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1. Introduction

Formal specification mechanisms are useful in improv-
ing the security and development costs of complex
systems’ computer simulations. A formal conceptual
model can be validated, improving the error detection
process and reducing testing time. Several modeling
paradigms specify dynamic systems formally. Some
of them were developed to analyze Discrete Event
Dynamic Systems (DEDS), that is, systems with dis-
crete state space and piecewise constant input-output
trajectories. Many of the DEDS paradigms ignore the
occurrence times of the events, leading to the so-called
logical DEDS models. These models are used to solve
problems in which only the order of the events must
be considered.

In recent years, the number of artificial systems that
can be represented as DEDS has grown dramatically.
Due to their complex characteristics, the simulation
models should be able to record timing information.
We need methodologies to specify timed models, which
represent the occurrence dates of the events in the
system. The DEVS formalism, proposed in [1], allows
this kind of specification. In this paradigm, the model’s
timing is described as a lifetime for each state value.
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In digital circuit modeling, some constructions de-
fine delays that can be associated with functional com-
ponents [2]. This approach allows the modelers to de-
scribe complex timing behavior without knowing the
simulation mechanism of the delays. The modeler de-
scription is only based on an interconnection of basic
functions and different delays. The delay functions are
not only useful in hardware design applications, but
also to model other physical phenomena. Three kinds
of delays are usually employed: transport, rise-fall and
inertial. The behavior of transport delays allows one to
reflect the straightforward propagation of signals over
lines of infinite bandwidth (anticipatory semantics).
Rise-fall delays allow one to model different kinds of
delays for rise and fall signals, considering a finite band-
width of the real system. Inertial delays use a preemp-
tive semantics to represent that a quantity of energy
should be provided to the system to change its state.

The present work deals with the modelling and
simulation of cellular models. These systems are usu-
ally described using Cellular Automata [3], that is,
n-dimensional infinite lattices of discrete-time cells.
Each cell uses discrete values that change according to
a local function. This is computed using the present
value of the cell and a finite set of neighbors. The use
of such a discrete time base poses constraints in the
precision and execution performance of these models;
to achieve better timing precision, the processor is
overloaded.

DEVS, a discrete event paradigm, avoids these prob-
lems. It also allows modular description of the model’s
behavior, which is encapsulated in the model defini-
tion. Every interaction is done through input/output
ports related with functions that are local to the model.
The quantitative complexity is attacked using a hier-
archical approach. This means that a model can be sub-
divided into models of lower levels of abstraction. Like-
wise, different models can be integrated into higher-
level ones, leading to productivity improvements.

Timed Cell-DEVS [4, 5] integrates these points of
view. Cellular models can be easily built, improving
their execution speed and precision by using a discrete
event paradigm. Their timing definition is enhanced
using delay functions. Different delays can be speci-
fied, and this can be done in a simple fashion, besides
the quantitative and qualitative complexity of the ma-
nipulated models.

2. Background

As stated in the previous section, the use of a modeling
formalism eases the development of simulations. A
formal paradigm should capture the system dynamics,
allowing one to model its temporal behavior. The for-
mal specifications should be able to be translated into
an executable model. In this way, the behavior of a con-
ceptual model can be validated against the real system,
and the response of the executable model can be veri-
fied against the conceptual specification. A decompo-

sition mechanism should be provided to reflect the
hierarchical nature of most physical phenomena.

DEVS (Discrete EVent systems Specification) meets
these goals [1, 6, 7]. A real system modeled with this
paradigm can be described as several submodels cou-
pled into a hierarchy. Each model can be behavioral
(atomic) or structural (coupled), consisting of a time
base, inputs, states, outputs and functions to compute
the next states and outputs. The models can be hierar-
chically integrated, allowing model reuse. A DEVS
atomic model is described as:

M = < I, X, S, Y, δint , δext , λ , D >

Here, I is the model’s interface, X is the input events
set, S is the state set, and Y is the output events set.
There are also several functions: δint manages internal
transitions, δext external transitions, λ the outputs, and
D the elapsed time. The basic idea is that each model
uses input/output ports in the interface to communi-
cate with other models. The input external events are
received in input ports, activating an external transition
function. Every state has an associated lifetime, after
which the internal transition function is activated.
These internal events also produce state changes, whose
results are transmitted through the output ports.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, { M i }, { I i }, {Z i j }, select >

Here, I is the model’s interface, X is the set of input
events, and Y is the set of output events. D is an index
of components, and for each i ∈ D, M i is a basic DEVS
model (that is, an atomic or coupled model). I i is the
set of influencees of model i. For each j ∈ I i , Z i j is the
i to j translation function. Finally, select is a tie-breaking
function defining which model executes if more than
one is activated simultaneously. Therefore, a coupled
model defines the components and their interaction,
carried out by the translation function.

In 1948, John Von Neumann and Stephan Ulam de-
fined another modelling formalism, suited to define
spatial systems. They are called Cellular Automata,
and allow the description of cell-based models by us-
ing simple rules [3]. A conceptual cellular automaton
is an infinite regular n-dimensional lattice of cells, each
of them taking a value from a finite set. The states in
the lattice are updated according to a local rule in a
simultaneous and synchronous way. The cell state
changes according to a local function that uses the
present cell state and a finite set of nearby cells (called
the cell’s neighborhood). These models can be de-
scribed by:

 CA = < S, C, N, T, τ , c.Z0
+ >

Here, S is the set of discrete values of the cells, C
defines the cell space, N is the neighborhood function,



24 SIMULATION JANUARY 2001

T is a global transition function, τ is the local comput-
ing function, and c.Z0

+ is the discrete time base. The
cell space is composed of individual cells (cij) activated
in discrete time steps. The evolution of the automaton
is defined by the execution of the global transition
function, defined by the state of every cell in the space.
This behavior depends on the results of the local com-
puting functions, which executes locally in each cell’s
neighborhood.

The use of a discrete time base poses restrictions in
the precision and efficiency of the simulated models.
If complex cellular automata are considered, higher
precision can only be achieved by reducing the activa-
tion period for each time step. Therefore, large amounts
of computing time will be wasted to obtain the desired
results. Furthermore, in several cases, most cells of the
automaton do not need to be updated in each time
step. These “quiescent” states allowed one to define
modifications in which the automaton advances using
instantaneous events that can occur at unpredictable
times. One of these extensions, presented in [1, 6], uses
DEVS for cellular modelling. The basic idea is to con-
sider a cell space as a discrete event model where each
cell is defined as an atomic model. These ideas were
applied in real applications in later works [8, 9]. We
have introduced extensions to allow explicit timing
for each of the cells in the space, providing a simple
mechanism to define them.

2.1 Timed Cell-DEVS Atomic Models

Timed Cell-DEVS defines each cell as an atomic model.
Inertial or Transport delays allow one to define the
timing behavior of each cell. A Timed Cell-DEVS atomic
model can be described as:

TDC = < I, X, Y, θ, N, delay, d, δint , δext , τ , λ , D >

Here, X defines the external inputs, Y the external out-
puts, and I is the interface of the model. θ is the cell
state definition, and N is a set of inputs for the cell.
Delay defines the kind of delay used, and d its dura-
tion. Finally, there are several functions: τ for local
computations, and δ int, δ ext, λ and D, with the same
semantics as in other DEVS. Each cell has a well-de-
fined interface composed of a fixed number of ports,
and it is connected with a neighbor using these ports.
If a cell is connected to other models outside the cell
space, a set of other input/output ports is included.
The cell’s state is composed by its present value, a queue
to keep track of the next event times and their associ-
ated input values, and the cell’s phase (active or pas-
sive). The N set includes the values that are used to
compute the future state using the Boolean function τ .
The delay allows one to defer the transmission of the
results (this behavior is defined by the δ int , δext , λ and
D functions). Therefore, a modeler must only focus on
defining the local computing function, the kind of de-
lay and its length.

Whenever an event arrives, the external transition
function is activated. In this case, it takes the set of
inputs and computes the cell’s future state using the τ
function. If the new cell state is different from the pre-
vious one, its value should be sent to the neighbors
(that is, the cell’s influencees). Otherwise, the cell is
quiescent and its neighbors must not be activated [1, 6].
In any case, the state changes are transmitted only af-
ter the consumption of the delay.

To provide transport delays, the external transition
function schedules an internal event after the time de-
fined by the delay. If a state change is detected and
the cell is passive, it is activated. Instead, if the cell is
active, the values of elapsed times since the last event
must be updated. When the delay has expired, the state
change should be transmitted to the influencees. There-
fore, the output function is activated, sending the first
value stored in the queue. Then the internal transition
function removes this element and it schedules a new
internal event. If the queue is not empty, the time as-
sociated with the first element in the queue is used.
Otherwise, the cell becomes passive. An example of
this behavior is presented below. The cell shown in
Figure 1 (previously presented in [10]) represents an
ideal Boolean function that transmits its inputs.

Let us consider that the cell uses a transport delay
of 17 time units. In this case, the cell’s interface is de-
fined by I = < 1, P x, Py >, where P x = { X1 } , P y  = { Y1 }.
Then, X = Y = { 0, 1 }, d = 17, and τ (s) = s. The functions
δ int , δ ext and λ will behave as previously defined.

Let us suppose that this model is activated with the
input trajectories depicted in Figure 2. Table 1 shows
the cell’s behavior for those trajectories, and they are
also depicted in the previous figure. The table shows
each transition, its activation time and the cell’s state
values. The * sign identifies the execution of internal
transition functions. The remaining lines represent the
execution of external transitions (the fields containing
two values separated by a slash represent the variable
values before and after execution). The s and s′ columns
represent the present state value and the new com-
puted value. The cell phase can be active/passive. The
variable σ represents the remaining time up to the
next scheduled event, and e, the elapsed time since
the last one. Finally, σqueue contains the future values
to be transmitted and their scheduled times.

Figure 1.  Boolean function with transport delay
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We can see that in the instant 0 the cell is in passive
state. In simulated time 30, an external event arrives,
producing a state change. The cell is now active, and
an internal event is scheduled 17 time units from the
present instant. In 40, another external event occurs,
producing a new state change. In this instant, the
σqueue contains two scheduled outputs: one that is 17
time units from the present instant (recording the last
change), and the first one 7 time units away. When
this time is consumed, the internal transition is executed.
The first value in the queue is transmitted, and its en-
try erased. The first value in the queue is used to sched-
ule the next internal transition, which will occur in the
simulated time 57. When there are no future queued
events, the cell passivates.

Inertial delays introduce preemptive semantics: an
input must be discarded if its value is not kept for a
certain period. Instead, if the input flow is steady dur-
ing that time, the state change is transmitted. The be-
havior for atomic cells with inertial delays is pre-
sented in the following example. Figure 4 and Table 2

t s s' phase σ e σqueue

... 0 0 passive

30 0/1 1 active 17 0 (1,17)

40 1/0 0 active 7 10 (1,7),(0,17)

* 47 0 0 active 0 / 10 17 / 0 (0,10)

55 0/1 1 active 2 8 (0,2), (1,17)

* 57 1 1 active 0 / 15 10 / 0 (1,15)

60 1/0 1/0 active 12 3 (1,12), (0,17)

* 72 0 0 active 0 / 5 15 (0,5)

* 77 0 0 passive ∞ 5

Table 1.  Execution sequence of a transport delay cellular model

Figure 2.  Input and output trajectories with transport delay

Figure 3.  Behavior of an atomic cell model with inertial delay Figure 4.  Input and output trajectories with inertial delays
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present input/output trajectories based on the same
atomic cell used previously. An inertial delay of 5 time
units is used. The table representation is the same pre-
viously used, and the lines marked with “!” signs (ar-
rows in the figure) represent the model behavior un-
der preemption.

Initially, the cell is in passive state. When an external
event arrives, the local function is activated. The cell
executes, its state changes, and it schedules an internal
event 5 time units from the present. In the simulated
time 15, an external event arrives. The present state for
the cell is 1, and it is changed to 0. The feasible future
state for the cell ( f ) is now 0. The inertial delay is not
accomplished, because 4 time units later another state
change occurs. Then, the feasible future state is pre-
empted and the state is kept in 1. The state change is
not explicitly transmitted because the system state at
that moment was 1 (the previous external event was
preempted).

2.2 Timed Cell-DEVS Coupled Models

Once the definition of each cell has been completed,
coupled models must be defined. These models allow
us to build complex models consisting of several sub-
models with different behavior using different abstrac-
tion levels. A Cell-DEVS coupled model is defined by:

GCC = < X list , Y list , I, X, Y, n, { t1 ,...,tn }, N, C, B, Z >

Here, Xlist and Ylist are input/output coupling lists,
used by I to define the model interface. X and Y repre-
sent the input/output event sets. The n value defines
the dimension of the cell space, { t1 ,..., tn } is the number
of cells in each dimension and N is the neighborhood
shape. C, together with B, the set of border cells, and
Z the translation function define the cells in the space.
For coupled models, the modeler only has to define
the neighborhood shape, size and dimension of the

t s s' phase σ e x f

... 0 0 passive ∞

5 0/1 1 active 5 0 1 1

* 10 1 1 passive 0/∞ 5

15 1 0 active 5 0 0 0

! 19 1 1 active 1/5 4/0 1 0/1

* 24 1 1 passive 0/∞

39 1/0 0 active 5 0 0 1/0

* 44 0 0 passive 0/∞

45 0 0 active 5 0 1 0/1

* 50 1 1 passive 0/∞

Table 2.  Execution sequence of Figure 4

Figure 5(a).  A cell, its neighborhood and the neighbor’s list;  5(b). Connection of the output ports of cell i,j
(using the neighborhood list);  5(c). Connection of the input ports of cell i,j (using the inverse neighborhood list)

Neighborhood list:

{ (0, -1), (0,0), (0,1), (-1,0)}

Inverse Neighborhood list:

{ (0, 1), (0,0), (0, -1), (1, 0)}

Note:  -1: left, up; 1: right, down

(a)

Pij 
Y1 → Pi,j+1 X1         (1)

Pij 
Y2 → Pij 

X2                 (2)

Pij 
Y3 → Pi,j-1 X3          (3)

Pij 
Y4 → Pi+1,j 

X4        (4)

(b)

Pij 
X1 ←  Pi,j-1 Y1         (1)

Pij 
X2 ← Pij 

Y2                 (2)

Pij 
X3 ← Pi,j+1 Y3         (3)

Pij 
X4 ← Pi-1,j 

Y4          (4)

 (c)
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model, definition of the borders, and the coupling
lists.

The B set defines the cell’s space border. If the set is
empty, every cell in the space has the same behavior.
The space is “wrapped,” meaning that cells in one bor-
der are connected with those in the opposite. Other-
wise, the border cells will have different behaviors than
those of the rest of the model. The interface I is built
using X list and Ylist , two lists defining the model’s in-
puts/outputs. Finally, the Z function allows one to
define the coupling of cells in the model. This function
translates the outputs of m-eth output port in cell C i j
into values for the m-eth input port of cell C k l . Each
output port will correspond to one neighbor and each
input port will be associated with one cell in the inverse
neighborhood [1]. The ports’ names are generated us-
ing the following notation: Pi j

X q refers to the q-eth in-
put port of cell Ci j , and Pi j

Y q to the q-eth output port.
These ports correspond with the port names denoted
as Xq or Yq for each cell.

The definition of DEVS coupled models has been
changed to include Cell-DEVS:

CM = < X, Y, D, {M i}, { I i }, {Z i j }, select >

where all the sets have the same meaning than the de-
fined previously, and      i ∈ D, M i is a basic DEVS
model:

M i = GCC i = < I i , Xi , Yi , X list i , Ylist i ,
ni , { t1,...,tn } i , Ni , C i , Bi , Zi >

if the coupled model is Cell-DEVS, and Mi = < I i , Xi ,
Si , Yi , δ inti , δexti , I i >  otherwise.

Zi j is the i to j translation function, where:

Z i j : Yi → X j if none of the models involved are
Cell-DEVS, or

Z i j : Y( f, g )i → X( k, l )j , with ( f, g ) ∈ Ylisti , and
( k, l ) ∈ Xlist j if either of the models i or j is a Cell-
DEVS.

3. An Application Example

The previous section presented a set of specifications
for DEVS and Cell-DEVS models. These specifications
allowed us to define formal verification mechanisms,
and to prove a model’s properties. However, they also
make easy the definition of a cellular model. These
models can be defined using very simple rules and a
few parameters. Complex timing definition is over-
ruled due to the use of delay functions. As a result, a
very simple set of procedures is needed to define com-
plex models, thus improving the development process.
This is shown in this section, which includes a detailed
example of application of the paradigm.

The model depicted in Figure 6 is devoted to simu-
late a section of urban population. It is composed of

different submodels built using different approaches.
As the goal of the example is to show the application
of the paradigm, the model’s behavior has been sim-
plified.

The submodel A represents pollution in a residential
neighborhood. This model is built using a Cell-DEVS
representing particles of smog. Influences of the traf-
fic on a nearby highway and the smoke of trucks in a
factory are considered to generate pollution. The local
computing function will model the influence of the
wind. Any vehicle is considered to generate enough
smog to activate a cell in this model. Model B represents
the traffic movement in a commercial neighborhood.
The streets are one-way (northbound or eastbound)
and no traffic lights are modeled. This Cell-DEVS model
could be used to study the traffic flow to install traffic
lights. The Cell-DEVS model C represents a one-way
highway passing across neighbors A and B. Traffic flow
on the highway will be represented using a cellular
model for one-way routes. The model could serve to
study the traffic density on the highway and its influ-
ence on the rest of the city. Atomic model D represents
a factory, with trucks arriving from/to the highway.
The simulation results could be used to schedule the
input and output of trucks to the factory, improving
product delivery. Finally, atomic model E represents a
ferryboat that connects the city with an island. This
model could be used to determine the optimal number
of boats to be used depending on the traffic flow.

3.1 Cells Behavior Specification

This section analyzes the definition of the cell behavior
of the example. As the D and E models are traditional
DEVS, their definitions are not included. In both cases,
the models are constructed as queuing servers simu-
lating the arrival and departure of vehicles (to see the
details about these models, see [11]). The local com-
puting functions are described using a specification

Figure 6.  Coupling of Cell-DEVS and other DEVS models

A
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Result Input values

1 (a22 = 1 AND NOT (ALL = 0) )  OR

( (a22 = 0) AND (a12 = 1 OR a21 = 1 OR a23 = 1 OR a32 = 1) )

0 (ALL = 0) AND (a22 = 1)

Neighborhood: { (a
12

, a
21

, a
22

, a
23

, a
32

) };

wind = 3;

m = 9;  n = 10; in_delay(wind).

Figure 7.  Specification for model A

Result Input values

1 (a22 = 0 AND a32 = 1) /* Northbound */

OR (a22 = 0 AND a21 = 1)    /* Westbound */

OR (a22 = 1 AND a23 = 1)

OR (a22 = 1 AND a32 = 1)

0 (a22 = 1 AND a12 = 0) /* Northbound */

OR (a22 = 1 AND a23 = 0)  /* Westbound */

Neighborhood: { (a
12

, a
21

, a
22

 ,a
23

, a
32

) };

speed = 5;

m = 50; n = 10;

tr_delay(speed).

Figure 8.  Specification for model B:  8(a). Cell space parameters;   8(b). Car movement description

language defined in [11]. Here, the a i j variables define
the inputs of a cell, related with a 9×9 matrix repre-
senting the cell neighborhood. These values are used
as preconditions for the local computing function. The
result obtained is the new state for the cell.

3.1.1 Model A (Smog in the Residential Neighborhood)

An inertial delay has been used to model the pollu-
tion diffusion. If the wind removes the smog faster
than its diffusion, it will not be expanded. If there is an
input with an inertial delay of 3 time units, the particles
remain in the cell. If there is a particle of smog in a
neighbor cell, and the particle sustains for 3 time units,
the particle expands to the present cell. Otherwise, the
influence of the wind is considered, and the preemption
leaves the cell unchanged. Therefore, an input event
will influence the cell only if nothing happens before
3 time units.

3.1.2 Model B (Traffic in the Commercial Neighborhood)

The specification of model B represents the movement
of cars on one-way streets of the commercial neighbor-

hood. The first rule of the specification represents the
input of a new car into an empty cell, or a car that can-
not move on that cell. The second rule represents the
car’s movement (departure of a car from the origin
cell), as it can be seen in Figure 8(b).

The movement of a car is not explicitly registered
in one rule, but in two separated phases. The state
change expands to all the neighbors, but is registered
in those where the movement is valid. The first move-
ment removes the vehicle from the origin cell. The
neighbors will detect this state change. When the cell
corresponding to the arrival activates, it records the
arrival of the new car. The remaining neighbors are
not changed.

If there is a crossing, the car on the right passes be-
cause northbound flow is evaluated first. The transport
delays allow one to model the acceleration delay of
the cars in a very simple fashion. The car movement is
delayed before the next movement to the following
cell, allowing one to model different speeds. The delay
can be represented as a random number to model the
different speeds of each car.
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3.1.3 Model C (Highway)

This specification represents a four-lane, one-way high-
way. In this case, the car movement is also divided into
two movements. The first rule included represents the
arrival of a new car to the present cell, or a car stopped.
Each of the expressions in this rule represents either
of the movements shown in Figure 10.

The second rule reflects the movements shown in
Figure 11.

3.2 Formal Specification of the Models

In this section, the Cell-DEVS models presented in the
previous section will be formally specified. Let us now
consider first the complete definition of the cell space
A. A detailed sketch of this model can be seen in Fig-
ure 12.

A formal specification for this cell space is:

MA = < IA , XA , YA , XlistA , YlistA ,
ηA , NA , {mA , nA }, CA , BA , ZA >

First, we show the parameters that must be intro-
duced by a modeler:

XlistA = { (1,10); (2,10) }; YlistA = { ∅ }.

NA = { (0,0), (–1,0), (1, 0), (0,1), (0,–1) };

mA = 9; nA = 10; BA = { ∅ };

The remaining parameters are automatically built
as follows:

ηA = 5;

I 
A = < P x , P y >,  where P x = { < X ( 1, 10 ), binary >,

<  (2, 10), binary > };  P y = { ∅ };

XA  = YA = {0, 1};

Result Input values

1 (a22 = 0 AND a21 = 1) /* Normal flow */

OR (a22 = 0 AND a21 = 0 AND a31 = 1 AND a32 = 1)   /* Pass through the left */

OR  (a22 = 0 AND a21 = 0 AND a11 = 1 AND a12 = 1)  /* Pass through the right */

OR (a22 =  1 AND Column3 = 1) /* Jam */

0 (a22 = 1 AND a23 = 0) /* Normal flow */

OR (a22 = 1 AND a23 = 1 AND a13 = 0 AND a12 = 0) /* Pass through the left */

OR (a22 = 1 AND a23 = 1 AND a33 = 0 AND a13 = 1 AND a32 = 0)  /* Pass through the right */

OR (a22 = 0) /* Empty cell not considered in rule 1 */

Neighborhood: { (a
11, 

a
12

, ..., a
33

) };

speedH = 2;

m = 15; n = 4;

tr_delay(speed).

Figure 9.  Specification for model C.

Figure 10.  Valid movements for rule 1 (different expressions)

Figure 11.  Valid movements for rule 2 (different expressions)
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CA is the cell space set, defined as CA = { CA
 
i
 
j / i ∈

[1, 9], j ∈ [1, 10]}, where each CA
 
i

 
j is a Cell-DEVS

component.

Z A is defined as previously explained. In this case,
if we consider the Neighborhood list N and the in-
verse neighborhood, the port interconnection for the
ZA function will be defined as shown in Figure 13.

Each cell of the space can be formally described as:

CA i j = < IA , XA , SA , YA , NA , δ intA , δ extA ,

DelayA , dA , τA , λA , DA >

In this case, we also mention the values defined by
the modeler:

tA , that was defined in the previous section using
the specification language.

DelayA = transport; dA = wind;

The remaining components are defined automati-
cally. The description of XA , YA and NA are inherited
from the cell space. Besides:

IA = < 5, P x, P y >,  where

P x = { (X1 , binary), (X2 , binary), (X3 , binary),
(X4 , binary), (X5 , binary) };

P y = { (Y1 , binary), (Y2 , binary), (Y3 , binary),
(Y4 , binary), (Y5 , binary) }.

SA :

Descriptive variables:

1 if there is smog in the cell;
s =

0 otherwise

λA , δ intA and δextA behaves as the functions de-
fined earlier.

The remaining cellular models are defined in a
similar fashion, detailed in [4]. Let now us consider
the formal specification for the higher level coupled
model. In this case:

M = < X, Y, D, { M i }, { I i }, {Z i j }, select >

X = Y = {∅ };

D = { A, B, C, D, E }, and      i ∈ D, Mi is one of the basic

DEVS models previously defined.

I i is the set of influencees of model i. In this case,

I A = {∅ }; I B = { C, E };

I C = { A, B, D, E }; I D = { A, C }; and

I E = { B, C }.

     j ∈ I i , Zi j : Yi → X j if i and j are DEVS models, or
Zi j : Y( f,g )i → X (k, l ) j , with ( f,g ) ∈ Ylisti , and (k, l ) ∈
X listj if either model is Cell-DEVS. In this case, the Zi j

function is defined as:

Z B C: Y(1,3) B → X(4,5)C ZB E : Y(1,9)B → INf

Z C A: Y(1,10)C → X(2,10)A ZC B : Y(4,4) C → X(1,2) B

Z C D: Y(4,15)C → INf ZC E : Y(4,1) C → INb

Z D A : OUTf → X(1,10)A ZD C: OUTf → X(4,14)C

Z E B: OUTb → X(1,7)B ZE C : OUTb → X(3,4) C

Finally,  select = { C, A, B , D, E}.

4. Implementation Models for DEVS-Cells

Cell-DEVS modelling is independent of the simulation
technique used. This assertion was confirmed by imple-
menting two different simulators (and defining a par-
allel version of both, which is still not implemented).
In one of them, simulation advances as in other DEVS-
based environments. Special simulation processors
(coordinators and simulators) drive the process [6].
Coordinators and simulators are associated with cou-
pled and atomic models respectively. These processors
drive the simulation by sharing information through
message passing. There are four different messages:
*-messages, X-messages, Y-messages and done-messages.

The submodel with the smaller scheduled internal
event in the hierarchy is called the imminent. When
this model must execute, a *-message is sent to its simu-
lator. The message passes through the middle-level
coordinators, provided with a list of imminent children
with this purpose. When an external message arrives,
an X-message is consumed and the external transition
function executed. The simulators return done-messages
and Y-messages that are converted to new *-messages
and X-messages, respectively. Y-messages carry the
results to be transmitted to other models. Done-messages
are used to inform that each model has finished with
the task given by its higher level coordinator.

When a coupled Cell-DEVS is defined, the set of
processors associated with the cell space is automati-
cally created. As the coupled model consists of several
atomic ones (the cells), one simulator is associated
with each cell. The simulators are created using the
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Figure 15.  Flat simulation for Cell-DEVS spaces

Data structures:

Cells = { binary state; float delay; } [m x n];
Neighbors = { (int i, int j), i = –1..1; j = –1..1}; /* Relative cell’s positions */
Next-Event List = { Cell_position (int i, int j), float time};
binary New-State;
float tn, tl, e; /* time of next event, last event and elapsed time */
Init() {
   Load the initial state and delays for each cell in the array;
   Detect non-quiescent states;
   For each non-quiescent cell do

Add {Cell_position(i,j), delay} to the Next-Event list;
   endfor
}
Reaction_to_X-message() {

tl = tn;
Take the first item in the Next-Event list;
tn = time of the first item;
e = 0;

New-State = τ(N[i,j]); /* Compute the local function for the cell
Receiving the input message */

If (New-State != State) then
      Add {Cell_position(i,j), Cells[Cell_position].state} in the Next-Event list;

/* Avoiding repeated elements */
endif

 If (INERTIAL-DELAY) then
If (there is an element for this cell whose Sigma is greater than the new one) then

Delete the element; /* Preemption */
endif

 endif
 Send a done message to the upper level coordinator (including the cell and time);

}

Reaction_to_*-message () {
tl = tn;
Take the first item in the Next-Event list;
tn = time of the item;
e = 0;

/* Take the imminent cells. Execute their internal transition functions */
For each cell (i,j) whose message in the Next-Event list has time = tn do
         Update the cell state (if necessary);

        If (the cell is in Ylist) then /* External coupling */
Create an Y-message (including the next-event time) and send it to the father coordinator;

       endif

   /* Common procedures for inertial or transport delays */
   For each pair (k, l) in the Neighbors list do

Next_event_time = tn + Cells(i+k, j+l).delay;
/* Internal coupling */
Add { (i+k, j+l), Next_event_time} in the Next-Event list;

    endfor

   e = tn – tl;
endfor

}
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parameters defined in the formal specification of the
previous sections. Then, the methods explained ear-
lier are used to define the internal coupling of the cell
space. A coordinator is then associated with each cell
coupled model.

The coordinators now behave differently when de-
tecting the message destinations, since they are com-
posed by a cell and a model name. The model name is
used by the high-level coordinators and the cell posi-
tion is employed by the cell space coordinator. For
Cell-DEVS spaces, the imminent model will be a cell
in the space. The simulator linked with that cell acti-
vates the model’s output and internal transition func-
tions. When an external message arrives, an X-message
is consumed and the external transition function ex-
ecuted. The local computing function is activated, and
its output is delayed. The simulators return done-
messages and Y-messages that are converted to new
*-messages and X-messages, respectively. These mes-
sages are translated using the coupling mechanisms
previously defined.

To allow the integration between Cell-DEVS models
and other DEVS models, the Coordinator class should
include the model coupling mechanism defined by
the formalism. The output ports in the interface of the
X list are connected with the input ports of those mod-
els in the Ylist .

A second simulation mechanism was defined for
Cell-DEVS models. We are using a hierarchical module
definition, and the simulation mechanism also has hi-
erarchical interaction. This intermodule communica-
tion produces a high degree of overhead, which can
reduce the execution performance of simulations con-
sisting of a large number of cells. A flat coordinator
was introduced with this goal. It must be initialized
by detecting quiescent states for the initial state of the
cell space. Non-quiescent cells (i.e., those whose state
can change) will be added in a Next-Events list. New
arriving X-messages are also inserted in this list. When
the coordinator receives a *-message, it removes the
first element of the Next-Events list, and the local

computing function for the cell is activated. If the cell
state has changed, its value is returned and the next
event time for the cell is computed. The coordinator
will create a Y-message containing the cell state value,
and will transmit it to the upper level coordinator. Fi-
nally, a new message is created and added in the Next-
Events list for each cell in the neighborhood. If one
simulation cycle finishes, a done-message is created.
The detailed behavior of this simulator is represented
as shown in Figure 15.

Below, we will use the example defined in Section 3
to analyze the behavior of the cell spaces simulators.
First, the hierarchical simulation mechanisms are ex-
emplified. Then, the example attacks the flat simula-
tion procedures.

4.1 Hierarchical Simulation of the Example

Figure 16 depicts a hierarchy of simulation processors
considered for the present example. Let us now sup-
pose that in simulated time 10 the model’s contents
are those of Figure 17. There is only one active cell in
the model: cell (1,9) of model C.

At present there is only one message waiting to be
processed in the Event-List of the root coordinator.
Therefore, the contents of the data structures of the
simulators and coordinators are those of Figure 18.

Figure 16.  Hierarchy of simulation processors for model M

Figure 17.  Model M’s initial state
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The message contents are the following: < Type,
Source | Destination, Date, [Value] >. The simulation
begins when the root coordinator creates the message:
< *, Root, 10 >.

This message is sent to the M coordinator, which
queries its list of imminent children. There, the coor-
dinator selects model C (the first of its imminent list),
and sends the message < *, M, 10 > to its coordinator.
Coordinator C receives this message, and selects its
imminent child (in this case, cell [1,9]) by consulting
its imminent children list. It also verifies that the time
of next-event is equal to the simulated time included
in the message.

The message < *, C, 10 > is sent, and arrives at the
simulator C19 , which will execute the internal transi-
tion function. As a first step, the time of next event tn
is verified. As it is the same as that of the *-message,
the arrived message is correct and the output function
is executed, activating the local computation function.
The second rule of the second expression in the func-
tion’s specification is true. Therefore, the result of the
local computation is s′ = 0. As s = 1, the cell’s state has
changed and its present value should be output.

A Y-message is generated with the following val-
ues: < Y, C (1,9), 10, 0 > and it is transmitted to the C
coordinator. After, the event times corresponding to
the coordinator are updated: tl = tn = 10; tn = tl + D(s)
= 10 + ∞ = ∞ . Finally, the simulator updates the local
values of the neighborhood set by making a22 = 0 in
the neighbor’s values of cell C19 .

The Y-message is received by the coordinator C,

which queries its coupling scheme. As this message is
local to the C model, it is translated into an X-message,
and sent to the following cells: (1,10), (1,8), (2,8), (2,9),
(2,10), (4,8), (4,9), (4,10). The *-message < *, C (1,9), 10 >
is sent to each of the cell’s simulators and the cells
numbers are added into the coordinator’s waiting list.
In each simulator, the message time is checked to see
if it is between the last event and next event times. As
this is correct, the elapsed time and the event times are
updated. Following, the input functions are executed.
The input values and its corresponding σ are queued
in the σqueue, as shown previously. In this case, D(s)
includes the value of the transport or inertial delays.

Then, each simulator creates a message < done,
C ( i, j ), 12 > because the transport delay is of 2 time
units. When these messages are received, the coordi-
nator eliminates the children from the wait-list and
adds the message in its imminent list. The imminent
children are: { (1,10), (1,8), (2,8), (2,9), (2,10), (4,8),
(4,9), (4,10) }.

When the waiting list is empty, all the influencees
have finished with the execution of the external tran-
sition function. Therefore, the smallest imminent child
is ready for execution. The first element of the immi-
nent children’s list is chosen, and the message < done,
C (1,10), 12 > is sent to the M coordinator. In this way,
if more than one imminent model exists in the hierar-
chy, one of them can be chosen to be simulated. To do
so, M adds the model C in its queue of imminent chil-
dren. As this is the only message in the queue, it will
be the imminent child. Therefore, the next and last

Root Coordinator:
Clock = 10;

Associated coordinator: Coordinator M.

Coordinator M
Father: Root Coordinator

Children: { A, B, C, D, E }
Associated coupled model: {M}
Waiting list: { }
Imminent children: { C }
tn: 10; tl: 0.

Coordinator A
Father: Coordinator M
Children: { A11, A12, ... }
Associated coupled model: {A}
Waiting list: { }
Imminent children: { }

tn: 0; tl: 0.

Coordinator B
Father: Coordinator M
Children: { B11, B12, ... }
Associated coupled model: {B}
Waiting list: { }
Imminent children: { }

tn: 0; tl: 0.

Coordinator C
Father: Coordinator M
Children: { C11, C12, ... }
Associated coupled model: {C}

Waiting list: { }
Imminent children: {(1,9) }
tn: 0; tl: 0.

Coordinators D, E
Father: Coordinator M
Children: { }
Associated coupled model: {D} ( {E } )

Waiting list: { }
Imminent children: {}
tn: 0; tl: 0.

Figure 18.  Initial contents of simulators/coordinators’ data structures
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event times can be updated. A done message is sent to
the root coordinator because the coordinator is not
waiting other events (the waiting list is empty).

The root coordinator updates the clock to 12, and
creates a new message: < *, Root, 12 >. When the M
coordinator receives this message, it verifies the time,
takes the imminent child C from its imminent child
queue, and sends the message < *, M, 12 > to its coor-
dinator. The coordinator selects the imminent children
(1,10) and activates its simulator.

These procedures are repeated for each of the immi-
nent children of C coordinator. When the simulators
are activated in turn, the local computing functions
are executed. Every cell of those activated by the event
in (1,9) remains in a quiescent state, except cell (1,10).
Recalling the specification of Figure 9, the only valid
rule for these cells is the fourth of the second sentence.
Therefore, the state value will remain in 0 and the new
external events are not generated. Then, a message
< done, C ( i, j ), ∞ >  will be generated for each of these
cells and transmitted to the C coordinator.

Instead, for the cell (1,10) the first rule of the first
sentence is valid. The cell’s state changes, λ is executed,
and a message < Y, C (1,10), 12, 1 > is generated and
sent to the C coordinator. This message is expanded
to the neighbor cells by repeating the procedures pre-
sented recently. This will cause actualization in the
local copies of the neighborhoods for each simulator.
In this case, the Y-message also influences the links
that are external to the C model. Therefore, it should
be transmitted to the parent coordinator M to execute
the Zi j function, allowing it to send the change to the
other models. When the message is received by the M
coordinator, it queries the external coupling function,
and it determines that the coupling Y(1,10)C → X (2,10)A
should be used.

Therefore, it generates the message < X, A (2,10), 12,
1 >, which is sent to the A coordinator, which expands
it up to its arrival to the cell A(2,10), where the exter-
nal transition function is executed and the message is
queued, generating a message < done, A(2,10), 15 >.

4.2 Flat Simulation of the Example

Now, let us consider the execution of the same examples
using the flat coordinator. In this case, message inter-
action is completely avoided within the cell spaces,
allowing the improvement of execution times. We can
see that the Next-Events lists of all the cellular models
are empty, except for the C model. For this coordina-
tor, Next-Events = {(1,9), 10}.

The coordinator executes, taking the data for the
first event of the list. The simulation times are updated:
tl = 0, tn = 10 and e = 0. In this case, when the local
computing function is executed, the result obtained is
New-state = 0. As Cells[1,9].state = 1, the new state
should be stored in the New-states list. Therefore,
New-states = { (1,9), 0}. After, as the cell is not in Ylist ,
nor are inertial delays used, the following sentences

are executed, making Next-event time = 10 + 2; Next-
events = { <(1,10), 12>, <(1,10), 12>, <(1,8), 12>, <(2,8),
12>, <(2,9), 12>, <(2,10), 12>, <(4,8), 12>, <(4,9), 12>,
<(4,10), 12> }.

After, as the Next-Events list does not have other
events with time = 10, one simulation step has fin-
ished. Therefore, the cell space is updated by doing:
c [1,9] = 0; New-states = {}. When the next events have
been updated, a message < done, 10, C > is sent to the
upper-level coordinator. The coordinator detects that
C is the imminent child. Then, the Root Coordinator
updates the global clock and sends a *-message to the
C coordinator.

Now, tn  = 12, tl = 10, and e = 0. Cell (1,10) is cho-
sen from the Next-Events list. In this case, New-state
= 1; and Cells[1,9].state = 0, therefore New-states =
{<(1,10), 1>}. The cell is in the Ylist , therefore a Y-mes-
sage is created and it is sent to the M coordinator. The
coordinator will react in the same way explained in
the previous section. When the message  < Y, C (1,10),
1, 12 >  arrives at the M coordinator, it is translated
into the message < X, A(2,10), 12, 1 >,  which will be
transmitted to the flat coordinator A. This coordinator
will insert it into the Next-Events queue, to be treated
in the future.

5. Development Experiences

The N-CD++ [12] was built using the formal specifica-
tions of Cell-DEVS models. The cell’s behavior is de-
scribed using a specification language based in the
one presented in Section 3. As previously stated, only
the size for the cell’s space, the delays, the borders, and
the cell’s neighborhood parameters must be defined.
Also, the definition of the model’s rules and the con-
struction of the input/output lists must be defined.
With these basic parameters, the tool builds the cellu-
lar models and simulates them.

A wide variety of cellular models were developed
using this approach. The tool and the simulation re-
sults for these models can be found at http://www.dc.
uba.ar/people/proyinv/celldevs. Some of these models
include the following:

• Physical systems: heat diffusion models (2/4 di-
mensions), combination with air pressure models,
crystal growth, excitable media, particle collision
models, and surface tension.

• Cryptography: based on Wolfram’s CA combined
with timing delays.

• Ecological models: ant foraging models, Wa-Tor
(sharks and fishes in the ocean), basic fire spread
models.

• Urban traffic models.

• Dynamic heat seekers.

• General applications: the “life” game, parity check-
ers, sorting algorithms.
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• Plant models: autonomous robots together with
classification/conveyor belt system.

One of the simplest implemented examples includes
a modification of the Life game [13]. This modification
includes inputs, allowing one to analyze the transient
behavior of the system. Figure 19 shows the definition
of each of the parameters for these Cell-DEVS model,
defined with the specification language.

The examples were simulated by using the hierar-
chical and flat approaches. Figure 20 shows the results
of executing the Life game using both approaches. In
every case more than 75% of cells were active initially.
They have increased the number of cells in the space.
The second test used a fixed size for the space (2,500
cells), and the length of the simulation was changed.

The results in the remaining models were similar.
For instance, Figure 21 shows the results of a one-way

traffic model and a heat diffusion model. A fixed-size
cell space was considered (60% of active cells), and the
length of the simulation was changed.

The results obtained for all the remaining examples
are similar to these ones. It can be seen that, in every
case, the execution of the simulation involves a mini-
mum execution time, independent of the length of the
simulation. Therefore, the tests were repeated to study
the overhead used in initialization messages.

The initialization overhead is much bigger in hier-
archical cell spaces, where the number of cells has a
big influence. As can be seen, the time spent in ini-
tialization becomes meaningless for longer simula-
tions.

Finally, the performance of the environment was
tested against the execution of the same models imple-
mented by hand. We have compared the overhead

Figure 19.  Life game specification using N-CD++

Figure 20.  Execution of the Life game;  20(a).  Increasing the size of the space;  20(b).  Simulation duration

[top] // Top level coupled model

components : life // One component (Mi)

in : in out : outG1 outG2 // One input and two output ports (I)

link : out1@life outG1 // Definition of Ii

link : out2@life outG2 // and Zij function

link : in in@life

[life]

type : cell // Cell-DEVS model

width : 20 height : 15 // Dimension and size (n, t1..tn)

delay : transport defaultDelayTime  : 100 // Delay function (Delay, d)

border : wrapped // Border definition (B)

neighbors : life(-1,-1) life(-1,0) life(-1,1) // Neighborhood shape (N)

neighbors : life(0,-1) life(0,0) life(0,1) life(1,-1) life(1,0) life(1,1)

in : in out : out1 out2 // Xlist and Ylist

link : in in@life(1,1)

link : output1@life(1,1) out1 output2@life(1,1) out2

localtransition : life-rule // Local computing function (τ)
portInTransition : in@life(1,1)specialRule

[life-rule]

rule : 1 100 { (0,0) = 1 and truecount = 4 }

rule : 1 100 { (0,0) = 0 and truecount = 3 }

rule : 0 100 { t }

[specialRule]

rule : { portValue(thisPort) } 1 { t }



36 SIMULATION JANUARY 2001

introduced by the tool (using flat models) against the
execution time of synchronous and asynchronous cel-
lular automata (that is, using a discrete or continuous
time base). The results in the Figure 24 show that the

tool introduces at most a 20% of overhead in average
against a standard CA.

A main goal when Cell-DEVS was defined was to
reduce the development times for the simulations.

Figure 21.  Hierarchical and flat models:   21(a). Traffic simulation;   21(b). Heat diffusion

Figure 22.  Initialization time (five minutes simulated time:   22(a). Hierarchical;  22(b). Flat

Figure 23.  Initialization time (one hour simulated time):  23(a). Hierarchical;   23(b). Flat

Figure 24(a).  Execution results for the Life game;  24(b). Detail
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The results obtained were promising, though several
of the experiences here presented are prototypes to
check the tool. Several data were recorded with the
goal of analyzing the improvements in developments.
The development times for the different solutions were
considered, classifying different developers according
to their development activities. The same problem
specifications were delivered to different groups of
developers. All of them had previous experience in
software development activities.

 Some of them have been assigned the task of devel-
oping the problems using any programming language.
Others were asked to develop the same models using
N–CD++. A third group was composed of expert users
of the tool. The activities of each group were recorded
and averaged, measuring man-hours of development

times. When the software was delivered, some of the
specifications were changed, allowing one to measure
maintenance tasks. The results can be seen in Figures
25 through 27.

It can be seen that important improvements in the
development times can be obtained, even more when
expert users of the tool are compared with experienced
programmers. The values obtained for novice users
are related with the training to use the tool. In every
case, a 16-hour training period was enough to start
developing the models. The differences are bigger when
models with multiple components of different behav-
ior were considered. The reductions in the develop-
ment times are due to the fact that specification of the
cellular models is translated into executable models.
Also, a simple set of verification aids was included,

Figure 25.  Comparison of development times for the heat seekers

Figure 27.  Comparison between total development times

Figure 26.  Comparison of development times for the traffic simulation
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allowing one to find several errors of the specification
at runtime. These aids allow one to detect some incon-
sistencies in the model definition:

• Ambiguous models: a cell with the same precondi-
tion (state and neighbors) can produce different
results;

• Incomplete models: no result exists for a certain
precondition;

• Non-deterministic models: different preconditions
are valid simultaneously. If they produce the same
result, the simulation can continue, but the mod-
eler must be notified. Instead, if different results
are found, the simulation should stop because the
future state of the cell cannot be determined.

6. Conclusion

We have presented the implementation results of a
paradigm for modelling and simulation of cellular
models. The Cell-DEVS paradigm allows the automatic
definition of the cell spaces based on the DEVS formal-
ism. Several modelling paradigms can be integrated
in an efficient fashion, allowing multiple points of view
for each model. The transport or inertial delay concepts
specify complex behavior in a simple fashion, indepen-
dently of the quantitative complexity of the models.

Two simulation mechanisms were included. The
first one considered hierarchical simulation. Afterwards,
a method to flatten the hierarchical description of the
cell spaces was given. The performance improvements
for the flat models provided speedups from two to
seven times in the execution for the cellular models.

The formalism allows one to improve the security
and cost in the development of the simulations. Experi-
mental results of application showed improvements
for expert developers. The main gains have been re-
ported in the testing and maintenance phases, the more
expensive for these systems.

The use of a modelling and simulation tool intro-
duced overhead, mostly in the initialization phase.
This happened because the tested solutions only ex-
ecuted for short times, and the initialization activity
can be better amortized in longer simulations. Never-
theless, if a parallel coordinator is introduced, an ex-
ecution speedup of several orders of magnitude can

be achieved without changing the specifications. The
use of parallel implementation for each hand-coded
problem can produce ten-fold delays in the develop-
ment times.
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