

 1

EXTENDING RT-MINIX WITH FAULT TOLERANCE CAPABILITIES

Pablo J. Rogina Gabriel Wainer
{pr6a, gabrielw}@dc.uba.ar

Departamento de Computación

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Pabellón I - Ciudad Universitaria
Buenos Aires (1428) – ARGENTINA

"Neither this paper nor any version close to it has been or is being offered elsewhere for publication. All necessary clearances have been
obtained for the publication of this paper. If accepted, the paper will be made available in Camera-ready forms by March 15th, 2000, and it
will be personally presented at RTS'00 by one of the authors. The presenting author(s) will pre-register for RTS'00 before the due date of the
Camera-ready paper."

Abstract - The MINIX operating system was extended with real-time
services, ranging from A/D drivers to new scheduling algorithms and
statistics collection. A testbed was constructed to tests several sensor
replication techniques in order to implement and verify several
robust sensing algorithms. As a result, new services enhancing fault
tolerance for replicated sensors were also provided within the kernel.
The resulting OS offers new features such as real-time task
management (for both periodic or aperiodic tasks), clock resolution
handling, and sensor replication manipulation.

 Index TermsFault tolerance, Operating Systems, Real-time
Systems, Sensing Algorithms, Sensor Replication.

1. INTRODUCTION
 Computing systems are already among almost any human
activities. In particular, real-time systems (those where the
correctness depends not only on the results obtained, but also on the
time at which these results are produced) are present in more and
more complex tasks every day, where an error can lead to
catastrophic situations (even with danger to human life). Therefore,
fault tolerance capabilities for this kind of systems are critical to
their success during their lifetime cycle. Although fault tolerance
strategies are being developed since a long time ago, they were
oriented mainly to distributed systems.

 This kind of systems span from microcontrollers in automobile
engines to very complex applications, such as aircraft flight control
or process control in manufacturing plants. Nonetheless, most real-
time systems consist of a control system and a controlled system.
Information about the environment is provided via sensors, and the
system can in turn modify the state of the environment through
actuators. Let's take for example a simple manufacturing process: a
water tank must have its temperature and pH within a certain range;
this is a basic control process (see Fig. 1). The environment is the
controlled system, and a computer must keep the temperature and
balance the pH. It is necessary that the control system monitors the
environment, using sensors (a thermometer and a pH-meter in this
case). The control system changes the environment by means of
another type of components: actuators (for the example, a heater and
an acid injector).

 A control process can follow these steps in a repetitive manner,
with time constraints applied:

 Sensing: real world status must be known (by measuring
temperature and pH value)
 Controlling: real world values must be checked. Temperature and
pH should be within certain limits (lower and upper).
 Acting: real world status may need to be changed. Turning the
heater on to raise the temperature until the required value is reached.

Fig. 1 - Scheme for a basic control process

 When real-time systems are built using the services of a
programming environment, the timing constraints of the system are
usually attached to processes (or tasks). The tasks have timing
constraints, called deadlines , that cannot be missed. Failure in
meeting the tasks’ deadlines can lead to catastrophic consequences.
In the previous example, letting the tank's content to become acid
would be a great economic lost.

 The goal on designing and building a fault tolerant system is to
guarantee that the system will continue working as a whole, even in
the presence of faults. Sensors and actuators (hardware) and tasks
(software) are potential sources of failures within a real-time system.
The service delivered by a system is the system behavior as it is
perceived by another special system(s) interacting with the
considered system: its user(s) [1].

 Using this definition, it can be said that a system faults when it
fails to deliver the service(s) it is intended to. Depending on the
system's complexity and relevance, this failure can be tolerated
(statistical erroneous data from a census, that can be recalculated
again later) or can lead to a catastrophic accident (an air traffic

 2

control system). The broader use of computers in critical missions
forced the need to improve the capacity of avoiding and tolerate
faults. A failure is an error, due perhaps to a design problem,
manufacturing, programming, a human error or environmental
conditions. A component failure generally does not lead straightly to
the failure of the whole system, but it may be the beginning of a
number of failures ending in the system's fault.

 Failures can occur due to errors in the hardware (a short-circuit)
or errors in the software (using '!=' instead of '=' in a C program).
The first case, known as hardware fault tolerance, is well-
understood, to the point of being an Engineering discipline. Several
reasons can be cited:

• The physics of hardware components, such as silicon, are
well understood. The complexity of large hardware designs
is several orders of magnitude less than large software
systems.

• Given the costs associated with mass production, hardware
engineers produce carefully thought out specification along
with functional tests that can be applied in order to test units
coming off the assembly line.

• Electronic components are more reliable year after year.
Values of MTBF (Mean Time Between Faults) have raised
continuously in the last decades. No one can imagine a hard
disk with faulty sectors these days. Fault tolerant systems are
expected to go on (survive) even with component faults, not
to rely on the low probability of them to fail.

Timing faults can be classified in:

 Transient they happen once and then disappear. If the task

or action is repeated, the fault does not occur
again.

 Intermittent they appear, disappear, and are present again.
This condition makes them hard to diagnose.

 Permanent faults that are present until the failed component
is replaced or repaired.

 This work is devoted to present the efforts in building a
programming environment for real-time systmes. The work is based
on a modification of the Minix operating system, so as the results
can be used with educational purposes. Sensor replication schemes
were included in the kernel, providing fault tolerance when sensing
values from the real world.

 The work is organized as follows: Section 2 describes the
extensions done to the RT-MINIX operating system. Section 3 is
devoted to fault tolerance capabilities related with sensing
algorithms and sensor replication; while sensing algorithms are
presented in Section 4. Both static and dynamic tests are discussed in
Sections 5 and 6 respectively. Finally, conclusions and future work
proposals are listed in Section 7.

2. REAL-TIME EXTENSIONS TO MINIX

 As many other computer applications, real-time systems are
usually built by using the services offered by an operating system. In
this case, those services should be slightly different than the case for
traditional applications. It should provide basic support for

predictability, satisfaction of real-time constraints, fault tolerance
and integration between time-constrained resources and scheduling.

 Existing real-time operating systems (RTOS) can be divided in
two categories:

1. Systems implemented using somewhat stripped down and
optimized (or specialized) versions of conventional timesharing OS

2. Systems starting from scratch, focusing on predictability as
a key design feature.

 The MINIX 1.5 operating system [2] was taken as a base, and it
was extended with several real-time services [3]. The most important
include task management capabilities (both for periodic an aperiodic
tasks) and real-time scheduling algorithms (Rate Monotonic and
Earliest Deadline First). These strategies were later combined with
other traditional strategies, such as Least Laxity First, Least Slack
First and Deadline Monotonic. At present new flexible schedulers
are being included.

 To allow these changes several data structures in the operating
system were modified (to consider tasks period, execution time and
criticality). A new multi-queue scheme was defined, so as to
accommodate real-time tasks along with interactive and CPU-bound
tasks. The original task scheduler of MINIX used three queues, in
order to handle task, server and user processes in that order of
priority. Each queue was scheduled using the Round Robin
algorithm.

 A new set of signals was added to indicate special situations, such
as missed deadlines, overload or uncertainty of the schedulability of
the task set. All these services were made available to the
programmer as a complete set of new system calls. A long list of
tests demonstrated the feasibility of MINIX as a workbench for real-
time development.

 Several work was done using the tool, spanning from the testing
of new scheduling algorithms to kernel modifications. Recently, the
need to integrate the previous work in a new version for the
operating system arisen. This was motivated in part for the release of
new MINIX versions in the meantime, and because several
additional features were identified that would be useful to be added
to original environment.. Those extensions [4] were done using
MINIX 2.0; include the previous services and add new ones such as
analog-digital conversion, queue model modification and new real-
time metrics. These services are described in detail in the following
paragraphs.

 The need to acquire analogic data from the environment
motivated this new feature. As stated before, many real-time systems
are used to control a real process, such as a production line or a
chemical reaction. A device driver was written following the same
framework used under Linux [5], with slight changes. The device
driver adds a new kernel task that provide the programmer with three
basic operations (open, read, close) to access an A/D converter as a
character device (for instance, /dev/js0 and /dev/js1, for joystick A
and joystick B, respectively).

 A second set of changes was related with the task scheduler
management. The ready process queuing and handling is arranged in
four levels. The basic idea considered in joining the queues was
related with the goal that a real-time task should not be interfered by
low level interrupts (and its associated servers), working with the

 3

hypothesis that server and user queues can be joined, allowing File
System (FS) and Memory Manager (MM) processes to be moved
from server to user process category. An in-depth analysis was made
to check the possibility of deadlock between FS and MM, first
revisiting the semantics of them and then trying to measure the
impact of the new scheduler (with the joined queues), showing that
deadlocks cannot occur with the changed scheduler.

 Once the OS was extended with real-time services, the need arose
to have several measuring tools. It is needed to test the evolution of
the executing tasks according with the different scheduling
strategies. The impact of the different workloads should be also
considered. To do so, the kernel is in charge to keep a new data
structure accessible to the user via a system call. Statistics also can
be monitored online by means of a function key displaying all that
information.

 MINIX proved to be a feasible testbed for OS development and
real-time extensions that could be easily added to it. This “new”
operating system (a MINIX 2.0 base with real-time extensions) has a
rich set of features, which makes it a good choice to conduct real-
time experiences. The added real-time services covered several
areas:

 Task creation: tasks can be created either periodic or aperiodic,
stating their period, worst execution time and priority
 Clock resolution management: the resolution (grain) of the
internal clock can be changed to get better accuracy while
scheduling tasks.
 Scheduling algorithms: both RMS and EDF algorithms are
supported, and can be selected on the fly.
 Statistics: several variables about the whole operation are
accessible to the user to provide data for benchmarking and testing
new developments.
 Supervisory Control and Data Acquisition: as a user application,
it makes full use of real-time services.

3. FAULT TOLERANCE CAPABILITIES

 To avoid systems being vulnerable to a single component failure,
it is reasonable to use several sensors redundantly; this is, using one
of the more broad used fault tolerance technique: replication. Let's
think of an automatic tracking system: it could use different kinds of
sensors (radar, infrared, microwave) that are not vulnerable to the
same kinds of interference. However, redundancy presents a new
problem to system designers because the system can receives several
readings that are either partially or entirely in error. To improve
sensor-system reliability, the practical problem of combining, or
fusing, the data from many independent sensors into one reliable
sensor reading has been widely studied. The principal goal is to
provide the application with the ability to make the correct decision
in the presence of faulty data.

 Much will depend on the system's accuracy (the distance between
its results and the desired results) and the system's precision (the size
of the value range it returns). As sensors employed in real-time
systems are inherently unreliable, distributed sensors makes
reliability even compromised.

 In [6], a set of robust sensing algorithms are revised and a new
hybrid algorithm is presented. The proposed new algorithm is a

combination of other two: inexact agreement and optimal region.
The new mechanism provides more accuracy and precision. The
solution is derived from independent sources: one is based on set
theory, the other in geometry, producing two explanations of the
same problem.

 With the aim to prove those proposed solutions, a model with
replicated sensors was implemented, and the platform of choice was
RT-MINIX. This OS allows to connect a set of sensors using
different input methods. The following sections will be devoted to
analyze the basic properties regarding this new capabilities.

 The new capabilities of RT-MINIX regarding the joystick driver,
allowed to connect a set of "sensors" in the form of potentiometers
to the game port. First of all, user applications were written to
validate the concepts, and the better ones were coded into the OS
kernel.

4. SENSING ALGORITHMS

 The algorithms selected to be implemented under RT-MINIX
were taken from [6], and are described below:

Algorithm: Approximate-agreement
Input: A set of sensors, each with a value.
Output: A set of sensors, each with a new value converging toward

a common value.

Step 1: each sensor broadcasts its value.
Step 2: each sensor receives the values from the other sensors and

sots t he values into vector v.
Step 3: the lowest τ values and the highest τ values are discarded

from v at each sensor.
Step 4: each sensor forms new vector v' by taking the remaining

values v[i*τ] where i=0,1,... (the smallest remaining value
and every remaining τ'th value in order).

Step 5: the new value is the mean of the values in v'.

Algorithm: Fast Convergence
Input: a set of sensors, each with a value.
Output: A set of sensors, each with a new value converging toward

a common value.

Step 1: each sensor receives the values from all other sensors and

forms set V.
Step 2: acceptable values1 are put into a set A.
Step 3: e(A) is computed.
Step 4: any unacceptable values are replaced in V by e(A) 2.
Step 5: the new sensor value is the average of the values in V.

Algorithm: Optimal Region
Input: a set of sensor readings S.
Output: a region describing the region that must be correct.

1 A value is acceptable if it is within distance δ of N-τ other
values.
2 e(A) can be any of a number of functions on the values of A.
The authors suggested average, median, or midpoint as
possible choices of e(A) that may be appropriate for different
applications.

 4

Step 1: initialize a list of regions, called C, to NULL.
Step 2: sort all points in S into ascending order.
Step 3: a reading is considered active if its lower bound has been

traversed and its upper bound has yet to be traversed. Work
through the list in order, keeping track of active readings.
Whenever a region is reached where N-τ or more readings
are active, add the region to C.

Step 4: All the points have been processed. List C now contains all
intersections of (N-τ) or more readings. Sort the
intersections in C.

Step 5: output the region defined by the lowest lower bound and
the largest upper bound in C.

Algorithm: Brooks-Iyengar Hybrid
Input: a set of data S.
Output: a real number giving the precise answer and a range giving

its explicit accuracy bounds.

Step 1: each sensor receives the values from all other sensors and

forms set V.
Step 2: perform the optimal region algorithm on V and return a set

A consisting of the ranges where at least N-τ sensors
intersect.

Step 3: output the range defined by the lowest lower bound and the
largest upper bound in A. These are the accuracy bounds of
the answer.

Step 4: sum the midpoints of each range in A multiplied by the
number of sensors whose readings intersect in that range,
and divide by the number of factors. This is the answer.

 A sensor is called a processing element (PE). The number of PEs
is N and τ is the number of malfunctioning PEs. These algorithms
are intended to return a valid value from a set of readings from N
PEs given τ of them are known (or supposed) to be wrong; not to
establish how many sensors are faulty.

5. STATIC TESTS

 To prove that the algorithms have been implemented properly, a
set of tests had to be conducted. At a first step, data was used
"statically", this is, hard-coded in the test programs. The set of
values used in the first test were the same presented in [6] and shown
in Table 1. It simulates a set of 5 sensors, one of them working in a
faulty manner, thus providing a different value each time a reading
was made. This set of sensors can be thought as belonging to a
robotic arm, providing information about the arm's elbow position,
for example. The measured angle is expressed as a value along a
tolerance (both plus and minus). Those ranges imply the concept of
abstract sensor: "a set of values that contains the physical variable of
interest" [7].

Case S 1 S 2 S 3 S 4 S 5
1 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 3,0 ± 1,6
2 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 1,0 ± 1,6
3 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 2,5 ± 1,6
4 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 0,9 ± 1,6

Table 1 - Sensors and its broadcasted values [6]

 Each one of the algorithms shown above were applied to all the
four cases in Table 1. At any time, the number of sensors is 5, and
the number of sensors with intermittent failures is 1. These
conditions preserve the effectiveness of the algorithms (because
1<5/2). Results achieved by our own version of the algorithms
running under RT-MINIX were the same stated in [6], thus
validating our implementation.

 The algorithms were also tested using another set of values, this
time taken from [8]. Fig. 2 shows both the set of values and the
results to be obtained.

Fig. 2 - Values and regions [8]

 In this example, sensors are represented by arrows (labeled with
letters from A to E), with values once again expressed as ranges
(indicated by numbers on both arrows' ends). The shaded rectangles
are regions that Optimal Region and Brooks-Iyengar algorithms have
to identify, where the circled numbers above the regions represent
the number of intersections in that region. Finally, arrow R is the
interval where the answer should be found. All algorithms were
applied to this set of values, and their output is shown in Fig. 3.

Testing robust sensing algorithms with static data

Approximate Agreement Alg.: 6.33
Optimal Region Alg. : [4.0..9.0]
Brooks-Iyengar Hybrid Alg.: [4.0..9.0] 6.192
Fast Convergence Alg. : 6.90

Fig. 3 - Output from second static test

6. DYNAMIC TESTS

After the algorithms have been successfully proven with static data,
an idea took form in the manner to prove them once again, this time
with dynamic data, i.e. variable from test to test.

 To provide the algorithms with such sets of values, a device was
built: four linear 100MΩ potentiometers were connected to each one
of the four resistive inputs on the game port of a PC. This testbed
would use one of the recent real-time services available in RT-
MINIX (Analogic/Digital conversion capabilities through the
joystick driver). The potentiometers can be thought this time as
sensors for a valve in a pipeline, providing information about the
valve position, where the minimum value referring the valve as

 5

totally closed, while the maximum value representing the valve as
totally open. The wiring diagram for the testbed is shown in Fig. 4.

 An auxiliary program was written to read the four inputs
simultaneously, showing the values on screen. This application is
used to adjust the "sensors" to the desired value, allowing to simulate
a faulty one; positioning it out of range from the remaining ones (for
this test, N=4 and τ=1).

Fig. 4 - Testbed's wiring diagram

 After the model is adjusted to a particular situation, the main test
program is run. At first, a set of readings are taken from the model.
A sensor reading is defined as a value along with a lower bound and
an upper bound. Thus, to make a sensor reading, three consecutive
port readings are made, repeating this process for each of the four
sensors. Each of the available algorithms are then applied to this set
of sensor readings, displaying the results on screen (see Fig. 5).

Testing robust sensing algorithms with dynamic data

Sensor L. Bound Value U. Bound
 0 578.0 638.0 677.0
 1 614.0 626.0 688.0
 2 312.0 314.0 316.0
 3 604.0 649.0 681.0

Approximate Agreement Alg.: 632.00
Optimal Region Alg. : [614.00..677.00]
Brooks-Iyengar Hybrid Alg.: [614.00..677.00] 645.50
Fast Convergence Alg. : 556.75

Fig. 5 - Output from dynamic test

 After the implementation steps and tests were finished, some
comparisons could be drawn:

• Development: none of the algorithms imposed difficulties in
their implementation.

• Response time: no evident differences in response time from
all the algorithms were found.

• Results: Approximate Agreement (AA) and Fast
Convergence (FC) return a value, while Optimal Region
returns a range, and Brooks-Iyengar Hybrid returns a range
plus a value. Optimal Region (OR) and Brooks-Iyengar

Hybrid (BIH) give answers within a narrower range than
input data. As several dynamic tests were performed, with
the model adjusted to different situations, it was found that
the answer from Approximate Agreement always fell inside
the range returned from OR and BIH, while the broader the
range, more the difference between this value and the answer
from BIH.

7. CONCLUSION

 Fault tolerance, as a key discipline with growing use inside real-
time systems, provides several techniques and schemes that can and
must be used in different areas of such systems: from specification
languages and temporal logic in the definition steps; the scheduling
perspective and replication of sensors and actuators in the
implementation steps.

 This work described how the real-time extensions to the MINIX
operating system, transforming it into RT -MINIX, have been
complemented with fault tolerant sensing algorithms to allow the
development of applications taking benefits of that kind of services
provided from the operating system kernel. With these extensions,
RT-MINIX can be used as a platform for real-time processing or as a
starting point for adding more real-time services. Robust sensing
algorithms were implemented and tested under RT-MINIX, and are
now available as a service to applications having to deal with sensor
replication.

 Future work may include extending the sensing algorithms to deal
with multidimensional sensors, (replacing each interval
corresponding to a physical value by a vector of intervals). Fault
Tolerant schedulers must be studied and integrated in a next version
of RT-MINIX, providing the programmer with a specialized and
improved fault-tolreant environment.

8. ACKNOWLEDGEMENTS

This work was partially supported by the UBA-SECYT research
project TX-004, "Concurrency in Distributed Systems".

All the related source code can be obtained at
http://www.dc.uba.ar/people/proyinv/cso/rt-minix together with
downloading and installation instructions.

9. REFERENCES
[1] J. Laprie, “Dependable Computing and Fault Tolerance:

Concepts and Terminology”, 15th Annual Int. Symposium on
Fault-Tolerant Computing, pp 2-11, June 1985.

[2] A. Tannenbaum, “A Unix clone with source code for operating
systems courses”, ACM Operating Systems Review, 21:1,
January 1987.

[3] G. Wainer, “Implementing Real-Time Scheduling in a Time-
Sharing Operating System”, ACM Operating Systems Review ,
July 1995.

[4] P. Rogina and G. Wainer, “New Real-Time Extensions to the
MINIX operating system”, Proc. of 5th Int. Conference on
Information Systems Analysis and Synthesis (ISAS'99),
August 1999.

 6

[5] V. Paulik, "Joystick device driver for Linux", source code and
installation details available online at
ftp://atrey.karlin.mff.cuni.cz/pub/linux/joystick/joystick-
0.8.0.tar.gz

[6] R. Brooks and S. Iyengar, “Robust Distributed Computing and
Sensing Algorithm”, IEEE Computer , pp 53-60, June 1996.

[7] K. Marzullo, “Tolerating failures of continuous-valued
sensors”, ACM Transactions on Computer Systems, 8(4):284-
304, November 1990.

[8] D. Jayasimha, “Fault Tolerance in a Multisensor
Environment”, Dept. of Computer Science, The Ohio
University, May 1994.

