
This work was partially supported by ANPCYT Project
11-04460, UBACYT Project JW10, and COMPAQ Latin America
Corporation.

APPLICATION OF THE CELL-DEVS PARADIGM USING N-CD++

Javier Ameghino Gabriel Wainer.

Departamento de Computación. Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires.

Planta Baja. Pabellón I. (1428) Buenos Aires. ARGENTINA
gabrielw@dc.uba.ar

http://www.dc.uba.ar/people/proyinv/celldevs

ABSTRACT

Cell-DEVS is an extension of the DEVS formalism that
allows the definition of cellular models. We have devel-
oped a tool implementing these theoretical concepts, ma k-
ing easy the definition of complex cell spaces with explicit
timing delays. Here, we show the use of the paradigm
through different application examples. Complex applica-
tions can be implemented in a simple fashion, and they can
be executed effectively.

Keywords: Modeling methodology: DEVS models, cellu-
lar automata, Cell-DEVS models; Simulation tools.

INTRODUCTION

The DEVS formalism, defined in (Zeigler 1976, Zeigler
1984, Zeigler et al. 2000) is a modular and hierarchical
approach for discrete-event simulation. A DEVS model
can be described as composed of several submodels,
which, once tested, can be reused.

We have interested in describing real systems that can be
represented as cell spaces. Cellular Automata (Wolfram
1986) is a well-known formalism to describe these sys-
tems. They are defined as an infinite n-dimensional lattice
of cells whose values are updated according to a local rule.
This is done simultaneous and synchronously, using the
present cell state and those of a finite set of nearby cells
(called its neighborhood).

Cellular automata usually require large amounts of com-
pute time. The use of a discrete time base also constrains
the model precision. Timed Cell-DEVS solves these prob-
lems by using the DEVS paradigm to define a cell space
where each cell is defined as an atomic model (Wainer and
Giambiasi, 2000). The goal is to build discrete-event cell
spaces, improving their definition by making the timing
specification more expressive. Cell-DEVS atomic mo dels
can be specified as:

TDC=< X, Y, I, S, N, delay, d, δINT, δEXT, τ, λ, D >

In this case, X is the set of external input events, Y is the
set of external output events, and I is the model's modular
interface. S is the set of sequential states for the cell, and N
is the set of input events. Delay defines the kind of delay
for the cell, and d its duration. Finally, there are several
functions: δINT for internal transitions, δEXT for external
transitions, τ for local computations, λ for outputs and D
for the state's duration function.

Each cell uses a set of N inputs to compute the future state.
They are received through the model interface, and are
used to activate the local function. A delay can be associ-
ated with each cell, allowing deferring the transmission of
the execution results. A transport delay allows us to
model a variable commuting time for each cell with antici-
patory semantics (every scheduled event is executed).
Using inertial delays, the semantics is preemptive: some
scheduled events are not executed due to a small interval
between two input events. Therefore, the outputs of a cell
are not transmitted instantaneously, but after the consump-
tion of the delay. The model advances through the activa-
tion of the internal, external, output and state's duration
functions, as in other DEVS models.

Once each cell is defined, they can form a coupled model:

GCC=< Xlist, Ylist, I, X, Y, n,{t1,..,tn}, N, C, B, Z >

Here, Xlist is an input coupling list, Ylist is an output
coupling list and I represents the model interface. X is the
set of external input events and Y the external output
events. The n value defines the dimension of the cell
space, {t1,...,tn} is the number of cells in each dimension
and N is the neighborhood set. C is the cell space, B is the
set of border cells, and Z a translation function.

This specification defines a coupled model composed of
an array of atomic cells. Each of them is connected to its

neighborhood. As the cell space is finite, the borders
should be provided with a different behavior than the rest
of the space. Otherwise, the space is wrapped, meaning
that cells in a border are connected with those in the oppo-
site one. Finally, the Z function defines internal and exter-
nal couplings.

Using these formal specifications, a simulation tool was
developed. The following sections will be devoted to show
how the tool can be used to develop cellular models.

A SIMULATION TOOL BASED ON CELL--DEVS

N–CD++ (Rodríguez and Wainer, 1999) is a tool built
following the formal specifications of Cell-DEVS. The tool
includes a specification language that allows describing the
behavior of each cell. A cell space is defined including its
size, influencees, neighborhood and borders. Using these
parameters, a complete Cell-DEVS is built using the formal
specifications.

The behavior of a cell is defined using rules with the form:

 VALUE DELAY { CONDITION }

Each rule indicates that if the CONDITION is satisfied, the
state of the cell will change to the designated VALUE, and
it will be DELAYed the specified time. If the condition is
not valid, the next rule is evaluated (according to the order
in that they were defined), repeating this process until a
rule is satisfied.

The specification shown in Figure 1 shows the rules for the
"Life" Game (Gardner, 1970). They indicate that if a cell
will remain active when the number of active neighbors is
3 or 4 (using a transport delay of 10 ms). If the cell is inac-
tive and the neighborhood has 3 active cells, the cell acti-
vates. Otherwise case, the cell is inactive.

Rule: 1 10 { (0,0) = 1 and (truecount = 3 or
 truecount = 4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

Figure 1. Definition for the Life game.

The language permits to manipulate n-dimensional refer-
ences. Likewise, a neighborhood can be composed of non-
adjacent cells, and the neighborhood’s dimension can be
similar or inferior to the model's dimension.

The most common operators are included: boolean (AND,
OR, NOT, XOR, IMP and EQV), comparison (=, !=, <, >,
<= and >=), and arithmetic (+, -, * and /). In addition, dif-
ferent types of functions are available: trigonometric, roots,

power, rounding and truncation, module, logarithm, abso-
lute value, minimum, maximum, G.C.D. and L.C.M. Other
existing functions allow to check if a number is integer,
even, odd or prime.

Some functions allow to query the cell state of the
neighborhood: truecount, falsecount , undefcount and state-
count(n).

Some common constants are defined: pi, e, certain con-
stants used in the domains of the physics and the chemistry
(gravitational constant, acceleration, light speed, Planck’s
constant).

The Time function returns the global simulated time. Func-
tions RadToDeg and DegToRad are used for the conversion
of angles expressed in radians to degrees and viceversa.
There are functions for the conversion of polar and rectan-
gular coordinates and temperatures in Celsius, Fahrenheit
or Kelvin degrees.

Other functions allow to obtain values depending on the
evaluation of a certain condition. IFU(c, t, f, u) evaluates
the c condition, and if it is True, it returns the t value. If it
is False, it return f, and u if it is undefined. On the other
hand, the function IF(c, t, f) returns t if c evaluates to True,
and f otherwise.

Finally, several functions are used to generate pseudoran-
dom numbers using different probability distributions. We
have included Uniform, Chi Square, Beta, Exponential, Φ ,
Gamma, Gaussian, Binomial and Poisson distributions. The
introduction of random conditions presents new problems.
For example, in the rule:

10 100 { random >= 0.4 }

the condition is evaluated to True in the 60 % of the cases,
and to False in the rest. Therefore, the model could return
all the rules evaluated to False, even when the model is
well specified. The tool automatically identifies these
cases, and assigns the Undefined value to the cell, inform-
ing this situation and continuing with the simu lation.

Space zones, defined by a cell range, can be associated with
a set of rules different than the rest of the cell space.

Figure 2. A Zone defined by the range {(3,3)..(5,7)}

Cellular models can be integrated to a standard DEVS
hierarchy. Therefore, input/output ports can be defined for
the cell space. The portInFunction directive is used to
query the value of a message arrived in an input port. On
the other hand, output ports are activated using the send
function.

APPLICATION EXAMPLES

This section is devoted to describe how to implement
different Cell-DEVS models using N-CD++.

We first show an example of excitable media, a phenome-
non appearing in several real systems. For instance, the
nervous tissue of the heart muscle is an excitable medium
where a wave travels through the heart in every heartbeat.
Magnetic fields, forest fires, etc. also can be represented as
modifications of these models.

Three states can be recognized. For instance, in a heart
tissue these states represent a cell that is resting, excited or
recovering. In a forest fire, the states could represent a cell
without fire, burning or burnt. Any of these models are
defined as:

[ExMedia]
type : cell dim : (9,9)
delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0)
localtransition : Ex-rules

[Ex-rules]
rule : 0 100 {(0,0)=0 and statecount(2)=0 }
rule : 2 100 {(0,0)=0 and statecount(2)>0 }
rule : 1 100 { (0,0) = 2 }
rule : 0 100 { (0,0) = 1 }
rule : { (0,0) } 100 { t }

Figure 3. Definition of an excitable media model.

We first define the Cell-DEVS coupled model and its
parameters: size, neighborhood shape, kind of delay and
borders. The Ex-rules section represents the local comput-
ing function for the model. Here, the first rule defines that
when the cell and its neighbors are not excited (value 0),
the cell must keep resting. The second rule means that if
the cell is resting and there are excited neighbors (value 2),
the cell is excited. Third and fourth rules mean that the
cells remain in a specific state. In every other case (t
means "True"), the cell keeps its present state.

Figure 4 shows the results obtained when this model exe-
cutes. It shows the evolution of this excitable media model
using different neighborhoods. Figure 4a uses all the adja-
cent neighbors, as defined in Figure 3 (Moore neighbor-

hood). Figure 4b uses four adjacent cells (N-S-E-W), and
Figure 4c shows a hexagonal lattice on a square grid.

Figure 4. Results of ExMedia with different Neighbor-

hoods: (a) Moore; (b) Von Neumann; (c) hexagonal grid.

The following example represents a surface tension model.

[Tension]
type : cell dim : (40,40)
delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (1,-1) (1,0) (1,1) (0,0) (0,1)
localtransition : Ten-rules

[Ten-rules]
rule : 0 100 { statecount(0) >= 5 }
rule : 1 100 { t }

Figure 5. Surface tension model specification

We see the definition of the Cell-DEVS coupled model
parameters: a grid of 40x40, Moore neighborhood, trans-
ports delays and wrapped borders. We have two states: the
presence (value 1) or absence (value 0) of particles. This
model can be represented as a "majority vote" system. In
each step, the new state depends of most neighbors. It
remains in the cell if at least 5 of the 9 are occupied; oth-
erwise it becomes empty. The following figure shows how
particles concentrate where there is bigger tension. The
resulting behavior of the surface is a high level representa-
tion of the majority vote rules defined earlier.

Figure 6. Execution results of the Surface Tension
model.

The next example is an ecological model of ants moving in
the ground. The ants eat grass in two steps: first, they eat
the leaves and then the root. Hence, we have three grass
states: 1 when there is grass in the cell, 2 when the leaves
have been eaten, and 3 or 4 for empty cells. When an ant
find grass, she eat it and rotates 90º to the right. When the
leaves have been eaten, she eats the root and rotates 90º to
the left. If there is no grass, she continues moving ahead.

[vants]
type : cell dim : (10,10,2)
delay : transport border : wrapped
neighbors: (-2,0,0) (-1,-1,0) (-1,0,0)
neighbors: (-1,1,0) (0,2,0) (0,0,1)
neighbors: (0,-2,0) (0,-1,0) (0,0,0) (0,1,0)
neighbors: (1,-1,0) (1,0,0) (1,1,0) (2,0,0)

localtransition : calculus
[calculus]
...
rule:{if((0,0,0)=45,31,(trunc((0,0,0)/10)*10)+
1) } 100 { cellpos(2)=0 and (0,0,1)=2 and
((0,0,0)=25 or (0,0,0)=35 or (0,0,0)=45) and
(fractional((-1,0,0)/10)*10)!=7 and
((fractional((-1,1,0)/10)*10)=8 or
(fractional((-2,0,0)/10)*10)=7 or
(fractional((-1,-1,0)/10)*10)=6) }
...
rule : { (trunc(((0,0,0)/10))*10) + 1 } 100
{cellpos(2)=0 and (0,0,1)=4 and ((1,0,0)=25 or
(1,0,0)=35 or (1,0,0)=45)}
...
rule : { (0,0,0) + 1 } 100 {cellpos(2)=1 and
(0,0,0)<7}
rule : 1 100 {cellpos(2)=1 and (0,0,0)>=7}

rule : { (0,0,0) } 100 { t }

Figure 7. Specification of the ant’s model

We use four states to represent the present direction, com-
bined with the grass state. For instance, a value 13 means
that there is grass (1) and the ant is going north (1: S; 2: E;
3: N; 4: W). This model needs extra information to control
the movement of the ants to avoid collisions. Then, we
define auxiliary ant directions to analyze the possibility of
collision (5: S; 6: E; 7: N; 8: W).

We have two surfaces, the first representing the grass and
the ants, and the second used as collision flags. When a cell
in the second surface have the value 1 we must analyze
only rules that determine whether there are collisions or
not. When the value of the cell is 2 we must analyze only
rules to compute the next position of the ants. This is
shown in the first rule in Figure 7. The following rule is
used to move the ant once we know that we can move it.
The cellpos function allows us to know which surface we
are using, providing two different behaviors.

The following figure shows the execution of the model
using the tool. The dark cells contain grass, and an ant

moving in the lower rows is eating them. The ant behaves
using the rules recently explained. We also can see the
growth of the grass, represented as a change of state for
the lighter cells, where a long delay is used.

Figure 8. Execution results of an ant foraging model.

Our last example shows the simulation results for a water-
shed model. This model, previously introduced in (Moon
et al. 1996), represents a hydrology system built as a cell
space. The watershed is represented as small cells organ-
ized in several layers (air, surface water, soil, ground wa-
ter, and bedrock). The rainfall input is partially retained by
vegetation, and the rest infiltrates.

[Watershed]
type : cell dim : (30,30,2)
delay : transport border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0)
neighbors : (1,0,0) (-1,0,1) (0,-1,1) (0,0,1)
neighbors : (1,0,1) (0,1,1)
localtransition : Hydrology

[Hydrology]

rule : {0.0022 + (0,0,0) – if ((-1,0,0)!=?) and
((0,0,1)+(0,0,0) > ((-1,0,1) + (-1,0,0)),
((0,0,0)+(0,0,1)-(-1,0,0)-(-1,0,1))/1000)*
(0,0,0))/1000),0)-
if((1,0,0)!=?) and ((0,0,1)+(0,0,0))> ((1,0,1) +
(1,0,0)),((0,0,0) + (0,0,1) - (1,0,0) -
(1,0,1))/1000)*(0,0,0))/1000),0) - if((((0,-1,0)
!= ?) and
((0,0,1)+(0,0,0)) > ((0,-1,1)+(0,-1,0)) ,((0,0,0)
+ (0,0,1)-(0,-1,0)-(0,-1,1))/1000)
*(0,0,0))/1000),0) –
if((0,1,0) != ?) and ((0,0,1) + (0,0,0)) >
((0,1,1) + (0,1,0)),(((0,0,0) + (0,0,1) - (0,1,0)
- (0,1,1))/1000) * (0,0,0))/1000),0) + if((-
1,0,0) != ?) and ((-1,0,1) + (-1,0,0)) > ((0,0,1)
+ (0,0,0)),((-1,0,0) + (-1,0,1) - (0,0,0)-
(0,0,1))*(-1,0,0))/1000),0) + if((1,0,0) != ?)
and ((1,0,1) + (1,0,0)) > ((0,0,1) +
(0,0,0)),((1,0,0) + (1,0,1) - (0,0,0) - (0,0,1))
* (1,0,0))/1000),0) + if((0,-1,0) != ?) and ((0,-
1,1) + (0,-1,0)) >((0,0,1) + (0,0,0)), ((0,-1,0)
+ (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-
1,0))/1000),0) + if((0,1,0) != ?) and (((0,1,1) +
(0,1,0)) > (0,0,1) + (0,0,0)),((0,1,0) + (0,1,1)
- (0,0,0) - (0,0,1)) * (0,1,0))/1000),0) } 1000 {
cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

Figure 9. Watershed model specification

Figure 9 shows the implementation of the model using the
tool. The rules represent the accumulation of water. It takes
the present water of the cell, and the rain fell up to the
present moment is added. Then, we consider how much
water must be passed to the neighbors, and how much
water is received from the inverse neighborhood. Several
layers are represented as planes in a three dimensional
model.

We can see the execution results of this model in the Ap-
pendix. In the first figure we show an initial state, repre-
senting the slope of the terrain before raining. Each cell
occupies 1m x 1m. The second figure shows the execution
results after intense rain (0.0022 mm/s) after 10 minutes of
simulated time. We can see that the rain is accumulated in
the lower levels of the terrain, and a river is formed.

CONCLUSION

The tool N-CD++ can be used for modeling and simulation
of n–dimensional Cell–DEVS. This approach improves the
development, checking and maintaining phases, facilitating
the testing and reuse of their components. Input/output port
definitions allow defining multiple interconnection be-
tween Cell-DEVS or DEVS models. We also can develop
multidimensional models, making the tool a general
framework to define and simulate complex generic models.

The tool was built using a standard version of C++, which
allowed is to provide different versions running in several
platforms without additional cost. At present, N–CD++ has
been successfully tested in Windows 95/NT, Linux, AIX,
IRIX, HP-UX and Solaris. A simulation server has been
built, and soon it will be available to do simulations using a
Web-based approach.

The tool and the examples are the public domain and they
can be obtained in:
"http://www.dc.uba.ar/people/proyinv/celldevs".

REFERENCES

Gardner, M., 1970. “The Fantastic Combinations of John
Conway’s New Solitaire Game ‘Life’ ”. Scientific Ameri-
can, 23 (4), pp. 120-123.

Moon, Y.; Zeigler, B.; Ball, G.; Guertin, D., 1996. "DEVS
representation of spatially distributed systems: validity,
complexity reduction". IEEE Transactions on Systems,
Man and Cybern etics. pp. 288-296.

Rodríguez, D.; Wainer, G., 1999. "New Extensions to the
CD++ tool". In Proceedings of SCS Summer Multiconfer-
ence on Computer Simulation. 1-7.

Wainer, G.; Giambiasi, N., 2000. "Timed Cell-DEVS:
modelling and simulation of cell spaces". In Discrete
Event Modeling & Simulation: Enabling Future Technolo-
gies, to be published by Springer-Verlag.

Wolfram, S. , 1986. Theory and applications of cellular
automata. Vol.1, Advances Series on Complex Systems.
World Scientific, Singapore.

Zeigler, B., 1976. Theory of modeling and simulation.
Wiley.

Zeigler, B., 1984. Multifaceted Modelling and discrete
event simulation. Academic Press.

Zeigler, B.; Praehofer, H.; Kim, T., 2000. Theory of Mod-
eling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press.

BIOGRAPHIES

Gabriel A. Wainer received the Licentiate degree (M.Sc.,
1993) and Ph.D. degree (1998, with honours) of the Uni-
versidad de Buenos Aires, Argentina, and DIAM/IUSPIM,
Université d'Aix-Marseille III, France. He is Assistant
Professor at the Computer Sciences Dept. of the Universi-
dad de Buenos Aires, Argentina. He has been working in
the same department since 1988. He published more than
40 articles in the field of operating systems, real-time
systems and Discrete-Event simulation. He has been head
of several research projects related with computer model-
ling and simulation. He is author of a book on real-time
systems and co-author of a book on Operating Systems.

Javier Ameghino is a Licentiate (M. Sc.) student at the
Computer Sciences Department of the Universidad de
Buenos Aires, Argentina. He worked in several private
companies in Buenos Aires. At present he works at COM-
PAQ Latin America Corporation (Buenos Aires).

APPENDIX – Execution results of the Watershed model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

5101520253035404550556065707580859095100105110 Figure 10. Initial height values for a watershed. 123456789101112131415161718192021222324252627282930

