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ABSTRACT 
 
Cell-DEVS is an extension of the DEVS formalism that 
allows the definition of cellular models. We have devel-
oped a tool implementing these theoretical concepts, ma k-
ing easy the definition of complex cell spaces with explicit 
timing delays. Here, we show the use of the paradigm 
through different application examples. Complex applica-
tions can be implemented in a simple fashion, and they can 
be executed effectively. 
 
Keywords: Modeling methodology: DEVS models, cellu-
lar automata, Cell-DEVS models; Simulation tools. 
 
INTRODUCTION 
 
The DEVS formalism, defined in (Zeigler 1976, Zeigler 
1984, Zeigler et al. 2000) is a modular and hierarchical 
approach for discrete-event simulation. A DEVS model 
can be described as composed of several submodels, 
which, once tested, can be reused.  
 
We have interested in describing real systems that can be 
represented as cell spaces. Cellular Automata (Wolfram 
1986) is a well-known formalism to describe these sys-
tems. They are defined as an infinite n-dimensional lattice 
of cells whose values are updated according to a local rule. 
This is done simultaneous and synchronously, using the 
present cell state and those of a finite set of nearby cells 
(called its neighborhood). 
 
Cellular automata usually require large amounts of com-
pute time. The use of a discrete time base also constrains 
the model precision. Timed Cell-DEVS solves these prob-
lems by using the DEVS paradigm to define a cell space 
where each cell is defined as an atomic model (Wainer and 
Giambiasi, 2000). The goal is to build discrete-event cell 
spaces, improving their definition by making the timing 
specification more expressive. Cell-DEVS atomic mo dels 
can be specified as: 

TDC=< X, Y, I, S, N, delay, d, δINT, δEXT, τ, λ, D > 
 

In this case, X is the set of external input events, Y is the 
set of external output events, and I is the model's modular 
interface. S is the set of sequential states for the cell, and N 
is the set of input events. Delay defines the kind of delay 
for the cell, and d its duration. Finally, there are several 
functions: δINT for internal transitions, δEXT for external 
transitions, τ for local computations, λ for outputs and D 
for the state's duration function. 
 
Each cell uses a set of N inputs to compute the future state. 
They are received through the model interface, and are 
used to activate the local function. A delay can be associ-
ated with each cell, allowing deferring the transmission of 
the execution results. A transport delay allows us to 
model a variable commuting time for each cell with antici-
patory semantics (every scheduled event is executed). 
Using inertial delays, the semantics is preemptive: some 
scheduled events are not executed due to a small interval 
between two input events. Therefore, the outputs of a cell 
are not transmitted instantaneously, but after the consump-
tion of the delay. The model advances through the activa-
tion of the internal, external, output and state's duration 
functions, as in other DEVS models. 
 
Once each cell is  defined, they can form a coupled model:  
 

GCC=< Xlist, Ylist, I, X, Y, n,{t1,..,tn}, N, C, B, Z > 
   
Here, Xlist is an input coupling list, Ylist is an output 
coupling list and I represents the model interface. X is the 
set of external input events and Y the external output 
events. The n value defines the dimension of the cell 
space, {t1,...,tn} is the number of cells in each dimension 
and N is the neighborhood set. C is the cell space, B is the 
set of border cells, and Z a translation function. 
 
This specification defines a coupled model composed of 
an array of atomic cells. Each of them is connected to its 



neighborhood. As the cell space is finite, the borders 
should be provided with a different behavior than the rest 
of the space. Otherwise, the space is  wrapped, meaning 
that cells in a border are connected with those in the oppo-
site one. Finally, the Z function defines internal and exter-
nal couplings.  
 
Using these formal specifications, a simulation tool was 
developed. The following sections will be devoted to show 
how the tool can be used to develop cellular models. 
 
 
A SIMULATION TOOL BASED ON CELL--DEVS 
 
N–CD++ (Rodríguez and Wainer, 1999) is a tool built 
following the formal specifications of Cell-DEVS. The tool 
includes a specification language that allows describing the 
behavior of each cell. A cell space is defined including its 
size, influencees, neighborhood and borders. Using these 
parameters, a complete Cell-DEVS is built using the formal 
specifications. 
 
The behavior of a cell is defined using rules with the form: 
 

 VALUE    DELAY  { CONDITION } 
 
Each rule indicates that if the CONDITION is satisfied, the 
state of the cell will change to the designated VALUE, and 
it will be DELAYed the specified time. If the condition is 
not valid, the next rule is evaluated (according to the order 
in that they were defined), repeating this process until a 
rule is satisfied.  
 
The specification shown in Figure 1 shows the rules for the 
"Life" Game (Gardner, 1970). They indicate that if a cell 
will remain active when the number of active neighbors is 
3 or 4 (using a transport delay of 10 ms). If the cell is inac-
tive and the neighborhood has 3 active cells, the cell acti-
vates. Otherwise case, the cell is inactive. 
 
Rule: 1 10 { (0,0) = 1 and ( truecount = 3 or              
              truecount = 4 ) } 
Rule: 1 10 { (0,0) = 0 and truecount = 3 } 
Rule: 0 10 { t } 

Figure 1. Definition for the Life game. 
 
The language permits to manipulate n-dimensional refer-
ences. Likewise, a neighborhood can be composed of non-
adjacent cells, and the neighborhood’s dimension can be 
similar or inferior to the model's dimension.  
 
The most common operators are included: boolean (AND, 
OR, NOT, XOR, IMP and EQV), comparison (=, !=, <, >, 
<= and >=), and arithmetic (+, -, * and /). In addition, dif-
ferent types of functions are available: trigonometric, roots, 

power, rounding and truncation, module, logarithm, abso-
lute value, minimum, maximum, G.C.D. and L.C.M. Other 
existing functions allow to check if a number is integer, 
even, odd or prime. 
 
Some functions allow to query the cell state of the 
neighborhood: truecount, falsecount , undefcount  and state-
count(n).  
 
Some common constants are defined: pi, e, certain con-
stants used in the domains of the physics and the chemistry 
(gravitational constant, acceleration, light speed, Planck’s 
constant).   
 
The Time function returns the global simulated time. Func-
tions RadToDeg and DegToRad are used for the conversion 
of angles expressed in radians to degrees and viceversa. 
There are functions for the conversion of polar and rectan-
gular coordinates and temperatures in Celsius, Fahrenheit 
or Kelvin degrees. 
 
Other functions allow to obtain values depending on the 
evaluation of a certain condition. IFU(c, t, f, u) evaluates 
the c condition, and if it is True, it returns the t value. If it 
is False, it return f, and u if it is undefined. On the other 
hand, the function IF(c, t, f) returns t if c evaluates to True, 
and f otherwise. 
 
Finally, several functions are used to generate pseudoran-
dom numbers using different probability distributions. We 
have included Uniform, Chi Square, Beta, Exponential, Φ , 
Gamma, Gaussian, Binomial and Poisson distributions. The 
introduction of random conditions presents new problems. 
For example, in the rule: 
 

10   100  { random >= 0.4 } 
 
the condition is evaluated to True in the 60 % of the cases, 
and to False in the rest. Therefore, the model could return 
all the rules evaluated to False, even when the model is 
well specified. The tool automatically identifies these 
cases, and assigns the Undefined value to the cell, inform-
ing this situation and continuing with the simu lation. 
 
Space zones, defined by a cell range, can be associated with 
a set of rules different than the rest of the cell space. 
  

 
Figure 2. A Zone defined by the range {(3,3)..(5,7)} 

 



Cellular models can be integrated to a standard DEVS 
hierarchy. Therefore, input/output ports can be defined for 
the cell space. The portInFunction directive is used to 
query the value of a message arrived in an input port. On 
the other hand, output ports are activated using the send 
function. 
 
 
APPLICATION EXAMPLES  
 
This section is devoted to describe how to implement 
different Cell-DEVS models using N-CD++.  
 
We first show an example of excitable media, a phenome-
non appearing in several real systems. For instance, the 
nervous tissue of the heart muscle is an excitable medium 
where a wave travels through the heart in every heartbeat. 
Magnetic fields, forest fires, etc. also can be represented as 
modifications of these models. 
 
Three states can be recognized. For instance, in a heart 
tissue these states represent a cell that is resting, excited or 
recovering. In a forest fire, the states could represent a cell 
without fire, burning or burnt. Any of these models are 
defined as: 
 
[ExMedia] 
type : cell  dim : (9,9) 
delay : transport border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)  
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0) 
localtransition : Ex-rules 
 
[Ex-rules] 
rule : 0 100 {(0,0)=0 and statecount(2)=0 } 
rule : 2 100 {(0,0)=0 and statecount(2)>0 } 
rule : 1 100 { (0,0) = 2 } 
rule : 0 100 { (0,0) = 1 } 
rule : { (0,0) } 100 { t } 

Figure 3. Definition of an excitable media model. 
 
We first define the Cell-DEVS coupled model and its 
parameters: size, neighborhood shape, kind of delay and 
borders. The Ex-rules section represents the local comput-
ing function for the model. Here, the first rule defines that 
when the cell and its neighbors are not excited  (value 0), 
the cell must keep resting. The second rule means that if 
the cell is resting and there are excited neighbors (value 2), 
the cell is excited. Third and fourth rules mean that the 
cells remain in a specific state. In every other case (t 
means "True"), the cell keeps its present state.  
 
Figure 4 shows the results obtained when this model exe-
cutes. It shows the evolution of this excitable media model 
using different neighborhoods. Figure 4a uses all the adja-
cent neighbors, as defined in Figure 3 (Moore neighbor-

hood). Figure 4b uses four adjacent cells (N-S-E-W), and 
Figure 4c shows a hexagonal lattice on a square grid. 
 
 
 
 
 

 
 
 
 
 

 
Figure 4. Results of ExMedia with different Neighbor-

hoods: (a) Moore; (b) Von Neumann; (c) hexagonal grid. 
 
The following example represents a surface tension model.  
 
[Tension] 
type : cell          dim : (40,40) 
delay : transport    border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)  
neighbors : (1,-1) (1,0) (1,1) (0,0) (0,1) 
localtransition : Ten-rules 
 
[Ten-rules] 
rule : 0 100 { statecount(0) >= 5 } 
rule : 1 100 { t } 

Figure 5. Surface tension model specification 
 
We see the definition of the Cell-DEVS coupled model 
parameters: a grid of 40x40, Moore neighborhood, trans-
ports delays and wrapped borders. We have two states: the 
presence (value 1) or absence (value 0) of particles. This 
model can be represented as a "majority vote" system. In 
each step, the new state depends of most neighbors. It 
remains in the cell if at least 5 of the 9 are occupied; oth-
erwise it becomes empty. The following figure shows how 
particles concentrate where there is bigger tension. The 
resulting behavior of the surface is a high level representa-
tion of the majority vote rules defined earlier. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Execution results of the Surface Tension 
model. 



The next example is an ecological model of ants moving in 
the ground. The ants eat grass in two steps: first, they eat 
the leaves and then the root. Hence, we have three grass 
states: 1 when there is grass in the cell, 2 when the leaves 
have been eaten, and 3 or 4 for empty cells. When an ant 
find grass, she eat it and rotates 90º to the right. When the 
leaves have been eaten, she eats the root and rotates 90º to 
the left. If there is no grass, she continues moving ahead. 
 
[vants] 
type : cell             dim : (10,10,2) 
delay : transport       border : wrapped 
neighbors: (-2,0,0) (-1,-1,0) (-1,0,0)  
neighbors: (-1,1,0) (0,2,0) (0,0,1) 
neighbors: (0,-2,0) (0,-1,0) (0,0,0) (0,1,0)  
neighbors: (1,-1,0) (1,0,0) (1,1,0) (2,0,0) 
 
localtransition : calculus 
[calculus] 
... 
rule:{if((0,0,0)=45,31,(trunc((0,0,0)/10)*10)+ 
1) } 100 { cellpos(2)=0 and (0,0,1)=2 and 
((0,0,0)=25 or (0,0,0)=35 or (0,0,0)=45) and 
(fractional((-1,0,0)/10)*10)!=7 and           
((fractional((-1,1,0)/10)*10)=8 or         
(fractional((-2,0,0)/10)*10)=7 or          
(fractional((-1,-1,0)/10)*10)=6) } 
... 
rule : { (trunc(((0,0,0)/10))*10) + 1 } 100 
{cellpos(2)=0 and (0,0,1)=4 and ((1,0,0)=25 or 
(1,0,0)=35 or (1,0,0)=45)} 
... 
rule : { (0,0,0) + 1 } 100 {cellpos(2)=1 and 
(0,0,0)<7} 
rule : 1 100 {cellpos(2)=1 and (0,0,0)>=7} 
 
rule : { (0,0,0) } 100 { t } 

Figure 7. Specification of the ant’s model 
 
We use four states to represent the present direction, com-
bined with the grass state. For instance, a value 13 means 
that there is grass (1) and the ant is going north (1: S; 2: E; 
3: N; 4: W). This model needs extra information to control 
the movement of the ants to avoid collisions. Then, we 
define auxiliary ant directions to analyze the possibility of 
collision (5: S; 6: E; 7: N; 8: W). 
 
We have two surfaces, the first representing the grass and 
the ants, and the second used as collision flags. When a cell 
in the second surface have the value 1 we must analyze 
only rules that determine whether there are collisions or 
not. When the value of the cell is 2 we must analyze only 
rules to compute the next position of the ants. This is 
shown in the first rule in Figure 7. The following rule is 
used to move the ant once we know that we can move it. 
The cellpos function allows us to know which surface we 
are using, providing two different behaviors.  
 
The following figure shows the execution of the model 
using the tool. The dark cells contain grass, and an ant 

moving in the lower rows is eating them. The ant behaves 
using the rules recently explained. We also can see the 
growth of the grass, represented as a change of state for 
the lighter cells, where a long delay is used.  
 
 
 
 
 
 
 
 
 

Figure 8. Execution results of an ant foraging model. 
 
Our last example shows the simulation results for a water-
shed model. This model, previously introduced in (Moon 
et al. 1996), represents a hydrology system built as a cell 
space. The watershed is represented as small cells organ-
ized in several layers (air, surface water, soil, ground wa-
ter, and bedrock). The rainfall input is partially retained by 
vegetation, and the rest infiltrates. 

 
[Watershed] 
type : cell         dim : (30,30,2) 
delay : transport   border : nowrapped 
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0) 
neighbors : (1,0,0) (-1,0,1) (0,-1,1) (0,0,1)  
neighbors : (1,0,1) (0,1,1) 
localtransition : Hydrology 
 
[Hydrology] 
 
rule : {0.0022 + (0,0,0) – if ((-1,0,0)!=?) and 
((0,0,1)+(0,0,0) > ((-1,0,1) + (-1,0,0)), 
((0,0,0)+(0,0,1)-(-1,0,0)-(-1,0,1))/1000)* 
(0,0,0))/1000),0)-  
if((1,0,0)!=?) and ((0,0,1)+(0,0,0))> ((1,0,1) + 
(1,0,0)),((0,0,0) + (0,0,1) - (1,0,0) - 
(1,0,1))/1000)*(0,0,0))/1000),0) - if((((0,-1,0) 
!= ?) and  
((0,0,1)+(0,0,0)) > ((0,-1,1)+(0,-1,0)) ,((0,0,0) 
+ (0,0,1)-(0,-1,0)-(0,-1,1))/1000) 
*(0,0,0))/1000),0) –  
if((0,1,0) != ?) and ((0,0,1) + (0,0,0)) > 
((0,1,1) + (0,1,0)),(((0,0,0) + (0,0,1) - (0,1,0) 
- (0,1,1))/1000) * (0,0,0))/1000),0) + if((-
1,0,0) != ?) and ((-1,0,1) + (-1,0,0)) > ((0,0,1) 
+ (0,0,0)),((-1,0,0) + (-1,0,1) - (0,0,0)-
(0,0,1))*(-1,0,0))/1000),0) + if((1,0,0) != ?) 
and ((1,0,1) + (1,0,0)) > ((0,0,1) + 
(0,0,0)),((1,0,0) + (1,0,1) - (0,0,0) - (0,0,1)) 
* (1,0,0))/1000),0) + if((0,-1,0) != ?) and ((0,-
1,1) + (0,-1,0)) >((0,0,1) + (0,0,0)), ((0,-1,0) 
+ (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-
1,0))/1000),0) + if((0,1,0) != ?) and (((0,1,1) + 
(0,1,0)) > (0,0,1) + (0,0,0)),((0,1,0) + (0,1,1) 
- (0,0,0) - (0,0,1)) * (0,1,0))/1000),0) } 1000 { 
cellpos(2)=0 } 
rule : { (0,0,0) } 1000 { t }   

Figure 9. Watershed model specification 
 



Figure 9 shows the implementation of the model using the 
tool. The rules represent the accumulation of water. It takes 
the present water of the cell, and the rain fell up to the 
present moment is added. Then, we consider how much 
water must be passed to the neighbors, and how much 
water is received from the inverse neighborhood. Several 
layers are represented as planes in a three dimensional 
model.  
 
We can see the execution results of this model in the Ap-
pendix. In the first figure we show an initial state, repre-
senting the slope of the terrain before raining. Each cell 
occupies 1m x 1m. The second figure shows the execution 
results after intense rain (0.0022 mm/s) after 10 minutes of 
simulated time. We can see that the rain is accumulated in 
the lower levels of the terrain, and a river is formed. 
 
 
CONCLUSION 
 
The tool N-CD++ can be used for modeling and simulation 
of n–dimensional Cell–DEVS. This approach improves the 
development, checking and maintaining phases, facilitating 
the testing and reuse of their components. Input/output port 
definitions allow defining multiple interconnection be-
tween Cell-DEVS or DEVS models. We also can develop 
multidimensional models, making the tool a general 
framework to define and simulate complex generic models. 
 
The tool was built using a standard version of C++, which 
allowed is to provide different versions running in several 
platforms without additional cost. At present, N–CD++ has 
been successfully tested in Windows 95/NT, Linux, AIX, 
IRIX, HP-UX and Solaris. A simulation server has been 
built, and soon it will be available to do simulations using a 
Web-based approach. 
 
The tool and the examples are the public domain and they 
can be obtained in:  
"http://www.dc.uba.ar/people/proyinv/celldevs". 
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APPENDIX – Execution results of the Watershed model. 
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