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ABSTRACT 

The CD++ toolkit was developed to implement the theoret-
ical concepts specified by the DEVS formalism. CD++ has 
been recently enhanced to support real-time simulation, 
where events have to be processed in a timely manner. A 
synthetic benchmarking tool is used to test several models 
with different workloads, complexities, structures and siz-
es. Additionally, experiments were carried out under dif-
ferent scenarios to analyze the behavior in such conditions. 
Some problems and limitations were detected in particular 
cases. Lately, a flattened simulation technique has been in-
troduced in the toolkit. The experiments presented in this 
work show that the flattened simulator is more efficient 
than the hierarchical one. 

1 INTRODUCTION 

The DEVS (Discrete EVents Systems specification) for-
malism provides a framework for the construction of hie-
rarchical models in a modular fashion, allowing model 
reuse and reducing development and testing time (Zeigler 
et al. 2000). DEVS models can be executed using abstract 
simulation mechanisms independent of the model itself. 
Models are built using a set of basic models called atomic, 
which can be combined to form coupled ones. A DEVS 
atomic model is described as: 

 
M = < X, S, Y, δint, δext, λ, D > 

 
 Here, X is the input events set, S is the state set, and Y 
is the output events set. There are also several functions: 
δint manages internal transitions, δext external transitions, λλλλ 
the outputs, and D the elapsed time. 

A DEVS coupled model is defined as: 
 

CM = < I, X, Y, D, {Mi}, {I i}, {Z ij} > 
 

Here, X is the set of input events, and Y is the set of 
output events. D is an index of components, and for each i 
∈ D, Mi is a basic DEVS model, where Mi = < Ii, Xi, Si, 

Yi, δinti, δexti, tai >. Ii is the set of influencees of model i. 
For each j ∈ I i, Zij is the i to j translation function. 

The CD++ toolkit (Rodriguez and Wainer 1999) 
implements DEVS theory. A specification language allows 
the creation of coupled models, the initial configuration for 
the atomic models, and the creation of external events to be 
used during the simulation. Lately, the CD++ tool has been 
enhanced to support parallel and real-time simulation 
engines (Troccoli and Wainer 2001; Glinsky and Wainer 
2002a). 

1.1 Virtual-Time Simulation 

DEVS provides the advantages of a discrete event ap-
proach in terms of execution performance. Discrete event 
models evolve in continuous time. Events are instanta-
neous and can occur asynchronously at unpredictable 
times. DEVS simulators can be seen as hierarchical sche-
dulers of events that activate the corresponding submodels. 
 The CD++ toolkit originally presented a virtual-time 
approach. This strategy advances the time disregarding any 
real clock attached to the simulation mechanism and pe-
riods of inactivity are skipped.  

The simulation in CD++ is carried out by Processors 
that drive the simulation by exchanging messages. Two 
types of Processors exist: 

1. Simulators: drive the simulation of atomic 
models, and 

2. Coordinators: drive the execution of coupled 
components and coordinate the activities of all 
their dependant children. 

In order to execute a simulation using the virtual-time 
approach, CD++ keeps the current simulation time. When 
the simulation starts, this simulation time is initialized to 
zero. Then, the imminent event (i.e. the event with the 
earliest time of occurrence) is computed and the simulation 
time is advanced accordingly in order to process that event. 
Once it has been processed completely, the new imminent 
event is computed, the simulation time is advanced and the 
new event is processed. This cycle of advancing the 
simulation time and processing the imminent event is 
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repeated. The model execution ends when the simulation 
time reaches the stop time indicated by the user, or else 
when there are no more pending events. 

This strategy is useless if we intend to make our 
models to interact with the environment (such as in 
Hardware-in-the-loop or Man-in-the-loop simulations). In 
these cases, the time in the simulation framework does not 
evolve at the same speed as within its surroundings. 

1.2 Real-Time Simulation 

In order to overcome these problems, we have modified the 
CD++ toolkit to provide real-time simulation. A real-time 
system is defined as a system whose correctness depends 
not only on the logical results of computation, but also on 
the moment when the results are produced. If a system de-
livers the correct answer after a certain deadline, it could 
be regarded as an unsuccessful response (Stankovic 1988). 
Consequently, a real-time simulator must handle events in 
a timely fashion where time constraints can be stated and 
validated. These new features allow interaction between 
the simulator and the surrounding environment. Therefore, 
inputs can be received by ports connected to real input de-
vices such as sensors, timers, thermometers or even data 
collected from human interaction. Similarly, outputs can be 
sent through output ports connected to devices such as mo-
tors, transducers, gears, valves or any other component. 

The idea of the real-time simulator implementation is 
to tie time advance to the wall-clock (physical time). The 
simulator was modified to execute under real-time 
constraints that can be imposed easily by the user. We are 
able to analyze the results and the time in which these 
results are produced across the simulation. When this 
technique is used, models that interact with the 
environment can be executed. 

The root coordinator manages the advance of time 
along the simulation. When the virtual-time approach is 
used, the messages are immediately generated by the root 
coordinator to initiate a new simulation cycle. 
Alternatively, when the real-time simulation is performed, 
the coordinator waits until the physical time reaches the 
next event time to initiate the new cycle. 

Periods of inactivity are not skipped by the real-time 
simulator. The simulation process remains quiescent while 
these periods are being experienced. Instead of forcing a 
time advance up to the next programmed event and thus 
anticipating the execution of a programmed task, the simu-
lator expects the scheduled time to be reached and only 
then starts the new simulation cycle. Hence, messages in-
terchanged between processors are sent, ideally, at their ac-
tual scheduled time.  
 Typically, a model has to react to an external event 
within a given time to produce an output in order to solve a 
given problem, e.g., in case of having a sensor indicating 

dangerous overheat, an energy plant needs to shut down a 
part of its system within given period. 

A way to indicate a deadline time for an external event 
is provided in the real time extension of the toolkit. Conse-
quently, it is now possible to check whether a deadline is 
successfully met by the simulator. 

Recently, a non-hierarchical simulation technique has 
been implemented in CD++ (Glinsky and Wainer 2002a) to 
provide better performance in the execution of complex 
DEVS models. 

2 TESTING THE REAL-TIME SIMULATOR 

In order to analyze the performance of the real-time algo-
rithms used, we developed a testing workbench. We have 
measured: 

• Number of missed deadlines: represents the num-
ber of deadlines that have been missed along the 
entire execution of a model. A deadline is missed 
if its response time is greater than its associated 
deadline. 

• Worst-case response time: represents the maxi-
mum time between the arrival of an event and the 
output that the model produces in response, in the 
entire simulation process. 

A wide set of models was tested in order to define ac-
curately the performance of the real-time simulator under 
different scenarios. In order to make the analysis easier and 
more accurate, a synthetic experimental frame has been 
developed and used. The synthetic model generator is able 
to produce a variety of models, intending to mimic the 
structure of real applications (Glinsky and Wainer 2002b). 

Different parameters are taken into account to analyze 
a given test case. These parameters are: 

1. Model size: it can be subsequently divided in 
number of components per level (i.e. width) and 
number of levels in the model hierarchy (i.e. 
depth). 

2. Number of interconnections between components: 
this parameter describes the complexity and cha-
racteristics of the existing interconnections in the 
model. The information is obtained by the model 
type (i.e. Type-1, Type-2 or Type-3) when the syn-
thetic generator is being used 

3. Workload in transition functions: the number of 
milliseconds that have to be spent in the internal 
and external transition functions 

4. Number of external events: the number of external 
events that are received along the entire simula-
tion. 

5. Inter-event period: the period between an event 
and the following one. It describes the frequency 
of event arrival 

6. Associated deadline: the deadline that has been 
associated to each incoming event, e.g., a deadline 
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of 50 milliseconds means that the output for an 
event has to be issued within 50 milliseconds after 
its arrival. 

The first three parameters are intrinsically related to 
the model itself. They correspond to the specific 
characteristics of each model. 

On the other hand, the last three parameters are 
involved with the simulation scenario under which the 
model is being executed. They are not related to the model, 
but to the constraints imposed by the user (i.e. the 
associated deadline) and the environment (i.e. the number 
of external events and inter-event period). 

In the testing process, a wide set of parameters was 
used to analyze several cases of interest. 

Test results show both the percentage of success and 
the worst-case response time for each case. The percentage 
of success is obtained as follows, 

 
Percentage of Success = N – number of Missed Deadlines *100        (1) 

N 
 
On the other hand, the worst-case response time is ob-

tained as follows, 
 

worst-case response time  = max ( r1, r2, …, rN )         (2) 
 

where r i is the response time for the i-eth event, and N 
is the number of events for the given simulation. 

The experiments have been grouped in different cate-
gories that are explained in the following section. 

3 TEST RESULTS 

We developed a set of tests analyzing different types of 
models. Each test used 100 incoming events and a fixed 
inter-event period of 30 milliseconds. Deadlines are im-
posed at 60 milliseconds after the event arrival, which 
would let all events to be processed on time if the simula-
tor would not add overhead to the execution. The following 
is an excerpt from the event file used in these experiments.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: External Event file with Associated Deadlines 

Event time Deadline Input 
port 

Assoc. 
output 
port 

Value 

00:05:000 00:05:060 in out 1 
00:05:030 00:05:090 in out 1 
00:05:060 00:05:120 in out 1 
00:05:090 00:05:150 in out 1 
00:05:120 00:05:180 in out 1 
00:05:150 00:05:210 in out 1 
00:05:180 00:05:240 in out 1 
00:05:210 00:05:270 in out 1 

(…) (…)  (…)  (…)  (…)  
00:34:910 00:34:970 in out 1 
00:34:940 00:35:000 in out 1 
00:34:970 00:35:030 in out 1 

 
For instance, the first event arrives through the in port 

at time 00:05:000 and its output must be issued though the 
out port before 00:05:060. The second event arrives 30 
milliseconds later, at 00:05:030, whereas its associated 
deadline is 00:05:090, and so on. 

Once the execution is over, we take into account the 
number of deadlines that have been met and the number of 
missed deadlines in order to compute the percentage of 
success for each simulation. The worst-case response times 
enable a more comprehensive study of the real time per-
formance. If the worst-case response time is smaller or 
equal than the associated deadline for a given simulation, 
then the number of missed deadlines is zero. This means 
that all events have been completely processed before their 
associated deadlines, and therefore we achieve a success of 
one hundred percent. 

The testing included Type-1 and Type-3 models. The 
first is a very simple model type with a small number of 
interconnections between components. The latter is a much 
more complex model, with a greater number of intercon-
nections between components (further explanations about 
the topology and contents of the testing workbench can be 
found in (Glinsky and Wainer 2002b)). 

We started studying models with fixed depth and vari-
able number of components per level. The following fig-
ures illustrate the results obtained. 
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Figure 1: Percentage of Success in Type-1 and Type-3 
Models with Variable Width and Depth 
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Worst-case response time in different models 
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Figure 2: Worst-case Response Time in Type-1 and Type-3 
Models with Variable Width and Depth 
 

Figure 1 shows the percentage of success for Type-1 
and Type-3 models when depth is variable and the width is 
fixed, and also when the width is variable and the depth is 
fixed. 

Figure 2 illustrates the worst-case response time for 
each case. Similarly, deeper models have worse response 
times due to their larger size and increased complexity. 
The same concept applies to wider models, whose size is 
also increased.  

In addition, both charts show that Type-3 models are 
more difficult to manage due to their complex structure.  

As we have explained before, the simulation is carried 
out by exchanging messages between processors. The pre-
vious charts illustrate that if the number of active compo-
nents is increased, deadlines are more likely to be missed 
and therefore the percentage of success is reduced accor-
dingly. This situation arises because the number messages 
needed to perform the simulation grows in relation to the 
size and complexity of the model. 

Particularly, the figures show that it is harder to simu-
late Type-3 models when the number of components in-
creases due to their complex structure, in comparison with 
the equivalent (and more simple) Type-1 models. Conse-
quently, the worst-case response times are remarkably in-
creased for Type-3 models. 

Under these conditions, when a Type-1 model has up 
to 50 active components in its structure, more than fifty-
percent of its deadlines are met. In contrast, a Type-3 mod-
el with more than 35 active components can achieve less 
than twenty-percent of success in these experiments. Type-
3 models have a larger number of interconnections and, 
consequently, the incurred overhead makes it harder to 
complete the entire simulation cycle on time. On the other 
hand, the deadlines for Type-1 models can be met more 
easily by the simulator. 

A second set of tests considered that events could ar-
rive at a different pace, depending on the surrounding envi-
ronment. In this experiments, the inter-event periods varied 
from 20 to 80 milliseconds. Type-3 models were employed 
in these cases.  

In addition, the associated deadlines varied from 0 to 
1000 milliseconds, showing how the strictness of deadlines 
affected the percentage of success and the worst-case re-
sponse times.  

The following figures show the obtained results after 
the execution of a given Type-3 model with different fre-
quencies of event arrival and different associated deadlines 
imposed by the user. 
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Figure 3: Percentage of Success in Executions in Type-3 
Models with Varying Frequency of Events and Strictness 
of Associated Deadlines 
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Figure 4: Worst-case Response Time in Type-3 Models 
with Varying Frequency of Events and Strictness of Asso-
ciated Deadlines 

 
These charts show the obtained results after the execu-

tion of several simulations performed under a combination 
of different frequencies of event arrival and different 
strictness on the imposed deadlines.  

Figure 3 illustrates not only the favorable impact of 
greater inter-event period times (i.e. lower frequencies), 
but also greater associated deadlines (i.e. less strict con-
straints). 

Extremely tight timing constraints do not allow the 
simulator to meet those deadlines on time. In this particular 
case, even with deadlines that are not very strict (1000 mil-
liseconds) if the inter-event period is 20 milliseconds, only 
20% of the deadlines are met. As deadlines become more 
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relaxed, the percentage of success is correspondingly in-
creased because constraints are more likely to be met, re-
gardless of the frequency of events.  

Furthermore, we can point out that with fair con-
straints and frequencies, simulation results are correct, e.g., 
when a simulation is executed using 600 milliseconds in 
deadlines and 60 milliseconds between event arrivals, a 
success of 77% is achieved in these Type-3 models. If the 
same frequency of events is received by a simulation 
whose deadlines are 800 milliseconds, then the achieved 
success is 100%. 

In contrast, Figure 4 shows that worst-case response 
times remain constant regardless of variations on the asso-
ciated deadline times. Actually, these experiments show 
that the response time for an event is unrelated to the tim-
ing constraint it might have. However, the inter-event pe-
riods have an important effect on the worst-case response 
times for a given simulation. When the frequency of event 
arrival is extremely high, the worst-case response times are 
remarkably increased. This situation occurs because exces-
sively small inter-event times do not allow the simulator to 
process all the messages involved with the event ek before 
the arrival of the next event, ek+1. The degradation of per-
formance can be noticed by observing the worst-case re-
sponse time for a given simulation.  

The last set of tests to be discussed describe the effect 
of executing different workloads in the transition functions. 
Atomic models can execute time-consuming code in their 
internal and external transition functions. Our synthetic 
model generator produces Dhrystone code to resemble real 
workload that would be executed by the atomic compo-
nents. Dhrystone code is a synthetic benchmark intended to 
be representative for system (integer) programming 
(Weicker 1984). 

Simulations were run using different workloads in the 
internal transition function only, in the external transition 
function only and in both transition functions. 
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Figure 5: Percentage of Success in Type-3 Models with 
Varying time in their Transition Functions 
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Figure 6: Worst-case Response Time in Type-3 Models 
with Varying Time in their Transition Functions 

 
Figure 5 shows proper percentages of success when 

the  workload time per function is 0 or 50 milliseconds, in 
spite of the place where the time-consuming code is being 
executed. In contrast, a noticeable reduction in the percen-
tage of success is observed in all cases when the time in the 
transition functions is increased to 100 milliseconds. 

In general, as the workload in the transition functions 
grows, the percentage of success is reduced in all the expe-
riments.  

Additionally, Figure 6 shows the worst-case response 
time for each case. The worst-case response times are evi-
dently increased, because of the time that has to be spent 
on executing the atomic transition functions. When the 
workload is executed in both transition functions, the 
worst-case response time is doubled. 

In general, the study shows appropriate results in the 
execution of real-time DEVS models. However, missed 
deadlines and extremely long response times may arise be-
cause of a remarkable degradation of performance. Recent-
ly, a non-hierarchical simulator has been developed in the 
CD++ toolkit to overcome such loss of performance 
(Glinsky and Wainer 2002a). 

4 FLATTENED SIMULATION TECHNIQUE 

We have explained before that the simulation process is 
message-driven; it is based on the message exchange 
among processors. The message passing consumes an im-
portant amount of time, mainly if the model structure is too 
complex or extremely large (Glinsky and Wainer 2002a; 
Kim et al. 2000). 

The degradation of performance can be minimized if 
the processor hierarchy is flattened. Thus, the number of 
exchanged messages can be reduced accordingly and better 
performance results can be obtained with the flattened si-
mulation approach. 

4.1 Test Results Using the Flattened Simulator 

A comparison of both hierarchical and flattened simulators 
is presented here. The executed models have been created 
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using our synthetic model generator. Different sizes and 
shapes have been employed. 

The first set of experiments show the execution of 
Type-1 models with variable depth (i.e. number of levels in 
the model hierarchy).  

Not only the hierarchical and flattened results, but also 
the theoretical results are shown in the next figure. The 
theoretical results are simply the sum of all the time spent 
in executing the workload that is found in the internal and 
external transition functions. Neither the overhead incurred 
by the simulators nor any other factors that may affect si-
mulation performance are included in the theoretical re-
sults. 

 

Worst-case response time in Type-1 models with workload

0

500

1000

1500

2000

2500

4 5 6 7 8 9 10

Depth

T
im

e 
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

 
Figure 7: Comparison of Worst-case Response Time Using 
Hierarchical and Flattened Techniques in Type-1 Models 
with Variable Depth 

 
Figure 7 shows that the use of the flattened simulation 

technique provides better response times in the execution 
of these DEVS models. In deeper models, the difference 
between the hierarchical and flattened approaches becomes 
more noticeable.  

The previous experiments have analyzed models 
whose depth was variable. The next chart shows the results 
for models whose depth is fixed and width (i.e. number of 
components per level) is variable. 
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Figure 8: Comparison of Worst-case Response Time Using 
Hierarchical and Flattened Techniques in Type-1 Models 
with Variable Width 

 

Figure 8 shows that the flattened simulator outper-
forms the hierarchical one, providing better response times 
in real-time simulations.  

Generally, the analysis suggests that the use of a non-
hierarchical simulator allows the execution of larger mod-
els with better performance results. 

5 CONCLUSIONS 

The real-time extension of the CD++ toolkit was tested us-
ing a variety of models. We executed small, medium and 
large models to show the behavior and limitations of the 
tool under several circumstances. Different model com-
plexities have been used. Moreover, different timing con-
straints and environments have been studied. The impacts 
of both the frequency of event arrival and the strictness of 
the associated deadlines have been analyzed. 

The analysis shows adequate performance on most 
cases, with response times that are quite reasonable for the 
executed models. Nevertheless, missed deadlines and poor 
response times may occur when extremely large (or com-
plex) model structures, excessive high frequency on event 
arrivals or immoderate strictness on the imposed deadlines 
are considered. Particularly, the accumulation of unpro-
cessed messages is an essential factor that affects perfor-
mance when the frequency of event arrival is high. 

The flattened technique reduces the number of mes-
sages exchanged in a simulation. The analysis shows that 
the non-hierarchical simulator is more efficient, allowing 
the execution of larger and more complex DEVS models. 
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