined uses the interconnection pattern shown

in the following figure (the ports used to connect neighbors are not showed
here).

Figure 5. Coupling scheme of the previous example.

As it can be seen, the higher level coupled model (top) uses one input

and two output ports. Only one component is included (life), using a 2x2 cell
space. The Link directive is used to create a coupling between the portOut and
portIn ports for each of the models involved. After, the basic parameters for
the model are defined: dimension, delay, border, neighbors and external
coupling. Each of these constructs is mapped into one of the sets defined by
the Cell-DEVS formalism.

The portInTransition directive allows to define the name of the function

to be used when a message arrives through the specified port. In this case, the

specialRule is executed. The function portValue(x) allows to get the
value of the last message arrived through the port x of the cell. Besides,
the instruction thisPort returns the name of the port where the message
has arrived.

The local computing function, called nothingRule, does nothing.
There is a special zone (generateOut), used to define a couple of cells
that will be used to output values using the send function.

Support for N-dimensional models

The real systems that can be studied using cellular models are

usually represented by using models in two or three dimensions.
Several theoretical problems can be defined as cellular models with
four or more dimensions. The original version of the tool only allowed
to define two-dimensional cell spaces. This constraint reduces the use
of the tool in more general problems. Therefore, the main modification
done to the tool was devoted to allow the definition of n-dimensional
models. In this case, the formal specification of (Wainer 1998) was
again used to have a formal basis to specify the model behavior.

CD++ was implemented by storing the cells states in a two-

dimensional array of d1 . d2, where the element (x1, x2), x i ∈ [0, di -1], is
in the position x1 + x2 . d1. In an analogous fashion, N-CD++ uses an
array of Πi=1...n di to store the states for the cellular automata with
dimension (d1, d2, ..., dn), and in this case (x1, x2, ..., xn) occupies the
position Σi=1...n xi . (Πk=1...i-1 dk).

As it was seen in the previous section, each cellular model is

specified by using a language that allows to define its dimension, shape
of the neighborhood, and initial values for the cells. The language was
adapted to include references to cells in n-dimensional cell spaces.

Another modification is related with the homogeneity of the

cellular models. In CD++, the neighborhood for a cell only can be
defined by adjacent cells. In addition, the shape of the neighborhood is
the same in all the cell space. At present, N-CD++ allows to define a
neighborhood that can be defined independently for each of the cells in
the space.

Another useful change allows to define different zones in the cell

space. Each zone is defined by a set of cells determined by the cell
range {(x1, x2, ..., xn)...(y1, y2, ..., yn)}. Each zone is associated to a
different set of rules. Using this capability, different zones into the
same cellular model can present different behavior. Hence, a zone
defined by a range of cells is defined by the set of cells (t 1, t 2, ..., t n) of
the cellular automata, such that t i ∈ [min(xi, y i),max(x i, y i)] ∀i ∈ [1, n].

APPLICATION EXAMPLES

This section is devoted to show the use of the tool through

different application examples. The emphasis has been put into the new
features provided and not in the applications. The first example defines
a three-dimensional version for the Life game. After, a model of heat
diffusion in a room will be considered.

Modification of the Life game

We will start to show the use of the tool and its main extensions

by presenting a simple variation of the 'Life' game (Gardner 1970). In
this case, we will consider a population of active cells represented by
'1' values, distributed in an area of 7x7x3 cells. Some of them contain
the '0' value, indicating the absence of life in the cell. A new being is

born when the cell has over 10 living neighbors. Besides, a cell will remain
alive when the neighborhood contains 8 or 10 living neighbors. Otherwise, the
cell will "die". In this case, the neighborhood will have 3x3x3 cells.

The following figure shows a description for this model using the cell

description language:

01 [top]
02 components : 3dl
03
04 [3dl]
05 type : cell
06 dim : (7,7,3)
07 delay : transport
08 defaultDelayTime : 100
09 border : wrapped
10 neighbors: 3dl(-1,-1,-1) 3dl(-1,0,-1)
 3dl(-1,1,-1)
11 neighbors: 3dl(0,-1,-1) 3dl(0,0,-1)
 3dl(0,1,-1)
12 neighbors: 3dl(1,-1,-1) 3dl(1,0,-1)
 3dl(1,1,-1)
13 neighbors: 3dl(-1,-1,0) 3dl(-1,0,0)
 3dl(-1,1,0)
14 neighbors: 3dl(0,-1,0) 3dl(0,0,0)
 3dl(0,1,0)
15 neighbors: 3dl(1,-1,0) 3dl(1,0,0)
 3dl(1,1,0)
16 neighbors: 3dl(-1,-1,1) 3dl(-1,0,1)
 3dl(-1,1,1)
17 neighbors: 3dl(0,-1,1) 3dl(0,0,1)
 3dl(0,1,1)
18 neighbors: 3dl(1,-1,1) 3dl(1,0,1)
 3dl(1,1,1)
19 initialvalue: 0
20 initialCellsValue: 3dl.val
21 localtransition: 3dl-rule
22
23 [3dl-rule]
24 rule : 1 100 { (0,0,0) = 1 and
 (truecount = 8 or truecount = 10) }
25 rule : 1 100 { (0,0,0) = 0 and
 truecount >= 10 }
26 rule : 0 100 { t }

Figure 6. Description of a variation of the Life game.

The lines 1 and 2 are used to define the higher level coupled model, that,

in this case, is defined by the model 3dl (Three dimensional Life). Lines 4 to
19 are used to define the dimension parameters for the cell space. The kind of
delay and the shape of the neighborhood are also included. The line 20 is used
to define a file containing the initial values for the cells. Line 21 defines the
name of the local computing function that is used to update the cells values in
each phase of the simulation. This function is defined in lines 23 to 26.

The results obtained when executing this model can be seen in the figure

7 (dividing the three-dimensional space into three planes). In this case, the
execution starts with a high number of living cells, but the initial distribution
makes that the population is not stable, and its number turns to be reduced.
Finally, in the instant 00:00:01:000, the population is extinguished.

Time: 00:00:00:000
 0123456 0123456 0123456
 +-------+ +-------+ +-------+
 0|1 | 0| | 0|1 |
 1|1 1 11| 1|11 11| 1| 111 |
 2| 1 1 | 2| 11 1| 2| 1 11 |
 3| | 3| 1 11| 3| 11|
 4| 1 11| 4| 1 1 | 4| 1 11|
 5| 11 1| 5| 1 1 | 5| 11 1 |
 6|1 1 1| 6| 1 1 | 6| 1 11 1|
 +-------+ +-------+ +-------+
Time: 00:00:00:100
 0123456 0123456 0123456
 +-------+ +-------+ +-------+
 0| 1 1| 0|11 1| 0| 1 1|
 1|1 1 1| 1|1 1| 1|1 11 1|
 2|11 1 1| 2|1 1 | 2|11 11|
 3| 111| 3| 1 1 1| 3| 1 1|
 4| | 4| 11| 4| |
 5|1 111 | 5|1 111 1| 5|1 11 1|
 6| | 6| 1 | 6| 1 1 |
 +-------+ +-------+ +-------+
Time: 00:00:00:200
 0123456 0123456 0123456
 +-------+ +-------+ +-------+
 0|1 1| 0| 1| 0|1 1|
 1| 11 1 | 1| 1 1 | 1| 11 1 |
 2| 11 | 2| 1 1| 2| |
 3|1 1 | 3|1 11 | 3|1 11 |
 4| 1111| 4| 11 | 4| 1111|
 5|1 1 | 5|1 1 1| 5|1 1 1|
 6|11 11| 6|11 11| 6|11 111|
 +-------+ +-------+ +-------+

. . .
Time: 00:00:00:900
 0123456 0123456 0123456
 +-------+ +-------+ +-------+
 0| | 0| | 0| |
 1| | 1| | 1| |
 2| | 2| | 2| |
 3| | 3| | 3| |
 4|1 1 | 4|1 11| 4|1 1 |
 5| | 5| | 5| |
 6| | 6| | 6| |
 +-------+ +-------+ +-------+

Figure 7. Execution results for the modified Life game.

Heat Diffusion

This example considers the air into a room represented by cellular

automaton. Each cell of the space contains a temperature value. In each
stage of the simulation, the temperature of the cell is calculated as the
average of the values of the neighborhood, whose shape can be seen in
the following figure.

Figure 8. Neighborhood shape for the heat diffusion model

In addition, a heater is connected to the cells (2,2,1) and (3,3,0).

The heater simulator generates a flow of temperatures between 24º C
and 80º C with uniform distribution. On the other hand, a refrigerator is
connected to the cells (1,3,3) and (3,3,2). The corresponding model is
used to create values in the range [10, 15] also with uniform

distribution. Both generators create values after x seconds, where x follows an
exponential distribution with mean 40 seconds. The model definition done
using the specification language is shown in the following figure:

01 [top]
02 components : room Heater@Generator
 Cooler@Generator
03 link : out@Heater inputHeat@room
04 link : out@Cooler inputCold@room
05
06 [room]
07 type : cell 08 dim : (4, 4, 4)
09 delay : transport
10 defaultDelayTime : 100
11 border : wrapped
12 neighbors : room(-1,0,-1) room(0,-1,-1)
13 neighbors : room(0,0,-1) room(0,1,-1)
14 neighbors : room(1,0,-1) room(-1,1,0)
15 neighbors : room(-1,-1,0) room(-1,0,0)
16 neighbors : room(0,-1,0) room(0,0,0)
17 neighbors : room(1,-1,0) room(1,0,0)
18 neighbors : room(-1,0,1) room(0,1,0)
19 neighbors : room(0,-1,1) room(0,0,1)
 room(0,1,1)
20 neighbors : room(1,0,1) room(1,1,0)
21 neighbors : room(0,0,-2) room(0,0,2)
 room(0,2,0)
21 neighbors : room(0,-2,0) room(2,0,0)
 room(-2,0,0)
22 initialvalue : 24
23 in : HeatInput ColdInput
24 link : HeatInput in@room(3,3,0)
25 link : HeatInput in@room(2,2,1)
26 link : ColdInput in@room(3,3,2)
27 link : ColdInput in@room(1,3,3)
28 localtransition : heat-rule
29 portInTransition : in@room(3,3,0) setHeat
30 portInTransition : in@room(2,2,1) setHeat
31 portInTransition : in@room(3,3,2) setCold
32 portInTransition : in@room(1,3,3) setCold
33
34 [heat-rule]
35 Rule: {((-1,0,-1)+(0,-1,-1)+(0,0,-1)+
 (0,1,-1) + (1,0,-1) + (-1,-1,0) +
 (-1,0,0) + (-1,1,0) + (0,-1,0) +
 (0,0,0)+(0,1,0)+(1,-1,0)+(1,0,0) +
 (1,1,0) + (-1,0,1) + (0,-1,1) +
 (0,0,1)+(0,1,1)+(1,0,1)+(0,0,-2) +
 (0,0,2)+(0,2,0)+(0,-2,0)+(2,0,0) +
 (-2,0,0)) / 25 } 1000 { t }
36 [setHeat]
37 rule : { uniform(24,80) } 1000 { t }
38
39 [setCold]
40 rule : { uniform(-45,10) } 1000 { t }
41
42 [Heater]
43 distribution : exponential
44 mean : 10
45 initial : 1
46 increment : 0
47
48 [Cooler]
49 distribution : exponential
50 mean : 10
51 initial : 1
52 increment : 0

Figure 9. Definition of the heat diffusion model

Here, lines 1 to 4 are used to define the upper level model, and the
components. The couplin g between these models are also shown in
these lines.

The coupling scheme of the models is shown in the following

figure.

Figure 10. Coupling scheme of the heat diffusion model

Lines 6 to 32 are used to define the model representing the room

to be studied. It is composed by a cellular automata of 10x10x4 cells.
Initially, every cell in the space has a temperature of 24° C (as seen in
the line 22). Lines 34 and 35 are used to define the function used to
compute the present value for the cell, as an average between all the
neighboring cells.

Lines 36 and 37 are used to define a function that generates a

temperature value in the range [24, 80], using a uniform probabilistic
distribution. These values are received through the In port of the cells
(2,2,1) and (3,3,0), as it is defined in the lines 24 y 25. Likewise, lines
39 and 40 are used to define the function that generates temperatures in
the range [-45, 10] with uniform distribution. These values will be
received through the In port of the cells (1,3,3) and (3,3,2). The
remaining lines are used to define the heat and cold generators, which
send temperature values with a frequency of x seconds. In this case, the
values of x are defined by an exponential distribution, with an average
value of 40 seconds.

The following figure shows a part (first two levels) of the results

generated by the tool when the model is executed:

Time: 00:00:00:000
 0 1 2 3 0 1 2 3
 +--------------------+ +--------------------+
0| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0|
1| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0|
2| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0|
3| 24.0 24.0 24.0 24.0| | 24.0 24.0 24.0 24.0|
 +--------------------+ +--------------------+
Time: 00:00:02:000
 0 1 2 3 0 1 2 3
 +--------------------+ +--------------------+
0| 24.6 24.0 24.6 23.8| | 24.0 24.0 27.1 23.8|
1| 23.2 24.0 24.8 24.4| | 24.0 25.5 25.5 24.0|
2| 24.6 25.5 26.1 25.4| | 27.1 25.5 25.5 25.4|
3| 24.6 25.2 26.1 23.0| | 23.8 25.5 25.4 25.4|
 +--------------------+ +--------------------+

Time: 00:00:15:738
0 1 2 3 0 1 2 3
 +--------------------+ +--------------------+
0| 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2 24.2|
1| 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2-24.0|
2| 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2 24.2|
3| 24.2 24.2 24.2-43.1| | 24.2 24.2 24.2 24.2|
 +--------------------+ +--------------------+

Figure 11. Simulation results of the heat diffusion model

In simulated time 00:00:01:000, the heater and cooler produce changes

in the cells where they are connected. Consequently, the state of the neighbors
of these cells will change in time 00:00:02:000. In the following stages, the
rest of the cells will also change, following the rules of the model. Finally, in
simulated time 00:00:15:738, the refrigerator will produce a change in the
cells (1,3,3) and (3,3,2), adding the values -24 y –43.1. This values will
produce future changes in the neighboring cells.

CONCLUSION

This work introduced an extension to the tool CD++ used for the

modeling and simulation of Cell-DEVS models. This formalism allows
hierarchical construction of the models, which improves the development,
checking and maintenance phases. Ten-fold improvements in the development
cycle could be achieved by using the tool for common problems.

The extensions introduced to the tool allow to represent new models in

other domains for the state variables. It also offers the possibility to use
several functions, which permits the creation of complex models in a simple
fashion.

The new input/output port definitions allow to define multiple

interconnection between Cell-DEVS or DEVS models. The main changes
were devoted to include n-dimensional models, making the tool a general
framework to define and simulate complex generic models.

The tool is public domain, and it can be found at

http://www.dc.uba.ar/people/profesores/wainer. It was constructed using a
standard version of C++. At present, it is running into different platforms
(including Windows 95/NT, Linux, AIX, HP -UX and Solaris).

REFERENCES

Barylko, A.; Beyoglonián, J.; and Wainer, G. 1998. "CD++: a tool to develop
binary Cell-DEVS models" (in Spanish). In Proceedings of the XXII Latin-
American Conference on Informatics. (Quito, Ecuador).

Gardner, M. 1970. “The Fantastic Combinations of John Conway’s New
Solitaire Game ‘Life’ ”. Scientific American , 23 (4), pp. 120-123.

Giambiasi, N. and Miara, A. 1976. "SILOG: A practical tool for digital logic
circuit simulation". In Proceedings of the 16th. D.A.C., San Diego, U.S.A.

Rodríguez, D. and Wainer, G. 1999. "Redefinition of a specification language
for Cell-DEVS models". In Proceedings of Information Systems Analysis and
Synthesis, ISAS’99 . Florida, USA.

Wainer, G. 1998. "Cellular models with explicit timing delays". Ph. D. Thesis.
DIAM/IUSPIM. Université d'Aix -Marseille III. France.

Wainer, G. and Giambiasi, N. 1998. "Specification, modeling and simulation
of timed Cell-DEVS spaces". Technical Report 98-007. Departamento de
Computación. Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires. Submitted for publication.

Zeigler, B. 1976. Theory of Modeling and Simulation. Wiley, N.Y.

Zeigler, B. 1984. Multifaceted Modeling and discrete event simulation .
Academic Press.

Zeigler, B. 1990. "Object-oriented simulation with hierarchical modular
models". Academic Press.

