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ABSTRACT 
 

ATLAS is a specification language defined to outline city 
sections for modelling and simulation of traffic flow. 
Streets are characterized by their size, direction, number of 
lanes, etc. Once the urban section is outlined, the construc-
tions are translated into Cell-DEVS models, and the traffic 
flow is automatically set up. As modelers can focus in the 
problem to solve, development times for a simulation can 
be highly reduced. We show how to provide routing behav-
ior. Based on routing information, the high level specifica-
tions are  translated into cellular models that execute those 
specifications to describe path selections and vehicle ro ut-
ing in the city. 

 
INTRODUCTION 
 
The use of simulation has been gaining popularity for urban 
traffic analysis and control. Modelling and simulation of 
traffic has been used to improve traffic control, measure the 
consequences of collisions, avoid pollution, traffic jams, 
etc.  
 
ATLAS (Advanced Traffic LAnguage Specifications) is a 
high level specification language defined to represent city 
sections as cell spaces (Davidson and Wainer 2000a). It is 
focused to analyze detailed behavior of traffic (microsimu-
lations) and it is not intended to model traffic flow in the 
large. The idea is to allow elaborate study of flow according 
with the shape of a city section and its traffic attributes. A 
city section can be easily described, including definitions 
for traffic signs, traffic lights, etc. Once a section is defined, 
the traffic behavior is automatically set-up. Therefore, a 
modeler can concentrate in the problem to solve, instead of 
being in charge of defining a complex simulation.  
 
The constructions defined in this language are mapped into 
DEVS (Zeigler et al. 2000) and Cell-DEVS models, provid-
ing the benefits of a formal approach. Cell-DEVS (Wainer 
and Giambiasi 2001) was proposed to describe cell spaces 
as DEVS models with timing delays. Using Cell -DEVS, a 
cellular model can be described as a discrete event model. 
Transport and inertial delays allow timing accurate descrip-

tion, improving the definition of the models using explicit 
delays.  
 
We have extended the static specifications to entitle vehicle 
routing. The goal is that, providing information about con-
gestion in an area and the conflictive points, a modeler can 
evaluate structural alternatives to congestion problems. 
Drivers can be provided with information to avoid bottle-
necks. The basic behavior needed to solve this problem 
include the definition of traffic routing, which will be ex-
plained in the following sections.  
 
THE ATLAS MODELLING LANGUAGE 
 
ATLAS (Davidson and Wainer 2000a) is a specification 
language built on top of DEVS and Cell -DEVS formalisms. 
A DEVS model can be composed by atomic submodels 
combined into coupled models. A DEVS atomic model is 
described as: 
 

M = < I, X, S, Y , δint , δext, λ, D > 
 
I is the model's interface, X is the input events set, S is the 
state set, and Y is the output events set. There are also sev-
eral functions: δint manages internal transitions, δext external 
transitions, λ the outputs, and D  the elapsed time. A DEVS 
coupled model is defined as: 
 

CM = < I , X, Y, D, {Mi}, {Ii}, {Zij} > 
 
Here, I is the model's interface, X is the set of input events, 
and Y is the set of output events. D is an index of compo-
nents, and for each i ∈ D, Mi is a basic DEVS model, 
where Mi = < Ii,  Xi, Si, Yi, δinti, δexti, tai >. Ii is the set of 

influencees of model i. For each j ∈ Ii, Zij is the i to j trans-
lation function. 
 
Cell -DEVS is an extension of DEVS models, especially 
devoted to define cellular models. Each cell is defined as an 
atomic DEVS model, and a procedure to couple cells is 
depicted. Timing delays allow defining different timing 
behavior. The atomic models (the cells) can be described 
as: 

 
TDC = < I, X, Y,  θ, N, delay, d, δint, δext, τ, λ, D > 

 



X defines the external inputs , Y the external outputs, and I 
is the interface of the model. θ is the cell state definition, 
and N is the set of inputs. Delay defines the kind of delay 
for the cell, and d its duration. Finally, there are several 
functions: δint for internal transitions, δext for external transi-
tions, τ for local computations (which use the state values 
of the neighborhood to compute the future value of a cell), 
λ for outputs and D for the state's duration. Each cell takes 
the set of inputs and computes the cell's future state using 
the τ  function. The delay allows deferring the transmission 
of the results. This behavior is defined by the δint, δext, λ  
and D functions. The modeler only must focus in defining 
the local computing function, the kind of delay and its 
length. The remaining parameters are defined by the for-
malism. 
 
A Cell-DEVS coupled model is defined by: 
 

GCC = < Xlist, Ylist , I, X, Y, n, {t1,...,tn}, N, C, B, Z > 
 
Here, Xlist and Ylist are the input/output coupling lists, used 
by I to define the interface of the model. X and Y represent 
the input/output events. The n value defines the dimension 
of the cell space, {t1,...,tn} is the number of cells in each 
dimension and N is the neighborhood set. The cell space is 
defined by C, together with B, the set of border cells, and Z 
the translation function. For coupled models, the modeler 
only has to focus in the neighborhood shape, the size and 
dimension of the model, the definition of the border set, and 
the coupling lists. 
 
ATLAS allows representing the structure of a city section 
defined by a set of streets connected by crossings. The 
language constructions define a static view of the model, 
and they are considered to be built as grids composed of 
cells. The main constructions are: 
 
- Segments : they represent sections between two corners. 
Every lane in a given segment has the same direction (one 
way segments) and a maximum speed. They are specified 
as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈ City ∧  n, 
max ∈ Ν ∧ a, dir ∈ {0,1} }, where p1  and p2 represent the 
boundaries of each segment (City = { (x,y) / x, y ∈ R }), n  
is the number of lanes, and dir represents the vehicle direc-
tion. The a parameter defines the shape of the segment 
(straight or curve, allowing to define the city shape pre-
cisely, and to include the exact number of cells), and max is 
the maximum speed allowed.  

 

Figure 1: A Segment with More than Four Lanes  
 
In (Davidson and Wainer 2000b)a complete set of rules was 
defined for streets with one to five (or more) lanes. Differ-
ent models were included because in each case a different 

behavior is defined for the borders. The speed of each veh i-
cle is represented  by a transport delay. This delay is gener-
ated using a random function related with the maximum 
speed allowed in the street.  
 
- Crossings: they are points in the plane where several 
segments intersect. They are specified as: Crossings = { (c, 
max) / c ∈ City ∧ max ∈ Ν ∧ ∃  s, s’ ∈ Segments ∧ s = (p1, 
p2, n, a, dir, max) ∧  s’ = (p1’, p2’, n’, a’, dir’, max’) ∧  s  ≠ 
s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }. Crossings are 
built as a ring of cells with moving vehicles. A car in the 
crossing has higher priority to obtain a position into the ring 
than the cars out of the crossing.  
 
The Crossings set represents places of the City where the 
road sections joins. Each crossing can connect any number 
of road sections, which will be its inputs or outputs. The set 
of crossings is defined as follows: 
 
Crossings = { c /  ∃ t ,t’ ∈ RoadSections ∧ t = (p1, p2, n, 
a,dir, max) ∧ t’ = (p1’, p2’, n’, a’, dir’, max’) ∧  t ≠  t’ 
         ∧ (p1 = c ∨  p2 = c) ∧  (p1’ = c ∨ p2’ = c) } 
 
Every crossing in this set is represented as a ring of cells 
where the vehicles advance. In any given instant, they can 
get to another path. A car in the intersection has higher 
priority to obtain a position into the ring than the cars ou t-
side the crossing. The cars advance continuously in order to 
avoid deadlocks.  
 

             2     1 To segment
        3               0
       ...             k-1 From  segment

To segment To segment  
Figure 2: Crossing  

 
Once the components of a city section are defined, complex 
behavior can be analyzed by using other constructions of 
ATLAS. Definitions for traffic lights, railways, men at 
work, street holes, transit signals and parked cars are in-
cluded. Finally, special behavior has been defined for spe-
cial vehicles: trucks, vans and high priority cars (ambu-
lances, police, firefighters). The following sections will be 
devoted to present the behavior for road sections and cross-
ings with different constraints in the traffic flow. 
 
- Traffic lights: crossings with traffic lights are defined as: 
TLCrossings = { c / c ∈ Crossings }. Here, c ∈ TLCross-
ings represents several models representing the traffic lights 
in a corner and the corresponding controller. Each of these 
models is associated with a crossing input. It sends a color 
value related with the traffic light to the corresponding 
segment in the intersection.  
 
- Railways : they are built as a sequence of level crossings 
overlapped with the city segments. The railway network is 
defined by: RailNet = { (Station, Rail) / Station is a model, 
Rail ∈ RailTrack }, where RailTrack = { (s, δ, seq) / s ∈ 
Segments ∧ δ ∈ Ν ∧ seq ∈ Ν }. Here, RailNet represents a 



set of stations connected to railways, thus defining a part of 
the railway network. RailTrack associates a level crossing 
with other existing constructions in the city section. Each 
ele ment identifies the segment that is crossed (s ) and the 
distance to the railway from the beginning of the section 
(δ). Finally, a sequence number (seq) is assigned to each 
level crossing, defining its position in the RailTrack .  

 Station 1112 3       Railway

                                δ                     Segment S
 

Figure 3: Level Crossing Definition. 
 
- Men at work : they are specified as: Jobsite = { (s, ni, δ,  
#n) / s ∈ Segments ∧  s = (c1, c2, n, a, dir, max) ∧  ni ∈ [0, 
n-1] ∧  δ ∈ Ν ∧  #n ∈ [1, n+1-ni] ∧  #n ≡ 1 mod 2 }. Here, 
each (s, ni, δ, #n) ∈ Jobsite is related with a segment where 
the construction works are being done. It includes the first 
lane affected (ni), the distance between the center of the 
jobsite and the beginning of the segment (δ), and the num-
ber of lanes occupied by the work (#n). These values are 
used to define a rhombus over the segment where the vehi-
cles cannot advance.  

                        c1 c2

                    ni δ
   #n

        Jobsite

 
Figure 4: Segment with Men at Work 

 
- Traffic signs : they are defined by: Control = { (s, t, δ) / s 
∈ Segments ∧  δ ∈ Ν ∧ t ∈ {bump, depression, school, 
pedestrian crossing, stop, others} }. Each tuple here identi-
fies the segment where the traffic sign is used, the kind of 
signal, and the distance up to it from the beginning of the 
segment. An extension of this construction allows us to 
define Po tholes, whose size is one cell.  
 
- Truck segments : segments in which the traffic of trucks 
is allowed are defined as: TruckSegments = { (p1, p2, n, a, 
dir, max) / p1, p2 ∈ City ∧  n, max ∈ Ν  ∧  a, dir ∈ {0, 1} } 
whose components are the same to those defined earlier. 
The idea here is to extend the behavior of standard traffic to 
include large size vehicles. 
 
. Truck crossings : when trucks are allowed in a crossing, 
the following construction should be used instead of the 
standard crossings: TruckXings = { (c, maxc) / maxc ∈ Ν  ∧  
∃ s ,s’ ∈ (TruckSegments U Segments) ∧  s = (p1, p2, n, a, 
dir, max) ∧ s’ = (p1’, p2’, n’, a’, dir’, max’) ∧  s  ≠ s’ ∧  (p1 = 
c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }. These models represent 
points in the plane the places where several segments joins, 
and at least one of them should include trucks.  
 
- Parking : border cells in a segment can be used for park-
ing. They are defined as: Parking = { (s, n1) / s ∈ Segments 

∧ n1 ∈ {0,1} ∧ s = (c1, c2, n, a, dir, max) ∧  n > 1 }. Every 
pair (s, n1) identifies the segment and the lane where car 
parking is allowed. If n1 = 0, the cars park on the left lane. 
If n1 = 1, the right lane is used (lane n-1).  
 
- Experimental frameworks : experimental framework 
constru ctions are defined as segments that provide inputs 
and outputs to the city section to be studied. They are de-
fined as: 
InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧  s  ∈ 
Segments ∧  [ ( dir = 0 ∧ (∃  v ∈ Ν : (p2,v) ∈ Crossings) ) ∨  
(dir = 1 ∧ (∃ v ∈ Ν : (p1,v) ∈ Crossings) ) ] } 

OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s  ∈ 
Segments ∧ [ ( dir = 0 ∧ (∃ v ∈ Ν : (p1,v) ∈ Crossings)) ∨  

(dir =1 ∧  (∃  v ∈ Ν : (p2,v) ∈ Crossings)) ] } 
 

VEHICLE ROUTING 
 
The original definitions used for ATLAS models were 
based on random routing. Every time a car arrives to a 
crossing, the following route is chosen at random. The basic 
idea is now to include a way to define the routing informa-
tion for the vehicles.  
 
We have used an approach based in Origin/Destination 
(OD) matrixes. This tool provides information about routes 
and transportation between different zones or regions. 
There are several methods to estimate OD matrixes. Using 
the definition of a region (represented as a directed graph), 
the methods use the available information (traffic flow, 
delays existing in each link of the graph). We will suppose 
that a OD matrix has been provided, and it will be used by 
the simulator to make decisions related to vehicle routing. 
 
There are several approaches used to implement OD ma-
trixes, and we have chosen an approach based on a road 
table. Each register in this table will specify a road connect-
ing a pair of origin/destinations, and the time a car spends 
in that road. Different tables can be used according to dif-
ferent parameters (for instance, date, time, and type of ve-
hicles). Therefore, the table will have the following stru c-
ture: 
 
Time  Vehicle type 
{ ID  Origin-node Destination-node {link1 link2 ... linkn} 
Travel-time }  
 

The structure of the OD matrix and the function used to 
make the routing decisions can be changed without affect-
ing the simulation models. In this way, both problems can 
be treated independently. In a first stage, the city shape is 
defined using ATLAS. Then, a directed graph can be built 
based on the segment and crossing identifications. Using 
this graph, and OD matrix can be built. The simulation 
models devoted to represent routing use a function that 
queries the OD mat rix and provides an answer.  
 
Using this approach, we define a static route for each car, 
which will not be changing during all the simulation. Using 
the segment/crossing definition, we can build a graph repre-
senting the structure of the city section to be simulated. 
Using this base, we built an origin/destination matrix. For 



each pair origin/destination in the matrix, we build a route 
using the Dijkstra algorithm for shortest paths in a graph. 
Using this information, we build a complete acyclic route 
from an input crossing to an output crossing. 
 
Every car is initialized with the route to be used. The origi-
nal definitions of ATLAS constructions were modified to 
allow this behavior. The first modification includes an 
unique identification for each segment/crossing, which will 
be used with routing purposes. Besides the original port 
definition (car and room, indicating that there is a car or 
space in the origin cell), the coupled models defined for 
each segment/crossing include now a new port devoted to 
transfer the routing path (path  in the following figure). 
 

X-c-path
X -c-car

Y-c-room

Crossing

Cell(0,0)

(0,1)

           

Y-c-path

Y -c-car

X-c-room

Crossing

Cell(0,k-1)

(0,-1)

 
 

Figure 5: Coupling of the Border Cells 
 
The behavior for the border cells was changed accordingly. 
This new behavior was also extended for models from 1 to 
5 or more lanes (each of them must be defined in a different 
way due to the definition of the border cells for each of the 
models). 
 
After changing the segment definition, the crossing were 
also changed. In this case, the crossings will be in charge of 
doing the routing definitions using the O/D matrixes. A 
crossing is defined as a Cell-DEVS coupled model 
 

Crossing(k, In, Out, maxc) = < Xlist, Ylist, I, X, Y, n, 
{t1,...,t n}, η , N, C, B, Z, select > 

 
where,  
Ylist = { (0,i) /  0 ≤ i < k} 
Xlist = { (0,i) /  0 ≤ i < k} 
I = <Px,  Py>, with Px  = {<X η+1(0,i), binary>, <Xη+2(0,i), 
binary >, <Xη+3(0,i), Natural>/ 0 ≤  i < k  }, P

y  
= 

{<Yη+1(0,i), binary>, <Yη+2(0,i), binary>, <Yη+3(0,i), Natu-
ral> / 0 ≤  i < k } 
 
Each cell in the crossing is defined by: 
 
C0j (cross-No) = < I, X, S, Y, N, δint, δext, delay, d, τ, λ, D > 

 

I = < η, Px, Py>, η = 3,  Px = { (X1,  Record), (X2,  Re -
cord), (X3,  Record) }, Py = { (Y1,  Record), (Y2,  Record), 
(Y3,  Record) }; X,  Y  ∈ N,  
 
S =  (Car, crossing, path, segment-no), where  
 
   1 there is a vehicle 
Car =  
   0 otherwise. 
 
crossing  ∈ N:  unique identifier of the crossing; 
 
   {t1.t2……tn} where ti ∈ N  ∧  (∀ i (∃ r ∈  
path  =                        Segments/ segment-no(r) = ti ) )  
    0 otherwise. 
 
Segment-no ∈ N:  identifier of the segment to which the 
cell is connected. 
 
N = { (0,-1), (0,0), (0,1) } 
delay = transport  
d = (speed(maxc)) 
τ is in charge of defining the car behavior in the cell, ac-
cording to the new routing scheme. Different behavior is 
defined for the input and output cells, using the O/D ma-
trixes.  
 
We now show the definition of a simple example using the 
new definitions. The example was implemented using the 
CD++ tool (Rodríguez and Wainer 1999). The model con-
sists of 5 segments and 4 crossings, and will describe the 
behavior of traffic using the routing scheme defined previ-
ously. The implementation is a simplification of the theo-
retical definition. We have used different state variables in 
each cell: the car existence, the route covered up to the 
moment and the state of the segments. The path is specified 
by a real number with the following format: d.ddddd, where 
1=< d <=9 is the identifier of a segment.  

Segment 1 Segm. 3
Cr. 1 Cr. 2

Se
gm

en
t 

2

Se
gm

en
t  

4

Cr. 3
Segment  5

Cr. 4

Path: 3-4

Path: 2-5

Figure 6: A City Section 
 

The following figure shows the simulation result in the 
segment 1. The first row represents the state variable show-
ing the presence of a car. The second line represents the 
path to be followed by the car. The first car will take the 
path 2-5, whereas the second will go through the path 3-4. 
This behavior can be found in figure 7. 




