
This work was partially supported by the UBACYT research project TX-004, “Concurrency in distributed systems”.

AVOIDING SERIALIZATION IN TIMED CELL-DEVS

Gabriel A. Wainer * §
gabrielw@dc.uba.ar

Norbert Giambiasi §
Norbert.Giambiasi@iuspim.u-3mrs.fr

§ DIAM-IUSPIM

Université d'Aix-Marseille III
Av. Escadrille Normandie Niemen

13397 Marseilles Cédex 20 – FRANCE

* Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires
Pabellón I – Ciudad Universitaria

Buenos Aires (1428) – ARGENTINA

Keywords: Modeling methodology: DEVS models, cellular
automata, Cell-DEVS models, Simulation methods: Discrete-
event simulation.

ABSTRACT

The Timed Cell-DEVS paradigm allows the specification

of executable cell spaces with timing delays. The use of this
formalism can lead to serialization and incorrect execution
when models are considered to be executing in parallel. This
work is devoted to present an extension that allows the
specification of these models in parallel. Furthermore, a
specification for timing delays used in these models is
presented, and the behavior for those delays is exemplified
with detail. This approach allows the easy definition of
complex behavior in physical systems, which can be validated
formally.

INTRODUCTION

In (Wainer and Giambiasi 1998), the Timed Cell-DEVS

paradigm was defined as an extension to the DEVS (Zeigler
1976) and Cellular Automata (Wolfram 1986) formalisms. The
paradigm allows to define a cell space where each cell is
defined as a DEVS atomic model, and a procedure to couple
cells is depicted. The go al is to improve precision and to reduce
the computation time using a continuous time base.

Each cell also can include a delay construction (Giambiasi

and Miara 1976), allowing the definition of complex behavior,
thus improving the definition for each of the submodels. Two
kinds of delays can be defined: transport and inertial.

The paradigm included binary or three-state values for

each of the cells in the space, and only allowed two-
dimensional models. This work is devoted to present an
extension to a more general formalism that allows to model n-
dimensional spaces with generic state sets. A motivation for
parallel definition is included, and models that can run in
parallel environments is formally presented.

The work is organized as follows: the following section

will provide some background on the DEVS and Cell-DEVS

formalisms. After, serialization problems related with Cell-DEVS
models are presented. Then, a definition for parallel Cell-DEVS
models is introduced. Finally, different behavior related with the
delays for each cell is depicted.

BACKGROUND

Zeigler's paradigm (Zeigler 1976) formally specify discrete

events systems using a modular description. The use of such a
hierarchical approach attacks the quantitative complexity of the
problems. A model is seen as composed by behavioral (atomic)
submodels than can be combined into structural (coupled) models. As
the formalism is closed under closure, coupled models can be seen as
new base models that can integrated hierarchically. This strategy
allows the reuse of tested models, improving the safety of the
simulations and allowing the reduction of the development times.
Recalling Zeigler's definitions, a DEVS atomic model can be
formally described as:

M = < I, X, S, Y, δint, δext, λ, D >
where

I = < µ, Px, Py > is the model's modular interface. Here, µ ∈ N, µ
< ∞ is the number of input/output ports, and ∀ j ∈ [1, η], i ∈ {X, Y},
Pj

i is the definition of a port (input or output respectively), defined as
Pj

i = { (Nj
i, Tj

i) / ∀ j ∈ [1, η+µ], Nj
i ∈ [i1, iη+µ] (port name), and

Tj
i ∈ Ιi (port type)}, where Ιi = {x /x ∈ X if i = X } or Ιi = {x / x ∈ Y

if i = Y } ;

X is the input events set;

S is the state set;

Y is the output events set;

δint: S → S, is the internal transition function;

δext: Q x X → S, is the external transition function; where

Q = { (s, e) / s ∈ S, and e ∈ [0, D(s)]};

λ: S→Y, is the output function; and

D: S → R0
+ ∪ ∞, is the elapsed time function.

An atomic model can be integrated with other DEVS
models to build a structural model. These models are called
coupled, and are composed by base models, e.g., atomic or
coupled ones. DEVS coupled models are formally defined as:

CM = < I, X, Y, D, {M i}, {Ii}, {Z ij}, select >

where

I = < µ, Px, Py > is the model's modular interface defined like
in the atomic models;

X is the set of input events;

Y is the set of output events;

D ∈ N, D <∞ is an index for the components of the coupled
model, and ∀ i ∈ D, Mi is a basic DEVS model, where

Mi = < Ii, Xi, Si, Yi, δinti, δexti, tai >

Ii is the set of influencees of model i, and ∀ j ∈ Ii;

Zij: Yi → Xj is the i to j translation function; and

select is the tie-breaking selector.

Cellular Automata are discrete-time discrete models

described as cells organized in n-dimensional infinite lattices.
Each cell in the automaton has a discrete value that is updated
by a local computation function. This function uses the present
value for the cell and a finite set of neighbors to compute the
new state. The use of discrete time poses constraints in the
precision and execution performance of these complex models.
To achieve the desired accuracy, smaller time slots must be
used, producing higher needs of processing time.

To avoid these problems, the Timed Cell-DEVS paradigm

was introduced (Wainer and Giambiasi 1998; Wainer 1998).
This formalism allows to define a cell space where each cell is
defined as a DEVS atomic model, and a procedure to couple
cells is depicted.

Recalling the definitions seen in (Wainer 1998), Cell-

DEVS atomic models can be formally specified as:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X is the set of external input events;
Y is the set of external output events;
I represents the model's modular interface;
S is the set of sequential states for the cell;
θ is the cell state definition;
N is the set of states for the input events;
d is the transport delay for the cell;
δint is the internal transition function;
δext is the external transition function;
τ is the local computation function;
λ is the output function; and
D is the state's duration function.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,t n}, N, C, B, Z, select >

Ylist is the output coupling list;
Xlist is the input coupling list;
I represents the definition of the interface for the modular model;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{t1,...,tn} is the number of cells in each of the dimensions;
N is the neighborhood set;
C is the cell space;
B is the set of border cells;
Z is the translation function; and
select is the tie-breaking function for simultaneous events.

The definition for DEVS coupled models was extended to

include Cell-DEVS submodels. Therefore, a DEVS coupled model
can be defined as:

CM = < I, X, Y, D, {M d}, {Id}, {Zdj}, select >

I, X, Y, D, Id and select are defined as in the previous section, and:

Md is a DEVS basic model ∀ d ∈ D, where

Md = GCCd = < Xlistd, Ylistd, Id, Xd, Yd, nd, {t1,...,tn}d, Nd, Cd,
Bd, Zd, selectd>

if the coupled model is Cell-DEVS, and

Md = < Id, Xd, Yd, Sd, δintd, δextd, Dd >

otherwise.

Zdj is the translation function from d to j, where
Zdj: Yd → Xj if none of the implied models is Cell-DEVS, or

Zdj: Y(c1)d → X(c2)j, with (c1) ∈ Ylistd, and (c2) ∈ Xlistj if any of

the models d or j is a GCC.

The use of multiple processors is useful for the simulation of

Cell-DEVS models, due to the high degree of compute time involved.
If the models execute sequentially, to obtain a meaningful sample to
study the desired problem is a time consuming process. Besides,
inherently parallel models should execute serially.

The most natural solution would be to execute each cell in a

different processor. Unfortunately, this approach is not feasible due
to practical reasons. Even with massively parallel processors, the
granularity of the problem makes impossible the implementation.
Instead, the cell space can be divided into several subspaces
executing in different processors. These definitions have several
problems when the cells in the space are considered as executing in
parallel, as will be presented in the following section.

SERIALIZATION PROBLEMS IN CELL-DEVS

As stated in (Chow and Zeigler 1994a), if we call e to the

elapsed time since the occurrence of an event, a model can
exist in the DEVS structure at either e=0 or e=D(s). In the case
of coupled models, the modeler can use the select function to
solve the conflicts of simultaneous scheduled events. The case
is different for basic models: once they are coupled, ambiguity
arises when a model scheduled for an internal transition
receives an event. The problem here is how to determine which
of both elapsed times should be used. The select function
solves the ambiguity by choosing only one of the imminent
models. This is a source of potential errors, because the
serialization may not reflect the simultaneous occurrence of
events. Moreover, the serialization reduces the possible
exploitation of parallelism among concurrent events.

It was discussed that the models should accomplish the

following properties:
• Collision handling: the behavior of a collision must

be controllable by the modeler.
• Parallelism: the formalism must not use any

serialization function that prohibits possible
concurrencies.

• Uniformity: the hierarchical construction must have
uniform behavior: different hierarchical constructs of
the same model must display the same behavior.

These properties resulted into the definition of Parallel

DEVS (Chow and Zeigler 1994b). In this approach, the select
function was eliminated, and a new transition function was
created to manage the collisions. This function, called (δcon, the
confluent transition function), should be defined by the
modeler. Its goal is to define the model’s behavior when a
model receives external events at the time of its internal
transition (e = D(s) or e = 0).

If no external transition occurs, a scheduled internal

transition function is carried out. However, if both collide, the
confluent transition function is activated. The values for
simultaneous events generated before each internal function
should be kept together. Therefore, the inputs for each model
are collected into a bag (multiset).

In the timed Cell-DEVS formalism, the desired

uniformity was addressed in a different way. In this case, there
was no need to include a bag construction, due to the definition
of the interfaces of the models. This interface is defined such
that, in each model, one event per port is allowed at a time.
Each model is connected with the others using a unique port,
therefore, it cannot ever occur to have more than one input per
port. This affirmation is valid only if the cell's delays have non-
zero values. These assumptions were done considering that the
modeled real systems never have delays or activation of
exactly zero time units.

As a second problem for the defined Cell-DEVS models,

the desired behavior for parallelism was not achieved. The
select function was used to choose between different models in
the case of external simultaneous events. Besides, if an event

occurs simultaneously with an internal scheduled event, the behavior
of the E-DEVS formalism (Wang and Zeigler 1993) was applied: the
internal transition function is activated prior to the external transition.

The main problem with the previous formalism is related with

the collision handling. In most cases, the collision is controlled
because the local computing function uses the values obtained
through each input port, and it has been shown that they cannot have
more than one value. Instead, if zero-time delays or simultaneous
events are considered, the user cannot manage the model behavior.

In addition, the Cell-DEVS models can be coupled with

traditional DEVS submodels. Even these models have been redefined
to have a uniform interface, a bag is needed for the cases of zero-time
transitions. Considering these factors, the Cell-DEVS models were
redefined to include parallel behavior.

PARALLEL ATOMIC CELL-DEVS MODELS

This section defines a new approach extending the concepts of

confluent transition function and introducing a bag for each model.
Other extensions that have also been included allowing the
management of complex delay behavior. First, the definition of
atomic models has been included. After, coupled models are defined.

The behavior for the cell delays presented in (Wainer and

Giambiasi 1998) has been extended to allow mixed behavior and
general cell states. Therefore, in the present definition, the semantics
of these constructors have been modified. Originally, each cell had a
fixed delay, but in this case, it is considered that each rule of the local
transition function can activate an inertial or transport delay.
Therefore, the local transition function should return the kind of
delay that is wanted, and the outputs for the cell should be delayed
accordingly. An informal description for the cell can be seen in the
following figure.

Figure 1. Cell’s definition.

Each cell receives a set of input values that are used to compute

the local transition function. The results of the computations are
delayed (using transport or inertial delays). This cell can be formally
specified as:

TDC = < X, Y, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D >

In this case, #Τ < ∞ ∧ T ∈ {Ν , Ζ, R, {0,1} } ∪ {φ};

X ⊆ T;
Y ⊆ T;
I = < η, µ, Px, Py >. Here,
 η ∈ N, η < ∞ is the neighborhood's size,
 µ ∈ N, µ < ∞ is the number of other input/output ports, and
 ∀ j ∈ [1, η], i ∈ {X, Y}, Pj

i is a definition of a port (input or
 output respectively), with Pj

i = { (Nj
i, Tj

i) / ∀ j ∈ [1, η+µ],

 Nj
i ∈ [i1, iη+µ] (port name), y T j

i ∈ Ιi (port type)}, where

 Ιi = { x / x ∈ X if X } or Ιi = { x / x ∈ Y if i = Y } ;

S ⊆ T;

θ= { (s, phase, σqueue, f, σ) /
 s ∈ S is the status value for the cell,
 phase ∈ {active, passive},
 σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m <∞) ∧

 ∀ (i ∈ N, i ∈ [1,m]), v i ∈ S ∧ σi ∈ R0
+∪∞};

 f ∈ T; and
 σ ∈ R0

+ ∪ ∞
} ;

N ∈ Sη+µ;
d ∈ R0

+, d < ∞;
δint: θ → S;
δext: QxXb → θ, Q = { (s, e) / s ∈ θ x N x d; e ∈ [0, D(s)]};
δcon: θxXb → S;
τ: N → S x {inertial, transport} x d;
τcon: XbxN → S x {inertial, transport} x d;
λ: S →Yb; and
D: θ x N x d → R0

+ ∪ ∞.

Each of the components in the definition has the same

meaning than the presented in the Background section. Two
new functions have been added: δcon and τcon. In addition, the
external transition and output functions have been changed to
work with input/output bags (Xb and Yb). The confluent
transition function is activated when there are collisions
between internal and external events. Its main task is to
activate the confluent local transition function, which analyzes
the present values for the input bags, and updates the present
input values for the cell. In this way, the cell will compute the
next state using the values chosen by the modeler.

A parallel Cell-DEVS coupled model can be represented

as:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,t n}, N, C, B, Z >

Here,

Ylist is the output coupling list;
Xlist is the input coupling list;
I represents the definition of the interface for the modular model;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{t1,...,tn} is the number of cells in each of the dimensions;
N is the neighborhood set;
C is the cell space, with C = { Cc / c ∈ I ∧ Cc = < Ic, Xc, Yc, Sc, Nc,

dc, δintc, δextc, δconc, τc, τconc λc, Dc> },where Cc is a parallel Cell-

DEVS atomic model, and I = { (i1,...,in) / (ik ∈ N ∧ ik ∈ [1, tk]) ∀ k ∈
[1, n]};
B is the set of border cells; and
Z is the translation function.

The detailed definitions for these sets can be seen in (Wainer

1999), and the meaning of the components is the same. The main
difference is that each cell in the space is a parallel Cell-DEVS
atomic cell that uses the δcon and τcon functions to avoid collisions.
Therefore, the select function appearing in the original definitions has
been eliminated.

DEVS coupled models have been redefined to include base

models that can be seen as cell spaces. Therefore, a coupled DEVS
model will be defined as:

CM = < I, X, Y, D, {M d}, {Id}, {Zdj} >

Here, I, X, Y, D and Id are defined as in the Background section.
Instead, the select function has been eliminated, and:

Md is a DEVS basic model ∀ d ∈ D ∪ {self}, where

Md = GCCd = < Id, Xd, Yd, Xlistd, Ylistd, nd, {t1,...,tn}d, Nd, Cd,
Bd, Zd >

if the coupled model is Cell-DEVS, and

Md = < Id, Xd, Yd, Sd, δintd, δextd, δcond, Dd >

otherwise.

Zdj is the translation function from d to j, where
Zself j : Yself → Xj if none of the implied models is Cell-DEVS, or
Zself j : Y(c1)self → X(c2)j, with (c1) ∈ Ylistd, and (c2) ∈ Xlistj if any
of the models self or j is a GCC;

Zd self: Yd → Xself if none of the implied models is Cell-DEVS, or
Zd self: Y(c1)d → X(c2)self, with (c1) ∈ Ylistd, and (c2) ∈ Xlistself if
any of the models d or self is a GCC;

Zdj: Yd → Xj if none of the implied models is Cell-DEVS, or
Zdj: Y(c1)d → X(c2)j, with (c1) ∈ Ylistd, and (c2) ∈ Xlistj if any of
the models d or j is a GCC.

In (Wainer 1999) it has been shown the equivalence between the

parallel Cell-DEVS models and parallel DEVS models. In addition,

the closure under coupling has been proved, showing that the
models can be integrated into a DEVS hierarchy. A simulation
mechanism related with the parallel models has also been
included. Finally, a mapping between a Parallel Cell-DEVS
simulation environment and a parallel synchronization
mechanism was defined, providing the basis for the
construction of simulation tools using this paradigm.

CELL'S DELAY BEHAVIOR

The behavior for the cell delays was presented in (Wainer

and Giambiasi 1998 and Wainer 1998). In the previous section,
the new formal specification for parallel atomic cell has been
shown. The semantics for these constructors has been
modified. Originally, each cell had a fixed delay, but in this
case, it is considered that each rule of the local transition
function can activate an inertial or transport delay. The
semantics for the transition functions can be defined as
follows:

δint:

σ = 0; σqueue ≠ {∅}; phase = active

∀ i ∈ [1, m], ai ∈ σqueue, ai.σ = ai.σ - head(σqueue.σ);
σqueue = tail(σqueue); s = head(σqueue.v);

σ = head(σqueue.σ);

σ = 0; σqueue = {∅}; phase = active

σ = ∞ ∧ phase = passive

λ:

σ = 0;

out = s;

δext:

(s', transport) = τ(Nc);σ ≠ 0;e = D(θ x N x d); phase = active;

s ≠ s' ⇒ (s = s’ ∧ ∀ i ∈ [1,m] ai ∈ σqueue, a i. σ = ai.σ - e ∧

σ = σ - e; add(σqueue, <s', d>) ∧ f = s)

(s', transport) = τ(Nc); σ ≠ 0; e = D(θ x N x d); phase = passive;

s ≠ s' ⇒ (s = s’ ∧ σ = d ∧ phase = active ∧
add(σqueue, <s', d>) ∧ f = s)

(s', inertial) = τ(Nc); σ ≠ 0; e = D(θ x N x d); phase = passive;

s ≠ s' ⇒ (s = s’ ∧ phase = active ∧ σ = d ∧ f = s)

(s', inertial) = τ(Nc); σ ≠ 0; e = D(θ x N x d); phase = active;

s ≠ s' ⇒ s = s’ ∧ (f ≠ s' ⇒ σqueue = {∅} ∧ σ = d ∧ f = s)

δcon:

Nc; Xb; e = 0 ∨ e = D(θ x N x d);

Nc = τcon(Xb); σ = 0; Xb = Xb – {X / e = 0 };

In this case, tail/head/add represent the methods used to manage

the elements of a list. As it can be seen, the external transition
function activates the local computation, whose result is delayed
using one of both kinds of constructions. The output function
executes prior to the internal transition function, transmitting the
present values to other models. The δint function is in charge of
keeping the values for a transport delay.

The confluent transition function chooses members from the

bag, and updates the inputs for the cell, deleting the unnecessary
members in the bag. As σ = 0, an internal transition function is
scheduled immediately. The modeler should define the behavior for
the τcon function in each cell, thus allowing the definition for this
behavior under collisions. Each cell can use an inertial, transport or
combined delays, whose behavior will be exemplified following.

The behavior of transport delays allows reflecting the

straightforward propagation of signals over lines of infinite
bandwidth (anticipatory semantics). They allow the modeling of
variable commutation time for each cell with anticipatory semantics
(every scheduled event will be executed).

Let us consider a transport delay of 17 time units for a given

cell. The input trajectories depicted in the Figure 2 are used to show
the behavior for the transport delays, considering the formal
definition of the semantics. The cell's behavior for those input
trajectories using the semantics defined in the previous section is
analyzed in Table 1. This table shows each transition, its activation
time and the cell's state values. The * sign identifies the execution of
internal transition functions, while the remaining lines represent the
execution of external transitions (the fields containing two values
separated by a slash represent the variable values before and after
execution).

 t S s' phase σ e σqueue
 ... 0 0 Passive
 30 0/1 1 Active 17 0 (1,17)
 40 1/0 0 Active 7 10 (1,7),(0,17)
* 47 0 0 Active 0 / 10 17 / 0 (0,10)
 55 0/1 1 Active 2 8 (0,2), (1,17)
* 57 1 1 Active 0 / 15 10 / 0 (1,15)
 60 1/0 1/0 Active 12 3 (1,12), (0,17)
* 72 0 0 Active 0 / 5 15 (0,5)
* 77 0 0 Passive ∞ 5

Table 1. Execution sequence of a transport delay cellular model.

Figure 2. Input and output trajectories with transport delay.

It can be seen that the results are delayed for 17 time units,
and the cell remains active while there are values queued
waiting to be output.

Inertial delays use a preemptive semantics to represent

that to change a state some quantity of energy should be
provided to the system. Therefore, some scheduled events are
not executed due to a too small interval between two input
events. This kind of delay allows the analysis of the frequency
limit response of systems. The inertial delay construction is
useful to represent certain physical phenomena in which
certain components change their internal state depending on
the input tension values and their duration. Hence, a simulation
paradigm providing the ability to represent such kind of
behavior could help to specify such models easily.

Apart from the circuit modeling domain, the construction

can be useful to model other spatial physical models. Let us
consider a model to study fire in a wood. In this case, fire can
be represented as a value for a cell. The value must be
transmitted to the neighboring cells, but it will influence them
only if the value is kept during the inertial delay. Instead, if it
does not sustain for a certain time, it should not expand
(allowing representing influences of the wind, rain, or
firefighters).

The behavior for atomic cells with inertial delays can be studied

in the following example. The input and output trajectories for the
delay presented in Figure 3 have an inertial delay of 5 time units.

Figure 3. Input and output trajectories with inertial delays.

In the following table, the execution flow of the transition

functions can be easily analyzed. There, the representation is the
same that was previously used in Table 1. The lines marked with the
"!" signs (arrows in the figure) represent the behavior of the model
under preemption.

 T S s' Phase σ e x f
 ... 0 0 Passive ∞
 5 0/1 1 Active 5 0 1 1
* 10 1 1 Passive 0/∞ 5
 15 1/0 0 Active 5 0 0 0
! 19 0/1 1 Active 1/5 4/0 1 0/1
* 24 1 1 Passive 0/∞
 39 1/0 0 Active 5 0 0 1/0
* 44 0 0 Passive 0/∞
 45 0 0 Active 5 0 1 0/1
* 50 1 1 Passive 0/∞

Table 2 - Execution sequence of Figure 3.

The definitions presented in the previous section allow the

inclusion of a combination between transport and inertial delays. The
behavior for each of them is the same that the defined originally. That
is, if a transport delay is activated, the value is output after the delay
(the σqueue is used to keep the value). Instead, an inertial delay is
used to output the value if it is kept during the delay. If an inertial
delay is activated when several values are waiting for the transport
delay, they are preempted.

The following figure shows an example of execution for an

atomic cell with different delays. The local transition function uses

different delays depending the moment when the transition
function is executed. In this case, it will be supposed that the
result will be delayed using a transport delay of 17 time units.
Between the times 50 and 60, and from 90 to 100, an inertial
delay of 6 time units will be used. The values obtained from 60
to 70 will be delayed using an inertial delay of 9 time units.
Finally, under collisions, the identity function is executed and
after a transport delay of 25 time units is applied. In the
following figure it can be seen the behavior for the cell under
different inputs.

Figure 4. Execution flow for the previous example.

The execution details are presented in the following Table

3. Each line shows the state for the cell (defining present and
future values in most cases). There, the lines marked with a “*”
symbol represent the execution of the internal transition
functions. The lines marked with a “!” symbol (arrows in the
figure) represent preemption.

 T s s' p σ e f d σqueue
 ... 0 0 P
 30 0/1 1 A 17 0 1 tr. (1,17)
 40 1/0 0 A 7 10 0 tr. (1,7), (0,17)
* 47 0 0 A 0/10 17/0 0 (0,10)
* 57 1 1 P 0/∞ 10/0 0
 58 0/1 1 A 6 0 1 in.
! 63 1/0 0 A 1/9 5 1/0 in.
* 72 0 0 P 0/∞ 0 0
 72 0/1 1 A 25 0 1 tr. (1,25)
 77 1/0 0 A 20 5 0 tr. (1,20), (0,25)
 82 0/1 1 A 15 5 1 tr. (1,15),(0,20),

 (1,25)
 87 1/0 0 A 10 5 0 tr. (1,10),(0,15),

 (1,20),(0,25)
 92 0/1 1 A 5/6 5/0 1 in.
! 97 1/0 0 A 1/6 4 1/0 in.
* 103 0/0 0 P ∞ 7 0

Table 3. Execution sequence of a transport delay cellular
model.

The cell receives an external transition in the instants 30

and 40, that are delayed for 17 time units. The values of
σqueue are consumed, and the value is transmitted when the
transport delay has been consumed. In the instant 58, the output
is stopped during an inertial delay of 6 time units. As the value
is not kept during the delay, it is preempted. In addition, it can
be seen a collision in the instant 72. In this case, the confluent

transition function is executed, activating the local transition function
and establishing a transport delay of 25 time units.

Finally, in the simulated time 92, the inertial delay is activated

prior the output of the previous transport delays. Therefore, the
σqueue is emptied. Besides, as the value is not kept during 6 time
units, preemption occurs in the instant 97.

CONCLUSION

This work was devoted to present an extension of the Cell-

DEVS paradigm, allowing the parallel execution of the models. To
do so, the behavior under collisions must be defined accurately. In
this case, the user will be in charge to define this behavior.

The formal specification of the delays for Cell-DEVS models

was presented, in such a way that the modeler could model complex
behavior using simple constructions. These constructions are useful
in different domains, including the digital circuit design, prediction of
the behavior in ecological systems, analysis of traffic in urban
populations, etc.

The formalism entitles the definition of complex cell-shaped

models using a high-level specification language. In this way, the
construction of the simulators is improved, enhancing their safety
and development costs. Besides, the parallel execution allows
performance improvements without adding extra costs in
development or maintenance.

The original definition for Cell-DEVS was extended to improve

the modeling. Parallel DEVS models were considered and combined
with the Cell-DEVS definition. Combined delay behavior was
allowed, depending on the rules executed by each cell.

The combination of both behaviors can improve the definition of

these complex models. The use of a formal specification based on the
DEVS formalism improves the validation of the specifications. An
accurate semantics was defined, allowing to ensure the validity of the
models.

At present, a tool implementing non-parallel n-dimensional Cell-

DEVS models has been built (Rodríguez and Wainer 1999). In
addition, an environment for parallel asynchronous simulation has
been modified, including several synchronization techniques. In this
way, the simulation can obtain the maximum speed, according with
the model to execute. At present, a mapping between parallel Cell-
DEVS models and the parallel environment was defined, and is being
under implementation.

In this way, a complex tool to run n-dimensional Cell-DEVS

models with timing delays will be available. This tool will reduce
development costs of the application (as was proven for the two-
dimensional binary case), and efficient execution will be achieved
through the use of parallelism.

REFERENCES

Chow, A. And Zeigler, B. 1994. "Revised DEVS: a parallel,
hierarchical, modular modeling formalism". Technical Report.
AIS-ECE. University of Arizona.

Chow, A. and Zeigler, B. 1994."Abstract Simulator for the
parallel DEVS formalism". In Proceedings of the SCS Winter
Simulation Conference.

Giambiasi, N. and Miara, A. 1976. "SILOG: A practical tool
for digital logic circuit simulation". In Proceedings of the 16th.
D.A.C., San Diego, U.S.A.

Rodríguez, D. and Wainer, G. 1999. "New extensions to the
CD++ tool". To be published in Proceedings of the SCS Winter
Simulation Conference. Chicago, U.S.A.

Wainer, G. 1998. "Cellular models with explicit timing
delays". Ph. D. Thesis. DIAM/IUSPIM. Université d'Aix-
Marseille III. France.

Wainer, G. 1999. "Definition of parallel Cell-DEVS spaces".
Technical Report 99-004. Departamento de Computación.
Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires.

Wainer, G. and Giambiasi, N. 1998. "Specification, modeling
and simulation of timed Cell-DEVS spaces". Technical Report
98-007. Departamento de Computación. Facultad de Ciencias
Exactas y Naturales. Universidad de Buenos Aires. Submitted
for publication.

Wang, Y. and Zeigler, B. 1993. “Extending the DEVS
formalism for massively parallel simulation”. Discrete Event
Dynamic Systems: Theory and Applications. No. 3:193-218.

Wolfram, S. 1986. Theory and applications of cellular
automata. Vol. 1, Advances Series on Complex Systems.
World Scientific, Singapore.

Zeigler, B. 1976. Theory of Modeling and Simulation. Wiley,
N.Y.

AUTHOR'S BIOGRAPHY

Gabriel A. Wainer received the Licentiate degree from the
Universidad de Buenos Aires, Argentina (1993) and the Ph.D. degree
(with honors) from the DIAM/IUSPIM, Université d'Aix-Marseille
III, France (1998).

He is Adjunct Professor at the Computer Sciences Dept. of the
Universidad de Buenos Aires, Argentina. He has been assistant
teacher in the same department for 11 years. He has published more
than 40 articles in the field of operating systems, real-time systems
and Discrete-Events simulation. He is author of a book on real-time
systems and co-author of a book on Operating Systems.

Norbert Giambiasi has received the DEUG in Physics and the

Maitrise d'électronique-electrotechnique-automatique at the
Université des Sciences et Techniques du Languedoc, Montpellier,
France (1969). He has received the DEA degree (1972), Ph.D. (with
honors, 1974) and Doctorat d'état (1980) at the same University.

At present, he is Full Professor at the DIAM/IUSPIM, Université
d'Aix-Marseille III, France.

He has participated in the foundation of the EERIE in Nimes,
France, and created the LERI (Research Laboratory in Informatics).

He has been scientific head of many research (ESPRIT,
EUREKA, CNRS, MRE) and industrial (Bull, Dassault, Siemens,
Phillips, Sollac) contracts.

He has published more than 200 articles in the simulation and
automatics area, and he is co-author of a book on CIM.

