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Abstract - The MINIX operating system was extended with real-time 
services, ranging from A/D drivers to new scheduling algorithms and 
statistics collection. A testbed was constructed to tests several sensor 
replication techniques in order to implement and verify several 
robust sensing algorithms. As a result, new services enhancing fault 
tolerance for replicated sensors were also provided within the kernel. 
The resulting OS offers new features such as real-time task 
management (for both periodic or aperiodic tasks), clock resolution 
handling, and sensor replication manipulation.  
 
 Index TermsFault tolerance, Operating Systems, Real-time 
Systems, Sensing Algorithms, Sensor Replication. 

1. INTRODUCTION 
 Computing systems are already among almost any human 
activities. In particular, real-time systems (those where the 
correctness depends not only on the results obtained, but also on the 
time at which these results are produced) are present in more and 
more complex tasks every day, where an error can lead to 
catastrophic situations (even with danger to human life). Therefore, 
fault tolerance capabilities for this kind of systems are critical to 
their success during their lifetime cycle. Although fault tolerance 
strategies are being developed since a long time ago, they were 
oriented mainly to distributed systems.  
   
 This kind of systems span from microcontrollers in automobile 
engines to very complex applications, such as aircraft flight control 
or process control in manufacturing plants. Nonetheless, most real-
time systems consist of a control system and a controlled system. 
Information about the environment is provided via sensors, and the 
system can in turn modify the state of the environment through 
actuators. Let's take for example a simple manufacturing process: a 
water tank must have its temperature and pH within a certain range; 
this is a basic control process (see Fig. 1). The environment is the 
controlled system, and a computer must keep the temperature and 
balance the pH. It is necessary that the control system monitors the 
environment, using sensors (a thermometer and a pH-meter in this 
case). The control system changes the environment by means of 
another type of components: actuators (for the example, a heater and 
an acid injector). 
 
 A control process can follow these steps in a repetitive manner, 
with time constraints applied: 

 Sensing: real world status must be known (by measuring 
temperature and pH value) 
 Controlling: real world values must be checked. Temperature and 
pH should be within certain limits (lower and upper). 
 Acting: real world status may need to be changed. Turning the 
heater on to raise the temperature until the required value is reached. 
 
 

 
Fig. 1 - Scheme for a basic control process 

 
 When real-time systems are built using the services of a 
programming environment, the timing constraints of the system are 
usually attached to processes (or tasks). The tasks have timing 
constraints, called deadlines , that cannot be missed. Failure in 
meeting the tasks’ deadlines can lead to catastrophic consequences. 
In the previous example, letting the tank's content to become acid 
would be a great economic lost. 
 
 The goal on designing and building a fault tolerant system is to 
guarantee that the system will continue working as a whole, even in 
the presence of faults. Sensors and actuators (hardware) and tasks 
(software) are potential sources of failures within a real-time system. 
The service delivered by a system is the system behavior as it is 
perceived by another special system(s) interacting with the 
considered system: its user(s) [1]. 
 
 Using this definition, it can be said that a system faults  when it 
fails to deliver the service(s) it is intended to. Depending on the 
system's complexity and relevance, this failure can be tolerated 
(statistical erroneous data from a census, that can be recalculated 
again later) or can lead to a catastrophic accident (an air traffic 
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control system). The broader use of computers in critical missions 
forced the need to improve the capacity of avoiding and tolerate 
faults. A failure is an error, due perhaps to a design problem, 
manufacturing, programming, a human error or environmental 
conditions. A component failure generally does not lead straightly to 
the failure of the whole system, but it may be the beginning of a 
number of failures ending in the system's fault. 
 
 Failures can occur due to errors in the hardware (a short-circuit) 
or errors in the software (using '!=' instead of '=' in a C program). 
The first case, known as hardware fault tolerance, is well-
understood, to the point of being an Engineering discipline. Several 
reasons can be cited: 
 

• The physics of hardware components, such as silicon, are 
well understood. The complexity of large hardware designs 
is several orders of magnitude less than large software 
systems. 

• Given the costs associated with mass production, hardware 
engineers produce carefully thought out specification along 
with functional tests that can be applied in order to test units 
coming off the assembly line. 

• Electronic components are more reliable year after year. 
Values of MTBF (Mean Time Between Faults) have raised 
continuously in the last decades. No one can imagine a hard 
disk with faulty sectors these days. Fault tolerant systems are 
expected to go on (survive) even with component faults, not 
to rely on the low probability of them to fail.  

 
Timing faults can be classified in: 
 
 Transient  they happen once and then disappear. If the task 

or action is repeated, the fault does not occur 
again. 

 Intermittent   they appear, disappear, and are present again. 
This condition makes them hard to diagnose. 

 Permanent faults that are present until the failed component 
is replaced or repaired. 

 
 This work is devoted to present the efforts in building a 
programming environment for real-time systmes. The work is based 
on a modification of the Minix operating system, so as the results 
can be used with educational purposes. Sensor replication schemes 
were included in the kernel, providing fault tolerance when sensing 
values from the real world. 
 
 The work is organized as follows: Section 2 describes the 
extensions done to the RT-MINIX operating system. Section 3 is 
devoted to fault tolerance capabilities related with sensing 
algorithms and sensor replication; while sensing algorithms are 
presented in Section 4. Both static and dynamic tests are discussed in 
Sections 5 and 6 respectively. Finally, conclusions and future work 
proposals are listed in Section 7. 

2. REAL-TIME EXTENSIONS TO MINIX 
 
 As many other computer applications, real-time systems are 
usually built by using the services offered by an operating system. In 
this case, those services should be slightly different than the case for 
traditional applications. It should provide basic support for 

predictability, satisfaction of real-time constraints, fault tolerance 
and integration between time-constrained resources and scheduling. 
 
 Existing real-time operating systems (RTOS) can be divided in 
two categories: 

1. Systems implemented using somewhat stripped down and 
optimized (or specialized) versions of conventional timesharing OS 

2. Systems starting from scratch, focusing on predictability as 
a key design feature. 
 
 The MINIX 1.5 operating system [2] was taken as a base, and it 
was extended with several real-time services [3]. The most important 
include task management capabilities (both for periodic an aperiodic 
tasks) and real-time scheduling algorithms (Rate Monotonic and 
Earliest Deadline First). These strategies were later combined with 
other traditional strategies, such as Least Laxity First, Least Slack 
First and Deadline Monotonic. At present new flexible schedulers 
are being included.  
 
 To allow these changes several data structures in the operating 
system were modified (to consider tasks period, execution time and 
criticality). A new multi-queue scheme was defined, so as to 
accommodate real-time tasks along with interactive and CPU-bound 
tasks. The original task scheduler of MINIX used three queues, in 
order to handle task, server and user processes in that order of 
priority. Each queue was scheduled using the Round Robin 
algorithm. 
 
 A new set of signals was added to indicate special situations, such 
as missed deadlines, overload or uncertainty of the schedulability of 
the task set. All these services were made available to the 
programmer as a complete set of new system calls. A long list of 
tests demonstrated the feasibility of MINIX as a workbench for real-
time development. 
 
 Several work was done using the tool, spanning from the testing 
of new scheduling algorithms to kernel modifications. Recently, the 
need to integrate the previous work in a new version for the 
operating system arisen. This was motivated in part for the release of 
new MINIX versions in the meantime, and because several 
additional features were identified that would be useful to be added 
to original environment.. Those extensions [4] were done using 
MINIX 2.0; include the previous services and add new ones such as 
analog-digital conversion, queue model modification and new real-
time metrics. These services are described in detail in the following 
paragraphs.  
 
 The need to acquire analogic data from the environment 
motivated this new feature. As stated before, many real-time systems 
are used to control a real process, such as a production line or a 
chemical reaction. A device driver was written following the same 
framework used under Linux [5], with slight changes. The device 
driver adds a new kernel task that provide the programmer with three 
basic operations (open, read, close) to access an A/D converter as a 
character device (for instance, /dev/js0 and /dev/js1, for joystick A 
and joystick B, respectively).  
  
 A second set of changes was related with the task scheduler 
management. The ready process queuing and handling is arranged in 
four levels. The basic idea considered in joining the queues was 
related with the goal that a real-time task should not be interfered by 
low level interrupts (and its associated servers), working with the 
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hypothesis that server and user queues can be joined, allowing File 
System (FS) and Memory Manager (MM) processes to be moved 
from server to user process category. An in-depth analysis was made 
to check the possibility of deadlock between FS and MM, first 
revisiting the semantics of them and then trying to measure the 
impact of the new scheduler (with the joined queues), showing that 
deadlocks cannot occur with the changed scheduler.  
 
 Once the OS was extended with real-time services, the need arose 
to have several measuring tools. It is needed to test the evolution of 
the executing tasks according with the different scheduling 
strategies. The impact of the different workloads should be also 
considered. To do so, the kernel is in charge to keep a new data 
structure accessible to the user via a system call. Statistics also can 
be monitored online by means of a function key displaying all that 
information.  
 
 MINIX proved to be a feasible testbed for OS development and 
real-time extensions that could be easily added to it. This “new” 
operating system (a MINIX 2.0 base with real-time extensions) has a 
rich set of features, which makes it a good choice to conduct real-
time experiences. The added real-time services covered several 
areas: 
 
 Task creation: tasks can be created either periodic or aperiodic, 
stating their period, worst execution time and priority 
 Clock resolution management: the resolution (grain) of the 
internal clock can be changed to get better accuracy while 
scheduling tasks. 
 Scheduling algorithms: both RMS and EDF algorithms are 
supported, and can be selected on the fly. 
 Statistics: several variables about the whole operation are 
accessible to the user to provide data for benchmarking and testing 
new developments. 
 Supervisory Control and Data Acquisition: as a user application, 
it makes full use of real-time services. 

3. FAULT TOLERANCE CAPABILITIES 
 
 To avoid systems being vulnerable to a single component failure, 
it is reasonable to use several sensors redundantly; this is, using one 
of the more broad used fault tolerance technique: replication. Let's 
think of an automatic tracking system: it could use different kinds of 
sensors (radar, infrared, microwave) that are not vulnerable to the 
same kinds of interference. However, redundancy presents a new 
problem to system designers because the system can receives several 
readings that are either partially or entirely in error. To improve 
sensor-system reliability, the practical problem of combining, or 
fusing, the data from many independent sensors into one reliable 
sensor reading has been widely studied. The principal goal is to 
provide the application with the ability to make the correct decision 
in the presence of faulty data. 
 
 Much will depend on the system's accuracy (the distance between 
its results and the desired results) and the system's precision (the size 
of the value range it returns). As sensors employed in real-time 
systems are inherently unreliable, distributed sensors makes 
reliability even compromised. 
 
 In [6], a set of robust sensing algorithms are revised and a new 
hybrid algorithm is presented. The proposed new algorithm is a 

combination of other two: inexact agreement and optimal region. 
The new mechanism provides more accuracy and precision. The 
solution is derived from independent sources: one is based on set 
theory, the other in geometry, producing two explanations of the 
same problem. 
 
 With the aim to prove those proposed solutions, a model with 
replicated sensors was implemented, and the platform of choice was 
RT-MINIX. This OS allows to connect a set of sensors using 
different input methods. The following sections will be devoted to 
analyze the basic properties regarding this new capabilities. 
 
 The new capabilities of RT-MINIX regarding the joystick driver, 
allowed to connect a set of  "sensors" in the form of potentiometers 
to the game port. First of all, user applications were written to 
validate the concepts, and the better ones were coded into the OS 
kernel. 

4. SENSING ALGORITHMS  
 
 The algorithms selected to be implemented under RT-MINIX 
were taken from [6], and are described below: 
 
Algorithm: Approximate-agreement 
Input:  A set of sensors, each with a value.  
Output:  A set of sensors, each with a new value converging toward 

a common value. 
 
Step 1:  each sensor broadcasts its value. 
Step 2:  each sensor receives the values from the other sensors and 

sots t he values into vector v. 
Step 3:  the lowest τ values and the highest τ values are discarded 

from v at each sensor. 
Step 4:  each sensor forms new vector v' by taking the remaining 

values v[i*τ] where i=0,1,... (the smallest remaining value 
and every remaining τ'th value in order). 

Step 5:  the new value is the mean of the values in v'. 
 
Algorithm:  Fast Convergence 
Input:  a set of sensors, each with a value. 
Output:  A set of sensors, each with a new value converging toward 

a common value. 
 
Step 1:  each sensor receives the values from all other sensors and 

forms set V. 
Step 2:  acceptable values1 are put into a set  A.   
Step 3:  e(A) is computed. 
Step 4:  any unacceptable values are replaced in V by e(A) 2. 
Step 5:  the new sensor value is the average of the values in V. 
 
Algorithm: Optimal Region 
Input:  a set of sensor readings S. 
Output:  a region describing the region that must be correct. 

                                                                 
1 A value is acceptable if it is within distance δ of N-τ other 
values. 
2 e(A) can be any of a number of functions on the values of A. 
The authors suggested average, median, or midpoint as 
possible choices of e(A) that may be appropriate for different 
applications. 
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Step 1:  initialize a list of regions, called C, to NULL. 
Step 2:  sort all points in S into ascending order. 
Step 3:  a reading is considered active if its lower bound has been 

traversed and its upper bound has yet to be traversed. Work 
through the list in order, keeping track of active readings. 
Whenever a region is reached where N-τ or more readings 
are active, add the region to C. 

Step 4: All the points have been processed. List C now contains all 
intersections of (N-τ) or more readings. Sort the 
intersections in C. 

Step 5: output the region defined by the lowest lower bound and 
the largest upper bound in C. 

 
Algorithm: Brooks-Iyengar Hybrid  
Input:  a set of data S. 
Output:  a real number giving the precise answer and a range giving 

its explicit accuracy bounds. 
 
Step 1:  each sensor receives the values from all other sensors and 

forms set V. 
Step 2:  perform the optimal region algorithm on V and return a set 

A consisting of the ranges where at least N-τ sensors 
intersect. 

Step 3:  output the range defined by the lowest lower bound and the 
largest upper bound in A. These are the accuracy bounds of 
the answer. 

Step 4: sum the midpoints of each range in A multiplied by the 
number of sensors whose readings intersect in that range, 
and divide by the number of factors. This is the answer. 

 
 A sensor is called a processing element (PE). The number of PEs 
is N and τ is the number of malfunctioning PEs. These algorithms 
are intended to return a valid value from a set of readings from N 
PEs given τ of them are known (or supposed) to be wrong; not to 
establish how many sensors are faulty. 

5. STATIC TESTS 
 
 To prove that the algorithms have been implemented properly, a 
set of tests had to be conducted. At a first step, data was used 
"statically", this is, hard-coded in the test programs. The set of 
values used in the first test were the same presented in [6] and shown 
in Table 1. It simulates a set of 5 sensors, one of them working in a 
faulty manner, thus providing a different value each time a reading 
was made. This set of sensors can be thought as belonging to a 
robotic arm, providing information about the arm's elbow position, 
for example. The measured angle is expressed as a value along a 
tolerance (both plus and minus). Those ranges imply the concept of 
abstract sensor: "a set of values that contains the physical variable of 
interest" [7]. 
 

Case S 1 S 2 S 3 S 4 S 5 
1 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 3,0 ± 1,6 
2 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 1,0 ± 1,6 
3 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 2,5 ± 1,6 
4 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 0,9 ± 1,6 

Table 1 - Sensors and its broadcasted values [6] 

 Each one of the algorithms shown above were applied to all the 
four cases in Table 1. At any time, the number of sensors is 5, and 
the number of sensors with intermittent failures is 1. These 
conditions preserve the effectiveness of the algorithms (because 
1<5/2). Results achieved by our own version of the algorithms 
running under RT-MINIX were the same stated in [6], thus 
validating our implementation. 
 
 The algorithms were also tested using another set of values, this 
time taken from [8]. Fig. 2 shows both the set of values and the 
results to be obtained. 
 

 
Fig. 2 - Values and regions [8] 

 In this example, sensors are represented by arrows (labeled with 
letters from A to E), with values once again expressed as ranges 
(indicated by numbers on both arrows' ends). The shaded rectangles 
are regions that Optimal Region and Brooks-Iyengar algorithms have 
to identify, where the circled numbers above the regions represent 
the number of intersections in that region. Finally, arrow R is the 
interval where the answer should be found. All algorithms were 
applied to this set of values, and their output is shown in Fig. 3. 
 
Testing robust sensing algorithms with static data 
 
Approximate Agreement Alg.:  6.33 
Optimal Region Alg.       :  [4.0..9.0] 
Brooks-Iyengar Hybrid Alg.:  [4.0..9.0]  6.192 
Fast Convergence Alg.     :  6.90 

Fig. 3 - Output from second static test 

6. DYNAMIC TESTS 
  
After the algorithms have been successfully proven with static data, 
an idea took form in the manner to prove them once again, this time 
with dynamic data, i.e. variable from test to test. 
 
 To provide the algorithms with such sets of values, a device was 
built: four linear 100MΩ potentiometers were connected to each one 
of the four resistive inputs on the game port of a PC. This testbed 
would use one of the recent real-time services available in RT-
MINIX (Analogic/Digital conversion capabilities through the 
joystick driver). The potentiometers can be thought this time as 
sensors for a valve in a pipeline, providing information about the 
valve position, where the minimum value referring the valve as 



 

 5

totally closed, while the maximum value representing the valve as 
totally open. The wiring diagram for the testbed is shown in Fig. 4. 
 
 An auxiliary program was written to read the four inputs 
simultaneously, showing the values on screen. This application is 
used to adjust the "sensors" to the desired value, allowing to simulate 
a faulty one; positioning it out of range from the remaining ones (for 
this test, N=4 and τ=1). 
  

 
Fig. 4 - Testbed's wiring diagram 

 After the model is adjusted to a particular situation, the main test 
program is run. At first, a set of readings are taken from the model. 
A sensor reading is defined as a value along with a lower bound and 
an upper bound. Thus, to make a sensor reading, three consecutive 
port readings are made, repeating this process for each of the four 
sensors. Each of the available algorithms are then applied to this set 
of sensor readings, displaying the results on screen (see Fig. 5). 
 
Testing robust sensing algorithms with dynamic data 
 
Sensor L. Bound Value  U. Bound 
  0 578.0  638.0  677.0 
  1 614.0  626.0  688.0 
  2 312.0  314.0  316.0 
  3 604.0  649.0  681.0 
 
Approximate Agreement Alg.: 632.00 
Optimal Region Alg.       : [614.00..677.00] 
Brooks-Iyengar Hybrid Alg.: [614.00..677.00] 645.50 
Fast Convergence Alg.     : 556.75 

Fig. 5 - Output from dynamic test 

 
 After the implementation steps and tests were finished, some 
comparisons could be drawn: 

• Development: none of the algorithms imposed difficulties in 
their implementation. 

• Response time: no evident differences in response time from 
all the algorithms were found.  

• Results: Approximate Agreement (AA) and Fast 
Convergence (FC) return a value, while Optimal Region 
returns a range, and Brooks-Iyengar Hybrid returns a range 
plus a value. Optimal Region (OR) and Brooks-Iyengar 

Hybrid (BIH) give answers within a narrower range than 
input data. As several dynamic tests were performed, with 
the model adjusted to different situations, it was found that 
the answer from Approximate Agreement always fell inside 
the range returned from OR and BIH, while the broader the 
range, more the difference between this value and the answer 
from BIH. 

7. CONCLUSION 
 
 Fault tolerance, as a key discipline with growing use inside real-
time systems, provides several techniques and schemes that can and 
must be used in different areas of such systems: from specification 
languages and temporal logic in the definition steps; the scheduling 
perspective and replication of sensors and actuators in the 
implementation steps. 
 
 This work described how the real-time extensions to the MINIX 
operating system, transforming it into RT -MINIX, have been 
complemented with fault tolerant sensing algorithms to allow the 
development of applications taking benefits of that kind of services 
provided from the operating system kernel. With these extensions, 
RT-MINIX can be used as a platform for real-time processing or as a 
starting point for adding more real-time services. Robust sensing 
algorithms were implemented and tested under RT-MINIX, and are 
now available as a service to applications having to deal with sensor 
replication. 
 
 Future work may include extending the sensing algorithms to deal 
with multidimensional sensors, (replacing each interval 
corresponding to a physical value by a vector of intervals). Fault 
Tolerant schedulers must be studied and integrated in a next version 
of RT-MINIX, providing the programmer with a specialized and 
improved fault-tolreant environment.  
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