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ABSTRACT 
 
The Timed Cell-DEVS paradigm allows the specification 

of executable cell spaces with timing delays. The use of this 
formalism can lead to serialization and incorrect execution 
when models are considered to be executing in parallel. This 
work is devoted to present an extension that allows the 
specification of these models in parallel. Furthermore, a 
specification for timing delays used in these models is 
presented, and the behavior for those delays is exemplified 
with detail. This approach allows the easy definition of 
complex behavior in physical systems, which can be validated 
formally.  

 
 

INTRODUCTION 
 
In (Wainer and Giambiasi 1998), the Timed Cell-DEVS 

paradigm was defined as an extension to the DEVS (Zeigler 
1976) and Cellular Automata (Wolfram 1986) formalisms. The 
paradigm allows to define a cell space where each cell is 
defined as a DEVS atomic model, and a procedure to couple 
cells is depicted. The go al is to improve precision and to reduce 
the computation time using a continuous time base.  

 
Each cell also can include a delay construction (Giambiasi 

and Miara 1976), allowing the definition of complex behavior, 
thus improving the definition for each of the submodels. Two 
kinds of delays can be defined: transport and inertial.  

 
The paradigm included binary or three-state values for 

each of the cells in the space, and only allowed two-
dimensional models. This work is devoted to present an 
extension to a more general formalism that allows to model n-
dimensional spaces with generic state sets. A motivation for 
parallel definition is included, and models that can run in 
parallel environments is formally presented. 

 
The work is organized as follows: the following section 

will provide some background on the DEVS and Cell-DEVS 

formalisms. After, serialization problems related with Cell-DEVS 
models are presented. Then, a definition for parallel Cell-DEVS 
models is introduced. Finally, different behavior related with the 
delays for each cell is depicted. 

 
 

BACKGROUND 
 
Zeigler's paradigm (Zeigler 1976) formally specify discrete 

events systems using a modular description. The use of such a 
hierarchical approach attacks the quantitative complexity of the 
problems. A model is seen as composed by behavioral (atomic) 
submodels than can be combined into structural (coupled) models. As 
the formalism is closed under closure, coupled models can be seen as 
new base models that can integrated hierarchically. This strategy 
allows the reuse of tested models, improving the safety of the 
simulations and allowing the reduction of the development times. 
Recalling Zeigler's definitions, a DEVS atomic model can be 
formally described as: 

M = < I, X, S, Y, δint, δext, λ, D > 
where 
 
I = < µ, Px, Py > is the model's modular interface. Here, µ  ∈ N, µ  
< ∞ is the number of input/output ports, and ∀ j ∈ [1, η], i ∈ {X, Y}, 
Pj

i is the definition of a port (input or output respectively), defined as 
Pj

i = { (Nj
i, Tj

i) /  ∀ j ∈ [1, η+µ],  Nj
i ∈ [i1, iη+µ] (port name), and 

Tj
i ∈ Ιi (port type)},  where Ιi = {x /x ∈ X if i = X } or Ιi = {x / x ∈ Y 

if i = Y } ; 
 

X is the input events set; 

S  is the state set; 

Y is the output events set; 

δint: S → S, is the internal transition function; 

δext: Q x X → S, is the external transition function; where  

Q = { (s, e) / s ∈ S, and e ∈ [0, D(s)]};  

λ: S→Y, is the output function; and  

D: S → R0
+ ∪ ∞, is the elapsed time function. 



An atomic model can be integrated with other DEVS 
models to build a structural model. These models are called 
coupled, and are composed by base models, e.g., atomic or 
coupled ones. DEVS coupled models are formally defined as: 

CM = < I, X, Y, D, {M i}, {Ii}, {Z ij}, select > 

where 
 

I = < µ, Px, Py > is the model's modular interface defined like 
in the atomic models; 
 
X is the set of input events; 
 
Y is the set of output events; 
 
D ∈ N, D <∞ is an index for the components of the coupled 
model, and ∀ i ∈ D, Mi is a basic DEVS model, where  

Mi = < Ii, Xi, Si, Yi, δinti, δexti, tai > 
 

Ii is the set of influencees of model i, and ∀ j ∈ Ii; 
 
Zij: Yi → Xj is the i to j translation function; and 
 
select is the tie-breaking selector. 

 
 
Cellular Automata are discrete-time discrete models 

described as cells organized in n-dimensional infinite lattices. 
Each cell in the automaton has a discrete value that is updated 
by a local computation function. This function uses the present 
value for the cell and a finite set of neighbors to compute the 
new state. The use of discrete time poses constraints in the 
precision and execution performance of these complex models. 
To achieve the desired accuracy, smaller time slots must be 
used, producing higher needs of processing time.  

 
To avoid these problems, the Timed Cell-DEVS paradigm 

was introduced (Wainer and Giambiasi 1998; Wainer 1998). 
This formalism allows to define a cell space where each cell is 
defined as a DEVS atomic model, and a procedure to couple 
cells is depicted.  

 
Recalling the definitions seen in (Wainer 1998), Cell-

DEVS atomic models can be formally specified as: 
 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
 

X is the set of external input events; 
Y is the set of external output events; 
I represents the model's modular interface; 
S is the set of sequential states for the cell; 
θ is the cell state definition; 
N is the set of states for the input events; 
d is the transport delay for the cell; 
δint is the internal transition function; 
δext is the external transition function; 
τ is the local computation function; 
λ is the output function; and 
D is the state's duration function. 

A Cell-DEVS coupled model is defined by: 
 
GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,t n}, N, C, B, Z, select > 
 

Ylist is the output coupling list; 
Xlist is the input coupling list; 
I represents the definition of the interface for the modular model; 
X is the set of external input events; 
Y is the set of external output events; 
n is the dimension of the cell space; 
{t1,...,tn} is the number of cells in each of the dimensions; 
N is the neighborhood set; 
C is the cell space; 
B is the set of border cells; 
Z is the translation function; and 
select is the tie-breaking function for simultaneous events. 

 
 
 
The definition for DEVS coupled models was extended to 

include Cell-DEVS submodels. Therefore, a DEVS coupled model 
can be defined as: 

 
CM = < I, X, Y, D, {M d}, {Id}, {Zdj}, select > 

 
I, X, Y, D,  Id  and select are defined as in the previous section, and: 
  
Md is a DEVS basic model ∀ d ∈ D, where 
 

Md = GCCd = < Xlistd, Ylistd, Id, Xd, Yd,  nd, {t1,...,tn}d, Nd, Cd, 
Bd, Zd, selectd> 

 
if the coupled model is Cell-DEVS, and 

 
Md = < Id, Xd, Yd, Sd, δintd, δextd, Dd > 

otherwise. 
 

Zdj is the translation function from d to j, where 
Zdj: Yd → Xj if none of the implied models is Cell-DEVS, or 

Zdj: Y(c1)d → X(c2)j, with (c1) ∈ Ylistd, and (c2) ∈ Xlistj if any of 

the models d or j is a GCC. 

 
The use of multiple processors is useful for the simulation of 

Cell-DEVS models, due to the high degree of compute time involved. 
If the models execute sequentially, to obtain a meaningful sample to 
study the desired problem is a time consuming process. Besides, 
inherently parallel models should execute serially. 

 
The most natural solution would be to execute each cell in a 

different processor. Unfortunately, this approach is not feasible due 
to practical reasons. Even with massively parallel processors, the 
granularity of the problem makes impossible the implementation. 
Instead, the cell space can be divided into several subspaces 
executing in different processors. These definitions have several 
problems when the cells in the space are considered as executing in 
parallel, as will be presented in the following section. 

 



SERIALIZATION PROBLEMS IN CELL-DEVS  
 
As stated in (Chow and Zeigler 1994a), if we call e to the 

elapsed time since the occurrence of an event, a model can 
exist in the DEVS structure at either e=0 or e=D(s). In the case 
of coupled models, the modeler can use the select function to 
solve the conflicts of simultaneous scheduled events. The case 
is different for basic models: once they are coupled, ambiguity 
arises when a model scheduled for an internal transition 
receives an event. The problem here is how to determine which 
of both elapsed times should be used. The select function 
solves the ambiguity by choosing only one of the imminent 
models. This is a source of potential errors, because the 
serialization may not reflect the simultaneous occurrence of 
events. Moreover, the serialization reduces the possible 
exploitation of parallelism among concurrent events.  

 
It was discussed that the models should accomplish the 

following properties: 
• Collision handling: the behavior of a collision must 

be controllable by the modeler. 
• Parallelism: the formalism must not use any 

serialization function that prohibits possible 
concurrencies. 

• Uniformity: the hierarchical construction must have 
uniform behavior: different hierarchical constructs of 
the same model must display the same behavior. 

 
These properties resulted into the definition of Parallel 

DEVS (Chow and Zeigler 1994b). In this approach, the select 
function was eliminated, and a new transition function was 
created to manage the collisions. This function, called (δcon, the 
confluent transition function), should be defined by the 
modeler. Its goal is to define the model’s behavior when a 
model receives external events at the time of its internal 
transition (e = D(s) or e = 0). 

 
If no external transition occurs, a scheduled internal 

transition function is carried out. However, if both collide, the 
confluent transition function is activated. The values for 
simultaneous events generated before each internal function 
should be kept together. Therefore, the inputs for each model 
are collected into a bag (multiset). 

 
In the timed Cell-DEVS formalism, the desired 

uniformity was addressed in a different way. In this case, there 
was no need to include a bag construction, due to the definition 
of the interfaces of the models. This interface is defined such 
that, in each model, one event per port is allowed at a time. 
Each model is connected with the others using a unique port, 
therefore, it cannot ever occur to have more than one input per 
port. This affirmation is valid only if the cell's delays have non-
zero values. These assumptions were done considering that the 
modeled real systems never have delays or activation of 
exactly zero time units.  

 
As a second problem for the defined Cell-DEVS models, 

the desired behavior for parallelism was not achieved. The 
select function was used to choose between different models in 
the case of external simultaneous events. Besides, if an event 

occurs simultaneously with an internal scheduled event, the behavior 
of the E-DEVS formalism (Wang and Zeigler 1993) was applied: the 
internal transition function is activated prior to the external transition. 

 
The main problem with the previous formalism is related with 

the collision handling. In most cases, the collision is controlled 
because the local computing function uses the values obtained 
through each input port, and it has been shown that they cannot have 
more than one value. Instead, if zero-time delays or simultaneous 
events are considered, the user cannot manage the model behavior. 

 
In addition, the Cell-DEVS models can be coupled with 

traditional DEVS submodels. Even these models have been redefined 
to have a uniform interface, a bag is needed for the cases of zero-time 
transitions. Considering these factors, the Cell-DEVS models were 
redefined to include parallel behavior.  

 
 
 
PARALLEL ATOMIC CELL-DEVS MODELS  

 
This section defines a new approach extending the concepts of 

confluent transition function and introducing a bag for each model. 
Other extensions that have also been included allowing the 
management of complex delay behavior. First, the definition of 
atomic models has been included. After, coupled models are defined. 

 
The behavior for the cell delays presented in (Wainer and 

Giambiasi 1998) has been extended to allow mixed behavior and 
general cell states. Therefore, in the present definition, the semantics 
of these constructors have been modified. Originally, each cell had a 
fixed delay, but in this case, it is considered that each rule of the local 
transition function can activate an inertial or transport delay. 
Therefore, the local transition function should return the kind of 
delay that is wanted, and the outputs for the cell should be delayed 
accordingly. An informal description for the cell can be seen in the 
following figure. 

 

 
Figure 1. Cell’s definition. 

 
Each cell receives a set of input values that are used to compute 

the local transition function. The results of the computations are 
delayed (using transport or inertial delays). This cell can be formally 
specified as: 

 



TDC = < X, Y, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D > 
 
In this case, #Τ < ∞  ∧  T ∈ {Ν , Ζ, R, {0,1} } ∪ {φ}; 
 
X ⊆ T; 
Y ⊆ T; 
I = < η, µ, Px, Py >. Here,  
   η ∈ N, η < ∞  is the neighborhood's size,  
   µ ∈ N, µ < ∞  is the number of other input/output ports, and  
   ∀ j ∈ [1, η], i ∈ {X, Y}, Pj

i is a definition of a port (input or  
   output respectively), with Pj

i = { (Nj
i, Tj

i) /  ∀ j ∈ [1, η+µ],   

     Nj
i ∈ [i1, iη+µ] (port name), y T j

i ∈ Ιi (port type)}, where  

         Ιi = { x / x ∈ X if X } or Ιi = { x / x ∈ Y if i = Y } ; 
 
S  ⊆ T; 
 
θ= { (s, phase, σqueue, f, σ)  / 
 s ∈ S is the status value for the cell, 
 phase ∈ {active, passive}, 
 σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m <∞) ∧  

                  ∀ (i ∈ N, i ∈ [1,m]), v i ∈ S ∧ σi ∈ R0
+∪∞}; 

 f ∈ T; and 
 σ ∈ R0

+ ∪ ∞ 
} ;  

N ∈ Sη+µ; 
d ∈ R0

+, d < ∞; 
δint: θ →  S; 
δext: QxXb → θ, Q = { (s, e) / s ∈ θ x N x d; e ∈ [0, D(s)]}; 
δcon: θxXb → S; 
τ: N → S x {inertial, transport} x d; 
τcon: XbxN → S x {inertial, transport} x d; 
λ: S →Yb; and 
D: θ x N x d → R0

+ ∪ ∞. 
 
Each of the components in the definition has the same 

meaning than the presented in the Background section. Two 
new functions have been added: δcon  and τcon. In addition, the 
external transition and output functions have been changed to 
work with input/output  bags (Xb and Yb). The confluent 
transition function is activated when there are collisions 
between internal and external events. Its main task is to 
activate the confluent local transition function, which analyzes 
the present values for the input bags, and updates the present 
input values for the cell. In this way, the cell will compute the 
next state using the values chosen by the modeler.  

 
 
A parallel Cell-DEVS coupled model can be represented 

as: 
 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,t n}, N, C, B, Z > 
 
Here, 

 

Ylist is the output coupling list; 
Xlist is the input coupling list; 
I represents the definition of the interface for the modular model; 
X is the set of external input events; 
Y is the set of external output events; 
n is the dimension of the cell space; 
{t1,...,tn} is the number of cells in each of the dimensions; 
N is the neighborhood set; 
C is the cell space, with C = { Cc / c ∈ I ∧ Cc = < Ic, Xc, Yc, Sc, Nc, 

dc, δintc, δextc, δconc, τc, τconc λc, Dc> },where Cc is a parallel Cell-

DEVS atomic model, and I = { (i1,...,in) / (ik ∈ N  ∧ ik ∈ [1, tk]) ∀ k ∈ 
[1, n]}; 
B is the set of border cells; and 
Z is the translation function. 

 
The detailed definitions for these sets can be seen in (Wainer 

1999), and the meaning of the components is the same. The main 
difference is that each cell in the space is a parallel Cell-DEVS 
atomic cell that uses the δcon and τcon functions to avoid collisions. 
Therefore, the select function appearing in the original definitions has 
been eliminated. 

 
DEVS coupled models have been redefined to include base 

models that can be seen as cell spaces. Therefore, a coupled DEVS 
model will be defined as: 

 
CM = < I, X, Y, D, {M d}, {Id}, {Zdj} > 

 
Here, I, X, Y, D and Id are defined as in the Background section. 
Instead, the  select function has been eliminated, and: 
  
Md is a DEVS basic model ∀ d ∈ D ∪ {self}, where 
 
Md = GCCd = < Id, Xd, Yd, Xlistd, Ylistd, nd, {t1,...,tn}d,  Nd, Cd, 
Bd, Zd > 
 
if the coupled model is Cell-DEVS, and 
 
Md = < Id, Xd, Yd, Sd, δintd, δextd, δcond, Dd >  
 
otherwise. 
 
Zdj is the translation function from d to j, where 
Zself j : Yself → Xj if none of the implied models is Cell-DEVS, or 
Zself j : Y(c1)self → X(c2)j, with (c1) ∈ Ylistd, and (c2) ∈ Xlistj if any 
of the models self or j is a GCC; 
 
Zd self: Yd → Xself if none of the implied models is Cell-DEVS, or 
Zd self: Y(c1)d → X(c2)self, with (c1) ∈ Ylistd, and (c2) ∈ Xlistself if 
any of the models d or self is a GCC; 
 
Zdj: Yd → Xj if none of the implied models is Cell-DEVS, or 
Zdj: Y(c1)d → X(c2)j, with (c1) ∈ Ylistd, and (c2) ∈ Xlistj if any of 
the models d or j is a GCC. 

 
In (Wainer 1999) it has been shown the equivalence between the 

parallel Cell-DEVS models and parallel DEVS models. In addition, 



the closure under coupling has been proved, showing that the 
models can be integrated into a DEVS hierarchy. A simulation 
mechanism related with the parallel models has also been 
included. Finally, a mapping  between a Parallel Cell-DEVS 
simulation environment and a parallel synchronization 
mechanism was defined, providing the basis for the 
construction of simulation tools using this paradigm. 

 
 
 

CELL'S DELAY BEHAVIOR 
 
The behavior for the cell delays was presented in (Wainer 

and Giambiasi 1998 and Wainer 1998). In the previous section, 
the new formal specification for parallel atomic cell has been 
shown. The semantics for these constructors has been 
modified. Originally, each cell had a fixed delay, but in this 
case, it is considered that each rule of the local transition 
function can activate an inertial or transport delay. The 
semantics for the transition functions can be defined as 
follows: 

 
 

δint: 

σ = 0;   σqueue ≠ {∅};   phase = active 
___________________________________________________ 

∀ i ∈  [1, m], ai ∈ σqueue, ai.σ = ai.σ - head(σqueue.σ);  
σqueue = tail(σqueue);  s = head(σqueue.v);  

σ = head(σqueue.σ); 
 
 

σ = 0;   σqueue = {∅};   phase = active 
___________________________________________________ 

σ = ∞   ∧   phase = passive 
 
 

λ: 

σ = 0; 
_____________ 

out = s; 
 

δext: 

(s', transport) = τ(Nc);σ ≠ 0;e = D(θ x N x d); phase = active; 
___________________________________________________
s ≠ s'  ⇒   (s = s’  ∧  ∀ i ∈ [1,m] ai ∈ σqueue, a i. σ = ai.σ - e  ∧  

σ = σ - e;  add(σqueue, <s', d>) ∧ f = s ) 
 

(s', transport) = τ(Nc); σ ≠ 0; e = D(θ x N x d); phase = passive; 
___________________________________________________ 

s ≠ s'  ⇒    ( s = s’   ∧   σ = d  ∧  phase = active   ∧  
add(σqueue, <s', d>)  ∧ f = s ) 

 

(s', inertial) = τ(Nc); σ ≠ 0;  e = D(θ x N x d);   phase = passive; 
___________________________________________________ 

s ≠ s'  ⇒   ( s = s’   ∧   phase = active  ∧  σ = d  ∧  f = s ) 
 

(s', inertial) = τ(Nc);  σ ≠ 0;  e = D(θ x N x d);   phase = active; 
___________________________________________________ 
s ≠ s'  ⇒   s = s’  ∧  (f ≠ s'  ⇒  σqueue = {∅} ∧ σ = d  ∧  f = s) 

 
 

δcon: 

Nc; Xb;  e = 0  ∨   e = D(θ x N x d); 
___________________________________________________ 
Nc = τcon(Xb);        σ = 0;  Xb = Xb – {X / e = 0 }; 

 
 
In this case, tail/head/add represent the methods used to manage 

the elements of a list. As it can be seen, the external transition 
function activates the local computation, whose result is delayed 
using one of both kinds of constructions. The output function 
executes prior to the internal transition function, transmitting the 
present values to other models. The δint function is in charge of 
keeping the values for a transport delay. 

 
The confluent transition function chooses members from the 

bag, and updates the inputs for the cell, deleting the unnecessary 
members in the bag. As σ = 0, an internal transition function is 
scheduled immediately. The modeler should define the behavior for 
the τcon function in each cell, thus allowing the definition for this 
behavior under collisions. Each cell can use an inertial, transport or 
combined delays, whose behavior will be exemplified following. 

 
The behavior of transport delays allows reflecting the 

straightforward propagation of signals over lines of infinite 
bandwidth (anticipatory semantics). They allow the modeling of 
variable commutation time for each cell with anticipatory semantics 
(every scheduled event will be executed).  

 
Let us consider a transport delay of 17 time units for a given 

cell. The input trajectories depicted in the Figure 2 are used to show 
the behavior for the transport delays, considering the formal 
definition of the semantics. The cell's behavior for those input 
trajectories using the semantics defined in the previous section is 
analyzed in Table 1. This table shows each transition, its activation 
time and the cell's state values. The * sign identifies the execution of 
internal transition functions, while the remaining lines represent the 
execution of external transitions (the fields containing two values 
separated by a slash represent the variable values before and after 
execution). 
 
 t S s' phase σ e σqueue 
 ... 0 0 Passive    
 30 0/1 1 Active 17 0 (1,17) 
 40 1/0 0 Active 7 10 (1,7),(0,17) 
* 47 0 0 Active 0 / 10 17 / 0 (0,10) 
 55 0/1 1 Active 2 8 (0,2), (1,17) 
* 57 1 1 Active 0 / 15 10 / 0 (1,15) 
 60 1/0 1/0 Active 12 3 (1,12), (0,17) 
* 72 0 0 Active 0 / 5 15 (0,5) 
* 77 0 0 Passive ∞ 5  

 
Table 1. Execution sequence of a transport delay cellular model. 

 



 
 

 

 
 

Figure 2. Input and output trajectories with transport delay. 
 
 

It can be seen that the results are delayed for 17 time units, 
and the cell remains active while there are values queued 
waiting to be output. 

 
Inertial delays use a preemptive semantics to represent 

that to change a state some quantity of energy should be 
provided to the system. Therefore, some scheduled events are 
not executed due to a too small interval between two input 
events. This kind of delay allows the analysis of the frequency 
limit response of systems. The inertial delay construction is 
useful to represent certain physical phenomena in which 
certain components change their internal state depending on 
the input tension values and their duration. Hence, a simulation 
paradigm providing the ability to represent such kind of 
behavior could help to specify such models easily. 

 
Apart from the circuit modeling domain, the construction 

can be useful to model other spatial physical models. Let us 
consider a model to study fire in a wood. In this case, fire can 
be represented as a value for a cell. The value must be 
transmitted to the neighboring cells, but it will influence them 
only if the value is kept during the inertial delay. Instead, if it 
does not sustain for a certain time, it should not expand 
(allowing representing influences of the wind, rain, or 
firefighters). 

 
The behavior for atomic cells with inertial delays can be studied 

in the following example. The input and output trajectories for the 
delay presented in Figure 3 have an inertial delay of 5 time units.  

 

 
Figure 3. Input and output trajectories with inertial delays.  

 
In the following table, the execution flow of the transition 

functions can be easily analyzed. There, the representation is the 
same that was previously used in Table 1. The lines marked with the 
"!" signs (arrows in the figure) represent the behavior of the model 
under preemption. 

 
 T S s' Phase σ e x f 
 ... 0 0 Passive ∞    
 5 0/1 1 Active 5 0 1 1 
* 10 1 1 Passive 0/∞ 5   
 15 1/0 0 Active 5 0 0 0 
! 19 0/1 1 Active 1/5 4/0 1 0/1 
* 24 1 1 Passive 0/∞    
 39 1/0 0 Active 5 0 0 1/0 
* 44 0 0 Passive 0/∞    
 45 0 0 Active 5 0 1 0/1 
* 50 1 1 Passive 0/∞    

Table 2 - Execution sequence of Figure 3. 
 
The definitions presented in the previous section allow the 

inclusion of a combination between transport and inertial delays. The 
behavior for each of them is the same that the defined originally. That 
is, if a transport delay is activated, the value is output after the delay 
(the σqueue is used to keep the value). Instead, an inertial delay is 
used to output the value if it is kept during the delay. If an inertial 
delay is activated when several values are waiting for the transport 
delay, they are preempted.  

 
The following figure shows an example of execution for an 

atomic cell with different delays. The local transition function uses 



different delays depending the moment when the transition 
function is executed. In this case, it will be supposed that the 
result will be delayed using a transport delay of 17 time units. 
Between the times 50 and 60, and from 90 to 100, an inertial 
delay of 6 time units will be used. The values obtained from 60 
to 70 will be delayed using an inertial delay of 9 time units. 
Finally, under collisions, the identity function is executed and 
after a transport delay of 25 time units is applied. In the 
following figure it can be seen the behavior for the cell under 
different inputs. 

 
 

 
Figure 4. Execution flow for the previous example. 

 
The execution details are presented in the following Table 

3. Each line shows the state for the cell (defining present and 
future values in most cases). There, the lines marked with a “*” 
symbol represent the execution of the internal transition 
functions. The lines marked with a “!” symbol (arrows in the 
figure) represent preemption. 

 
 T s s' p σ e f d σqueue 
 ... 0 0 P      
 30 0/1 1 A 17 0 1 tr.  (1,17) 
 40 1/0 0 A 7 10 0 tr.  (1,7), (0,17) 
* 47 0 0 A 0/10 17/0 0   (0,10) 
* 57 1 1 P 0/∞ 10/0 0   
 58 0/1 1 A 6 0 1 in.  
! 63 1/0 0 A 1/9 5 1/0 in.  
* 72 0 0 P 0/∞ 0 0   
 72 0/1 1 A 25 0 1 tr.  (1,25) 
 77 1/0 0 A 20 5 0 tr.  (1,20), (0,25) 
 82 0/1 1 A 15 5 1 tr.  (1,15),(0,20),    

 (1,25) 
 87 1/0 0 A 10 5 0 tr.  (1,10),(0,15), 

 (1,20),(0,25) 
 92 0/1 1 A 5/6 5/0 1 in.  
! 97 1/0 0 A 1/6 4 1/0 in.  
* 103 0/0 0 P ∞ 7 0   

Table 3. Execution sequence of a transport delay cellular 
model. 

 
The cell receives an external transition in the instants 30 

and 40, that are delayed for 17 time units. The values of 
σqueue are consumed, and the value is transmitted when the 
transport delay has been consumed. In the instant 58, the output 
is stopped during an inertial delay of 6 time units. As the value 
is not kept during the delay, it is preempted. In addition, it can 
be seen a collision in the instant 72. In this case, the confluent 

transition function is executed, activating the local transition function 
and establishing a transport delay of 25 time units. 

 
Finally, in the simulated time 92, the inertial delay is activated 

prior the output of the previous transport delays. Therefore, the 
σqueue is emptied. Besides, as the value is not kept during 6 time 
units, preemption occurs in the instant 97. 

 
 

CONCLUSION 
 
This work was devoted to present an extension of the Cell-

DEVS paradigm, allowing the parallel execution of the models. To 
do so, the behavior under collisions must be defined accurately. In 
this case, the user will be in charge to define this behavior. 

 
The formal specification of the delays for Cell-DEVS models 

was presented, in such a way that the modeler could model complex 
behavior using simple constructions. These constructions are useful 
in different domains, including the digital circuit design, prediction of 
the behavior in ecological systems, analysis of traffic in urban 
populations, etc. 

 
The formalism entitles the definition of complex cell-shaped 

models using a high-level specification language. In this way, the 
construction of the simulators is improved, enhancing their safety 
and development costs. Besides, the parallel execution allows 
performance improvements without adding extra costs in 
development or maintenance. 

 
The original definition for Cell-DEVS was extended to improve 

the modeling. Parallel DEVS models were considered and combined 
with the Cell-DEVS definition. Combined delay behavior was 
allowed, depending on the rules executed by each cell. 

 
The combination of both behaviors can improve the definition of 

these complex models. The use of a formal specification based on the 
DEVS formalism improves the validation of the specifications. An 
accurate semantics was defined, allowing to ensure the validity of the 
models. 

 
At present, a tool implementing non-parallel n-dimensional Cell-

DEVS models has been built (Rodríguez and Wainer 1999). In 
addition, an environment for parallel asynchronous simulation has 
been modified, including several synchronization techniques. In this 
way, the simulation can obtain the maximum speed, according with 
the model to execute. At present, a mapping between parallel Cell-
DEVS models and the parallel environment was defined, and is being 
under implementation. 

 
In this way, a complex tool to run n-dimensional Cell-DEVS 

models with timing delays will be available. This tool will reduce 
development costs of the application (as was proven for the two-
dimensional binary case), and efficient execution will be achieved 
through the use of parallelism. 
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