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Abstract

Cell-DEVS is a formalism intended to model cellsgm It describes cellular models using timing gela
constructions, allowing simple definition of compléiming. Large Cell-DEVS models require such
computing power that their execution in a standalorachine is not feasible. As parallel and distedu
environments became more accessible, the Cell-DEM&alism was revised to permit parallel
specification of these models. This work defineseav simulation mechanism suited for distributed
environments and presents a tool for the simulatgbiParallel DEVS and Cell-DEVS models on a
network of computers.
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1
Introduction

Simulation is a powerful tool for studying complgystems, with quite a range of uses, from new gyste
testing to physical phenomena understanding. Timeilation process starts with a problem to solve or
understand. It might be the case of a train compafiyg to develop a new strategy for cargo storaige
railway tracks usage or a chemist trying to undergta complex process of physical diffusion taking
place inside a narrow tube. The simulation prostads from the observation ofr@al system.Entities
are identified, and an abstract representatiompdel, is constructed. Once the model is constructed, it
needs to be executed. This is done Isinaulator, which consists of a computer system that exedbtes
model’s instructions to generate its behavior. ®mplete the cycle, the results obtained are condpare
those of the real system for model validationslbften the case that a modeler is only interestedfew
aspects of the real system. In such a casexperimental frame captures the modeler’s objectives and
defines the scope of the model.

Experimental Frame

Source

stem .
Sy behavior databpse

Simulation
Relation

Modeling
Relation

Figure 1: The basic entities and their relationgls [Zei00]

The basic entities are linked by two relations QD

O modeling relationLinks the real system and model, defining how wile# model represents the
system or entity being modeled. In general termméel can be considered valid if the data geneitayed
the model agrees with the data produced by thesgestém in an experimental frame of interest.

Q simulation relationLinks the model and simulator. It represents hoithfally the simulator is able
to carry out the instructions of the model.

There exist at present quite a number of simulagmhniques and paradigms. Among these DBEY S
formalism [Zei76] provides a framework for the ctostion of hierarchical models in a modular manner
allowing for model reuse and reducing developmigné tand testing. In DEVS a model is specified as a
black box with a state and a duration for thatestéfthen the duration time for the state expireguput
event is sent, an internal transition takes plagkthe model changes its current state. A changtaté
can also occur when an external event is receiVbdn, a complete model is defined by describing the
set of states a model goes through, the interrdhleaternal transition functions, the output functend
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the state duration function. DEVS models can betggether by linking the outputs of a model to itgou
of other models to form coupled models. Models madeof only one component are called atomic.

DEVS not only proposes a framework for model cartion, but also defines aabstract simulation
mechanism that is independent of the model it§difs mechanism is high level description of how the
simulation of DEVS models should be executed tsnaulator. Two kinds ofsimulators are defined,
one for atomic and another one for coupled modbis latter known as eoordinator. These simulators
progress through the simulation by exchanging ngessaas described by the abstract simulation
mechanism.

Timed Cell-DEVS [Wai98] is a formalism based on DEYor the simulation of cellular models. A
cellular automaton is a lattice of cells, each difick has a value and a local rule that defines tmw
obtain a new value based on the current stateeotéii and the values of neighboring cells. Celis a
updated synchronously all at the same time. Timel-@EVS defines a cell as a DEVS model and a
cellular automaton as a coupled model, and intresliec new way of defining the timing of each cell
which is more flexible than the existing synchrosi@pproach. In Timed Cell-DEVS each cell definss it
own update delay.

CD++ is a tool for the simulation of DEVS and CBEVS models which has been used to simulate a
variety of models including: traffic, forest firegants and watershed simulation. Simple models were
easily handled by the tool, but the execution ahpltex models requires a computing power that stand
alone computers do not provide. It was then progdisat parallel execution should be used.

Not only parallel execution was being demandedQetl-DEVS but also for DEVS models. But the
DEVS formalism suffered from serialization congttai that would not allow for a parallel
implementation. Therefore, it was revised and thealel DEVS (P-DEVS) [Cho94a] formalism was
proposed. The Cell-DEVS formalism was also revi#@iO0] and the Parallel Cell-DEVS formalism
followed.

It is the aim of this work to modify CD++ to run el Cell-DEVS on a distributed environment,
providing a tool that will not only reduce executiimes but also allow larger models. When P-DEVS
was proposed, the abstract simulator was changadpie@ment the new semantics. This new simulator,
though well suited for an implementation on a gatalystem with shared memory, does not allow for a
efficient implementation over a network of compstbecause it does not distinguish messages sent ove
the network from those sent between objects orséinee process. Therefore, there was a need to extend
the P-DEVS abstract simulator for distributed emwiments. This work addresses this issues by further
specializing coordinators into master and slave.

For the new parallel version of CD++, a simulatiernel that would encapsulate all the lower level
network communications was required. In paralleldation, the execution is divided into a set a@fital
processes, each running on a different CPU. Logioatess communicate with each using timestamped
messages. For correct results to be obtained, aofvaynchronizing the logical process for correct
message processing must be defined. There are #pm®aches to synchronization between logical
process: optimistic, pessimistic, and no synchmion at all (application level synchronization). A
parallel simulation kernel must provide one of thes

During the design phase of parallel CD++, someash was done to evaluate existing simulation
kernels and the Warped project was found. Warpedpgoject at the University of Cincinnati dedichte
to the implementation of a simulation API to suppdifferent parallel simulation kernels. Two kemel
are currently provided: an optimistic kernel thaplements the TimeWarp protocol and a NoTime kernel
that uses no synchronization. Further work wasiedrout at the Universidad de Buenos Aires, and a
pessimistic kernel that complied with the Warpedl ARPas implemented. Having three different
simulation kernels with the same API, Warped proidmhl for parallel CD++, which was therefore
written to run on top of Warped and currently suppahe TimeWarp and NoTime kernels. Switching
between kernels is just a matter of setting th@@raompilation arguments.

The final release of parallel CD++ runs both, ritistted and standalone simulation. For simple andlls
models, the standalone version performs well. Fomplex and big models the distributed version is
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preferred. The development was carried out in Limachines. Testing has been done on different Linux
clusters at the Universidad de Buenos Aires ankdeat/niversity of Carleton in Ottawa.

This work is organized as follows. Chapter 2 présehe DEVS and Parallel DEVS formalisms and
Chapter 3 the Cell-DEVS and Parallel Cell-DEVS degpart. In chapter 4, the new abstract simulator
suited for distributed environments is introducechapter 5 will make a short presentation of
synchronization techniques for parallel discretentwsystems. After this presentation, chapter & wil
introduce CD++ and chapter 7 its parallel versiwith special mention of implementation issues using
the Warped kernel. Chapter 8 will show some resalitsined, chapter 9 will show a chemical diffusion
model so large that parallel execution is requissd then the conclusions will follow. A completgetis

for parallel CD++ guide is also provided.
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2
The DEVS and Parallel DEVS formalisms

2.1 The original DEVS formalism

Systems whose variables are discrete and the tilvenae is continuos are knownBEDS — Discrete
Events Dynamic Systemsas opposed t&€VDS — Continuous Variable Dynamic SystemfNai98]. A
simulation mechanism for DEDS systems assumestlibasystem will only change its state at discrete
time points upon the occurrence of an eventefantis formally defined as a change of state thatdake
place at time specific point of timgll R.

DEVS [Zei76] is a formalism for modeling and sintida of DEDS systems. It defines a way of
specifying systems whose states change upon tlegtien of an input event or the expiration of adim

delay. It also allows for hierarchical decompositiof the model by defining a way to couple existing
DEVS models.

The original DEVS model is a structure:

DEVS=<X, Y, Sdex, Oims A, ta>

where
X is the set oéxternalevents
Y is the set obutputevents
S is the set obequentiaktates;
Oexi QXX 5 S is theexternal state transition functig
whereQ :={ (s, e) | /S, 0<'e <'ta(s) }andeis the elapsed time since the last state transition
oS - S is theinternal state transition functig
A:SSY is theoutput function;
ta:S- R’ [Joo is thetime advance functig

The semantics for this definition are as follows.afty given time, a DEVS model is in a staté S and
in the absence of external events, it will remainhiat state for a period of time as defined bg)talhe
ta(s) function can take any real value between 0 @né\ state for which ta = 0 is called dransient
state On the other hand, if t§(= o, the system will stay in that state forever unkasexternal event is
received. In such a cassis called gassive stateTransitions that occur due to the expirationagg)tare
calledinternal transitions. When an internal transition takes place, theesgsbutputs the valud(s),
and changes to stafig(s). A state transition can also happen when an exitevent occurs. In this case,
the new state is given by, based on the input value, the current state aneéltpmsed time. Figure 2
illustrates this definition by specifying a modélaocomputer processor using DEVS.
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A computer processor can be specified as a DEVSem@dprocessor would have to states: busy
available. So

S ={ busy, available }
Jobs will constitute the set of input events angbouevents. A job arriving on an input port wihange
the processor state to busy. Once the job hasfreerssed it will be sent as an output event. 3albs
be identified with a natural numbers, hence

X=N

Y=N

Assuming no job arrives while the processor is kargy that the model keeps an internal variable with
the id of the job its processing, then the extetraadsition function is defined as follows:

Jext (Xv e)
{
s = busy

jobld = x
}

A job will occupy the processor during a randometimith a given Poisson distribution, so the time
advance function is

ta ( busy ) = Poisson()
ta (available ) =w

If the processor is available, then it will reméairthat state until an external event arrives.

When the processing time has expired, a stateitiamgvill take place. At this time, the output fttion
is called followed by the internal transition fuioct. Continuing with our description,

A( busy ) = jobld
O ext (bUsy) = available

An internal transition from the available to bussts will never happen because available is a ypassi
state.

and

(@)

— =

(b)
Figure 2 : (a) Specification of a computer procesausing DEVS
(b) DEVS semantics
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A coupled modek a structure:
DN = < Xseir, Ysert» D, {M}, {11}, {Zi;}, select)
where
D is a set of components.
for eachi in D,
M;is a component.
for eachi in D O { self},
I, is the set of influencees of
for eachj in I
Z ;is a function, the - to -j output-input translation
selectis a tie-breaker function.
This structure is subject to the constraints thaehch in D,
Mi=<Xi, Y, S Aexts Gints Aiy t&) is a DEVS model

l;is a subset db [ { self}, i is notinl;,

Zseifj: Xseif = X
Z seii Yi - Yserr
Zi,j Y- Xj

select subset of D~ D
such that for any non-empty subget
select (E Y7 E

A coupled model groups several DEVS models togettiera compound model that can be regarded, due
to the closure property, as another DEVS models ’iiows for hierarchical model construction. A
DEVS model that is not constructed as a coupledefiscknown as an atomic model.

A coupled model can have its own input and outwenés, as defined by th&erand Yso Sets. Upon
receiving an external event, the coupled modeltdasdirect the input to one or more of its compuae

In addition, when a component produces an outpig,ltas to be mapped as another’'s component input
or as an output of the coupled model itself. Algl input-output mappings are defined byzlienction.

When models are coupled together, ambiguity amgesn there are more than one components schedule
for an internal transition at the same time. Thst finodel to make its internal transition will praé and
output that may be translated to an external eleitg received by another component model that is
already scheduled for an internal transition at thrme. But then, should this second model protkss
external transition first witle = ta(s) or should the internal transition take place finstl then the external
transition withe = 0? The way the DEVS formalism solves this is iy tise of theelectfunction. Only

one model of the group of imminent models will levaed to be withe = 0. The other imminent models
will be divided in two groups: those that receitie external output from this model, and the onasdb

not receive this output. The first group will exeztheir external transitions functions wih= ta(s)and

9
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the second group will be among the group of immimaadels for the next simulation cycle, which may
require again the use of the select function tad#ewhich model will execute first.

This tie-breaking approach is a potential sourcerodrs since the serialization produce may ndéecef
the correct system’s behavior upon the occurreficgnaultaneous events. In addition, the serialaati
reduces the possibility of a speed up in a paralfslironment. For these reasons, the parallel DEVS
formalism was revised giving place to the Pard&lIEMS formalism.

2.2 The Parallel DEVS formalism

The Parallel DEVS formalism [Cho94a] keeps all tiiee properties of the DEVS formalism and
eliminates all the serialization constraints thaide simultaneous execution in a parallel envirorimen
feasible.

Chow required that the following properties hold:
e Collision handling: the behavior of a collision hbg controllable by the modeler.

e Parallelism: the formalism must not use any seadidon function that prohibits possible
concurrencies.

e Uniformity: the hierarchical construction must hawmiform behavior: different hierarchical
constructs of the same model must display the $shavior.

A P-DEVS model is described as a set of basic anughled models. In addition, the model's interface
was also revised. A model will now have input andpat ports through which all interaction with the
environment takes place. Events determine valupgajmg on such ports. A model receives outside
events through its input ports. Upon receptionumthsevents, the model description must determine ho
it responds to them. In addition, internal eventsigg within the model change its state, and nemtif
themselves as events on the output ports to bemitted to other model components.

Atomic models are still the most basic constructjowhich can be combined with other models into
coupled models. A Parallel-DEVS coupled model §atisthe closure property [Cho94b], so it can be
seen as another basic model. Therefor, Parallel®aMserves the hierarchical properties of theraig
DEVS formalism.

A basic Parallel DEVS is a structure:
DEVS =< Xy, Ym s S,0ext» Oints Ocon A, 1)
where

Xm={(p,v)| p JlPorts, v /X, } is the set ofnput ports and valug

Yum={(p,v)| p JOPorts v 7Y } is the set obutput ports and values;

S is the set oequentiaktates;

Oexi QX X - S is theexternal state transition functig
om:S - S is theinternal state transition functig
Ocon QX X - S is theconfluent transition functio,
A:SoY is theoutput function;

ta:S- R Joo is thetime advance functig

withQ :={ (s, e) | s[/S, 0< e <ta(s) }the set ototal states.

10
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The differences between the DEVS and Parallel-DEd/Salism are the following:

e The model interface has been extended to includs pad values.

e The external and output functions no longer hamdie event at a time. Instead, bags of
events are now being handled, allowing then foutmmeous processing of multiple events.

« A new transition function has been defined, theflo@mt functiond ., This function will
define a new model's state when there is a collisietween internal and external
transitions. Basically, this function will allowehmodeler to specify how the model should
behave in the presence of collisions.

The semantics of the Parallel-DEVS definition drentas follows. At any given time, a basic modéhis

a states and in the absence of external events, it willainin that state for a period of time as defingd b
ta(s). When an internal transition takes place, thaesgsoutputs the valud(s), and changes to state
an(S). If one or more external everiiss= { x; . X, / X 0 Xy } occurs before ta] expires, i.e., when the
system is in total sta{g, e) withe < ta(s), the new state will be given bBy(s,e,E). When an external and
internal transition collide, i.e. external evelsarrives where = tag), the new system’s state could
either be given byk,(d.(s)eE) or d.(dx(seE)). To avoid a fix behavior, the modeler can define the
most appropiate behavior with tldg,¢ function. Then, in the Parallel DEVS formalism tim presence of
collisions the new system’s state will be the oafretd byd.on(S,E).

A Parallel DEVS coupled modek defined by:
CM =<X, YV, D, {Mq| d D}, EIC, EOC, IC>
where
X={(p,v)| p JIPorts, vIXp} is the set of input ports and values;
Y={(p,v)| p JOPorts, vJY p} is the set of output ports and values;
Dis the set of the component names;
The following constraints apply to the components:
Components are DEVS models:
for eachd /D
Myg=(Xg,YdS,0ext, Oint» Oconm A, ta) is a DEVS basic structure
with  Xgy={(p,v)| p JIPorts, v X} ;
Ya={(p.v)| p JOPorts v.JY,};
The couplings are subject to the following condlitio
« external input couplings (EIGonnect external inputs to component inputs:
EIC 7 {((N, ipn), (d, ipg)) | ipn LZ1Ports, d/7D, ip 4 L71PoOrts 4 }
» external output couplings (EO€pnnect component outputs to external outputs:
EOC Z7{((d, opg), (N, opy)) | opn L7OPorts, d/7/D, opq [7OPortsq }
» internal couplings (ICxonnect component outputs to component inputs:

IC [7{((a, opa), (b, ipy)) | @, bJD, op, L/OPorts, , ipyp 7IPortsy, }

11
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No direct feedback loops are allowed, i.e., no oufport of a component may be
connected to an input port of the same component i.

((d, opy), (e, i) O IC impliesd Zze.

* Range inclusion constraints: the values sent freamuaice port must be within the
range of accepted values of a destination port, i.e

|:l((l\l! IpN )1 (d! Ipd )) DE'C . XipN Dxipd
U ((a, Opa)u (N! OPN )) [JEOC : Yopa oy opN

0 (@ 0pa). (b, iP5 )) T1C Y g X i

The Parallel-DEVS definition eliminated tiselectfunction. If there multiple imminent componentsen
all their outputs will be first collected and mapgpe their influencees. Then, the correspondingsiten
function will be executed for each model.

As an example, a generator-processor-transducér rigmlel will be shown. The aim of this model is to
calculate the usage of a given processor. It issnoddhree atomic models:

e A generator that generates new jobs at randomititeevals.

« A processor that consumes the jobs that the gemgredduces.

« A transducer: a model that will keep count of theniber of jobs processed and the time it
took to process each job.

The generator has two input por&art and stop and an output porbut Whenever a new job is
generated, a new event is sent through the out Pbe processor has one output gorand an output
portout. A new job is received through tlie port and when it has been processed after anezlapset,

an event is sent through that port. The transducer has two input poasiv andsolved and one output
portresult When an event is recevied throuayhiv a timer is started and a job count is increasednay
When an event is received through ssdvedport the counter is stoped. After an pre-definbdepvation
period of time, the processor usage is sent thrahiglout port. The whole coupled has two input ort
startandstop and two output portsutand result. The couplings are shown in Figure 3.

gpt
in
proc out

start \
> out

Htgp genr

E—
transd L—— 7

Figure 3: The GPT coupled model. [Zei00]

12
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3
The Cell -DEVS and Parallel Cell-DEVS formalisms

3.1 Cellular Automata

Cellular Automata are used to describe real systbatscan be represented as a cell space. A aetlula
tomaton is an infinite regular n-dimensional latighose cells can take one finite value. The statése
lattice are updated according to a local rule imiraultaneous and synchronous way. The cell states
change in discrete time steps as dictated by d toaasition function using the present cell statel a
finite set of nearby cells (called the neighborhobthe cell).

Cell's Neighborhood

Figure 4 : Sketch of a Cellular Automaton [Wai00]

When cellular automata are used to simulate complestems, large amounts of compute time are
required, and the use of a fixed interval disctiete base poses restrictions in the precision @itiodel.
The Timed Cell-DEVS formalism [Wai98] tries to selthese problems by using the DEVS paradigm to
define a cell space where each cell is defined BEYS atomic model. The goal is to build discrete
event cell spaces, improving their definition byking the timing specification more expressive.

3.2 The Timed Cell-DEVS formalism

Cell-DEVS defines a cells as DEVS atomic model€ell-DEVS atomic model is defined by [Wai98]:
TDC =<X, Y, 1, S,6, N, d,8, Oext, T, A, D >
where
X is a set of external input events;
Y is a set of external output events;

I represents the model's modular interface;

S is the set of sequential states for the cell;
0 is the cell state definition;
N is the set of states for the input events;

13
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d is the delay for the cell;

Oint is the internal transition function;
Oext is the external transition function;
T is the local computation function;
A is the output function; and

D is the state's duration function.

A cell uses a set of input values N to computdutare state, which is obtained by applying thealoc
computation functiort. A delay function is associated with each celffedéng the output of the new
state to the neighbor cells. There are two tygetetays: inertial and transport delays. When adpart
delayed is used, the future value will be added tpueue sorted by output time. Therefore, all jonevi
values that were scheduled for output but that hasteyet been sent, will be kept. On the contrary,
inertial delays use a preemptive policy: any prasischeduled output value, unless the same asthe n
computed one, will be deleted and the new onehgilbcheduled. This activation of the local compaitat

is carried by thé.,, function.

After the basic behavior for a cell is defined, twnplete cell space will be constructed by buidan
coupled Cell-DEVS model:

GCC = <Xilist, Ylist, I, X, Y, n, {t....,t}, N, C, B, Z, select

where
Xlist is the input coupling list;
Ylist is the output coupling list;
I represents the definition of the interface foe thnodular
model;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{te,...4} is the number of cells in each of the dimensio
N is the neighborhood set;
C is the cell space;
B is the set of border cells;
z is the translation function; and
select is the tie-breaking function for simultane@yents.

This specification defines a coupled model compasfeah array of atomic cells. Each cell is connécte

to the cells defined in the neighborhood, but asciil space is finite, either the borders are iglex) with

a different neighborhood than the rest of the spaceahey are "wrapped"”, meaning that cells in one
border are connected with those in the opposite Birally, the Z function defines the internal and

external coupling of cells in the model. This fuanttranslates the outputs of m-th output porteti €;

14
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into values for the m-th input port of cellyCEach output port will correspond to one neighéiod each
input port will be associated with one cell in theerse neighborhood.
Cell's connections

T
+
T
K

—
o

RIRIS

(]
(@

) ouT
¥ Ti5)=2 —
Cell definition

Figure 5 : Informal definition of a Cell-DEVS modgWai98]

The select function serves the same purpose abkeirptiginal DEVS models: to tie-break between
imminent components.

The use of the select function introduces similabpems to those described for coupled DEVS models:
lack of parallelism exploitation and a probableoinsistency with the real system. In addition, fheetl
Cell-DEVS was restricted to one input from eacthuinport. Such restriction disallows [WaiOQ]:

e zero-delay transitions
» external DEVS models sending two simultaneous evienthe same cell.

To forbid zero-delay transitions is too restrictiaad so is allowing only one event per externatleho
specially after the Parallel DEVS formalism allonsetdasic model to send more than one event atea tim
These were enough reasons to revise Cell-DEVSran@arallel Cell-DEVS formalism was proposed.

3.3 The Parallel Cell-DEVS formalism

A parallel Cell-DEVS basic model can be formallyided as:
TDC =<X*, ¥, 1, S,6, N, d,8int, Sexs Scon T, Teon A, D >
where
In this case, #<e O TO{N, ZR {01}} 0{q@};

XOT;
YOT;

| =<n, X W, PX, ¥ >. Here,n O N, n < is the neighborhood's sizgX, WY O N, pX, py
<o is the number of other input/output ports, ahdd [1, n], i O {X, Y}, P,—i is a definition of
a port (input or output respectively), Withi B { (Nji, Tji) /[ Oj0O[a, n+ui], Nji O [iq, inel
(port name), y]l"r O 1; (port type)}, wherd; = { x /x O Xif X}or I, ={x/xOYifi=Y};
SOT;
6= { (s, phasegqueue, fg) /

sO S is the status value for the cell,

s’ 0 S is an intermediate status value for the cell;

phasel {active, passive},

15



Parallel DEVS and Cell-DEVS models — Alejandro Toalc

oqueue = { (4,07, (MnOm) / MONOm<e) OO (i ON, i O[1,m]), v O SOg;

0 Ro*Deo};
fOT,;and
00Ry 0o}
N O S1HH;
dORyt, d <,
S0 - S;
Bexic QXX° = 0, Q={ (s, e) /916 x N xd; el [0, D(S)]};
Beon:OXX® & S;
T: N - S x {inertial, transport} x d;
Teon X>XN = S x {inertial, transport} x d;
A:S - Y and
D:6xNxd- Ryt O .

A Cell-DEVS atomic model is a specialization of arédlel DEVS basic model. The difference between
an atomic model and a Cell-DEVS model is the eristeof a cell neighborhood delayd and a local
computation functiont. Thel interface defines a fixed number of ports for mgesexchange to neighbor
cells.

Originally, only one kind of delay of a given duoat was related with each cell. Now, the local sitian
function will return the type and length of the algland the cell's outputs will be delayed accaigin
This redefinition allows to include complex timibghavior.

In the presence of collisions between internal @xtérnal events, the confluent transition funcigg is
activated. It must activate the confluent locahsition functiont.,,, Whose goal is to analyze the present
values for the input bags, and to provide a unipteof input values for the cell. In this way, tel will
compute the next state by using the values chogehebmodeler. Basically, what,, does is to choose
members from the bag, and update the inputs focgheAfter, it deletes the unnecessary membetheof
bag.

The following figure shows a sketch of the contegfteach cell.

oquene [T T 7]

Hl 1y

.
- il —
Sl NG

9

- |
O 0O [

Figure 6 : Cell's definition [Wai00]

Atomic Cell -DEVS models can be put together taxfaroupled Cell-DEVS models. A parallel Cell-
DEVS coupled model can be represented as:
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GCC = < Xlist, Ylist,I, X, Y, n, {t,....,t}, N, C, B, Z >

Xlist is the input coupling list;

Ylist is the output coupling list;

| represents the definition of the interface for tiedular model;
X is the set of external input events;

Y is the set of external output events;

n is the dimension of the cell space;

{t4,....4} is the number of cells in each of the dimensions;

N is the neighborhood set;

C is the cell space;

B is the set of border cells; and

Z is the translation function.

C={Cc/cOlOC;=<le Xe Yoo S Nev Aes Bineer Oexicr Ocorner Ter Teong Ay D> 1
where G is a parallel Cell-DEVS atomic model, and | = {(i,i) / ik O N Oi O [1, &]) Ok O [1, n]}.

That is, each cell in the space is a parallel O&WS atomic cell using th&.,, andt.,, functions to avoid
collisions.

As stated in [Wai00], the following lemmas apply.

Lemma 1
The Parallel Cell-DEVS models are equivalent tapaek DEVS models.

Lemma 2
Closure under coupling for parallel Cell-DEVS madeh coupled parallel Cell-DEVS model |is
equivalent to a basic parallel Cell-DEVS model.

This two lemmas imply that within a coupled PaldD&VS model, a Cell-DEVS model can be used as if
it were a basic Parallel DEVS model. This propevi}y be used in the next section, when the abstract
simulator is described, to prove that the abstsamulator for Parallel DEVS models will also exesut
Parallel Cell-DEVS models.

If a parallel Cell-DEVS model can be viewed as pardEVS model, then it should be possible to

define its corresponding ¢y , dint, Gont, @and A functions. The semantics for these functions wéllnow
presented.

Note: oqueue is a list of pairs (delay, value) sorted byeading order of delay. These are the values
scheduled for output. The following operations @eéned for the queue:

first: the first pair.

head: the set of pairs from the front of the queith minimum delay.

tail: queue — head

add: adds a new pair to the queue.

17
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6int:
o=0; oqueuez {O}; phase = active
0i0 [1, m], a0 oqueue, ao = 3.0 - head¢queueo); oqueue = tailgqueue);
o = head¢queueo);
o=0; oqueue = {1}; phase = active
o0=o [ phase = passive
A
o=0;
out = { g.v | a0 head(queue) };
5ext:
Ne = TeodX?): (s', transport) =(N,); o#0; e =D@ x N x d); phase = active;

s£#s'= (s=s'00i0[1,m a0oqueue,ac =3.0-e 0 o=0-e; addfqueue, <s', d>)If=s)

Ne = TeodX?): (s', transport) =(N.); o #0; e=D@xNxd); phase = passive;

s#s'= (s=s 0 o=d 0O phase = activell addpqueue, <s', d>[1f=s)

Ne = TeodX?): (s', inertial) =t(No); o #0; e =D@x N x d); phase = passive;

s#s8'=> (s=s' [ phase=activéelo=d 0 f=s)

Ne = TeorX®); (s', inertial) =t(No); 0#0; e =D@x N xd); phase = active;

s£s'=> s=s' 0 (f£s' = oqueue={0} 0o=d 0 f=5)

3.3 Cell-DEVS Quantization

Recently, a theory of quantized models was develdpaper Gabriel). When using a quantized model,
after a cell’s state value will be only informedit® neighbors if its difference with the previowsue is
greater than a givequantum. This idea is shown in Figure 7. Here, a continuowe is represented by
the crossings of an equal spaced set of boundagpsrated by thguantumsize. Aquantizerchecks for
boundary crossings whenever a change in a modes$ falace. Only when such a crossing occurs, a new
value is sent to the receiver. This operation redusubstantially the frequency of message updatele
potentially incurring into error.
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Figure 7 : Quantization (Zeigler et al 1999)

In (Paper Gabriel) several experimental tests videnge in order to analyze the behavior of quantized
Cell-DEVS models. The results showed that quantinateduced both, the total number of messages sent
and the execution time, but introduced an erroe &hror obtained is a function of the local compgiti
function, the number of simulation steps and thengum. Since the future input values for a celleshep

on the present results, a nonlinear error may lserekd. The error magnitude will depend on thescell
neighborhood size. It was shown in [Paper Gabilel] as the quantum gets higher, the error ggtgebi

Choosing an adequate quantum will then dependepriécision desired.

When quantization is used with a quantum valué.,;is defined as:

aext:
Ne = Teor(X®); (s', transport) =(Ny); o#0; e =D0 x N x d); phase = active;
s# value(s',d)=
(s=s’00i0[1,maloqueue,ac=3.0-€e 0 0 =0 -e; addgqueue, <s', d>)If=s)
Ne = Teor(X®); (s, transport) =(Ny); o #0; e=DOxNxd); phase = passive;
s#value(s'\d)= (s=s' 0 o=d O phase = activell addfqueue, <s', d>)1f=s)
Ne = Teor(X®); (s, inertial) =t(No); o0 #0; e=DPx N xd); phase = passive;
s#value(s'\d)= (s=s [ phase=activéelo=d O f=s)
Ne = Teor(X"); (s', inertial) =t(No); 0#0; e=D@x N xd); phase = active;
s#value(s'\d)=> s=s' 0 (f£s' = oqueue={0} 0o=d 0O f=5s)
where

value(v,d) =v' such thatflqON/v' =q.d OV <v.
i.e. the lowest boundary as defined by the quarsiam

e.g.: value(23.45,0.1) =23.4 value( 550, 106)86
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4
Abstract simulator for distributed Parallel-DEVS

The DEVS formalism separates the model from th@adcsimulation. This simulation mechanism is

implemented by abstract simulators. In [Cho94bhhbstract simulator for the Parallel DEVS formalism

was presented. Though well suited for shared memarallel environments, this abstract simulatorsdoe

not distinguish between intra-process messageséerdprocess messages. In a distributed envirohmen
there is considerable communications overhead wisih not be ignored. Therefore, the abstract
simulator should restrict the number of messages e network to a minimum.

As a result, a abstract simulator for distributadimnments was developed and will be now presented

4.1Parallel DEVS Abstract Simulators

The simulation is carried out by DEVS processors.iithe existing definition of the abstract sintata
[Cho94b], the DEVS processors will be specializatd itwo different simulation enginesimulator and
coordinator. Basically, the role of theimulatoris to invoke an atomic’s model transition and exat
event functions. On the other hand,caordinator is paired with a coupled model and has the
responsibility of translating its children’ outpevents and of keeping the time of the next immifent
dependants.

Model Abstract Simulator
Coupled
Model Coordinator
/ A V\ / A V\
Atomic Atomic Atomic
Dependant 1| | Dependant 2| | Dependant 3 Simulator 1 Simulator 2 Simulator 3

Figure 8: Correspondence between the model angl IEVS processors

As it is shown in Figure 8, every coordinator haset of child DEVS processors. When a simulatson i
run in distributed fashion, each machine will ruredogical process which will host one or more DEVS
processors. Under these assumptions, a coordisatbittiren need not be executing on the same Ibgica
process. If the correspondence between models &wWSprocessors is one to one, then every coupled
model is associated to only one coordinator. Tharyemessage sent to child processors running on a
different CPU will require inter-process communicat Figure 9(a) illustrates this case. It shows a
coordinator sending a message to its 8 childretilsised on two CPUs. Four inter-process messages a
required for the four children running on proceskor

If the number of children processors is high (agstally is for coupled Cell-DEVS), the number of
messages sent across the network will be significBmis can be avoided if every coupled model has
more than one coordinator. Figure 9(b) illustrétds case. For the same coupled model, therenare t
coordinators, one in logical process 0 and andthégical process 1. In this case, only one messag
sent over the network.

So, to reduce inter-process messages, coupled snadlefequire a coordinator on each logical praces
where a child processor is running. Children preoes will send messages to the local coordinator,
which will decide how to handle the received messadJpon receiving a message from a child, a
coordinator could forward this message to all tberdinators for the model. This would require all
coordinators to know about each other. For instaificupled model is a child of coupled modd,
then B’s coordinators would have to interact with's coordinators. If handled uncarefully, this
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communication can turn out producing a big numbénter-process messages. In such a scenario, a way
of keeping the number of inter-process messagasimimum is to have only one of the coordinators t
receive messages from or route messages to thetjganeodel coordinator. This specialized coordinato
will be known as amaster coordinator and all other model coordinators will b&aves The master
coordinator for modeA will then be the only one that can receive or semessages td@’s local
coordinator

CPU O CFU 1 ¢
Coovdirator » |
[
1 2 A
3 4 ik
@)
CEID CPIT 1
Master Slave
Coodinator Coodinator
»>
1 2 5 B
3 4 3 7
(b)

Figure 9 : (a) A single coordinator sending a mesgge to all its child processor. Dashed lines =
interprocess messages. (b) A master- slave paidsgnmessages to all their children processors.

When master and slave coordinators are used, DEdM&gsors are organized in a hierarchy, which does
not have a one to one correspondence with the nielerchy . Therefore a parent child-relationshigt
takes into account the existence of master ande staerdinators must be defined. This relationship i
defined as follows:

a. for eachsimulator, the parent coordinator will be the parent’s mddeél processor (it is guaranteed
that this will exist)

b. for eachslave coordinatgrthe parent coordinator will be the modetiaster coordinator.

c. for eachmaster coordinatarthe parent coordinator will be the parent’s mdde&l processor; just as
if it were asimulator.

The simulation advances as a result of the exchafigmessages between parent and child DEVS
processors. Every message is a pair of the fotppe, time)and can belong to one of two categories:
synchronization messages and content messagesymblronization messages are ( @ ( *, t), and (
doneg t) and the contents messages arg § and (g, t).

The synchronization messages ( @, ( * t) are sent from a parent DEVS processor to its imemi
children. A ( @ }) is used to tell the children to send their oudpanid ( *,t) tells the children to invoke
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their transition function (whether it correspondseikecute an external, internal or confluent trioTs).

All outputs produced by a model are translated ot () messages between a child DEVS processor and
its parent. Finally, those external messages thiateafrom outside the system or that are generated
result of an output message being sent to an inflee are sent agj(, t) messages.

(q,t) (y, 1) Content msgs
Synchronization msgs
(@1 R
(9 »  DEVS PROCESSOR
(dongt) <

Figure 10 : Messages a DEVS processor receives sentls

It is assumed that any two messages sent fromatine source to the same destination will preserie th
original ordering.

The complete behavior of a DEVS processor is desdrby how it handles each of these messages. To
completely define the abstract simulator, the balraef the simulator, master coordinatgr slave
coordinatorandroot coordinatorwill be described.

Thesimulatoris responsible of invoking the atomic model$s) , A, dnt: Gon functions. The description
that follows is based on the ond@ho94b], with some minor changes:

SIMULATOR
whena ( @ t) message is received
if t =ty then
y = A
send {y, t) to the parent coordinator
send (done t) to the parent coordinator
end if
elseraise error

end when

When a simulator receives a ( @) it executes the atomic modeldunction and sends the output to the
parent coordinator.
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SIMULATOR

whena (g, t) message is received
lock thebag
Add eventg to thebag
unlock thebag

end when

SIMULATOR
whena (* ,t) message is received

caset, <t <ty

er=t-t
S = S € bag)
emptybag

end case

caset =ty andbagis empty
S:=du(s)
end case

caset =ty andbagnot is empty

S = O S, bag)
emptybag
end case

caset>tyort<t,

raise error
end case
L=t
ty :=ta (s)

send (done, t) to parent coordinator

end when

The (*, t) message indicates a model’s transition functiostrbe executed. The transition function to be
executed will depend onand the content’s of the queuet K ty, then it is not the time for an internal
transition, and it must be the case that the qienet empty and.,should be executed. tf ty, it is the
time for an internal transition. If no external reages have been received thkp is executed, but if
there are external messages, thghpshould be called instead.

Now themaster coordinatowill be described. A coordinator, whether masteslaxe, is responsible for
the simulation of a coupled model. It translategpotievents to input events and keeps track of the
imminent models. Each coordinator has a set ofdcpibcessors which correspond with the coupled
model components. For a master coordinator theosehild processors is made by the set of slave
coordinatorsthe set of local child simulators and the setoafal child master coordinatord DEVS
processor is local if it is executing on the samassor.

To simplify the following description it is necesgao define the functionoordinator.
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coordinator : MxP - C
where
M is a coupled model
Pis a DEVS processor
Sis acoordinator ( master or slave)

coordinator ( M, j) =i, wherei is the coordinatorassociated to coupldd that is local to child. The
following restrictions apply for the function to el defined:

jis a DEVS processor associated to a dependavt of

i is one of thecoordinatorsassociated witii

MASTER COORDINATOR
whena ( @ t) message is received from parent coordinator
if t =ty then
L=t
for all imminent child processoirswith minimumty
send ( @t ) to childi
cachd in thesynchronizeset
end for
wait until (done t)’s have been received from all imminent processors
send done t) to parent coordinator
end if
elseraise error

end when

For describing the behavior ofn@aster coordinatoupon receiving an output message, two cases peed t
be distinguished:

an output messagey/( t ) received from a childthat is not alave coordinator

an output messagey(, i, t) forwarded from a&lave coordinatothat received ¢, t) from a local
child .
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MASTER COORDINATOR
whena (y,t) message is received from child
for all influenceesj of child
if j is a local processor
q:=2z(y)
send (@, t) to childj

cachg in thesynchronizeset

else
s := coordinator(self, )
if s slave-syneet then
send ¢, i, t) tos
cachesin theslave-synset
caches in thesynchronizeset
end if
end if
end for

if self0 I; (y is to be transmitted upwarthen
Y =Zser(Y)
send {y, t ) to parent coordinator
end if
clearslave-syncset

end when

whena (y,i,t) message is received from a slave
cachesin theslave-sync setnd proceed as if ay(, t ) message had been received from child

end when

Here slave-syncis used to avoid forwarding an output messageetvir aslave coordinatar It is
important to note that instead of forwardingijat] message to slave coordinatara fy, i, f) is sent. This

is done to reduce the number of messages sentsaitresnetwork. Aslave coordinatommight be the
parent coordinator for more than one of the infeess of. If (g, t) messages were to be forwarded, then
there will be oneq, t) message for each influencee .ofor Cell-DEVS models, this can be an important
overhead. Instead, just ong (, §) message is sent across the network and it withbaesponsibility of
theslave coordinatoto generate the appropiatg, {) messages.

As mentioned in [Cho94b], all children ready fotransition are cached in synchronizeset to later
distinguish active from inactive components.
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MASTER COORDINATOR

whena (g, t) message is received from parent coordinator
lock thebag
Add evenf to thebag
unlock thebag

end when

MASTER COORDINATOR

whena (* ,t) message is received from parent coordinator

ift, <ts<ty
for allg O bag
for all receivers of), j O lse
if j is a local processor
q = Zser,j(0)
send (|, t) toj
cachg in the synchronize set
else
s :=coordinator(self, )
if s slave-syneet then
send{,t)tos
cachain theslave-synset
cachein thesynchronizeset
end if
end if
end for
clearslave-syncset
end for
emptybag

for alli in thesynchronizeset
send (*t) toi

end for

wait until all (done, t)’s are received

L=t

ty ;= minimum of componentdy’'s

clear thesynchronizeset

send done ty) to parent coordinator
elseraise an error

end when
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When the output events are routed down to chil¢gssors, if the message is to be forwardedsianse
coordinatorthe z translation will not be applied. Instead, the oré g message will be sent. Therefore,
care must be taken not to forward a message twieesskave coordinatarHere again, thslave-synds
used for that purpose.

The slave coordinatomwill be introduced next. It differs from thmaster coordinatoin only one way:
when a message needs to be sent a processor ti@tlacal, it will be sent to themaster coordinator
instead.

SLAVE COORDINATOR
whena ( @ t) message is received from parent coordinator
if t =ty then
t=t
for all imminent child processorswvith minimumty
send ( @t ) to childi
cachd in thesynchronizeset
end for
wait until (doneg t)’s have been received from all imminent processors
send done t) to parent coordinator
end if
elseraise error

end when

As it can be noticed, there is no difference on lmth masterandslave coordinatorhandle a (@t ).

However, the set of child processor aflave coordinatois different For aslave coordinatothe set of
child processors is made by the set of local chilshulators and the set of local childnaster
coordinatorsonly.
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SLAVE COORDINATOR
whena (y,t) message is received from child
sent_to_master :false
for all influenceesj of child
if j is a local processor
q:=z;(y)
send @, t) to childj
cachg in thesynchronizeset

else
if not sent_to_master
send {/, t ) to parent coordinator
sent_to_master :true
end if
end if

end for
if selfC I; (y is to be transmitted upwartien
if notsent_to_master
send {y, t ) to parent coordinator
end if
end if
end when
whena (y,i,t) message is received from parent coordinator
sent_to_master :#rue
proceed as if ay(,t) message had been received from ciild

end when

When an output event is received from a childthe slave coordinatorsorts the message to the
influencees of. If any influencee is local, thefunction is applied aq ,t) message is sent. If there are
non-local influencees, then the output event ig serthe master coordinatgrwho will then sort the
message to otheslave coordinatorsf necessary. Only oney(, t ) message should be forwarded to the
master coordinator.

When theslave coordinatorreceives an output event that has been forwargatldmaster coordinator
on behalf of childi, it will handle the event as if had been local, but noy t ) messages will be
forwarded back to themaster coordinatoif there is a non-local influencee. This is to avaifinite loops

of messages being forwarded back and forth.
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SLAVE COORDINATOR

whena (g, t) message is received from parent coordinator
lock thebag
Add evenf to thebag
unlock thebag

end when

SLAVE COORDINATOR

whena (* ,t) message is received from parent coordinator

ift, <ts<ty
for allg O bag
for all receivers of), j O lse
if j is a local processor
q = Zser,j(0)
send (|, t) toj
cachg in the synchronize set
else
do nothing
end if
end for
end for
emptybag

for alli in thesynchronizeset
send (*t) toi

end for

wait until all (done, t)’s are received

L=t

ty:= minimum of componentdy’s

clear thesynchronizeset

send done ty) to parent coordinator
elseraise an error

end when

The root coordinator is a special processor thatbisve the topmost coordinator. It is responsible f
driving the simulation and advancing the virtuahsiation time. The root coordinator can also handle
external events which are stored in a sorted qoéeeents.
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ROOT COORDINATOR
load queueof external events and sort them by arrival time.
t:= minimum ofty of topmost coordinator artg of queue
while t # co
if t = tyof queue

for all g in queuewith timet

send (@, t) to topmost coordinator
end for

end if

if t = tyof topmost coordinator
send ( @t ) to topmost coordinator
wait until (done, t) is received from it

end if

send ( *t) to topmost coordinator
wait until (done, 1) is received from it
end while

raise simulation completed

This abstract simulator mechanism will be able andie both, Parallel DEVS and Parallel Cell-DEVS
models because the latter one is a specializafitmedirst one.
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5
Parallel Simulation

When running parallel and distributed simulatidme whole model is divided among a set of logical
process, each of which will execute on a diffef@RtJ. In general terms, each logical process widitho
one or more simulation objects. For the presentudision, those simulation objects will be DEVS
processors.

Logical processes (LPs) talk to each other thrairgh-stamped events that move the simulation fodwar
Events must be processed in the order defined diy timestamps for correct results. It does notagisv
suffice to have a queue on each logical processadmdnce the simulation by processing the firsheve
on the queue, ignoring the other LPs. Such cadlustrated in Figure 10 which shows two LPs, each
with one event in its input queue. Both eventspoeessed simultaneously, and as a result of psaes
C with time 2, a new event is generator for LP 1wih time stamp 5. But LP 1 has already processed
event with timestamp 8 so the simulation is incairr8uch an error is called a causality error.

LP1 LP 2

Queue: Queue:

B8 D5 c2

A

Figure 11 : Execution of the first queued messagees not always guarantee correct results.

Then, either LPs must agree on a synchronizatioochar@sms, or the application programmer has to
ensure the application will keep the LPs synchreniz

For event driven simulation, there are three tygfes/nchronization strategies:

1. No synchronization at all (synchronization is eeslipy the application).
2. Optimistic synchronization.
3. Pessimistic (conservative) synchronization.

The first approach assumes all messages will ahaayge in the order defined by their time-stampd a

no out of order message will ever be received.sltan optimistic strategy that relies on the
synchronization being handled by the simulatioreoty instead of the logical process themselvas.dt
very efficient implementation that does not requérent queues; each event is processed as sobn as i
arrives. Special consideration will be given tosthipproach later because the Parallel-DEVS abstract
simulator presented in the previous chapter doegigi by itself a synchronization mechanism.

The other two rely on synchronization being handigdthe LPs. Input events are queued in order of
earliest time-stamp and the following two consttaimust be always valid [Zei0O]:

< All outputs resulting from the processing of anuhpvent must have a time-stamp greater or equalt
to the input time. This means processing can’t @eddackwards in time.
« Messages must be processed in order of time-stamntbs queues.
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Optimistic and conservative schemes differ on thg they enforce the second constraint. In conservat
schemes the time-stamped order constraint is néekated. On the other hand, optimistic schemesnall
a temporary violation that must be repaired befbecfinal simulation output is presented.

5.1Conservative synchronization

The conservative approach is illustrated in figl@e where there are two logical processors LP1L&#]
with queues of time stamped messages.

Starting in the upper left corner, LP 1 has a ngsseith timestamp 3 and LP 2 has an earliest messag
with timestamp 1. Therefore, LP 1 can not execiganiessage because there is a potential risk &f LP
producing an output with time stamp less than 3ngeovative schemes must therefore find a way to
determine when it is safe to process input evéhisLP has an unprocessed event with timestaanm

no event with earlier timestamp can be receiveeh the event can be safely processed. A LP thainhas
its queue an unprocessed event from all the otRardan safely process the one with lowest timestamp
because future messages will have a later timestainip process can be repeated as long as there are
unprocessed messages from all the other LPs. Bhisifs not so, there is a risk of deadlock.

LP] Lp2
al
a ‘11 \ /_/I_\
b4 x
e -
ch ‘o L
LIl LP2
al es
/ b4 fo
c b
LP| P2
d* 2
es
ad £9
b 4
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Figure 12 : LPs with conservative synchronizati¢fieiO0]

To avoid deadlock, each LP provides a time in thmeédiate future up to which it promises not to send
input events. This is done through null messages.R will send a null message to other LPs withreet

in the future up to which it is safe to process sages. Each LP must then carry a lookahead for
determining the time up to which it is safe to @es time-stamped inputs. In Figure 12, the lookdhe
for LP 2 is 1. Therefore, when LP 1 receives a mdksage with this lookahead time, it knows it nmast
process message (a,3). Large lookahead valuegaded to gain advantages over sequential simujation
but unfortunately, such large lookaheads are diffio find in many representations of reality.

A safe lookahead value is the timestamp of the firprocessed message in the input queue. If after
processing an event all logical process send anmedisage with the timestamp of the next input event
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deadlock will be rare. There is only one case ictvla deadlock may occur, and that is the case ahen
LPs are about to process an input event with theegime stamp. An improvement on these mechanism
is to send null messages on demand. When a priscabsut to block, it will request the next eveintsn

the LPs it does not have a timestamp. This redteaumber of null messages being sent, but ineseas
the overhead.

5.20ptimistic synchronization

The optimistic schemes process their input quesesst as they can. If a message out of placeen th
time-stamp order of processing is received, usuktipwn as a straggler, a recovery and rollback
mechanism is started to rectify this situation.

Figure 13 shows such a situation. In the uppedrHahd corner, LP1 and LP2 have arrived at the
situation where LP2 has processed events (d,1) &8y and sent input events (d’,5) and (e’,6) td.LP
Now, LP1 processes event (a,3) which causes it senthput (a’,3) to LP2 as shown in the middle.
However, since LP2 has already processed event fleebnew input (a’,3) a straggler.
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Figure 13 : Event processing in an optimistic sehe

To rectify an abnormal situation, an anti-messagd @s (e',6) that annihilates the effects of alyesent
messages must be sent. To be able to return tevéops state, each simulation object must mairdain
queue of already processed inputs and their oytguts a queue of previous states. When an anti-
message is received, the queues are restored tmthmessage time and new anti-messages areaent f
every output sent that should not have been séig.sfarts a chain reaction of rollbacks. An optition
technique known as lazy cancellation delays théraassages until the simulation object is sure the
previous output must be cancelled. It might beddse that the previous and new output are the ssome,
nothing should be done.

The overhead for running an optimistic scheme igeqoonsiderable. There is a memory overhead
because three queue must be kept: input eventputoavents and state. And there is a processing
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overhead during rollbacks. A fossil collection thanism that will delete those queue elements tteat a
no longer required must be conveyed to avoid exirmusystem resources. Logical process have a local
time know as Local Virtual Time. There is also akal Virtual Time, which is the time of the system,
that is equal to the least LVT. After a numberiafidation cycles, LPs will exchange their LVTs ahé
GVT will be determined. This GVT is broadcastedggering the fossil collection process on each LP.
All those input events, output events and statestthve a time-stamp earlier than the GVT can fysa
deleted. A high GVT calculation frequency saves mignbut generates a big processing overhead. On
the contrary, a low frequency will generate lesscpssing overhead and require more memory.

The protocol just described is known as TimeWanmb\aas proposed by Jefferson [Jeff].
5.3Synchronization for the DEVS abstract simulator

Parallel CD++ will run the abstract simulator déised in Section 4. The DEVS processor (root
coordinator, simulator, slave coordinator or mastordinator) will be the simulation objects thatl w
run on the available LPs and a suitable synchrdinizanechanism should be chosen.

When analyzing the behavior of the simulator andteraand slave coordinator, it can be seen that upo
receiving any of thé*t),(@, t), (done,t) , (y,tr (g, t) messages, any other message that is sent will have
the same timestamp The root coordinator is the only DEVS procesdut twill cause the time to
advance by sending a new message with the timieeofiéxt imminent model or external event. In fact,
each simulation cycle starts with the root coorttin@ending d@, t). After all the (done,t)messages
from the child processors have been received,ndsea(*,t) message and when all the corresponding
(done,t)imessages are sent back again, the simulation figidkes. Only then, the time is updated.

In the scope of the abstract simulator, a messagjenly be considered a straggler if its timestatrip

less than the LVT of the receiving LP. An LP wile lallowed to receive multiple messages with a
timestamp equal to its LVT. The only constrainttthaeeds to be placed is that the two or more events
sent from a source object S to a destination olijestiould preserve the same ordering upon arrvBl. t

Lemma 3
The abstract simulator of Section 4 can not progustaggler message.

Proof

Assume a message with timestampts is sent by a simulation object S to a simulatiofecbD with
timestampty, with ts < tq. Since all messages carry the timestamp of the atioul cycle being executed
it must be the case that the current simulatioecgither corresponds to tinigor to timets.

If it is the first case, i.e. the current cycleimé isty, then the root coordinator has sent a message |with
timestampty And the root coordinator would only send such assage after receiving @one, §)
message from all the components that were actitimat,, and S would have only sent(@one, § upon
finishing its simulation cycle. The fact that has timets < ty is a contradiction, because S could have
never sent a message timestamipadter sending(done, §).

Now, if it is the second case, i.e. the currertl&g time ist, then it is impossible for D to have|a
timestampy < ts because the root coordinator has not yet sent aageswith timestamiy,

Having proved that the abstract simulator of Seclocan not produce a straggler message, then no
synchronization mechanism at the LP level is negtledause the synchronization is provided by the
application itself. However, as it will be seen @t 7, parallel CD++ will be implemented over a
simulation kernel that provides all three synchratibn mechanisms. This will allow future abstract
simulators to take advantage of the TimeWarp paitaad send events in the current simulation cycle
with a timestamp in the future.
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6
CD++

CD++ implements the DEVS theory. It allows to defimodels according to the original DEVS
formalism (Waineret d. 2000, Rodriguez and Wainer 1999). A set of irahejent applications related
with the tool allow the user to have a completdkibdo be applied in the development of simulation
models.

The tool is built as a hierarchy of classes, eddhem related with a simulation entity. Atomic nedsl
can be programmed and incorporated into a basss ¢leerarchy programmed in C++. Coupled and Cell-
DEVS models need not be programmed. The tool pesvid specification language that defines the
model's coupling, including the initial values agxternal events, and the local transition rulesCfell-
DEVS models.
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Figure 14 : CD++ Models and Processors.

This class hierarchy implements the model theaaktdefinition presented in the previous sectionwNe
atomic models must be incorporated to the clasmttRy as subclasses of the Atomic Model class.
Coupled models are defined using a specializedifsgggon language. Following, we explain how to
incorporate atomic and coupled models to be siradlat

6.1 Atomic model definition

A new atomic model is created by including a newasslthat inherits frortomic. In doing so, the
following methods may be overloaded:

« initFunction: this method is invoked when the simulation stdttallows to define initial values and to
execute any initialization procedure for the mod¢hen this method is executed, the valusigfnanext
scheduled event) is set to infinite and the modssp topassie. The sigma variable is used to
implement the duration function: it stores the timeto the next event in the model. This varialsle i
related with the elapsed time value, which is nairgd by an independent simulation mechanism.

« externalFunction this method is invoked when an external evenvesrfrom an input port.

« internalFunction: this method is started when the valuesigimais zero, since an internal event has
occurred.

« outputFunction: this method executes before the internal fun¢tadiowing to provide outputs for the
model.
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After defining these functions, new models canrmmiporated to the modelling class hierarchy. Bmal
the model must be registered using the methtzdnSimulator.registerNewAtons(). The following
primitives can be used in defining the atomic’s eldukhavior:

« holdIn(state, time): a model executing this sentence neithain instateduringtime. When the time is
consumedsigma= 0), the model executes the internal transitidns Tacro was included to make easy
the definition of the duration function.

 passivat@): the model enters in passive moffthase = passiyesigma = infinit§ and it will be
reactivated by an external event.

« sendOutputtime, port, value): it sends an output messagautitr the given port.

- statd): it returns the present model phase.
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7
Parallel CD++

The main goal of this work has been to extend Cinte Parallel CD++, a tool for the simulation of
Parallel DEVS and Parallel Cell-DEVS models onstributed environment. For this to be accomplished
in a modular and portable fashion, a suitable kyerchitecture had to be chosen.

It was decided thaParallel CD++ should be built on top of a modified version of \ad [8]. The
Warped project is an attempt to make a freely atbél simulation kernel for parallel and distributed
environments. Two simulation kernels are curreptigvided for parallel and distributed simulation: a
TimeWarp kernel and a NoTime kernel. The first aimplements the TimeWarp protocol as defined by
Jefferson’s paper [Jeff]; the second is an unsyrthed kernel. In addition, a sequential kernedlso
provided for running standalone simulation. Furtefforts were done at the University of Buenos gire
to develop a conservative kernel [Sull.

For the distributed simulation kernels, Warped Uud&d for the message passing. The complete layered
architecture is shown in Figure 15.

MODEL

Parallel CD++

WARPED

MPI

Figure 15 : Parallel CD++ layered architecture

7.1Warped API

The Warped system is implemented in C++ and ufilibe object oriented capabilities of the language
provide an application interface. It provides beksses for simulation objects (Warped objects3ness
and object’s states. The user creates its owneagijgh by creating new classes that derive fronoties
provided. The benefit of this type of design istttiee end user can redefine functions without diyec
changing the kernel code. Though this interface designed to be used with the TimeWarp protocaol, it
is simple to switch from one kernel to another.urég 16 shows the Warped API.

The Warped kernel presents an interface to thecgtioin that is based on Jefferson’s original paper
TimeWarp. Objects are modeled as entities whicld sl receive events to and from each other, and ac
on these events by applying them to their intestate. Thus, the kernel provides basic functiomgte
application to send and receive events. Sinc&imeWarp protocol requires periodic state savirgafo
potential rollback and recovery process, Warpediges an interface for defining each object’s state
Other facilities the Warped API provides include fiossibility of having user define the data easme

will carry.

In return, the user application must provided saiviemctions to the kernel. The most important fiorc
defines what each simulation object does in eachulsition cycle. Other functions define such thiags
how to initialize and destroy each simulation objec
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class TimeWarp {

/I Methods the user defines
virtual void initialize();

virtual void finalize();

virtual void executeProcess();
BasicState* allocateState();

//Simulation kernel services
void sendEvent (BasicEvent * );
BasicEvent* getEvent();

h
class BasicEvent {
int size;
Vtime sendTime;

Vtime recvTime;

int sender;
int dest;

}
class BasicState {

BasicState* copyState( BasicState*);

Figure 16 : Warped API

7.2An overview of Parallel CD++

Following the original design of CD++, Parallel €D provides an API for users to define new atomic
models. The original CD++ atomic’s model interfagas changed slightly to satisfy the Parallel DEVS
formalism. The new interface allows simultaneousemal events to be handled together, defines a

confluent function and requires the user to gidefinition of a model’s state (Figure 17).

class Atomic {

/I Methods the user should define
Model& internalFunction();

Model& externalFunction (MessageBag&)
Model& outputFunction();

Model& confluentFunction();

ModelState* allocateState();

//Simulation kernel services

void sendOutput ( Port&, BasicMsgValue* );
const Vtime& lastChange();

void holdIn( state, Vtime );

Figure 17 : The Atomic class

In addition, Parallel CD++ provides a way of allogithe user to define the data carried by outpdt an

external events. Originally, in CD++, this was rigséd to real numbers.
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class BasicMsgValue

{
public:
BasicMsgValue();
virtual ~BasicMsgValue();
virtual int valueSize() const;
virtual string asString() const;
virtual BasicMsgValue* clone() const;
BasicMsgValue(const BasicMsgValue& );

I
class RealMsgValue : public BasicMsgValue

public:
RealMsgValue();
RealMsgValue( const Value& val);

Value v;

int valueSize() const;

string asString() const ;
BasicMsgValue* clone() const;
RealMsgValue(const RealMsgValue& );

Figure 18 : The BasicValue class for defining thentents of external and output events.

To run parallel and distributed simulation, it éjuired that the user defines the set of availatalehines
and a model partition. The set of available machimeist be defined as specified by MPI, either gy th
use of procgroup file or by adding the correspogdintries to machines.ARCH. Details on how this is
done are provided in the Parallel CD++ User’s guide

To define the model partition, Parallel CD++ regsithat the user specifies for each atomic modgel th
machine on which it will run. For Cell-DEVS modethe user has to define the location of each aell o
cell-range. This is done through a partition filghich is specified as a command line parameter,
allowing for the definition of different partitiorfer the same model.

Parallel CD++ has been compiled and tested witl,bibte NoTime and TimeWarp kernel. Since the
Parallel DEVS abstract simulator provides a syncization mechanism that guarantees in order
execution of events, the NoTime kernel was adofaethe final release, being this kernel more éffit

in the use of system resources. Still, the possitaf changing the Parallel DEVS abstract simodat
mechanism for exploiting the full capabilities dfiet TimeWarp protocol is left open to further
exploration.

The NoTime kernel can also be compiled to run andalone mode without using MPI. Parallel CD++
supports compilation for standalone execution dt we
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8
Results

The aim of making CD++ to run in parallel is to kaa tool that will reduce the simulation time.
Therefore, the results to be presented in this tehapill show how execution time of different moslel
changes with different configurations. As it wiletseen, it is not always the case that adding more
machines to a simulation will reduce the executione. After a set results were obtained, some
bottlenecks were identified in the master-slavearabssimulator of section 4, and a new one, whwdh

be explained in the next section, was proposed.

The simulations were carried out with the Alphawwrk of the RADS group at the Systems and
Computing Engineering Department of the UniversifyCarleton. The Alpha network consists of 14
Pentium machines with 128Mb of RAM running Red Hiziux 6.2.

Metwork : 134117 64.0 net1: 000-031
Subnet; 255 255255 224 netZ: 032-063
net3: 064-095
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5738
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1-54 62 Eﬁi’:i—__—i alpha-01

64 .94
alpha-11

to

[d_HE alpha-24

g Alpha network (alkha-11 to alpha-24
:"EB.DUEM SW“zhl 6433 Dusl boct NTn_(inLTx e
G f&rggb‘;:ﬂ : Dell Pertium 266 512K cache
P 126MB non-ecc SORAM
= 54.34 r 14/32% IDE CD-ROM
E ﬁﬂ Peta-34 2MB AT Video (integrated)
E 4GB IDEHard Drive

(1P £4.95)

HP 6205 gigakit
Swvitch
(IF: 64.92)

Alpha-01 is & gatewsay machine and
nat used for measurement work.

Gamma Metwark
Dell PowerEdge 6300, Redundant PowerSupply
Quad processars S50MHZ, 512K Cache
1 2MB (4:x128MB) EDO DIMMS
17i40% SC5 CO-ROM
2x9GA T200R0OM SCSI| LYD Disk Drives
17" MST0 monitor, 3.5" 1. 4MB Floppy drive
Twvo Intel Pro 1000 Gigahit MIC
PERC2/C 2% RAID Cortroller (125WB
on Gamma-63, 16MB on Gamma-6E)

Figure 19 : The RADS measurement networks
8.1An extended version of the GPT model

Parallel CD++ was first tested with an extendedsiegr of the Generator-Producer-Transducer model
(GPT). The GPT model simulates a processor reapipdhs and calculates its throughput and load. It
consists of a generator, a queue, a processor arahsducer, as shown in Figure 20. The generator
outputs jobs periodically. When a new job is sénbaigh the out port, it is received by the queut the
transducer. If the queue is empty, the job wilkdtly be forwarded to the processor; otherwise jabe

will be queued till the processor is released. Winenprocessor finishes a job it sends it througlout

port to the transducer and the queue. If the queasejobs waiting, it will send the next job to the
processor; the transducer will compute the turnadotime and update the throughput and cpu usage
values, which it will output periodically.

40



Parallel DEVS and Cell-DEVS models — Alejandro Toalc
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Figure 20 : The GPT model

The definition of this model for Parallel CD++ isoswvn in Figure 21.

00 [top]

01 components : Queue@queue Processor@CPU Transduce r@transducer Generator@generator
02 Out : throughput

03 Out : cpuusage

04 Link : out@generator arrived@transducer
05 Link : out@generator in@queue

06 Link : out@queue in@processor

07 Link : out@processor done@queue

08 Link : out@processor solved@transducer
09 Link : throughput@transducer throughput
10 Link : cpuusage@transducer cpuusage

Figure 21 : Definition of the GPT model

The extended version of the GPT model consisteweéml copies of the GPT model just shown. Tests
were conducted with 12, 48 and 96 copies, runnimg.do 12 machines. The results of running this
model are shown in Figure 22. All random varialllest were present in the model definition were
eliminated to obtain comparable results.

Running time for the GPT model

120
100
80

—e— 12 Copies
—— 48 Copies

- }—H""/-;./-/././. 96 copies
20 - — o——°

Number of machines

Time (sec)
(2]
o
\
[

Figure 22 : Execution time in seconds of 12, 48296 copies

As it can be seen, the execution times for thisehddl not behave as expected. As more machines are
added, the execution time increases. To deterrhmeaduses for such a behavior further tests were
conducted. To verify if the communications overheas being the cause for such an increase in the
running time, the model was rewritten to includdetay in the external function. This would incretise
computing time at each simulation cycle. If the paiting time for a simulation cycle is greater the
communications overhead, then it is expected tthding more machines will reduce the overall
simulation time. The new results, that do confihis hypothesis, are shown in Figure 23.
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Running time for the GPT model with delays
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Figure 23 : Execution time in seconds of 12, 48,896 copies of the GPT model with delays on 1 to
12 machines, for a simulation virtual time of 10 mites. Results show the minimum time of three runs
independent runs.

8.2 A heat diffusion model

Parallel CD++ was also tested with a heat diffasimdel. In this model, a surface is represented 59

x 50 cellular automaton, each cell containing aperature. In each simulation cycle, the temperatfiee

cell is updated to the average of the values ohttighborhood. In addition, a heat generator is\eoted

to the cells (25, 25) and (10, 10), generating &nmaures in the range [24, 40] with uniform diaftibn.
Also, a cold generator that creates temperaturéiseimange [10, 15] with uniform distribution, Hasen
connected to the cells (10, 40) and (40, 40). Bygherators create values afteseconds, where
follows an exponential distribution with mean 5Cmeds. When any of the generators outputs a new
value, the cell to which it is connected will tatteat value. For testing purposes, the random number
generators were disabled to obtain comparabletsesul

The definition of the model using the language med by the tool is showed in Figure 24. The top
model and its components are defined between linesd 4. Between lines 6 and 26, the model
representing the surface is defined. It is compaxfed cellular automata of 50x50 cells with aniaiit
temperature of 24° C. In the lines 28 and 29 thalltransition function is defined.

Lines 31 and 32 define the transition function upeceiving an external event from the heat gengrato
and lines 34 and 35 for transition triggered byeexdl events coming from the cold generator. LBig$o
47 define the distribution parameters for the gatuoes.

01 [top]

02 components : surface generatorHeat@Generator g eneratorCold@generator
03 link : out@generatorHeat inputHeat@surface
04 link : out@generatorCold inputCold@surface
05

06 [surface]

07 type : cell

08 width : 50

09 height : 50

10 delay : transport

11 defaultDelayTime : 100

12 border : wrapped

13 neighbors : surface(-1,-1) surface(-1,0) surfa ce(-1,1)
14 neighbors : surface(0,-1) surface(0,0) surfa ce(0,1)
15 neighbors : surface(1,-1) surface(1,0) surfa ce(1,1)

16 initialvalue : 24

17 in:inputHeat inputCold

18 link : inputHeat in@surface(25,25)

19 link : inputHeat in@surface(10,10)

20 link : inputCold in@surface(40,40)

21 link : inputCold in@surface(10,40)

22 localtransition : heat-rule

23 portinTransition : in@surface(25,25) setHeat
24 portinTransition : in@surface(10,10) setHeat
25 portinTransition : in@surface(40,40) setCold
26 portinTransition : in@surface(10,40) setCold
27

28 [heat-rule]

29 rule:{((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1)+(0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 1000 o{t}
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30

31 [setHeat]

32 rule : { uniform(24,40) } 1000 { t}
33

34 [setCold]

35 rule : { uniform(-10,15) } 1000 { t }
36

37 [generatorHeat]

38 distribution : exponential

39 mean: 50

40 initial : 1

41 increment: 0

42

43 [generatorCold]

44 distribution : exponential

45 mean : 50

46 initial : 1

47 increment: 0

Figure 24 : Definition of the heat diffusion model

Figure 25 shows a model patrtition for running tieat diffusion model on 4 machines. There ared tot

of 252 simulators that have to be assigned to 4 CRlihe 1 defines the location for the simulators
associated to the generatorHeat and generator@miticamodels. Lines 2 to 5 set where the simulators
for the cells of the surface model will be running.

01
02
03
04
05

: generatorHeat generatorCold
: surface(0,0)..(24,24)

: surface(25,0)..(49,24)

: surface(0,25)..(24,49)

: surface(25,25)..(49,49)

wWNEFR OO

Figure 25 : A model partition for 4 processors

The heat diffusion model was run on 1, 2, 4 anda&hines, for a virtual time of 2 minutes and using
quantum values of 0.001, 0.01 and 0.1.

Heat diffusion model 50 x 50

250
200

- ——1
@ 150 A —m—2
£ 100 - 4
[

50 8

0 :

No quantum 0.001 0.01 0.1

Quantum used

Figure 26 : Simulation execution time (secondsy fine heat diffusion model
The graph shows that:

» Asthe quantum is increased there is a reductidherexecution time.
* When the same quantum is used, adding more maathirgssnot reduce the simulation time.

The results shown in Figure 26 were rearrangadisfplay the number of machines in the X axis ard th
new graph is shown in Figure 27. It is clear tlet, more machines are added, the execution time
increases. When this behavior was observed foextended GPT model, adding a delay to the external
transition function produced the expected resuits. cellular models, another way of increasing the
computing load is to increase the model size. ohihat diffusion model was rewritten as a 100x100
cellular model to asses if the execution time wdudthave differently. The results are shown in Fégu
28.
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Heat diffusion model 50 x 50
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Figure 27: Simulation execution time for a 50x5Ceht diffusion model.

Heat diffusion model 100 x 100
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Figure 28: Simulation time for a 100x100 heat difSion model

The 100 x 100 cellular model showed a differentawédr. Taking for instance, the executions without
guantum, it can be observed that the smallest ¢oectime was achieved with 4 machines. The
execution time for 2 machines was the greatest,usimtty 8 machines the performance was worse than
using 4.

After these results, the abstract simulator ofisact was studied thoroughly to determine the cafise
such a behavior, specially for the time increasseoled from 4 machines to 8 machines. As a retht,
revised abstract simulator that is described im#aa section was obtained.
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9
A revised abstract simulator.

For cellular models, there is an invariant thahdependent of the abstract simulator being useding
more machines to a simulation increases the nuwibeglls that have a neighbor running in a différen
logical process, as shown in Figure 29.

#Machines #Cells

1 0

2 698
4 890
8 1274

Figure 29: Number of cells with remote neighbors
when different partitions are used.

When a cell sends an output, this value has tmbeafded to all neighbor cells, which can be lowal
remote. For remote cells, a message through theorleis required. The abstract simulator of section
though well suited for dealing efficiently with@ , t) (* , t) and (Done , t)messages, does not handle
(y, t)messagesvery efficiently. In fact, when a slave coordinatetermines that &y , t ) message
should be sent as (aq , t ) message to a model that is running on a differegicél process, it just
forwards the( y , t ) message to the master coordinator who will thewdod it to the corresponding
recipients. Thus, an output message will whosel fieeipient is a logical process that is not the on
running the master coordinator, will make to hopse from the originating slave coordinator to the
master coordinator, and a second one from the mastedinator to the final slave recipient. Figug®
shows how an output message from cell (25,0) iwdaded to cell (25,49). The dashed lines represent
messages sent over the network.

Coordinator 0
(master

2:(0) XN, 3@
// \4

Coordinator 3

T 1 () 4: (.0 l

(25,0) (25,49)

Coordinator 1

Figure 30 : Master - Slave coordinator output releng.
This way of relaying messages between logical mse®has a negative impact on:

e The master coordinator, who receives all outputsagss, even those that are not addressed to his
logical process.

e The number of messages being sent over the netwdrich is almost doubled due to message
relaying.

From the numbers in Figure 29, it can be seenftlia®8 machines, if all cells have an output todsdre
master coordinator for the coupled cellular mod#ll ieceive 1274 messages. All but one eight okéhe
output messages will then be forwarded to a diffelegical process.

To reduce this overhead, a different approach eanaken. When a slave coordinator has an output
message to a remote model, it could send it dirdotithe recipient’s parent coordinator, withouirgp
through the master coordinator. In this way, thayieg is avoided, as shown in Figure 31.
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Coordinator 0
(master
2:(y.p)
Coordinatorl | === ==~ > Coordinator 3
3:(a.)
T 1:(y.h) l
(25,0) (25,49)

Figure 31: Revised output relaying.

Though simple as it may seem, this new way of ietaynessages requires a complete new abstract
simulator because it is not enough to change theougput messages are handled.

Section 4 mentions that there are three stages tmimpleted when a component is imminent:

1. A(@,t)is sentto allimminent components.

2. All imminent components send their outptg, t ) which are sorted int¢ g, t) messages. Now, all
those components that receiveficg t) are also imminent.

3. A(*,t)issentto allimminent components.

When centralized relaying of messages is usedméster coordinator has complete knowledge of who
the active slave coordinators are (these are thedswtor that should received tffe, t ) message ). In
Figure 30, the master coordinator knows that d@dinator 3 will be imminent and should receivg a

t). Instead, when distributed relaying is used, thetaracoordinator does no longer know who the active
slave coordinators are. As Figure 31, the masterdinator does not know coordinator 3 has receared
output message. If coordinator 3 had not receivdd@, t ), then the master coordinator would not
coordinator 3 is how imminent.

The solution to this problem is to have the mastmrdinator send &* , t ) to all slave coordinators.
Those that are not imminent would just respond wi(Bone, t") doing nothing else. This would work if
the message passing interface (MPI) would guarahigteall messages are delivered in the same order
they are sent. But unfortunately, this is not s@?IMan guarantee that if two messages are sent from
logical process 1 to logical process 2, they wilive in the same order they were sent. But if two
messages are sent from logical process 1 to logitaless 2, and a third message is sent from logica
process 1 to logical process 3, there is no gueeathtose two first messages will arrive beforethtiel

one. This can lead to a special situation wefé at ) is received before @y , t ) message as shown in
Figure 32.

In Figure 32, coordinator 1 first sendgyst) message to coordinator 3 and thefdane, t)message to
coordinator 0. However, th@one, tymessages received before and so the master coordinatwissa
(done, t)and receives &t) that is forwarded to coordinator 1 and 3. Coordin&t can receive thé,t)
message before th@,t) message, producing incorrect results. The probleme lis that there is no
knowledge of when all the sorting of output messages concluded. The abstract simulator of sedtion
did not have this problem because all output messdg remote models went through the master
coordinator. Since the master coordinator always/doded all outputs before sendind*st) message,
and because MPI guarantees that messages betwedagieal process are received in the same order
they were sent, the problem was avoid.

A correct abstract simulator would delay {dene, t)messages (number 3 in Figure 30) until all outputs
have been received. A first approach might leathdeing a coordinator acknowledge(\at), but this
again, leads to an enormous number of messages sih
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4: (done,% l 5: (*,1)

Coordinator 0 -
~ 6: (*.t
3: (done.t) , (master ~ . (*1)
Ve ~
7 S o
2:(y.1) a
Coordinator1 | == == — = > 2:(y.t) (7) Coordinator 3
—————— >
T 1 (y.b)
(25,0) (25,49)

Figure 32: A (*,t) message is received before a)(yjnessage
Instead, the following approach will be taken:

1. When a master coordinator receiveS@, t ) it will forward it to all its slave coordinatorsshether
they are imminent or not.

2. When a slave coordinator receiveE@, t ),it will send all of its( y, t )to the other coordinators.

3. After a slave coordinator has sent all the t ) a new( $, t ) message will be sent to all the other
coordinators (except to the master). This new ngessealled output synchronization, is a way of
telling the other coordinators that no more outpessages will be sent.

4. After a slave coordinator has sent all(it, t ) messages and received (h®, t ) messages from the
other coordinators, @one, timessage will be sent.

In this way, when the master coordinator receiiethea(done, t) a(*, t) message can be safely sent.

8.3A measure of model parallelism

To have a better understanding of the factorsabatribute to a reduction of a model’s simulationet

as more machines are used, a measure of a modtldeparallelism was developed. Basically, this
measure should have its greatest value when ath@fmachines have the same load, i.e. there is
simultaneous execution, and its least value whethalsimulation is done by only one of the avdiab
machines.

In Parallel DEVS, one way to determine how muclivagtthere is on each simulation cycle is to count
the number of receive@l*, t ) messages. If in addition this information is obégirfor each logical
process at each simulation cycle, a clear pictéifgowr much activity is taking place can be drawheT
expression

Count( LRym 1)
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will be used to denote the number Ef, t ) messages received by LP numbBy,,,during the simulation
cycle at time.

But counting the messages by itself does not dieesort of measure being sought, it just gives the
number of messages. For a better measure, it eassumed that the processing of e@tht ) will
require the same computing time. Then, assumirgaishomogeneous network, the execution time for
each simulation cycle will be given by

CycleTimét) = Max™e™**(Coun{(LP,t))

That is to say, the execution time of a simulatiycle will be equal to the time it takes the LPttha
receives the highest number(of, t ). Knowing the cycle time, the CPU usage at each lrPbeaobtained
by dividing the used time by the cycle time, whislgiven by

_ Coun(LP,,,t)

UsagdLP, 1) = -
9L t) CycleTimét)

The LP with the maximum number of messages wilehawsage measure of 1. If all the LPs receive the
same number of *, t ) messages then all LPs will have a CPU usage ofeihghthis the case of
maximum parallelism. All LP’'s CPU usage measures loa averaged to give a measure for the whole
system. This measure will depend on two factoesntiedel and its partition. For maximum paralleligm

be achieved the model has to be partitioned in yathat all LPs will have an equal number of active
models. For some models, such a partition migtgtekiut for some others, it might not. Most prolyabl
the load of each LP will vary with time. Model pg#ans in Parallel CD++ are static.

This measure was used with the heat diffusion mads results are shown in figure 26. As it is shpw
the parallelism for the execution without quantusn keeps over 0.88 for all partitions, but falls
considerably when a quantum is used. This helpsxpdain why for the execution using quantization
adding more machines did not reduce the executibe. tAdding more machines does not necessarily
mean that there will more simultaneous execution.

As a subproduct, the total number of * messages dianing the whole was calculated. The results are
shown in figure 27. Here it is interesting to seattusing quantization does indeed reduce the nuofbe
messages sent. For a discussion on quantizatioa éomplete, it remains to analyze the error iregiin
each case, but that is not within the scope ofwtioisk.

Last, the evolution of the level of parallelismdbgh the whole execution time is shown for the heat
diffusion model when 2, 4 and 8 LPs are used. Eidi8 shows the results for the execution without
quantization and figure 29 shows the results whemantum of 1 is used. In the first case, the |efel
parallelism increases steadily till it reaches lu@aear to 1 at time 20 sec. On the other hamrdetrel of
parallelism is constantly changing.
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# Machines No quantum Q=01 Q=05 Q=1
1 1,00 1,00 1,00 1,00
2 0,95 0,68 0,71 0,70
4 0,93 0,58 0,62 0,62
8 0,88 0,47 0,49 0,48

Parallelism
1,20
1,00 A
No quantum

o 0,80 Q=01
§ 0,60 ——Q=05

0,40 —¥—Q=1

0,20

0,00

1 2 3 4
#Machines

Figure 26 : Parallelism of the heat diffusion modeWith and without quantum

# Machines No quantum Q=01 Q=05 Q=1
1 107148 17920 12357 11649
2 107201 17964 12409 11689
4 107307 18057 12486 11766
8 107522 18206 12637 11908

Figure 27 : Number of * messages sent when executime heat diffusion model with
and without quantum

Evolution of parellelism without quantum
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Figure 28 : Evolution of the parallelism for the hat diffusion model
when no quantum is used. Results shown correspond éxecution on
2,4 and 8 LPs.
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Evolution of Parallelism with a quantum of 1
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Figure 29 : Evolution of the parallelism for the hat diffusion model
when a quantum of 1 is used. Results shown corregmbto execution on

2,4 and 8 LPs.
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9
A flow-injection Cell-DEVS model

In this section, a Cell-DEVS model for a flow-injen system will be presented. This model has been
developed together with people working at the Latmio de Andlisis de Trazas — Facultad de Ciencias
Exactas y Naturales — Universidad de Buenos Aires.

9.1Flow injection analysis

Flow-injection methods are analytical methods usedutomated sample analysis of liquid samples In
flow injection analyser, a small, fixed volume ofiguid sample is injected as a discrete zone uaimg
injection device into a liquid carrier which flovilsrough a narrow tube. As a result of convectiothat
beginning, and later of axial and radial diffusiahjs sample is progressively dispersed into Hreier as

it is transported along the tube. The additionezgents at different confluence points (which mithw
the sample as a result of radial dispersion) preslueactive or detectable species which can beddns
flow-through detection devices. Figure 33 presargsnple flow-injection apparatus.

P

A

B —
==

Figure 33 : A FIA manifold.

This device (called a FIA manifold) consists ofaigtaltic pump (P) that adds carrier solution {#p a
valve (1) that connects to a tube called a rea@@). At the end of the tube a detector is placesense
a specific property of the flowing solution. Thelwacan be turned to allow the flow of the samBé (
into the reactor. The sample is held in the loognd when the valve is rotated its contents flow ihie
reactor, where chemical activity will usually talace between the sample and the carrier solufisra
result, a change will be observed in the signatlpeed by D, making it possible to quantify the skmp
after comparing the results with those obtaineé@rxywn samples.

In a Fl system convective transport yields a pdiabelocity profile with molecules at the tube Vgl
having speed zero and those at the center haviigg tihe average velocity. At the same time, the
presence of concentration gradients develops axidlradial diffusion of sample molecules. It hasrbe
reported that in FI systems of practical interagtal molecular diffusion has almost no influenoetlie
overall dispersion, but radial diffusion is the mabntributor. For a pump proving a net flowcpfnl/min

in a coil of radiusa, the average flow velocity is given by:

q

Va = m (Equation 1)

At a point at distancefrom the center, the flow velocity is described by:

51



Parallel DEVS and Cell-DEVS models — Alejandro Tmic

2
v(r) =201, [El—%] (Equation 2)

As mentioned in [1], it is very difficult, if notmpossible, to correlate the experimentally obtained
response curve with the actual spatial mass digtoib of the system. This is a consequence of the
selected method of measurement, which fixes spatiad temporally the point of detection. Undersine
circumstances, any event occurred before the datepbint is inferred from the response curve peofi
Therefore, this detection approach is a powerfol for predicting response curves, but ignores the
processes leading to the generation of such respdmgl] a method for continuously monitoring a Fl
system was proposed. A Fl system using nitric asidhe carrier solution, water as the injected $amp
and a digital conductimeter with a couple of wiat$oth ends of the carrier stream detector wag tese
follow the radial mass distribution of the sampdme.

(p) i 1\ P
0.8 M F

i I 1

HNOS::__ .....l - - l.....:
DYy e |— |——ov-— |- -

b s

Ul w

o
Figure 34 : FIA manifold for continuously monitoing. P = pump; | = loop; L = reactor; W=waste; A,

B = detection points. Punctual detection: suitaldetector in point B; integrated detection: Pt wires
located at points A-B. [1]

When the water sample is injected, it acts as ekiolg disc, and no electric conductance is measued
convective transport and diffusion gradient forttesswater sample to be released from the wallssingu
a reduction of the blocking area and allowing eleaturrent to flow, conductivity values differefiom
zero are measured. Figure 35 shows the chardt@amductivity curve obtained by such a system.

Restored conductivity

1.0

0.8

0.6

0.4

0.2

0.0 T T T T
0 10 20 30 40

Tirne (&)

Figure 35 : Characteristic conductivity curve [1]

9.2A Cell-DEVS model for flow-injection

As mentioned, it is impossible to analyze the dedabehavior of the changes in the mass distributio
profile. Therefore, we decided to build a Cell-DEY®del describing the integrated conductivity flow
injection system (ICM) in detail. In this way, th@ernal complex behavior can be analyzed by shglyi
the simulated results. The ICM system consists 0f025 cm radius tube, a 10.75 cm loop and a 9,25
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reactor coil . We assumed the total tube lengttheftube to be of 20cm. For this system, a celtsmd
25 rows and 200 columns was defined, each celesgmting a 0.001 x 0.1cm of a half tube sectiom Ro
0 represents the center of the tube and row 24dhbton of the tube touching its walls and the gaifi
each cell will represent the nitric acid concenbrat

Tube wall

Row 24

Center Row 0

Tube wall

Figure 36 : Correspondence between the cell-spand the actual tube

Figure 36 shows in light gray a tube section re@néing a cell. This is a longitudinal cut of tiee. The
final aim is to build a 3 dimensional space repnéag a cylindrical section of the tube, but institiase
each cell represent a flat section.

To deal with convective transport and radial difumsat the same time, the model reacts in two ghase
transport and diffusion. The local computing fuantisimulates the transport phase, and all cells are
connected to an external generator sending an edgaoh triggers the diffusion phase. The modelustb

as a coupled DEVS model with two components: a-BENVS (namedia) representing the tube, and an
atomic model (namedenerato}. The generator has one output porff to send the diffusion triggering
event. This port is mapped to thdfuseinput port of thefia model (line 2). This means all ouput events
sent through theut port will be received as external events byftaenodel through thdiffuseport.

00 [Top]

01 components : fia generator@ConstGenerator
02 link : out@generator diffuse@fia

03

04 [generator]

05 frecuency : 00:00:00:014

Figure 37 : Components of the DEVS model

The frequency of diffuse events is defined by EigmaB. This equation computes the the characteristi
distance a particle of a given solution of diffusimefficientc will travel in dt seconds.

ds=+/2[¢ [dlt (Equation 3)

Solving the equation faz = 3,5 x 10°° cm/s andds= 0.001 cm, we obtain @t of 14ms. We used for the
dsvalue the cell height to find out how long it wdubke for two cells to diffuse homogeneously. itk d
not take into account the cell width because aiffiision can be ignored.

05 [fia]

06 in : diffuse

07 width : 200

08 height : 25

09 delay : inertial

10 border : nowrapped

11 neighbors : fia(-1,-1) fia(-1,0) fia(-1,1)
12 neighbors : fia(0,-1) fia(0,0) fia(0,1)
13 neighbors : fia(1,-1) fia(1,0) fia(1,1)
14 localtransition : transport

Figure 38 : Definition of the FIA coupled cell moel

Figure 38 shows the definition of the parameterstfie coupled Cell-DEVSia. Line 6 defines the
diffuseinput port, and lines 7 and 8 define the cell spdicgensions. Line 9 sets the cell delay type to
inertial. An inertial delay cell that has a schedufuture valué will preempt this value if upon receiving
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an external event and evaluating the local trassitules a new future valdgwith f # f;,is obtained. In
this case, f; will be scheduled as the future value with a gidefayd. Line 10 defines non-wrapped
borders and lines 11 to 13 define a cell’'s neighbod shape. Finally, line 14 defines the sets dleall
transition function rules, which is defined in Figu39.

18 [transport]

19 rule: {(0,-1) }{0.1/(22.57878 * (1 - pow er( cellPos(0) * 0.001 + 0.0005 , 2)
/0.000625 )) * 1000 } { cellpos(1) =0}
20rule:{0.8}{0.1/(22.57878 * (1 - power( cellPos(0) * 0.001 + 0.0005 , 2) /

0.000625 )) * 1000 } { cellpos(1) = 0 }

Figure 39 : The local transition rules

The convective transport has been arbitrarly bedimeld in the direction of increasing column valuss
that in visual representations the carrier willseen flowing from left to right. Being this the eas local
transition rule for the transport phase shouldasetll’s value to the current value of its (0,-Eighbor
cell. The rate at which this is done depends onviiecity of the flow at the cell, which, as memisal
before, has its maximum at the centre of the tuloedecreases towards its walls. This is statebarfitst
transport rule in line 19. As mentioned in sectiym local transition rule has three componentsjae, a
delay and a condition. For this rule, this compdsame:

Value: {(,-1)} /[The value of the cell’s left neighb or

Del ay: {0.1/(22.57878 * ( 1 - power( cellPos(0) * 0 .001 + 0.0005, 2)
/0.000625 )) * 1000 }

Condition: {cellpos(1) =0}

The delay is calculated using equations 1 and 2.aFpump with a constant flow of 1,33ml/min, the
average velocity is 11,29 cm/s. This value canuistituted in equation 2 and multiplied by 2 tolgithe
number 22.57878 shown in the delay expressioradtfition, for equation 2 to be solved, we also need
know the distance to the center of the tube. NCPprovides a built in function calleckllposthat returns

a requested coordinate of the cell whose valuesisgbsought. For a 2 dimensional modwd|ipos(0)
returns the cell’s row. Consequently,

cellPos(0) * 0.001 + 0.0005
is the distance of the centre of the cell to th&treeof the tube and therefore,
(22.57878 * ( 1 - power( cellPos(0) * 0.001 + 0.00 05, 2) / 0.000625 ))

is the solution to equation 2, far= 0.025 cm. Having the velocity of flow(r), the delay will be the time
in milliseconds for a particle moving at spedgd cm/s to travel across a 0.1 cm cell. This timeivgig
by the expression

0.1/ v(r) * 1000

concluding our explanation for the delay comporadrthe rule.

The generic rule we have just given is only vatid dll cells that have a valid (0,-1) neighbor. Téaf
border cells (those in column 0) do not satisfys threrequisite, stated in the condition component
cellpos(1) 1= 0, and should therefore have a different rule.

The rule in line 20 is the rule for the left bordmlls. It simply states that for these cells tleevrvalue
should be 0.8, which corresponds to the conceatratf the carrier solution being pumped into tHeetu

Table 1 shows the results of applying equation 2aloulate the delays for each row. It is impatrtan
notice that some adjacent rows have different deddiyes, as is the case of rows 2 and 3. This nhéglat
to the presumption that the convective transpdnali®r will not be preserved due to an early pretonp
a cell's scheduled future value. This is not theecas we will show.
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Row Delay (ms) Row Delay (ms)
0 4 13 6
1 4 14 7
2 4 15 7
3 5 16 8
4 5 17 9
5 5 18 10
6 5 19 11
7 5 20 14
8 5 21 17
9 5 22 23

10 5 23 38
11 6 24 112
12 6

Table 1 — Calculated delays for each row

When the simulation starts at time 0, all cellsl wilaluate their local transition functions and esdle
their next change. A cell in row 2 will schedule iaternal transition at time t = 4ms and a celranv
three att = 5ms. So at time t = 4ms, all celleoiw 2 will send an output event to their neighbdslls in
row 3 will receive this event and evaluate the ldcansition function, which says they should take
value of their left neighbor. But their left neighthas not changed yet, so the new value will bestime
as the previoufuture value Therefore, they will keep their scheduled intétr@nsition for t = 5 ms. At
this time, all cells in row 2 with a scheduled mi& transition will send their new value to their
neighbors. A row 2 cell receiving a new value frivgneft neighbor will again evaluate its localrtsition
function, but this time the delay has already eegbiand there is nfuture valuescheduled, so the result
of this evaluation will be scheduled as fheure valuefor time t = 10 ms.

Figure 40 shows the radial diffusion rules. Faed with valid top and bottom neighbors, the dfion
rule states that the new cell value will be therage of the three cells. This is the case of theiruline
22. A delay of 1 ms was chosen. Though a 0 ms detayld be more appropriate, this is still not
supported in the version of NCD++ for which the mbdas written. A new version that implements the
Parallel Cell-DEVS formalism has been recentlydivad, and is currently being tested. This versidh w
allow 0 time delays. The other three rules in lig8sand 24 cover the special case of top and baedks:
These cells do not have both, a valid top and botteighbor so instead of using three cells to olitzé
average, only two are used.

21 [diffusion]

22 rule : { ((-1,0) + (0,0) + (1,0)) / 3} 1 { cell pos(0) !'= 0 AND cellpos(0) != 24 }
23 rule : { ((-1,0) + (0,0)) / 2} 1 { cellpos(0) ! =0 AND cellpos(0) = 24 }

24 rule : { ((0,0) + (1,0))/2}1 { cellpos(0) = 0 AND cellpos(0) != 24}

Figure 40 : Radial diffusion rules.

So far we have shown the diffusion rule, but weehast yet defined that this ruled should be eveliat
when an external event is received throughdifieiseinput port. Figure 41 shows the statements that
link the fia modeldiffuseinput port to a cell'dliffuseinput port (line 27) and set the diffusion ruleb®
evaluated upon the arrival of an external everttutgh this port (line 28).
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[fia]
27 link : diffuse diffuse@fia(x,y)
28 PortInTransition : diffuse@fia(x,y) diffusion

Figure 41 : External coupling of the FIA Cell-DEVSnodel.

9.3Simulation results

The described model was run for 10s and the sfatieeowhole cell space was logged every 100ms. A
graphical representation of the model at fiveaddht stages is shown in Figure 42. The loggedltees
were also used to draw the conductivity curve.

To obtain the conductivity of the whole system, dveided the cell space in axial segments, calcdlate
the resistance of each, and assumed the wholdamsisto be the result of combining all segments in
serial mode. We took each segment to be a colunoelisfand calculated its resistance using equdtion

[ UERES

Figure 42 : Different execution stages of the Fithodel. (1) At time 0 the sample (white), has been
injected. The other half of the tube contains tharder solution (dark gray). (2,3,4) The convective
transport makes the sample disperse faster at thedbe of the tube than near the walls. (5) The wao
tube now contains the carrier solution only.

-1
199 24 1

Rota = z z I (Equation 4)

columr=0\ rows0 Rcell(row,col)

To calculate the resistance, equation 5, which gyitlee conductivity of each cell, was used. The
resistance of a cell can be obtained by calculatieginverse of the conductivity. All values areolum,
being the concentration of nitric acid the one trates from cell to cell.

Area:ell

+G,,=——— HNO tion 5
! RceII e "o Lengtnell ( e [u 3]) (Equa on )
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Restored conductivity
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Figure 43 : Conductivity curve obtained

Figure 43 shows the conductivity curve obtaineat. FHIS example the curve is quite similar to thistf
part of the measured curve. It is a good startimigtgo simulate the whole FIA manifold.
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10
Conclusions and further developments

An abstract simulator for distributed Parallel DE\A8d Cell-DEVS has been presented. Distributed
environments have a communications overhead thmbeaquite significant and that was not taken into
account in previous works, which assumed paraiteligtion on a shared-memory system. The extension
of the Parallel-DEVS abstract simulator here presgbReeps to a minimum the number of messages sent
across machines. This was possible by assigning eagpled model onmaster coordinatoand zero,

one or moreslave coordinatorsMessages that have to cross a processor boundarghasays sent
betweenmaster and slave coordinators, which then forward the received messages to tlusal
dependants.

This mechanism was implemented into Parallel CDa+tqol for running these models on a network of
computers. Several tests were done to measuredicaiteon time of a model on different configuratioin
machines. It was expected that a simulation onstildlited environment would take less time as more
machines are used, but this was not always the galstng more machines to the simulation does reduc
the execution time if there is simultaneous executnd if each simulation cycle takes a significant
computing time that will compensate for the ovethdae to messages being sent across the network. A
model’s level of parallelism was measured througfiven formula that evaluated the amount of agtivit
on each LP at every simulation cycle. Through thesasure, it was shown that those simulations which
experienced a reduction in the simulation time asremmachines were added had a high level of
parallelism.

Finally, a flow injection model using Cell-DEVS wasesented. This model is still being developed and
Parallel CD++ will be required for a simulation affull scale scenario which consists of more than
50,000 thousand cells.

There are quite a few topics for further research:

* A new abstract simulator that will allow for out ofder execution of events. The current
abstract simulator forces all LPs to run at the esartual time. This constraint may reduce the
parallelism. A new abstract simulator may simplifiyis constraint and allow for better
performance. For this new mechanism the Warped Warp kernel will be required. The
TimeWarp protocol by itself has a lot of performarimprovements options which will affect
DEVS and Cell-DEVS simulation on different ways.eBk should be also studied.

e Parallel CD++ requires the model partition to bdirdsl before the simulation is run. If a
partition is not chosen wisely, the load may tuut to be unbalanced among the available
machines. A dynamic load balance mechanism mighinfdemented to allow for run-time
balancing of the load.

e Though most of CD++ has been changed to obtainllPa@D++, the Cell-DEVS rule
evaluation mechanism has been left unmodified. & meschanism should now contemplate the
new timing constraints presented in Wai00.
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