
This work was partially supported by ANPCYT Project
11-04460 and UBACYT Project JW10.

Models of Complex Physical Systems Using Cell-DEVS

Javier Ameghino Alejandro Troccoli

Departamento de Computación
FCEN – Universidad de Buenos Aires

Planta Baja. Pabellón I.
Ciudad Universitaria (1428)

Buenos Aires. Argentina.

Gabriel Wainer

Systems and Computer Engineering Department
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

E-mail: gwainer@sce.carleton.ca

Abstract

We present the definition of diverse models of physical
systems using the Cell-DEVS paradigm. Cell-DEVS is an
extension of the DEVS formalism that allows the definition
of cellular models. We have developed a tool implementing
these theoretical concepts, making easy the definition of
cell spaces with explicit timing delays. Diversity of prob-
lems can be attacked in a simple fashion, reducing the
development times of complex models. A wide variety of
models have been developed using this approach, and here
we include examples of a fire spreading model with differ-
ent conditions, formation of a watershed and robots in a
manufacturing plant. These examples allow us to show the
potential application of the formalism and related tools to
attack different problems.

1. Introduction

Recent advances in computer technology have influ-
enced simulation techniques to become an effective ap-
proach to understand physical systems. In recent years,
grid-shaped cellular models have gained popularity in this
sense [1, 2]. In particular, Cellular Automata [3] have been
widely used with these purposes. A Cellular Automata is
defined as an infinite n-dimensional lattice of cells whose
values are updated according to a local rule. This is done
simultaneous and synchronously using the current state of
the cell and the state of a finite set of nearby cells (known
as the neighborhood).

Cellular automata usually require large amounts of
compute time, mainly due to its synchronous nature. The
use of a discrete time base is also constrains the precision
of the model. Likewise, independent timing properties for

each cell cannot be easily described. Cell-DEVS [4] solves
these problems by using the DEVS paradigm [5] to pro-
vide discrete event approach to build cell spaces. The goal
is to build discrete-event cell spaces, improving their defi-
nition by making the timing specification more expressive.

 In this work we introduce the definition of several
complex physical models using the paradigm. It has been
shown that its application of the paradigm produces sub-
stantial reductions in the development times for cell-
shaped models [6]. The goal here is to show the usefulness
of the approach when applied in the definition of complex
physical systems.

2. The DEVS Formalism

DEVS (Discrete EVent Systems specifications) is a
modelling paradigm based on general systems theory [5].
A DEVS model is built using a set of behavioral compo-
nents called Atomic, which can be combined to form
Coupled ones. A DEVS atomic model can be formally
described as:

M = < X, S, Y, δint, δext, λ, D >

where X represents a set of input events, S a set of states,
and Y is the output events set. Four functions manage the
model behavior: δδint the internal transitions, δδext the exter-
nal transitions, λλ the outputs, and D the duration of a state.
Each model is seen as having input and output ports to
communicate with other models. The input and output
events will determine the values to appear in those ports.
The input external events are received in an input port, and
the model specification should define the behavior under
such inputs. The internal events produce state changes,

whose results are spread through the output ports. The port
influences will determine if these values should be sent to
other models.

Coupled models are integrated by other DEVS basic
models (atomic or coupled), providing a structural view.
These models are formally defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij}>

where X is the set of input events, and Y is the set of out-
put events. D is an index of the components, and for each i
∈ D, Mi is a basic DEVS model. Ii is the set of influencees
of model i. For each j ∈ Ii, Zij is the i to j translation func-
tion. Coupled models are composed by a set of basic mod-
els connected through input/output ports. The influencees
of a model are used to define which output values must be
sent to the others. The translation function uses an index of
influencees, created for each model (Ii). This function
defines which outputs of model Mi are connected to inputs
in model Mj.

As previously explained Cell-DEVS [4] has extended
the DEVS formalism, allowing the implementation of
cellular models. Each cell is defined as an atomic model
using timing delays, and it can be later integrated to a
coupled model representing a cell space. Cell-DEVS
atomic models can be specified as:

TDC=< X, Y, I, S, N, delay, d, δINT, δEXT, τ, λ, D >

Here, X defines external input events, Y external out-
put events, and I the model's interface. S is the set of states
for the cell, and N is a set of input events. Delay defines
the kind of delay for the cell, and d its duration. Finally,
there are several functions: δδINT for internal transitions,
δδEXT for external transitions, ττ for local computations, λλ
for outputs and D for the state's duration function. Each
cell uses N inputs to compute the future state. They are
received through the model's interface, and are used to
activate the local function. A delay can be associated with
each cell, allowing deferring the transmission of the exe-
cution results [7]. Transport delays model a variable
commuting time, and inertial delays have preemptive
semantics (some scheduled events can be avoided). The
model advances through the activation of the internal,
external, output and state duration functions, as in other
DEVS models.

Once the behavior of one cell is defined, they can be
combined into a coupled model:

GCC=< Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z >

Here, Xlist is an input coupling list, Ylist is an output
coupling list and I represents the model interface. X is the
set of external input events and Y the external output
events. The n value defines the dimension of the cell
space, {t1,...,tn} is the number of cells in each dimension
and N is the neighborhood set. C is the cell space, B is the
set of border cells, and Z a translation function. The cou-
pled model is built as an array of atomic cells, each con-
nected to its neighborhood. The space borders are pro-
vided with different behavior, or their cells are connected
with those in the opposite border. Finally, the Z function
defines internal and external couplings.

These specifications were used as the theoretical base
to develop a modelling tool called CD++ [8]. The defini-
tions of DEVS and Cell-DEVS, were used to define ex-
ecutable models. DEVS atomic models can be defined as
C++ functions (by defining the behavior of the functions
δint, δext, λ, and D). Instead, Cell-DEVS models are built
using a specialized language.

First, we allow the definition of coupled models by
including their size, neighborhood and borders (as de-
scribed in the formal specifications). Then, the cell be-
havior (defined by the local transition function) is de-
scribed using rules with the following syntax: VALUE
DELAY { CONDITION }. If the CONDITION of a rule is
satisfied, the state of the cell will change to the designated
VALUE after a DELAY. If the condition is not valid, the
following rule is evaluated. A wide range of functions and
operators can be used to define these rules. Input/output
ports allow to integrate cellular models to other DEVS.

Details about the tool can be found in [8, 9], where
several simple models where presented. The following
sections will be devoted show how more complex physical
models can be simulated using CD++.

3. Forest Fires

Forest fires destroys important resources, hence,
enormous efforts have been made to prevent them. One
way of attacking this problem is by using modelling and
simulation. Many forest fires models have been developed
to study how the fire spreads under different environ-
mental conditions. The use of GIS (Geographical Infor-
mation Systems) has extended the analysis of burnt areas
and helped to determine risk factors.

A well known model for fire propagation in forests is
due to Rothermel [10]. Based on environmental and vege-
tation conditions, it computes the ratio of spread and in-
tensity of fire. Three parameter groups determine the fire
spread ratio: a) vegetation type (caloric content, mineral
content and density); b) fuel properties (the vegetation is

classified according to its size); and c) environmental
parameters (wind speed, fuel humidity and field slope).
We have used the NFFL (Northern Forest Fire Labora-
tory), that classifies vegetation in 13 groups representing
the majority of existing forest types in the region.

When Rothermel's rules are applied to a given fuel
model and environmental parameters, it can determine the
spread ratio (i.e. the distance and direction the fire moves
in a minute). The first step is to use the fuel model, the
speed and direction of the wind, the terrain topology and
the dimensions of the cellular space to obtain the spread
ratio in every direction. These values are used to write a
specific model for the given parameters using CD++. For
instance, the following figure shows the values obtained
for a fuel model group number 9, a SE wind of 24.135
km/h and a cell size of 15.24 x 15.24 m.

Wind direction = 45.000000 (bearing)
Wind speed = 8.045000 [kph] NFFL model = 1
Cell Width = 15.240000 [m] (E-W)
Cell Height = 15.240000 [m] (N-S)
Max. Spread = 17.967136 [mpm]

0° Spread = 5.106976 [mpm] Distance = 15.2400 [m]
45° Spread = 17.967136 Distance = 21.552615
90° Spread = 5.106976 Distance = 15.240000
135° Spread = 1.872060 Distance = 21.552615
180° Spread = 1.146091 Distance = 15.240000
225° Spread = 0.987474 Distance = 21.552615
270° Spread = 1.146091 Distance = 15.240000
315° Spread = 1.872060 Distance = 21.552615

Figure 1. Parameter definition computed us-
ing the Rothermel model.

These parameters were used to write a specific cellu-
lar model for this case using the CD++ tool. The following
specification shows a 20 by 20 Cell-DEVS representing
the terrain and vegetation. Every parameter defined corre-
sponds to the specification of the coupled Cell-DEVS
presented in section 2. In this case, the state variables use a
0 value to indicate the absence of fire and a value different
to 0 indicates the time the fire has started on that cell.

The rules define the behavior of the local computing
function. They are devoted to detect the presence of fire in
the eight neighboring cells. If there is fire in one of them,
then present the cell will burn. For instance, the first rule
checks if the current cell is not burning ((0,0) = 0) and if
the SW neighbor has started to burn (0 < (1,-1)). If this
condition holds, the value will be (1,-1) +
(21.552615/17.967136), which is the time the fire will
start in the cell. As the spread ratio is 17.967136 mpm and
a cell has a diagonal of 21.552615 m, it will take
(21.552615/17.967136) minutes for the fire to reach the a
cell once it has started in its SW neighbor. Therefore, we
use a delay of (21.552615/17.967136)*60000 ms after
which the present cell state will spread to the neighbors.

The remaining rules represent a similar behavior for the
remaining neighbors.

[ForestFire]
type : cell dim : (20,20)
delay : inertial border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0)
(0,1) (1,-1) (1,0) (1,1)
localtransition : FireBehavior

[FireBehavior]
rule : {(1,-1)+(21.552615/17.967136)} {(21.552615
/ 17.967136)*60000} {(0,0)=0 and 0<(1,-1)}
rule : {(1,0)+(15.24/5.106976)} {(15.24 /
5.106976)*60000} {(0,0)=0 and 0<(1,0)}
rule : {(0,-1)+(15.24/5.106976)} {(15.24 /
5.106976)*60000} {(0,0)=0 and 0<(0,-1)}
rule : {(-1,-1)+(21.552615/1.872060)} {(21.552615
/ 1.872060)*60000} {(0,0)=0 and 0<(-1,-1)}
rule : {(1,1)+(21.552615/1.872060)} {(21.552615 /
1.872060)*60000} {(0,0)=0 and 0<(1,1)}
rule : {(-1,0)+(15.24/1.146091)} {(15.24 /
1.146091)*60000} {(0,0)=0 and 0<(-1,0)}
rule : {(0,1)+(15.24/1.146091)} {(15.24 /
1.146091)*60000} {(0,0)=0 and 0<(0,1)}
rule : {(-1,1)+(21.552615/0.987474)} {(21.552615
/ 0.987474)*60000} {(0,0)=0 and 0<(-1,1)}
rule : {(0,0)} 0 { t }

Figure 2. Definition of a fire forest model.

The results of running this model are shown below.
This behavior has been discussed previously in [11, 12]
and others. We want to show that a complex model as this
one can be easily defined using the formal specifications
of Cell-DEVS and related tools.

(a)

(b)
Figure 3. (a)Fire propagation results; (b) A two-
hour period (each zone represents 20 minutes).

As we can see, the burning time of a cell depends on
the spread ratio in the direction of the burning cell. This
value is used as the delay component for the rules. It is
important to notice that the cells are updated at different
times, as set by a rule's delay component. This is a clear
departure from the classical approach to cellular automata
where all active cells are updated at the same time. A non
burning cell in the direction of the fire spread will be up-
dated in a shorter period of time than a non burning cell in
the opposite direction. Another advantage is that express-
ing a timing delay is done in a natural fashion, allowing
the modeler to reduce the development time related with
timing control programming.

Another advantage is that the complexity of this
physical phenomenon is such that the inclusion of other
external influences is difficult to be considered. The fol-
lowing subsections we will show the potential use of the
formalism by including external factors to attack the fire.

4.1 Forest fires under the influence of rain

Cell-DEVS allows to easily include new rules. In this
case we have defined a rainstorm moving to the SE, extin-
guishing the fire on burning cells. To allow this behavior,
the following rules were added to the previous model:

rule : -1 {60000*3} {(0,0)=0 and ((-1,0)=-1 or
(0,1)=-1 or (-1,0)=-2 or (0,1)=-2)}
rule : -2 {60000*3.5} {(0,0)>0 and ((-1,0)=-1 or
(0,1)=-1 or (-1,0)=-2 or (0,1)=-2)
rule : -3 {60000*4.5} {(0,0)=-2}
rule : -4 {60000*5} {(0,0)=-3}

Figure 4. Forest fire. Rules defining rain.

Negative values define the effects of the rain. A cell
whose value is -1 is a wet cell where no fire was presented
previously. A value of -2 or -3 indicates the cell was pre-
viously on fire and is now cooling down, and a value of -4
means the fire on that cell is extinguished. The first rule in
the previous figure defines rain spreading to the SW. The
second defines the cooling process on a burning cell, and
the third and fourth ones represent advance in the cooling
process. The model assumes that the fire on a cell will take
16 minutes to extinguish (in stages of different length).

(a) (b) (c) (d) (e)
Figure 5. Fire evolution with rain. (a) Start. (b)

Fire advance and rain (dark gray) (c, d) Rain
cooling fire areas (light gray). (d) Rain extin-

guished fire areas.

It is important to notice that if any of the cells is
scheduled to start burning and it gets wet before the fire
starts, it will not burn. This was easily defined by an iner-
tial delay, which preempts any scheduled event if a new
event from a neighbor cell before the scheduled time, and
the present cell gets a different value.

4.2 Firefighter influence on a fire

The following extension allows to analyze the influ-
ence of firefighters in the region. A negative value is still
used for wet or cooling cells, a positive value for burning
cells, but the way in which the water is spread has been
changed.

rule : -1 60000 {(0,0)=0 and (-1,0)=-1}
rule : -2 {60000*7} {(0,0)>0 and ((-1,1)=-1 or (-
1,1)=-4) }
rule : -3 {60000*9} {(0,0)=-2}
rule : -4 {60000*9} {(0,0)=-3}

Figure 6. Rules defining firefighter behavior.

In this case, firefighters move from north to south
spreading water to non burning vegetation. Once they
reach a burning cell they will hold their positions till the
fire is extinguished, and then they will move towards SW.

 (a) (b) (c) (d) (e)
Figure 7. Fire evolution with firefighters. (a) Start

(b) Firefighters spread coolant from N to S (c)
Fire spreading, firefighter zones cooled down

(light gray) (d, e) areas of fire extinguished.

4. Robot movement in a plant

Cell-DEVS models can be coupled with standard
DEVS models. The coupling is done by linking a DEVS
output port to a new cell's input port and defining a rule to
be evaluated when a message is received through this new
port. The model defined in this section will show how to
define this coupling. We model the movement of robots in
an industrial plant. Robots are used to carry a load from
the source point where it is produced, to a destination
point where it is consumed. The robots can move North,
South, East or West following predefined routes at differ-
ent speeds. There may be more than one robot on each
route.

A robot stops when it detects a nearby robot on the
same route. In addition, routes can have crossing points, so

there is a potential risk for collisions. Routes are one-way;
once the load is delivered, robots are taken off the floor,
back to their starting point. The model here presented
supposes the robots move using predefined routes, speci-
fied as a floor diagram.

The plant is represented by a 20 by 20 Cell-DEVS.
This cellular model is linked to four different DEVS mod-
els, each devoted to generate a load at the source points
(12, 19), (0,10), (9,0) and (19,6).

[top]
components : Floor Source1@Generator
Source2@Generator Source3@Generator
Source4@Generator
link : out@Source1 in1@Floor
link : out@Source2 in2@Floor
link : out@Source3 in3@Floor
link : out@Source4 in4@Floor

[Floor]
type : cell dim : (20,20)
delay : inertial border : nowrapped
neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)
in : in1 in2 in3 in4
link : in1 in@Floor(12,19)
link : in2 in@Floor(0,10)
link : in3 in@Floor(9,0)
link : in4 in@Floor(19,6)
localtransition : RobotsMov

[RobotsMov]
% ------ Robot 1 ------------------------------
rule : 10 1000 {(0,1)=1 and (0,0)=0 and cell-
pos(1)!=4}
rule : 11 1000 {(0,1)=1 and (0,0)=0 and cell-
pos(1)=4}
rule : 0 0 {(0,-1)=10 and (0,0)=1}
rule : 0 0 {(0,-1)=11 and (0,0)=1}
rule : 2 0 {(0,0)=11}
rule : 1 0 {(0,0)=10}

rule : 20 2000 {(-1,0)=2 and (0,0)=0 and cell-
pos(0)!=17}
rule : 21 2000 {(-1,0)=2 and (0,0)=0 and cell-
pos(0)=17}
rule : 0 0 {(1,0)=20 and (0,0)=2}
rule : 0 0 {(1,0)=21 and (0,0)=2}
rule : 2 0 { (0,0)=20 }
rule : 1 0 { (0,0)=21 }

% ------ Robot 2 --------------------------------
...

Figure 8. Model definition for robot routes.

This model definition, which follows the DEVS and
Cell-DEVS specifications for coupled models, begins by a
coupled model with 5 components (Floor, a Cell-DEVS,
and Source1-Source4, load generators built as DEVS
models). Then, the model's influencees are defined (gen-
erators output ports are connected to Floor input ports).
Finally, we define the Cell-DEVS Floor coupled model
parameters (size, borders, delay, etc.). The Xlist and Ylist
are defined following, allowing to define how the external

events received. In this case, the input ports in1 to in4 will
be coupled to the cell space: events arriving on port in1
should be sent to the in port of the cell at position (12,19).
The behavior of the DEVS generators is not included here
(see, for example, DEVS generators in [5]). The tool al-
lows their definition according to the formal specifications
of section 2 for DEVS atomic models.

Figure 9. Floor plan with robots routes.

We also included a part of the cell behavior for the
Cell-DEVS model. In this case, a zero value is used if the
cell is empty. A value different from zero will indicate the
presence of a robot. A cell containing a route 1 robot can
have the values 1, 10 or 11 if the robot is moving hori-
zontally and 2, 20 or 21 if the robot is moving vertically.
The cellpos() function is used to see if the robot is on the
path, defining the predefined movement on the floor. The
same applies for cell containing robots belonging to other
routes. Then, valid values for a cell containing a route 2
robot will be 3,30, 31, 4, 40, 41; for cells containing a
route 3 robot they will be 5, 50, 51, 6, 60, 61 and for cells
containing a route for 4 robot 7, 70, 71, 8, 80, 81.

A robot moves is done in three steps. For example, a
route 1 robot at the source is indicated by a 1 in cell
(12,19). This value says the robot is ready to move hori-
zontally. The next cell on the route will receive a neighbor
change event indicating that cell (12,19) has just changed
to 1. Then, cell will get ready to receive the robot by ac-
quiring a value of 10 or 11 after a delay of 1000 ms (step
1). The value 10 will be used if the robot continues hori-
zontally and 11 if the robot must turn.

Once this change is produced, the original cell that
had a value of 1 will now change to 0 (step 2) indicating
the robot is not longer present and the cell that had the
value 10 or 11 will change to 1 or 2, respectively (step 3).
The value of 1 will again indicate the presence of a robot
that is about to move horizontally and the value 2 a robot
that is about to move vertically. The collisions are avoided

by only allowing step 1 to take place if the destination cell
is empty, as expressed a condition statement.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 10 1 0 10 0 0 1 0 11 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 t = 0 t = 1000 t = 1000 t = 1000 t = 2000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 2 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 20 0 0 20 0 0 2 0 0
 t =2000 t = 2000 t = 3000 t = 3000 t = 3000
Figure 10. Route 1 movem e nts. (a) Starting point
(b) Step 1 (c) Step 2 (d) Step 3 (e) Turning point.

Step 1(f) Step 2 (g) Step 3 (h) New movement with
change of direction. Step 1 (i) Step 2 (j) Step 3

The results of running this model are shown below:

 (a) (b)

(c) (d)
Figure 11. Executing the robots model (showing

two robots reaching an intersection point).

The figure shows different robots running at different
speeds (according with their delays). The figure also
shows the collision avoidance between a robot in route 2
and other in route 4 (marked in the figure).

5. A Watershed Model

In [9] we presented a watershed model previously de-
fined in [13], which was built using Cell-DEVS. A water-

shed is a natural region that acts as the water-receiving
area of a drainage basin. The water that accumulates has
different origins: rain, rivers and snow melting from
mountains, as shown in the following figure.

Figure 12. Topology of a watershed

A watershed is made of different vertical layers: air,
vegetation, surface waters, soil, ground water, and bed-
rock. The model in [13] represented the water flow and
accumulations based on the characteristics of the different
layers. A watershed was divided into cellos where the
water accumulation was computed as shown in the fol-
lowing figure.

Figure 13. Hydrology model [13].

Basically, what this model says is that the height of
accumulated water depends on the rain water that reaches
the ground, the water received from neighbor cells, the
water that overflows to neighbor cells and the water the
ground absorbed. Based on the equations for this model,
the CD++ model shown in the following figure was devel-
oped to simulate the accumulation of water under the
presence of constant rain (7,62 mm/hour). The original
model in [9] assumed the soil in the whole watershed area
was of the same type. A new model here presented defines
areas of different soil type: grass and rocks.

[Watershed]
type : cell dim : (30,30,2)
delay : inertial border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0)
(1,0,0)(-1,0,1) (0,-1,1) (0,0,1)(0,1,1) (1,0,1)
zone : grass { (0,0,0)..(29,10,0) }
zone : stones { (0,20,0)..(29,29,0) }
localtransition : Hydrology
[grass]
rule : {0.07 + (0,0,0) - if(((((0,0,1) +
(0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) +
(0,0,1) - (-1,0,0) - (-1,0,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((1,0,1) + (1,0,0)))),(((((0,0,0) +
(0,0,1) - (1,0,0) - (1,0,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) +
(0,0,1) - (0,-1,0) - (0,-1,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((0,1,1) + (0,1,0)))),(((((0,0,0) +
(0,0,1) - (0,1,0) - (0,1,1))/1000) *
(0,0,0))/1000),0) + if(((((-1,0,1) + (-
1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-
1,0,1) - (0,0,0) - (0,0,1)) * (-1,0,0))/1000),0)
+ if(((((1,0,1) + (1,0,0))>((0,0,1) +
(0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) -
(0,0,1)) * (1,0,0))/1000),0) + if(((((0,-1,1) +
(0,-1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) +
(0,-1,1) - (0,0,0) - (0,0,1)) * (0,-
1,0))/1000),0) + if(((((0,1,1) +
(0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) +
(0,1,1) - (0,0,0) - (0,0,1)) * (0,1,0))/1000),0)
} 1000 { cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

[stones]
rule : {0.09 + (0,0,0) - if(((((0,0,1) +
(0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) +
(0,0,1) - (-1,0,0) - (-1,0,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((1,0,1) + (1,0,0)))),(((((0,0,0) +
(0,0,1) - (1,0,0) - (1,0,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) +
(0,0,1) - (0,-1,0) - (0,-1,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((0,1,1) + (0,1,0)))),(((((0,0,0) +
(0,0,1) - (0,1,0) - (0,1,1))/1000) *
(0,0,0))/1000),0) + if(((((-1,0,1) + (-
1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-
1,0,1) - (0,0,0) - (0,0,1)) * (-1,0,0))/1000),0)
+ if(((((1,0,1) + (1,0,0))>((0,0,1) +
(0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) -
(0,0,1)) * (1,0,0))/1000),0) + if(((((0,-1,1) +
(0,-1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) +
(0,-1,1) - (0,0,0) - (0,0,1)) * (0,-
1,0))/1000),0) + if(((((0,1,1) +
(0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) +
(0,1,1) - (0,0,0) - (0,0,1)) * (0,1,0))/1000),0)
} 1000 { cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

Figure 14. Specification of a watershed model.

Cell-DEVS was defined as an n-dimensional para-
digm. In this case, we are using a three dimensional model
to defined a different behavior using overlapped planes.
The model is a 30 by 30 cell model with two surfaces, one

to represent the height of the water retained (surface 0)
and one to represent the topography of the terrain (surface
1). Each cell represents an area of 1m by 1m. The value
for a surface 0 cell represents the height of accumulated
water and the one for a surface 1 cell represents the ground
elevation. These values for ground elevation do not change
through out the simulation, and they are used to calculate
the water overflow to neighbor cells.

(a)

 (b)
Figure 15. (a) Original topology (b) the watershed
after rain water has accumula ted .

We show two zones, representing the sets of cells that
will model grass and rock areas. For each zone, different
sets of rules apply. Each rule calculates the new water
height by applying the hydrology model equation. These

rules represent the water accumulation changing the sur-
face vegetation and ground filtration parameters showed in
figure 13. We can see that the definition of different be-
havior int he same model is defined without much effort.

From the execution results we can see that, despite the
shape of the original topology, water accumulates in the
left part of the terrain faster than in the right part. This is
due to the rocky soil defined in the rightmost area, which
rejects most of the water. The center part of the figure has
the higher filtration of the area due to the lack of vegeta-
tion, thus having the most profound height in the water-
shed.

6. Conclusion

Cell–DEVS allows to describe physical systems using
an n-dimensional cell-based approach. Input/output port
definitions allow defining multiple interconnection be-
tween Cell-DEVS or DEVS models. Complex timing
behavior for the cells in the space can be defined using
very simple constructions. Transport and inertial delays
allow the modeler to make easier the timing representation
of each cell in the space. The CD++ tool, based on the
formalism entitles the definition of complex cell-shaped
models using a high-level specification language. In this
way, the construction of simulations is improved, en-
hancing their safety and development costs.

It was shown that different kinds of applications can
be easily faced, allowing the study of complex problems
through simulation, which, otherwise, could not be at-
tacked. Finally, the use of a formal base improves the
development, checking and maintaining phases, facilitating
the testing and reuse of their components.

The discrete event nature of the formalism provides
better precision and performance, due to the independent
timing for each cell. If a cell state does not change, it is
deactivated up to the arrival of a new external event, thus,
improving CPU use without needing small time slots.

REFERENCES

[1] SIPPER, M. "The emergence of cellular computing". IEEE
Computer. July 1999. pp. 18-26.

[2] TALIA, D. "Cellular processing tools for high-performance
simulation". Computer. September 2000 pp.44–52.

[3] WOLFRAM, S. “Theory and applications of cellular auto-
mata”. Vol. 1, Advances Series on Complex Systems. World
Scientific, Singapore, 1986.

[4] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS: model-
ling and simulation of cell spaces". In Discrete Event Modeling
& Simulation: Enabling Future Technologies, to be published by
Springer-Verlag. 2001.

[5] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of Mod-
eling and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems". Academic Press. 2000.

[6] WAINER, G.; GIAMBIASI, N. "Application of the Cell-
DEVS paradigm for cell spaces modelling and simulation.".
Accepted for publication in Simulation (SCS journal). October
2000.

[7] GHOSH, S.; GIAMBIASI, N. "On the need for consistency
between the VHDL language constructions and the underlying
hardware design". Proceedings of the 8th. European Simulation
Symposium. Genoa, Italy. Vol. I. pp. 562-567. 1996.

[8] RODRIGUEZ, D.; WAINER, G. "New Extensions to the
CD++ tool". In Proceedings of 31st SCS Summer Computer
Simulation Conference. 1999.

[9] AMEGHINO, J.; WAINER, G. "Application of the Cell-
DEVS paradigm using N-CD++". Proceedings of the 32nd SCS
Summer Computer Simulation Conference. Vancouver, Canada.

[10] ROTHERMEL, R. “A mathematical model for predicting
fire spread in wildland fuels”. Research Paper INT-115.
Ogden,UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station; 1972. 40 p.

[11] VASCONCELOS, M. "Simulation of fire behavior with a
Geographical Information System". M.Sc. Thesis. The Univer-
sity of Arizona. 1988.

[12] VASCONCELOS, M.; GONÇALVES, A.; BARROS, F.
"Dynamic Maps". In Proceedings of AI, Simulation and Planning
in High Autonomy Systems. Tucson, Arizona. 2000.

[13] MOON, Y.; ZEIGLER, B.; BALL, G.; GUERTIN, D. P.
"DEVS representation of spatially distributed systems: validity,
complexity reduction". IEEE Transactions on Systems, Man and
Cybernetics. pp. 288-296. 1996.

Keywords: DEVS models, Cellular models, Cell-DEVS
models, Modelling methodologies, Simulation support
systems: environments.

