

VEHICLE ROUTING IN CELL-DEVS MODELS OF URBAN TRAFFIC

Andrea Díaz Verónica Vázquez

Departamento de Computación

FCEN – Universidad de Buenos Aires
Planta Baja. Pabellón I.

Ciudad Universitaria (1428)
Buenos Aires. Argentina.

Gabriel Wainer

Systems and Computer Engineering Department
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

E-mail: gwainer@sce.carleton.ca

KEYWORDS
Traffic models, DEVS, Cell-DEVS, cellular models.

ABSTRACT

ATLAS is a specification language defined to outline city
sections for modelling and simulation of traffic flow.
Streets are characterized by their size, direction, number of
lanes, etc. Once the urban section is outlined, the construc-
tions are translated into Cell-DEVS models, and the traffic
flow is automatically set up. As modelers can focus in the
problem to solve, development times for a simulation can
be highly reduced. We show how to provide routing behav-
ior. Based on routing information, the high level specifica-
tions are translated into cellular models that execute those
specifications to describe path selections and vehicle ro ut-
ing in the city.

INTRODUCTION

The use of simulation has been gaining popularity for urban
traffic analysis and control. Modelling and simulation of
traffic has been used to improve traffic control, measure the
consequences of collisions, avoid pollution, traffic jams,
etc.

ATLAS (Advanced Traffic LAnguage Specifications) is a
high level specification language defined to represent city
sections as cell spaces (Davidson and Wainer 2000a). It is
focused to analyze detailed behavior of traffic (microsimu-
lations) and it is not intended to model traffic flow in the
large. The idea is to allow elaborate study of flow according
with the shape of a city section and its traffic attributes. A
city section can be easily described, including definitions
for traffic signs, traffic lights, etc. Once a section is defined,
the traffic behavior is automatically set-up. Therefore, a
modeler can concentrate in the problem to solve, instead of
being in charge of defining a complex simulation.

The constructions defined in this language are mapped into
DEVS (Zeigler et al. 2000) and Cell-DEVS models, provid-
ing the benefits of a formal approach. Cell-DEVS (Wainer
and Giambiasi 2001) was proposed to describe cell spaces
as DEVS models with timing delays. Using Cell -DEVS, a
cellular model can be described as a discrete event model.
Transport and inertial delays allow timing accurate descrip-

tion, improving the definition of the models using explicit
delays.

We have extended the static specifications to entitle vehicle
routing. The goal is that, providing information about con-
gestion in an area and the conflictive points, a modeler can
evaluate structural alternatives to congestion problems.
Drivers can be provided with information to avoid bottle-
necks. The basic behavior needed to solve this problem
include the definition of traffic routing, which will be ex-
plained in the following sections.

THE ATLAS MODELLING LANGUAGE

ATLAS (Davidson and Wainer 2000a) is a specification
language built on top of DEVS and Cell -DEVS formalisms.
A DEVS model can be composed by atomic submodels
combined into coupled models. A DEVS atomic model is
described as:

M = < I, X, S, Y , δint , δext, λ, D >

I is the model's interface, X is the input events set, S is the
state set, and Y is the output events set. There are also sev-
eral functions: δint manages internal transitions, δext external
transitions, λ the outputs, and D the elapsed time. A DEVS
coupled model is defined as:

CM = < I , X, Y, D, {Mi}, {Ii}, {Zij} >

Here, I is the model's interface, X is the set of input events,
and Y is the set of output events. D is an index of compo-
nents, and for each i ∈ D, Mi is a basic DEVS model,
where Mi = < Ii, Xi, Si, Yi, δinti, δexti, tai >. Ii is the set of

influencees of model i. For each j ∈ Ii, Zij is the i to j trans-
lation function.

Cell -DEVS is an extension of DEVS models, especially
devoted to define cellular models. Each cell is defined as an
atomic DEVS model, and a procedure to couple cells is
depicted. Timing delays allow defining different timing
behavior. The atomic models (the cells) can be described
as:

TDC = < I, X, Y, θ, N, delay, d, δint, δext, τ, λ, D >

X defines the external inputs , Y the external outputs, and I
is the interface of the model. θ is the cell state definition,
and N is the set of inputs. Delay defines the kind of delay
for the cell, and d its duration. Finally, there are several
functions: δint for internal transitions, δext for external transi-
tions, τ for local computations (which use the state values
of the neighborhood to compute the future value of a cell),
λ for outputs and D for the state's duration. Each cell takes
the set of inputs and computes the cell's future state using
the τ function. The delay allows deferring the transmission
of the results. This behavior is defined by the δint, δext, λ
and D functions. The modeler only must focus in defining
the local computing function, the kind of delay and its
length. The remaining parameters are defined by the for-
malism.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist , I, X, Y, n, {t1,...,tn}, N, C, B, Z >

Here, Xlist and Ylist are the input/output coupling lists, used
by I to define the interface of the model. X and Y represent
the input/output events. The n value defines the dimension
of the cell space, {t1,...,tn} is the number of cells in each
dimension and N is the neighborhood set. The cell space is
defined by C, together with B, the set of border cells, and Z
the translation function. For coupled models, the modeler
only has to focus in the neighborhood shape, the size and
dimension of the model, the definition of the border set, and
the coupling lists.

ATLAS allows representing the structure of a city section
defined by a set of streets connected by crossings. The
language constructions define a static view of the model,
and they are considered to be built as grids composed of
cells. The main constructions are:

- Segments : they represent sections between two corners.
Every lane in a given segment has the same direction (one
way segments) and a maximum speed. They are specified
as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈ City ∧ n,
max ∈ Ν ∧ a, dir ∈ {0,1} }, where p1 and p2 represent the
boundaries of each segment (City = { (x,y) / x, y ∈ R }), n
is the number of lanes, and dir represents the vehicle direc-
tion. The a parameter defines the shape of the segment
(straight or curve, allowing to define the city shape pre-
cisely, and to include the exact number of cells), and max is
the maximum speed allowed.

Figure 1: A Segment with More than Four Lanes

In (Davidson and Wainer 2000b)a complete set of rules was
defined for streets with one to five (or more) lanes. Differ-
ent models were included because in each case a different

behavior is defined for the borders. The speed of each veh i-
cle is represented by a transport delay. This delay is gener-
ated using a random function related with the maximum
speed allowed in the street.

- Crossings: they are points in the plane where several
segments intersect. They are specified as: Crossings = { (c,
max) / c ∈ City ∧ max ∈ Ν ∧ ∃ s, s’ ∈ Segments ∧ s = (p1,
p2, n, a, dir, max) ∧ s’ = (p1’, p2’, n’, a’, dir’, max’) ∧ s ≠
s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }. Crossings are
built as a ring of cells with moving vehicles. A car in the
crossing has higher priority to obtain a position into the ring
than the cars out of the crossing.

The Crossings set represents places of the City where the
road sections joins. Each crossing can connect any number
of road sections, which will be its inputs or outputs. The set
of crossings is defined as follows:

Crossings = { c / ∃ t ,t’ ∈ RoadSections ∧ t = (p1, p2, n,
a,dir, max) ∧ t’ = (p1’, p2’, n’, a’, dir’, max’) ∧ t ≠ t’
 ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }

Every crossing in this set is represented as a ring of cells
where the vehicles advance. In any given instant, they can
get to another path. A car in the intersection has higher
priority to obtain a position into the ring than the cars ou t-
side the crossing. The cars advance continuously in order to
avoid deadlocks.

 2 1 To segment
 3 0
 ... k-1 From segment

To segment To segment
Figure 2: Crossing

Once the components of a city section are defined, complex
behavior can be analyzed by using other constructions of
ATLAS. Definitions for traffic lights, railways, men at
work, street holes, transit signals and parked cars are in-
cluded. Finally, special behavior has been defined for spe-
cial vehicles: trucks, vans and high priority cars (ambu-
lances, police, firefighters). The following sections will be
devoted to present the behavior for road sections and cross-
ings with different constraints in the traffic flow.

- Traffic lights: crossings with traffic lights are defined as:
TLCrossings = { c / c ∈ Crossings }. Here, c ∈ TLCross-
ings represents several models representing the traffic lights
in a corner and the corresponding controller. Each of these
models is associated with a crossing input. It sends a color
value related with the traffic light to the corresponding
segment in the intersection.

- Railways : they are built as a sequence of level crossings
overlapped with the city segments. The railway network is
defined by: RailNet = { (Station, Rail) / Station is a model,
Rail ∈ RailTrack }, where RailTrack = { (s, δ, seq) / s ∈
Segments ∧ δ ∈ Ν ∧ seq ∈ Ν }. Here, RailNet represents a

set of stations connected to railways, thus defining a part of
the railway network. RailTrack associates a level crossing
with other existing constructions in the city section. Each
ele ment identifies the segment that is crossed (s) and the
distance to the railway from the beginning of the section
(δ). Finally, a sequence number (seq) is assigned to each
level crossing, defining its position in the RailTrack .

 Station 1112 3 Railway

 δ Segment S

Figure 3: Level Crossing Definition.

- Men at work : they are specified as: Jobsite = { (s, ni, δ,
#n) / s ∈ Segments ∧ s = (c1, c2, n, a, dir, max) ∧ ni ∈ [0,
n-1] ∧ δ ∈ Ν ∧ #n ∈ [1, n+1-ni] ∧ #n ≡ 1 mod 2 }. Here,
each (s, ni, δ, #n) ∈ Jobsite is related with a segment where
the construction works are being done. It includes the first
lane affected (ni), the distance between the center of the
jobsite and the beginning of the segment (δ), and the num-
ber of lanes occupied by the work (#n). These values are
used to define a rhombus over the segment where the vehi-
cles cannot advance.

 c1 c2

 ni δ
 #n

 Jobsite

Figure 4: Segment with Men at Work

- Traffic signs : they are defined by: Control = { (s, t, δ) / s
∈ Segments ∧ δ ∈ Ν ∧ t ∈ {bump, depression, school,
pedestrian crossing, stop, others} }. Each tuple here identi-
fies the segment where the traffic sign is used, the kind of
signal, and the distance up to it from the beginning of the
segment. An extension of this construction allows us to
define Po tholes, whose size is one cell.

- Truck segments : segments in which the traffic of trucks
is allowed are defined as: TruckSegments = { (p1, p2, n, a,
dir, max) / p1, p2 ∈ City ∧ n, max ∈ Ν ∧ a, dir ∈ {0, 1} }
whose components are the same to those defined earlier.
The idea here is to extend the behavior of standard traffic to
include large size vehicles.

. Truck crossings : when trucks are allowed in a crossing,
the following construction should be used instead of the
standard crossings: TruckXings = { (c, maxc) / maxc ∈ Ν ∧
∃ s ,s’ ∈ (TruckSegments U Segments) ∧ s = (p1, p2, n, a,
dir, max) ∧ s’ = (p1’, p2’, n’, a’, dir’, max’) ∧ s ≠ s’ ∧ (p1 =
c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }. These models represent
points in the plane the places where several segments joins,
and at least one of them should include trucks.

- Parking : border cells in a segment can be used for park-
ing. They are defined as: Parking = { (s, n1) / s ∈ Segments

∧ n1 ∈ {0,1} ∧ s = (c1, c2, n, a, dir, max) ∧ n > 1 }. Every
pair (s, n1) identifies the segment and the lane where car
parking is allowed. If n1 = 0, the cars park on the left lane.
If n1 = 1, the right lane is used (lane n-1).

- Experimental frameworks : experimental framework
constru ctions are defined as segments that provide inputs
and outputs to the city section to be studied. They are de-
fined as:
InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈
Segments ∧ [(dir = 0 ∧ (∃ v ∈ Ν : (p2,v) ∈ Crossings)) ∨
(dir = 1 ∧ (∃ v ∈ Ν : (p1,v) ∈ Crossings))] }

OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈
Segments ∧ [(dir = 0 ∧ (∃ v ∈ Ν : (p1,v) ∈ Crossings)) ∨

(dir =1 ∧ (∃ v ∈ Ν : (p2,v) ∈ Crossings))] }

VEHICLE ROUTING

The original definitions used for ATLAS models were
based on random routing. Every time a car arrives to a
crossing, the following route is chosen at random. The basic
idea is now to include a way to define the routing informa-
tion for the vehicles.

We have used an approach based in Origin/Destination
(OD) matrixes. This tool provides information about routes
and transportation between different zones or regions.
There are several methods to estimate OD matrixes. Using
the definition of a region (represented as a directed graph),
the methods use the available information (traffic flow,
delays existing in each link of the graph). We will suppose
that a OD matrix has been provided, and it will be used by
the simulator to make decisions related to vehicle routing.

There are several approaches used to implement OD ma-
trixes, and we have chosen an approach based on a road
table. Each register in this table will specify a road connect-
ing a pair of origin/destinations, and the time a car spends
in that road. Different tables can be used according to dif-
ferent parameters (for instance, date, time, and type of ve-
hicles). Therefore, the table will have the following stru c-
ture:

Time Vehicle type
{ ID Origin-node Destination-node {link1 link2 ... linkn}
Travel-time }

The structure of the OD matrix and the function used to
make the routing decisions can be changed without affect-
ing the simulation models. In this way, both problems can
be treated independently. In a first stage, the city shape is
defined using ATLAS. Then, a directed graph can be built
based on the segment and crossing identifications. Using
this graph, and OD matrix can be built. The simulation
models devoted to represent routing use a function that
queries the OD mat rix and provides an answer.

Using this approach, we define a static route for each car,
which will not be changing during all the simulation. Using
the segment/crossing definition, we can build a graph repre-
senting the structure of the city section to be simulated.
Using this base, we built an origin/destination matrix. For

each pair origin/destination in the matrix, we build a route
using the Dijkstra algorithm for shortest paths in a graph.
Using this information, we build a complete acyclic route
from an input crossing to an output crossing.

Every car is initialized with the route to be used. The origi-
nal definitions of ATLAS constructions were modified to
allow this behavior. The first modification includes an
unique identification for each segment/crossing, which will
be used with routing purposes. Besides the original port
definition (car and room, indicating that there is a car or
space in the origin cell), the coupled models defined for
each segment/crossing include now a new port devoted to
transfer the routing path (path in the following figure).

X-c-path
X -c-car

Y-c-room

Crossing

Cell(0,0)

(0,1)

Y-c-path

Y -c-car

X-c-room

Crossing

Cell(0,k-1)

(0,-1)

Figure 5: Coupling of the Border Cells

The behavior for the border cells was changed accordingly.
This new behavior was also extended for models from 1 to
5 or more lanes (each of them must be defined in a different
way due to the definition of the border cells for each of the
models).

After changing the segment definition, the crossing were
also changed. In this case, the crossings will be in charge of
doing the routing definitions using the O/D matrixes. A
crossing is defined as a Cell-DEVS coupled model

Crossing(k, In, Out, maxc) = < Xlist, Ylist, I, X, Y, n,
{t1,...,t n}, η , N, C, B, Z, select >

where,
Ylist = { (0,i) / 0 ≤ i < k}
Xlist = { (0,i) / 0 ≤ i < k}
I = <Px, Py>, with Px = {<X η+1(0,i), binary>, <Xη+2(0,i),
binary >, <Xη+3(0,i), Natural>/ 0 ≤ i < k }, P

y
=

{<Yη+1(0,i), binary>, <Yη+2(0,i), binary>, <Yη+3(0,i), Natu-
ral> / 0 ≤ i < k }

Each cell in the crossing is defined by:

C0j (cross-No) = < I, X, S, Y, N, δint, δext, delay, d, τ, λ, D >

I = < η, Px, Py>, η = 3, Px = { (X1, Record), (X2, Re -
cord), (X3, Record) }, Py = { (Y1, Record), (Y2, Record),
(Y3, Record) }; X, Y ∈ N,

S = (Car, crossing, path, segment-no), where

  1 there is a vehicle
Car = 
  0 otherwise.

crossing ∈ N: unique identifier of the crossing;

  {t1.t2……tn} where ti ∈ N ∧ (∀ i (∃ r ∈
path =  Segments/ segment-no(r) = ti))
  0 otherwise.

Segment-no ∈ N: identifier of the segment to which the
cell is connected.

N = { (0,-1), (0,0), (0,1) }
delay = transport
d = (speed(maxc))
τ is in charge of defining the car behavior in the cell, ac-
cording to the new routing scheme. Different behavior is
defined for the input and output cells, using the O/D ma-
trixes.

We now show the definition of a simple example using the
new definitions. The example was implemented using the
CD++ tool (Rodríguez and Wainer 1999). The model con-
sists of 5 segments and 4 crossings, and will describe the
behavior of traffic using the routing scheme defined previ-
ously. The implementation is a simplification of the theo-
retical definition. We have used different state variables in
each cell: the car existence, the route covered up to the
moment and the state of the segments. The path is specified
by a real number with the following format: d.ddddd, where
1=< d <=9 is the identifier of a segment.

Segment 1 Segm. 3
Cr. 1 Cr. 2

Se
gm

en
t

2

Se
gm

en
t

4

Cr. 3
Segment 5

Cr. 4

Path: 3-4

Path: 2-5

Figure 6: A City Section

The following figure shows the simulation result in the
segment 1. The first row represents the state variable show-
ing the presence of a car. The second line represents the
path to be followed by the car. The first car will take the
path 2-5, whereas the second will go through the path 3-4.
This behavior can be found in figure 7.

