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ABSTRACT

The CD++ toolkit was developed to implement theotleé
ical concepts specified by the DEVS formalism. Clhas
been recently enhanced to support real-time simounlat
where events have to be processed in a timely nmaAne
synthetic benchmarking tool is used to test severadels
with different workloads, complexities, structurasd siz-
es. Additionally, experiments were carried out undié-
ferent scenarios to analyze the behavior in sudlditons.
Some problems and limitations were detected iniquaatr
cases. Lately, a flattened simulation techniqueltegs in-
troduced in the toolkit. The experiments presentethis
work show that the flattened simulator is more cbéfnt
than the hierarchical one.

1 INTRODUCTION

The DEVS (Discrete EVents Systems specificatiorn} fo
malism provides a framework for the constructionhad-
rarchical models in a modular fashion, allowing mlod
reuse and reducing development and testing timiglgte
et al. 2000). DEVS models can be executed usintyaabs
simulation mechanisms independent of the modelf.itse
Models are built using a set of basic models caitedic,
which can be combined to foreoupled ones. A DEVS
atomic model is described as:

M=<X,S, Y, O A, D>

Here,X is the input events s&d,is the state set, and
is the output events set. There are also sevenatifuns:
Oint Manages internal transition®,; external transitions\
the outputs, anB the elapsed time.

A DEVS coupled model is defined as:

CM=< |1 X, Y, Da {Mi}! {l i}’ {Z ii} >

Here, X is the set of input events, aidis the set of
output eventsD is an index of components, and for each i
0D, M; is a basic DEVS model, wherej ™ < |, X, S,
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Yi. dinti- Oexti: tg >. l; is the set of influencees of model i.
For each [J 1, Z; is the i to j translation function.

The CD++ toolkit (Rodriguez and Wainer 1999)
implements DEVS theory. A specification languadeves
the creation of coupled models, the initial confagion for
the atomic models, and the creation of externah&vi® be
used during the simulation. Lately, the CD++ toas lbeen
enhanced to support parallel and real-time sinudati
engines (Troccoli and Wainer 2001; Glinsky and Vain
2002a).

1.1 Virtual-Time Simulation

DEVS provides the advantages of a discrete event ap
proach in terms of execution performance. Discestent
models evolve in continuous time. Events are inatan
neous and can occur asynchronously at unpredictable
times. DEVS simulators can be seen as hierarchidag-
dulers of events that activate the correspondifgsudels.

The CD++ toolkit originally presented\artual-time
approach. This strategy advances the time disregpeshy
real clock attached to the simulation mechanism p&d
riods of inactivity are skipped.

The simulation in CD++ is carried out Brocessors
that drive the simulation by exchanging message® T
types ofProcessorsxist:

1. Simulators: drive the simulation of atomic

models, and

2. Coordinators: drive the execution of coupled

components and coordinate the activities of all
their dependant children.

In order to execute a simulation using the virtirzale
approach, CD++ keeps the current simulation timaeklV
the simulation starts, this simulation time is ialized to
zero. Then, the imminent event (i.e. the event with
earliest time of occurrence) is computed and thrukition
time is advanced accordingly in order to proceas ¢went.
Once it has been processed completely, the newnemni
event is computed, the simulation time is advararetithe
new event is processed. This cycle of advancing the
simulation time and processing the imminent event i



Glinsky and Wainer

repeated. The model execution ends when the siiowlat
time reaches the stop time indicated by the useelse
when there are no more pending events.

This strategy is useless if we intend to make our
models to interact with the environment (such as in

Hardware-in-the-loop or Man-in-the-loop simulatipnin
these cases, the time in the simulation framewodscot
evolve at the same speed as within its surroundings

1.2 Real-Time Simulation

In order to overcome these problems, we have neatltfie
CD++ toolkit to providereal-time simulation A real-time
system is defined as a system whose correctnesndep
not only on the logical results of computation, bigo on
the moment when the results are produced. If @&syste-
livers the correct answer after a certain deadiinepuld
be regarded as an unsuccessful response (Starl@sa).
Consequently, a real-time simulator must handlenesvin
a timely fashion where time constraints can beedtand
validated. These new features allow interactionwvben
the simulator and the surrounding environment. &foze,
inputs can be received by ports connected to ngaltide-
vices such as sensors, timers, thermometers or @éaten
collected from human interaction. Similarly, outpatin be
sent through output ports connected to devices ascho-
tors, transducers, gears, valves or any other coergo

The idea of the real-time simulator implementatisn
to tie time advance to theall-clock (physical time). The
simulator was modified to execute under
constraints that can be imposed easily by the Werare
able to analyze the results and the time in whiubsé
results are produced across the simulation. Whés th
technique is wused, models that interact with
environment can be executed.

The root coordinator manages the advance of time
along the simulation. When thértual-time approach is
used, the messages are immediately generated bpdhe
coordinator to initiate a new simulation cycle.
Alternatively, when theeal-time simulation is performed,
the coordinator waits until the physical time resglihe
next event time to initiate the new cycle.

Periods of inactivity are not skipped by the realet
simulator. The simulation process remains quiesarile
these periods are being experienced. Instead oinfpra
time advance up to the next programmed event ansl th
anticipating the execution of a programmed tasé,siinu-
lator expects the scheduled time to be reachedoahd
then starts the new simulation cycle. Hence, messag
terchanged between processors are sent, ideatheiatac-
tual scheduled time.

Typically, a model has to react to an externalnéve
within a given time to produce an output in ordestlve a
given problem, e.g., in case of having a sensacatithg

dangerous overheat, an energy plant needs to shur d
part of its system within given period.

A way to indicate a deadline time for an externeadrd
is provided in the real time extension of the t@ol€onse-
quently, it is now possible to check whethedeadlineis
successfully met by the simulator.

Recently, a non-hierarchical simulation technigas h
been implemented in CD++ (Glinsky and Wainer 2008a)
provide better performance in the execution of cemp
DEVS models.

2 TESTING THE REAL-TIME SIMULATOR

In order to analyze the performance of the reaétaigo-
rithms used, we developed a testing workbench. ®le h
measured:

*  Number of missed deadlinegpresents the num-

real-time

ber of deadlines that have been missed along the
entire execution of a model. A deadline is missed
if its response time is greater than its associated
deadline.

Worst-case response timeepresents the maxi-
mum time between the arrival of an event and the
output that the model produces in response, in the
entire simulation process.

A wide set of models was tested in order to defioe
curately the performance of the real-time simulatoder
different scenarios. In order to make the analgasier and
more accurate, a synthetic experimental frame leen b
developed and used. The synthetic model genesaimlle
to produce a variety of models, intending to mirthe
structure of real applications (Glinsky and Waig@02b).

Different parameters are taken into account toyaeal

the a given test case. These parameters are:
1.

Model size:it can be subsequently divided in
number of components per leeke. width) and
number of levels in the model hierarclye.
depth).

Number of interconnections between components:
this parameter describes the complexity and cha-
racteristics of the existing interconnections ie th
model. The information is obtained by the model
type (.e. Type-1 Type-2or Type-3 when the syn-
thetic generator is being used

Workload in transition functionsthe number of
milliseconds that have to be spent in the internal
and external transition functions

Number of external eventdhe number of external
events that are received along the entire simula-
tion.

Inter-event period:ithe period between an event
and the following one. It describes the frequency
of event arrival

Associated deadlinethe deadline that has been
associated to each incoming event, e.g., a deadline
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of 50 milliseconds means that the output for an
event has to be issued within 50 milliseconds after
its arrival.

The first three parameters are intrinsically relate
the model itself. They correspond to the specific
characteristics of each model.

On the other hand, the last three parameters are
involved with the simulation scenario under whidte t
model is being executed. They are not relatedemibdel,
but to the constraints imposed by the user (i.e th
associated deadline) and the environment (i.entheber
of external events and inter-event period).

In the testing process, a wide set of parametes wa
used to analyze several cases of interest.

Test results show both thpercentage of successid
theworst-case response tinfer each case. Thgercentage
of successs obtained as follows,

Percentage of Success = N — number of Missed Desill 00
N

@)

On the other hand, theorst-case response tingeob-
tained as follows,

)

wherer; is the response time for thveth event, andN
is the number of events for the given simulation.

The experiments have been grouped in different cate
gories that are explained in the following section.

worst-case response time = max,(rs, ..., Iy )

3 TEST RESULTS

We developed a set of tests analyzing differenegypf
models. Each test used 100 incoming events anded fi
inter-event period of 30 milliseconds. Deadlines an-
posed at 60 milliseconds after the event arrivahjctv
would let all events to be processed on time ifgimeula-
tor would not add overhead to the execution. Thieing
is an excerpt from the event file used in theseegrpents.

Table 1: External Event file with Associated Deadb

Wainer
Event tine Deadl i ne I nput | Assoc. Val ue
port out put
port
00:05:000 00:05:060 in out 1
00:05:030 00:05:090 in out 1
00:05:060 00:05:120 in out 1
00:05:090 00:05:150 in out 1
00:05:120 00:05:180 in out 1
00:05:150 00:05:210 in out 1
00:05:180 00:05:240 in out 1
00:05:210 00:05:270 in out 1
(.. (.. (..) (..) (..
00:34:910 00:34:970 in out 1
00:34:940 00:35:000 in out 1
00:34:970 00:35:030 in out 1

For instance, the first event arrives throughithport
at time00:05:000and its output must be issued though the
out port before00:05:060 The second event arrives 30
milliseconds later, aD0:05:03Q whereas its associated
deadline i90:05:09Q and so on.

Once the execution is over, we take into accouat th
number of deadlines that have been met and the ewaib
missed deadlines in order to compute fercentage of
success$or each simulation. Theorst-case response times
enable a more comprehensive study of the real tiere
formance. If the worst-case response time is smalie
equal than the associated deadline for a givenlation,
then the number of missed deadlines is zero. TlEans
that all events have been completely processedédieir
associated deadlines, and therefore we achievecaessi of
one hundred percent.

The testing included Type-1 and Type-3 models. The
first is a very simple model type with a small nientof
interconnections between components. The lattemmsich
more complex model, with a greater number of irderc
nections between components (further explanatidmsita
the topology and contents of the testing workbeceh be
found in (Glinsky and Wainer 2002b)).

We started studying models with fixed depth and-var
able number of components per level. The followfigg
ures illustrate the results obtained.

Percentage of Success in different models
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Figure 1: Percentage of Success in Type-1 and Bype-
Models with Variable Width and Depth
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Worst-case response time in different models
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Figure 2: Worst-case Response Time in Type-1 anu-By
Models with Variable Width and Depth

Figure 1 shows theercentage of succes$sr Type-1
and Type-3 models when depth is variable and tlaghws
fixed, and also when the width is variable anddbpth is
fixed.

Figure 2illustrates theworst-case response tinfer
each case. Similarly, deeper models have worsemesp
times due to their larger size and increased caxitple
The same concept applies to wider models, whoseisiz
also increased.

In addition, both charts show that Type-3 modeks ar
more difficult to manage due to their complex stuve.

As we have explained before, the simulation isiedrr
out by exchanging messages between processorgpréhe
vious charts illustrate that if the number of aetsompo-
nents is increased, deadlines are more likely tonkssed
and therefore thpercentage of success reduced accor-
dingly. This situation arises because the numbessages
needed to perform the simulation grows in relatiorthe
size and complexity of the model.

Particularly, the figures show that it is hardestmu-
late Type-3 models when the number of components in
creases due to their complex structure, in companigth
the equivalent (and more simple) Type-1 models.s€en
quently, theworst-case response timase remarkably in-
creased for Type-3 models.

In addition, the associated deadlines varied froto O
1000 milliseconds, showing how the strictness afdiiees
affected thepercentage of successd theworst-case re-
sponse times

The following figures show the obtained resulteaft
the execution of a given Type-3 model with diffdréme-
qguencies of event arrival and different associaleatlines
imposed by the user.

Percentage of Success under different scenarios

% of success

Inter-event period
time (ms)

800
1000
Associated deadline time (ms)

Figure 3: Percentage of Success in Executions pedy
Models with Varying Frequency of Events and Stess
of Associated Deadlines

Worst-case response time under different scenarios

Worst-case response time (ms)

Inter-event period time
400 (ms)

200

Associated deadline time (ms)

Figure 4. Worst-case Response Time in Type-3 Models
with Varying Frequency of Events and Strictnes#\s$o-

Under these conditions, when a Type-1 model has up qjated Deadlines

to 50 active components in its structure, more tfifay
percent of its deadlines are met. In contrast, @3 mod-

el with more than 35 active components can achiesg
than twenty-percent of success in these experimégfe-

3 models have a larger number of interconnectiord a
consequently, the incurred overhead makes it hataler
complete the entire simulation cycle on time. Oa dher
hand, the deadlines for Type-1 models can be met mo
easily by the simulator.

A second set of tests considered that events culd
rive at a different pace, depending on the surrmgndnvi-
ronment. In this experiments, the inter-event mhsivaried
from 20 to 80 milliseconds. Type-3 models were eyed
in these cases.

These chartshow the obtained results after the execu-
tion of several simulations performed under a coatidon
of different frequencies of event arrival and diéfet
strictness on the imposed deadlines.

Figure 3 illustrates not only the favorable impaét
greater inter-event period times (i.e. lower fratgies),
but also greater associated deadlines (i.e. legt son-
straints).

Extremely tight timing constraints do not allow the
simulator to meet those deadlines on time. Inphidicular
case, even with deadlines that are not very gtti@d0 mil-
liseconds) if the inter-event period is 20 millisads, only
20% of the deadlines are met. As deadlines becoore m
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relaxed, the percentage of success is correspdgdimg
creased because constraints are more likely to dde nex
gardless of the frequency of events.

Furthermore, we can point out that with fair con-
straints and frequencies, simulation results areecg e.g.,
when a simulation is executed using 600 millisesoird
deadlines and 60 milliseconds between event asival
success of 77% is achieved in these Type-3 moldlse
same frequency of events is received by a simulatio
whose deadlines are 800 milliseconds, then theeaeti
success is 100%.

In contrast, Figure 4 shows that worst-case regpons
times remain constant regardless of variationshenasso-
ciated deadline times. Actually, these experimesitew
that the response time for an event is unrelatatigdim-
ing constraint it might have. However, the inteeet pe-
riods have an important effect on the worst-casparse
times for a given simulation. When the frequencyweént
arrival is extremely high, th@orst-case response timage
remarkably increased. This situation occurs becauses-
sively small inter-event times do not allow the sliator to
process all the messages involved with the egghefore
the arrival of the next evendy.;. The degradation of per-
formance can be noticed by observing therst-case re-
sponsdime for a given simulation.

The last set of tests to be discussed describeftbet
of executing different workloads in the transitimctions.
Atomic models can execute time-consuming code ir th
internal and external transition functions. Our thtic
model generator produces Dhrystone code to resemeale
workload that would be executed by the atomic compo
nents. Dhrystone code is a synthetic benchmarkdiee to
be representative for system (integer) programming
(Weicker 1984).

Simulations were run using different workloadslie t
internal transition function only, in the exterrtednsition
function only and in both transition functions.

Percentage of Success in models with varying
transition times
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o
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Workload time (ms) per
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Figure 5: Percentage of Success in Type-3 Modeth wi
Varying time in their Transition Functions

Worst-case response times in models with varying
transition times
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Figure 6: Worst-case Response Time in Type-3 Models
with Varying Time in their Transition Functions

Figure 5 shows propegsercentages of succesgen
the workload time per function is 0 or 50 millisecls, in
spite of the place where the time-consuming codeeisg
executed. In contrast, a noticeable reduction @prcen-
tage of success observed in all cases when the time in the
transition functions is increased to 100 millised®n

In general, as the workload in the transition fiorcd
grows, thepercentage of successreduced in all the expe-
riments.

Additionally, Figure 6 shows theorst-case response
time for each case. Theorst-case response timase evi-
dently increased, because of the time that hastepent
on executing the atomic transition functions. Whbe
workload is executed in both transition functionbke
worst-case response tingedoubled.

In general, the study shows appropriate resultdhén
execution ofreal-time DEVS models. However, missed
deadlines and extremely long response times mag ae-
cause of a remarkable degradation of performaneeeiR-
ly, a non-hierarchical simulator has been develdpeithe
CD++ toolkit to overcome such loss of performance
(Glinsky and Wainer 2002a).

4 FLATTENED SIMULATION TECHNIQUE

We have explained before that the simulation prodss
message-driven; it is based on the message exchange
among processors. The message passing consumes an i
portant amount of time, mainly if the model struetis too
complex or extremely large (Glinsky and Wainer 2802
Kim et al. 2000).

The degradation of performance can be minimized if
the processor hierarchy is flattened. Thus, the bamof
exchanged messages can be reduced accordinglyetted b
performance results can be obtained with the fiatlesi-
mulation approach.

4.1 Test Results Using the Flattened Simulator

A comparison of both hierarchical and flatteneddators
is presented here. The executed models have beatedr



Glinsky and Wainer

using our synthetic model generator. Different sized
shapes have been employed.

The first set of experiments show the execution of
Type-1 models with variable depth (i.e. numberevgls in
the model hierarchy).

Not only the hierarchical and flattened resultg, dso
the theoretical resultsare shown in the next figure. The
theoretical results are simply the sum of all tineetspent
in executing the workload that is found in the intd and
external transition functions. Neither the overhgeamirred
by the simulators nor any other factors that mdgcafsi-
mulation performance are included in the theorétiea
sults.

Worst-case response time in Type-1 models with workload
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Figure 7: Comparison of Worst-case Response TinegUs
Hierarchical and Flattened Techniques in Type-1 &led
with Variable Depth

Figure 7 shows that the use of the flattened sitiuia
technique provides better response times in theutis
of these DEVS models. In deeper models, the difieze
between the hierarchical and flattened approacbesrbes
more noticeable.

The previous experiments have analyzed models
whose depth was variable. The next chart showsethdts
for models whose depth is fixed and width (i.e. bemof
components per level) is variable.

Worst-case response time in Type-1 models with workload
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Figure 8: Comparison of Worst-case Response TiniegUs
Hierarchical and Flattened Techniques in Type-1 &led
with Variable Width

Figure 8 shows that the flattened simulator outper-
forms the hierarchical one, providing better reggotimes
in real-timesimulations.

Generally, the analysis suggests that the usenoina
hierarchical simulator allows the execution of &rgnod-
els with better performance results.

5 CONCLUSIONS

The real-time extension of the CD++ toolkit wagedsus-
ing a variety of models. We executed small, medamd
large models to show the behavior and limitatiohshe
tool under several circumstances. Different modaih<c
plexities have been used. Moreover, different tgnaon-
straints and environments have been studied. Tipadta
of both the frequency of event arrival and thecgtgss of
the associated deadlines have been analyzed.

The analysis shows adequate performance on most
cases, with response times that are quite reasoif@bthe
executed models. Nevertheless, missed deadlinepaord
response times may occur when extremely large ¢or-c
plex) model structures, excessive high frequencygwent
arrivals or immoderate strictness on the imposeatilitees
are considered. Particularly, the accumulation opro-
cessed messages is an essential factor that affedts-
mance when the frequency of event arrival is high.

The flattened technique reduces the number of mes-
sages exchanged in a simulation. The analysis sliuats
the non-hierarchical simulator is more efficieritpwaing
the execution of larger and more complex DEVS m&adel
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