NEW EXTENSIONSTO THE CD++ TOOL

Daniel A. Rodriguez and Gabriel A. Wainer
Departamento de Computacion
Facultad de Ciencias Exactasy Naturales. Universidad de Buenos Aires
(1428) Pabellon |. Ciudad Universitaria. Buenos Aires. Argentina.
e-mail:{ drodrigu,gabrielw} @dc.uba.ar

Keywords: Modeling methodology: DEV'S models, cellular automata,
Cell-DEVS models, Smulation methods: Discrete-event smulation,
Simulationtoals.

ABSTRACT

This work describes some of the extensions included into a tool
used to study, model and simulate cellular models. The environment is
based on the Cell-DEV S paradigms. The main extensions are devoted
to define generic cell spaces, and are based on the formal definitions
for ndimensiona Cell-DEVS modes. A cell specification language
used to define the model's behavior was redefined to include these
extensions. In this way, very complex cell based systems can be built
in asimple fashion, allowing reductions in the development, checking
and maintenance times of the components.

INTRODUCTION

The DEVS (Discrete EVents Systems specifications) formalism
was proposed in (Zeigler 1976), with the goal of modeling complex
discrete events models. Cell-DEVS (Wainer and Giambiasi 1998;
Wainer 1998) is a paradigm that extended the DEVS formalism to
improve the definition of cellular models. In this paradigm, each cell is
defined as an aomic model using transport or inertia delays
(Giambiasi and Miara1976). A coupled model that includes a group of
these cells constitutes a cellular model.

Cell-DEV S atomic model's can be specified as
TDC=<X,Y,1,Sq,N,d, dn, de, t, [, D>

X isthe set of externd input events;

Y isthe set of external output events;

| represents the model's modular interface;
S isthe set of sequential statesfor the cell;
q isthe cell state definition;

N isthe set of statesfor the input events;
d isthe transport delay for the cell;
dincistheinternal transition function;
dextisthe external transition function;

t isthelocal computation function;

| isthe output function; and

D isthe state's duration function.

A Cell-DEV'S coupled mode is defined by:

GCC =< Xligt, Yligt, I, X, Y, n, {ts,...tn}, N, C, B, Z, select >

Ylist isthe output coupling list;

Xlist istheinput coupling list;

| represents the definition of the interface for the modular mode!;
X isthe set of externa input events,

Y isthe set of external output events;

n isthe dimension of the cell space;

{t1,....,tn} isthe number of cellsin each of the dimensions;
N isthe neighborhood set;

C isthe céll space;

B isthe set of border cells;

Z isthe trandation function; and

select isthetie breaking function for smultaneous events.

CD++ (Barylko et al. 1998) is a tool that allows implementing the
theoretical concepts specified by the DEVS and Cell-DEVS formalisms. A
specification language permits the creation of coupled models, the initia
configuration for the atomic models, and the creation of external eventsto be
used during the simulation. The original version of CD++ permitsthe creation
of two-dimensional cellular automata, where the state of acell hasabinary or
three-state value.

The goal of this work is to present a new set of extensions done to the
CD++ tool. The extensions done are based on the theoretical concepts defined
in (Wainer 1998). That work presented a formal definition for n-dimensional
Cell-DEV S moddls, providing a sound base to develop cellular models.

CD++

CD++ is a modeling tool that was defined using te basic concepts
defined in (Zeigler 1984; Zeigler 1990; Wainer 1998). Two basic abstract
classes were defined: Models and Processors. The first are used to represent
the behavior of the atomic and coupled models, while the second implement
the simulation mechanisms.

The Atomic class implements the behavior of the atomic models. The
Coupled-Mode class implements the mechanisms of the coupled models. For
the case of a cellular model, a specia atomic model is used to represent to
each cell. To do so, AtomicCell and CoupledCell are defined as subclasses of
Atomic and Coupled respectively. AtomicCell extends the behavior of the
atomic models, to define the functionality of the cell space. On the other hand,
the CoupledCell class permits the management of a group of atomic cells.

The smulation is based on the interchange of messages between the
different processors. Each message contains information to identify the
sender/receiver, the time of the event, and the content that consists in a port
and a vaue for it. Different messages are used: X (which represents an
external event), Y (represents the model output), * (represents an internal
event), and done(indicating that the model has finished itstask).

Thiswork was partidly supported by the UBACY T research project TX-004, “Concurrency in distributed systems”.

1
0..*
o
Processor Mode! 1
Atomic
AtomicCell CoupledCell
1
InertialDelayCell TransportDelayCell
BE=— e —

FlatCoupledCell

Processor

Model
—

CellCoordinator

FlatCellCoordinator
I

Figure 1. Cell-DEVS Models and Processors.

EXTENDED CD++

The CD++ tool includes an interpreter for a specification
language that alows describing the behavior of each cell of a cdlular
model, including its delay and neighborhood. In addition, it allows to
define the size of the cell space and their connection with other DEVS
models, the border and the initial state of each cell. To do so, the
theoretical definitions of the Cell-DEV'S formalism were used.

The behavior specification for a cell is defined using a set of
rules, each indicating the value for the cell's state if a condition is
satisfied. The output of the model should be delayed by using a
specified time. If the condition is not valid, the next rulesin thelist are
evaluated until aruleis satisfied or there areno morerules.

In the latter case, an error will be raised, aborting the simulation
process. This error indicates that the model specification isincomplete.
The existence of two or more rules with same condition but with
different state value or delay is also detected, avoiding the creation of
ambiguous models. In this situation, the simulation will be aborted.
Instead, when two different rules are valid, but their result is the same,
awarning israised but the smulation continues.

Theoriginal tool used three-state, based on the work presented in
(Wainer and Giambiasi 1998). When the conditions of a rule are
evaluated, a True, False or Undefined value can be obtained. In this
case, if no condition is True but any is evaluated to Undefined, the state

of the cell will be Undefined, and the default delay. In this situation, the tool
aertsto the modeler, but the simulation is not interrupted.

Taking this basic behavior as a basis, severd modifications were
introduced. Some details will be presented in the following sections.

Extensionsto the Specification L anguage

The use of three-state logic constrained the models that can be
implemented, limiting the use of the tool in more general problems. Hence,
the definitions of (Wainer 1998) were considered, alowing a cell to have a
vaueinthe set RE {Undefined}.

The expansion of the set of values implied that the specification
language should be modified. The complete grammar for the new language
can be seen in (Rodriguez and Wainer 1999). The main operators available
include:

Boolean;

Comparison;

Arithmetic;

Number types;
Neighborhood values;
Time;

Conditionals;
Angleconversion;
Pseudo-random numbers;
Error rounding;
Predefined constants: pi, €, grav, accd, light, planck, etc.

In every case, it vas considered that any expression including the
Undefined value would be Undefined. Due to the inclusion of probabilistic
functions as conditionsinto the rules, it is possible to obtain a Falseresult. In
this case, even the model can be well specified, t he condition would show an
ambiguity. The tool automaticaly identifies this situation and assigns the
Undefined value to the cell, informing this situation.

External Event arrival

The originad version of CD++ followed a previous specification for
external event management. In this case, when acell is created, three ports are
associated: In, Out and NeighborChange. The input port In connects external
DEV 'S models with the cell. The input port Neighbor Change define the input
vaues arriving from the neigh bors. Finally, theOut port connects the cell with
the neighbors and other DEV S models. When an external message arrives to
the cell through the In port, its value is queued, and it will be used to compute
the new cell state.

The implementation has been modified to reflect the present
specificationsfor Cell-DEV S models. First, theinput ports|n are created only
for those cells connected with external DEV'S models. On the other hand, the
local computing functiont usesall the inputs, including the values sent by the
neighboring cells, and the external messages arrived through the other input
ports. The language was extended to define the actions to be taken for
messages arriving from external models.

CrapieTic Crapieric
DEWS _b DEVS
d
]]
+N-2|3]:Ibﬂr' L Aran i ur i Margh bor | CUC
cal %H el cal
b2 oo e gy 21 gboor
THad 32 CHad e THad 3%

Figure 2. New structure of an atomic cell.

This mechanism is implemented by associating each cell with a
list of tuples (portin, inFunction, lastValue). Portin contains the port
name. InFunction identifies the function describing the behavior for a
message arriving from portin. Finally, lastValue containsthe last value
arrived to the port.

Definition of output behavior

As mentioned in the previous section, NCD++ creates the In
ports in a dynamic fashion, and they can be used to connect the cell
space with other DEV S models.

In CD++, the Out port connects each cell with the neighbors and
with other DEVS models. The behavior was redefined in N-CD++, to
follow the formal definitions of (Wainer 1998). In this case, severa
output ports can exist. The first one is automatically created, and it is
called Out. It is used to connect the present cell with the neighbors. The
Out port can aso be used to connect a cell with other DEV'S models,
that will receive a new message each time the cell changesitsinternal
stee.

The rest of the output ports are created dynamically only for the
cellsthat will send state values for other DEV'S models, and their name
can be defined by the modeler. Therefore, the new scheme for the port
connection in each cell isthe following:

Inl \'.'\. - . ¥ Tt
In 2 - -y Ot
A T
Inn - Aémﬁic ————— * Outn
—w L
Meighhor Chat
Change "

Figure 3. New structure for an Atomic cell.

Under certain situations, it is useful that a model can receive
values different that those of the cell state. To permit this behavior, the
send function was dfined. It allows to specify the value to send
through a port in a given moment. For instance, the rule:

{ new_value+ send(P, V) } dday { condition}

saysthat if thecondition istrue, the new value for the cell will be
the specified by the rule, and the V value will be sent through the P
port. The cell is delayed as in the previous cases, using the kind of
delay specified. The V value can be a constant or acomplex expression
to be evaluated at runtime.

Send can be defined as: send(string, real) ® O, that is, the
function always returns a 0 value. The idea is that the use of this
function allowsto send avalue without change the value of the cell, as
it can be seen following:

{ (0,0) +send(port1, 15 * log(10)) } 100{ (0,0) > 10}

The meaning of this expression isthat, if the value of the present
cell is greater than 10, the cell keeps the present value. It outputs the
value of the expression 15*10g(10) through the portl, and delays the
output during 100 time units. Now, there are several outpu ports.
Hence, when the internal transition function changes the cell state, the
value is sent through the Out port. The remaining ports are reserved
explicitly for values using thesend function.

The following modification of the Life game, is used to kow
severa of the changes doneto the tool:

[top]

conmponents : life
in: in

out : outGl out &K
link : outl@ife outGL
link : out2@ife out@&@
link : inin@ife

[life]

type : cell

width : 2

height : 2

delay : transport

defaul tDel ayTime : 1

border : wapped

nei ghbors : life(-1,-1) life(-1,0) life(-1,1)
nei ghbors : life(0,-1) 1ife(0,0) Ilife(0,1)
nei ghbors : life(1,-1) life(1,0) life(1,1)
initialvalue : 0

in: in

out : outl out2

link : inin@ife(l,1)

link : outputl@ife(1,1) outl
link : output2@ife(1,1) out2
portinTransition : in@ife(1,1)
localtransition : nothing-rule
zone : generateCQut { (1,1) }

speci al Rul e

[not hi ng-rul e]
rule : { (0,0) } 1 {t}

[speci al Rul e]
rule: { portValue(thisPort) } 1 { t }

[gener at eQut]
rul e: {(0,0)+send(out putl,9.9999)} 1 {(0,0)>=10}
rule :{(0,0)+send(out put2,3.3333)} 1 {(0,0)<10}

Figure 4. Example of use of the new features.

The cellular model here defined uses the interconnection pattern shown
in the following figure (the ports used to connect neighbors are not showed
here).

TOP

LIFE

QOUTG

—
i jiz) QUTL
" " OUTFUTL

OUTPUT2 \ OUTG2
[olisy] I

Figure 5. Coupling scheme of the previous example.

As it can be seen, the higher level coupled model (top) uses one input
and two output ports. Only one component isincluded (life), using a 2x2 cell
space. The Link directiveis used to create a coupling between the portOut and
portin ports for each of the models involved. After, the basic parameters for
the model are defined: dimension, delay, border, neighbors and external
coupling. Each of these constructs is mapped into one of the sets defined by
the Cell-DEV'S formalism.

The portInTransition directive allows to define the name of the function
to be used when amessage arrives through the specified port. In this case, the

specialRule is executed. The function portValue(X) allows to get the
value of thelast message arrived through the portx of the cell. Besides,
the instruction thisPort returnsthe name of the port where the message
has arrived.

The loca computing function, called nothingRule, does nothing.
Thereis a specia zone (generateOut), used to define a couple of cells
that will be used to output values using the send function.

Support for N-dimensional models

The real systems that can be studied using cellular models are
usually represented by using models in two or three dimensions.
Several theoretical problems can be defined as cellular models with
four or more dimensions. The original version of thetool only allowed
to define two-dimensiona cell spaces. This constraint reduces the use
of thetool in more general problems. Therefore, the main modification
done to the tool was devoted to alow the definition of n-dimensional
models. In this case, the forma specification of (Wainer 1998) was
again used to have aforma basis to specify the model behavior.

CD++ was implemented by storing the cells states in a two-
dimensional array of d; . cb, wherethe element (xi, %), xi1 [0,d-1],is
in the position x + % . di. In an analogous fashion, N-CD++ uses a
array of Piz1.n d to store the states for the cellular automata with
dimension (d, @, ..., d)), and in this case (x, %, ..., Xn) OCCUpies the
position Si=1..n Xi . (Pk=1.i1 tk).

As it was seen in the previous section, each cellular model s
specified by using a language that allows to define its dimension, shape
of the neighborhood, and initial valuesfor the cells. The language was
adapted to include referencesto cellsin n-dimensiona cell spaces.

Another modification is related with the homogeneity of the
cellular models. In CD++, the neighborhood for a cell only can be
defined by adjacent cells. In addition, the shape of the neighborhood is
the same in al the cell space. At present, N-CD++ allows to define a
neighborhood that can be defined independently for each of the cellsin

the space.

Another useful change allows to define different zonesin the cell
space. Each zone is defined by a set of cells determined by the cell
range {(x1, X2, ..., %)...(Y1, Y2 ..., Yn)}. Each zone is associated to a
different set of rules. Using this capability, different zones into the
same cellular model can present different behavior. Hence, a zone
defined by arange of cellsis defined by the set of cells (t 4t ..., tn) Of
the cellular automata, suchthatt; T [min(x, yi),max(xi,y)] "i1 [1, n].

APPLICATION EXAMPLES

This section is devoted to show the use of the tool through
different application examples. The emphasis has been put into the new
features provided and not in the applications. Thefirst example defines
athree-dimensiona version for the Life game. After, amode of heat
diffusion in aroom will be considered.

M odification of the Life game

Wewill start to show the use of the tool and its main extensions
by presenting a simple variation of the 'Life' game (Gardner 1970). In
this case, we will consider a population of active cells represented by
'1" values, distributed in an area of 7x7x3 cells. Some of them contain
the '0" value, indicating the absence of life in the cell. A new being is

born when the cell has over 10 living neighbors. Besides, a cell will remain
aive when the neighborhood contains 8 or 10 living neighbors. Otherwise, the
cell will "di€". In this case, the neighborhood will have 3x3x3 cells.

The following figure shows a description for this model using the cell
description language:

01 [top]
02 conponents : 3dl

04 [3dl]

05 type : cell

06 dim: (7,7,3)

07 delay : transport

08 defaul tDel ayTine : 100

09 border : w apped

10 nei ghbors: 3dl(-1,-1,-1) 3dl(-1,0,-1)

3dl(-1,1,-1)

11 nei ghbors: 3dl (0,-1,-1) 3dl(0,0,-1)
3dl (0, 1, -1)

12 neighbors: 3dI(1,-1,-1) 3di(1,0,-1)
3dl (1,1, -1)

13 nei ghbors: 3dl(-1,-1,0) 3dl(-1,0,0)
3dl (-1, 1,0)

14 nei ghbors: 3dl (0,-1,0) 3dl (0, 0, 0)
3dl (0,1, 0)

15 nei ghbors: 3dl (1,-1,0) 3dl (1,0, 0)
3dl (1,1,0)

16 neighbors: 3dI(-1,-1,1) 3di(-1,0,1)
3dl (-1,1,1)

17 nei ghbors: 3dl (0,-1,1) 3dl (0,0,1)
3dl (0,1,1)

18 nei ghbors: 3dl (1,-1,1) 3dl (1,0,1)
3dl(1,1,1)

19 initialvalue: 0
20 initial Cell sval ue: 3dl.val
21 localtransition: 3dl -rule

23 [3dl-rul €]

24 rule : 1 100 { (0,0,0) =1 and
(truecount = 8 or truecount = 10) }

25 rule : 1 100 { (0,0,0) = 0 and
truecount >= 10 }

26 rule : 0 100 { t }

Figure 6. Description of a variation of the Life game.

Thelines 1 and 2 are used to define the higher level coupled model, that,
in this case, is defined by the model 3dl (Three dimensiona Life). Lines4to
19 are used to define the dimension parameters for the cell space. Thekind of
delay and the shape of the neighborhood are also included. Theline 20 isused
to define a file containing the initial values for the cells. Line 21 defines the
name of thelocal computing function that is used to update the cellsvaluesin
each phase of the simulation. Thisfunction is defined in lines 23 to 26.

The results obtained when executing this model can be seenin thefigure
7 (dividing the three-dimensional space into three planes). In this case, the
execution starts with a high number of living cells, but the initial distribution
makes that the population is not stable, and its number turns to be reduced.
Finally, in the instant 00:00:01:000, the population is extinguished.

Ti me: 00: 00: 00: 000 distribution. Both generators create values after x seconds, where x follows an
0123456 0123456 0123456 exponential distribution with mean 40 seconds. The model definition done
R + R + e + using the specification language is shown in the following figure:
01 | 0l | 0O]1 I
11 1 11] 111 11] 1] 111 | 0T [top]
2 1 1 2| 11 1 2l 111 | 02 conponents : room Heat er @sener at or
3 | 3 1 1] 3| 11 Cool er @=xner at or
gll 11 11} gll 1111 || gll il ili 03 link : out@eater inputHeat@oom
61 1 1| 6 1 1] 6| 111 1] 84; link : out@ool er inputCold@oom
Fommmm e + B + S +
) 06 [rooni
Ti me: 00: 00: 00: 100 : fn -
0123456 0123456 0123456 o fj’élpgy el 'anspo” 08 dim: (4, 4 4)
A ro Ao Aty N 10 defaul tDel ayTime : 100
o 1 1] 0] 11 1 o 1 1 11 border : wrapped
%ll ill . ﬂ %ll i 11|| yl 1111 lﬂ 12 neighbors : roon(-1,0,-1) roomO,-1,-1)
3] 111] 311 1 3] 11| 13 nei ghbors : roon(0,0,-1) roon(O0,1,-1)
4| | 4] 11| 4| | 14 nei ghbors : roon(1,0,-1) roon(-1,1,0)
15 nei ghbors : room(-1,-1,0) roon(-1,0,0)
gl 1 111 gl 11111 1] 2| 11 11 1 16 nei ghbors : room(0,-1,0) roon{0, 0, 0)
|+ |+ L |+ |+_ |+ 17 nei ghbors : roon(1,-1,0) roon(1,0,0)
Time: 00:00-00-200 18 nei ghbors : roon(-1,0,1) roon(0,1,0)
0123456 0123456 0123456 19 neighbors : r ooﬂ)g‘ni é’ 1) 1; oon(0, 0, 1)
0+EL """ i+ 0+"""'1+ 0+h1"""1+ 20 nei ghbors : room(1,0,1) roon(1,1,0)
| | | | | | 21 nei ghbors : roon(0,0,-2) roon(0, 0, 2)
1] 11 1| 1] 1 1| 1] 11 1 | roon(0, 2, 0)
2| 1 2 1 1 2| | 21 nei ghbors : roomO,- 2, 0) roon(2, 0, 0)
311 1 | 31 11 | 311 11 | roomn(-2, 0, 0)
4 1114 4] 1 4 1114 22 initialvalue : 24 o
gl il 1 11' 2' 11 1 11' gl il 11&' 23 in : Heatlnput Coldl nput
|+ |+ |+ |+ |+_ L 24 link : Heatlnput in@oon3,3,0)
"""""""""" 25 link : Heatlnput in@oon(2,2,1)
N e A A 26 link : Coldlnput in@oom3,3,2)
T 0(1)2'32(;'600' 9000123456 0123456 27 1ink . Col dinput —in@oon(1,3, 3)
+ + + + N + 28 localtransition : heat-rule
o o o 29 portlInTransition : in@oon(3,3,0) setHeat
1' | 1' | 1' | 30 portlnTransition : in@oon(2,2,1) setHeat
2' | 2' | 2' | 31 portinTransition : in@oom3,3,2) setCold
3’ || 3|| I 3|| I 32 portlnTransition : in@oonm(1,3,3) setCold
33
41 1] 41 11| 41 1 34 [heat-rul e]
2' | g' | g' | 35 Rule: {((-1,0,-1)+(0,-1,-1)+(0,0,-1)+
(. Lo [! (0,1,-1) +(1,0,-1) + (-1,-1,0) +
Figure 7. Execution results for the madified Life game. ((O- 10' 00’)0_2((; :{-01)_'_1(10) 1 B)(+0(£ 10’ Og) ++
(1,1,0) + (-1,0,1) + (0,-1,1) +
. (0,0,1)+(0,1,1)+(1,0,1)+(0,0,-2) +
Heat Diffusion (0,0,2)+(0,2,0)+(0,-2,0)+(2,0,0) +
. . . (-2,0,0)) / 25} 1000 { t }
This example considersthe air into aroom represented by cellular 36 [set Heat]
automaton. Each cell of the space contains atemperature value. In each 37 rule : ni for m 24. 80 1000 { t
stage of the simulation, the temperature of the cell is calculated as the 38 ure : { uni m(24,80) } Lol
average of the values of the neighborhood, whose shape can be seenin 39 [set Col d]
thefollowing figure. 40 rule : { uniform(-45,10) } 1000 { t }
41
42 [Heater]
43 distribution : exponenti al
44 mean : 10
45 initial : 1
46 increnent : O
Figure 8. Neighborhood shape for the heat diffusion model 2; [Cool er]
In addition, a heater is connected to the cells (2,2,1) and (3.3,0). g0 distribution : exponential
The heater smulator generates a flow of temperatures between 24° C 51 initial - 1
and 80° C with uniform distribution. On the other hand, arefrigerator is 52 i ncrerrenf S0

connected to the cells (1,3,3) and (3,3,2). The corresponding mode! is

used to create values in the range [10, 15] aso with uniform Figure 9. Definition of the heat diffusion mode

Here, lines 1 to 4 are used to define the upper level model, and the
components. The coupling between these models are also shown in
these lines.

The coupling scheme of the models is shown in the following
figure.

Coolsr

Heater

[

Figure 10. Coupling scheme of the heat diffusion model

Lines 6 to 32 are used to define the model representing the room
to be studied. It is composed by a cellular automata of 10x10x4 cells.
Initialy, every cell in the space has atemperature of 24° C (asseenin
the line 22). Lines 34 and 35 are used to define the function used to
compute the present value for the cell, as an average between all the
neighboring cells.

Lines 36 and 37 are used to define a function that generates a
temperature value in the range [24, 80], using a uniform probabilistic
distribution. These values are received through the In port of the cells
(2,2,1) and (3,3,0), asitisdefined in the lines 24 y 25. Likewise, lines
39 and 40 are used to define the function that generates temperaturesin
the range [-45, 10] with uniform distribution. These values will be
received through the In port of the cells (1,3,3) and (3,3,2). The
remaining lines are used to define the heat and cold generators, which
send temperature values with a frequency of x seconds. In this case, the
values of x are defined by an exponential distribution, with an average
vaue of 40 seconds.

The following figure shows a part (first two levels) of the results
generated by the tool when the model is executed:

Ti ne: 00: 00: 00: 000

0 1 2 3 0 1 2 3

e e e S +
0] 24.0 24.0 24.0 24.0] | 24.0 24.0 24.0 24.0
1] 24.0 24.0 24.0 24.0] | 24.0 24.0 24.0 24.0
2| 24.0 24.0 24.0 24.0] | 24.0 24.0 24.0 24.0
3] 24.0 24.0 24.0 24.0] | 24.0 24.0 24.0 24.0

e m e e e e mieeao e +
Ti me: 00: 00: 02: 000

0 1 3 0 1 2 3

o e e a s R +
0] 24.6 24.0 24.6 23.8] | 24.0 24.0 27.1 23.8
1] 23.2 24.0 24.8 24.4] | 24.0 25.5 25.5 24.0
2| 24.6 25.5 26.1 25.4| | 27.1 25.5 25.5 25.4
3| 24.6 25.2 26.1 23.0] | 23.8 25.5 25.4 25.4]|

e m e e e e mieeao S +
Time: 00:00: 15: 738
0 1 2 3 0 1 2 3

e e R +
0] 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2 24.2
1] 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2-24.0
2] 24.2 24.2 24.2 24.2| | 24.2 24.2 24.2 24.2
3| 24.2 24.2 24.2-43.1| | 24.2 24.2 24.2 24.2

e e e eaaa o S +

Figure 11. Smulation results of the heat diffusion model

In simulated time 00:00:01:000, the heater and cooler produce changes
in the cellswhere they are connected. Consequently, the state of the neighbors
of these cells will change in time 00:00:02:000. In the following stages, the
rest of the cellswill also change, following the rules of the model. Finally, in
simulated time 00:00:15:738, the refrigerator will produce a change in the
cells (1,3,3) and (3,3,2), adding the values -24 y —43.1. This values will
produce future changes in the neighboring cells.

CONCLUSION

This work introduced an extension to the tool CD++ used for the
modeling and smulation of Cell-DEVS models. This formalism alows
hierarchica construction of the models, which improves the development,
checking and maintenance phases. Ten-fold improvements in the development
cycle could be achieved by using the tool for common problems.

The extensions introduced to the tool alow to represent new models in
other domains for the state variables. It aso offers the possibility to use
severa functions, which permits the creation of complex models in a simple
fashion.

The new input/output port definitions alow to define multiple
interconnection between Cell-DEVS or DEV'S models. The main changes
were devoted to include n-dimensional models, making the tool a general
framework to define and simulate complex generic models.

The tool is public doman, and it can be found at
http://www.dc.uba.ar/peopl€/profesores/wainer. It was constructed using a
standard version of C++. At present, it is running into different platforms
(including Windows 95/NT, Linux, AlX, HP-UX and Solaris).

REFERENCES

Barylko, A.; Beyoglonian, J.; and Wainer, G. 1998. "CD++: atool to develop
binary Cell-DEVS models’ (in Spanish). In Proceedings of the XXII Latin-
American Conference on Informatics. (Quito, Ecuador).

Gardner, M. 1970. “The Fantastic Combinations of John Conway's New
Solitaire Game ‘Life’ ”. Scientific American, 23 (4), pp. 120-123.

Giambiasi, N. and Miara, A. 1976. "SILOG: A practica tool for digital logic
circuit ssmulation”. In Proceedings of the 16th. D.A.C., San Diego, U.S.A.

Rodriguez, D. and Wainer, G. 1999. " Redefinition of a specification language
for Cell-DEVS models'. In Proceedings of Information Systems Analysis and
Yynthesis, ISAS 99. Florida, USA.

Wainer, G. 1998. "Cellular modelswith explicit timing delays'. Ph. D. Thesis.
DIAM/IUSPIM. Université dAix -Marseillell1. France.

Wainer, G. and Giambiasi, N. 1998. " Specification, modeling and simulation
of timed Cell-DEVS spaces'. Technical Report 98-007. Departamento de
Computacién. Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires. Submitted for publication.

Zeigler, B. 1976. Theory of Modeling and Smulation Wiley, N.Y.

Zeigler, B. 1984. Multifaceted Modeling and discrete event simulation.
Academic Press.

Zeigler, B. 1990. "Object-oriented simulation with hierarchical modular
models'. Academic Press,

