
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

ABSTRACT

The CD++ toolkit was developed to implement the theoret-
ical concepts specified by the DEVS formalism. CD++ has
been recently enhanced to support real-time simulation,
where events have to be processed in a timely manner. A
synthetic benchmarking tool is used to test several models
with different workloads, complexities, structures and siz-
es. Additionally, experiments were carried out under dif-
ferent scenarios to analyze the behavior in such conditions.
Some problems and limitations were detected in particular
cases. Lately, a flattened simulation technique has been in-
troduced in the toolkit. The experiments presented in this
work show that the flattened simulator is more efficient
than the hierarchical one.

1 INTRODUCTION

The DEVS (Discrete EVents Systems specification) for-
malism provides a framework for the construction of hie-
rarchical models in a modular fashion, allowing model
reuse and reducing development and testing time (Zeigler
et al. 2000). DEVS models can be executed using abstract
simulation mechanisms independent of the model itself.
Models are built using a set of basic models called atomic,
which can be combined to form coupled ones. A DEVS
atomic model is described as:

M = < X, S, Y, δint, δext, λ, D >

 Here, X is the input events set, S is the state set, and Y
is the output events set. There are also several functions:
δint manages internal transitions, δext external transitions, λλλλ
the outputs, and D the elapsed time.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {I i}, {Z ij} >

Here, X is the set of input events, and Y is the set of
output events. D is an index of components, and for each i
∈ D, Mi is a basic DEVS model, where Mi = < Ii, Xi, Si,

Yi, δinti, δexti, tai >. Ii is the set of influencees of model i.
For each j ∈ I i, Zij is the i to j translation function.

The CD++ toolkit (Rodriguez and Wainer 1999)
implements DEVS theory. A specification language allows
the creation of coupled models, the initial configuration for
the atomic models, and the creation of external events to be
used during the simulation. Lately, the CD++ tool has been
enhanced to support parallel and real-time simulation
engines (Troccoli and Wainer 2001; Glinsky and Wainer
2002a).

1.1 Virtual-Time Simulation

DEVS provides the advantages of a discrete event ap-
proach in terms of execution performance. Discrete event
models evolve in continuous time. Events are instanta-
neous and can occur asynchronously at unpredictable
times. DEVS simulators can be seen as hierarchical sche-
dulers of events that activate the corresponding submodels.
 The CD++ toolkit originally presented a virtual-time
approach. This strategy advances the time disregarding any
real clock attached to the simulation mechanism and pe-
riods of inactivity are skipped.

The simulation in CD++ is carried out by Processors
that drive the simulation by exchanging messages. Two
types of Processors exist:

1. Simulators: drive the simulation of atomic
models, and

2. Coordinators: drive the execution of coupled
components and coordinate the activities of all
their dependant children.

In order to execute a simulation using the virtual-time
approach, CD++ keeps the current simulation time. When
the simulation starts, this simulation time is initialized to
zero. Then, the imminent event (i.e. the event with the
earliest time of occurrence) is computed and the simulation
time is advanced accordingly in order to process that event.
Once it has been processed completely, the new imminent
event is computed, the simulation time is advanced and the
new event is processed. This cycle of advancing the
simulation time and processing the imminent event is

PERFORMANCE ANALYSIS OF REAL-TIME DEVS MODELS

Ezequiel Glinsky

Departamento de Computación
FCEN – Universidad de Buenos Aires

Planta Baja. Pabellón I.
1428 Buenos Aires, ARGENTINA

 Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building. 1125 Colonel By Drive
Ottawa, ON. K1S 5B6, CANADA

Glinsky and Wainer

repeated. The model execution ends when the simulation
time reaches the stop time indicated by the user, or else
when there are no more pending events.

This strategy is useless if we intend to make our
models to interact with the environment (such as in
Hardware-in-the-loop or Man-in-the-loop simulations). In
these cases, the time in the simulation framework does not
evolve at the same speed as within its surroundings.

1.2 Real-Time Simulation

In order to overcome these problems, we have modified the
CD++ toolkit to provide real-time simulation. A real-time
system is defined as a system whose correctness depends
not only on the logical results of computation, but also on
the moment when the results are produced. If a system de-
livers the correct answer after a certain deadline, it could
be regarded as an unsuccessful response (Stankovic 1988).
Consequently, a real-time simulator must handle events in
a timely fashion where time constraints can be stated and
validated. These new features allow interaction between
the simulator and the surrounding environment. Therefore,
inputs can be received by ports connected to real input de-
vices such as sensors, timers, thermometers or even data
collected from human interaction. Similarly, outputs can be
sent through output ports connected to devices such as mo-
tors, transducers, gears, valves or any other component.

The idea of the real-time simulator implementation is
to tie time advance to the wall-clock (physical time). The
simulator was modified to execute under real-time
constraints that can be imposed easily by the user. We are
able to analyze the results and the time in which these
results are produced across the simulation. When this
technique is used, models that interact with the
environment can be executed.

The root coordinator manages the advance of time
along the simulation. When the virtual-time approach is
used, the messages are immediately generated by the root
coordinator to initiate a new simulation cycle.
Alternatively, when the real-time simulation is performed,
the coordinator waits until the physical time reaches the
next event time to initiate the new cycle.

Periods of inactivity are not skipped by the real-time
simulator. The simulation process remains quiescent while
these periods are being experienced. Instead of forcing a
time advance up to the next programmed event and thus
anticipating the execution of a programmed task, the simu-
lator expects the scheduled time to be reached and only
then starts the new simulation cycle. Hence, messages in-
terchanged between processors are sent, ideally, at their ac-
tual scheduled time.
 Typically, a model has to react to an external event
within a given time to produce an output in order to solve a
given problem, e.g., in case of having a sensor indicating

dangerous overheat, an energy plant needs to shut down a
part of its system within given period.

A way to indicate a deadline time for an external event
is provided in the real time extension of the toolkit. Conse-
quently, it is now possible to check whether a deadline is
successfully met by the simulator.

Recently, a non-hierarchical simulation technique has
been implemented in CD++ (Glinsky and Wainer 2002a) to
provide better performance in the execution of complex
DEVS models.

2 TESTING THE REAL-TIME SIMULATOR

In order to analyze the performance of the real-time algo-
rithms used, we developed a testing workbench. We have
measured:

• Number of missed deadlines: represents the num-
ber of deadlines that have been missed along the
entire execution of a model. A deadline is missed
if its response time is greater than its associated
deadline.

• Worst-case response time: represents the maxi-
mum time between the arrival of an event and the
output that the model produces in response, in the
entire simulation process.

A wide set of models was tested in order to define ac-
curately the performance of the real-time simulator under
different scenarios. In order to make the analysis easier and
more accurate, a synthetic experimental frame has been
developed and used. The synthetic model generator is able
to produce a variety of models, intending to mimic the
structure of real applications (Glinsky and Wainer 2002b).

Different parameters are taken into account to analyze
a given test case. These parameters are:

1. Model size: it can be subsequently divided in
number of components per level (i.e. width) and
number of levels in the model hierarchy (i.e.
depth).

2. Number of interconnections between components:
this parameter describes the complexity and cha-
racteristics of the existing interconnections in the
model. The information is obtained by the model
type (i.e. Type-1, Type-2 or Type-3) when the syn-
thetic generator is being used

3. Workload in transition functions: the number of
milliseconds that have to be spent in the internal
and external transition functions

4. Number of external events: the number of external
events that are received along the entire simula-
tion.

5. Inter-event period: the period between an event
and the following one. It describes the frequency
of event arrival

6. Associated deadline: the deadline that has been
associated to each incoming event, e.g., a deadline

Glinsky and Wainer

of 50 milliseconds means that the output for an
event has to be issued within 50 milliseconds after
its arrival.

The first three parameters are intrinsically related to
the model itself. They correspond to the specific
characteristics of each model.

On the other hand, the last three parameters are
involved with the simulation scenario under which the
model is being executed. They are not related to the model,
but to the constraints imposed by the user (i.e. the
associated deadline) and the environment (i.e. the number
of external events and inter-event period).

In the testing process, a wide set of parameters was
used to analyze several cases of interest.

Test results show both the percentage of success and
the worst-case response time for each case. The percentage
of success is obtained as follows,

Percentage of Success = N – number of Missed Deadlines *100 (1)

N

On the other hand, the worst-case response time is ob-

tained as follows,

worst-case response time = max (r1, r2, …, rN) (2)

where r i is the response time for the i-eth event, and N
is the number of events for the given simulation.

The experiments have been grouped in different cate-
gories that are explained in the following section.

3 TEST RESULTS

We developed a set of tests analyzing different types of
models. Each test used 100 incoming events and a fixed
inter-event period of 30 milliseconds. Deadlines are im-
posed at 60 milliseconds after the event arrival, which
would let all events to be processed on time if the simula-
tor would not add overhead to the execution. The following
is an excerpt from the event file used in these experiments.

Table 1: External Event file with Associated Deadlines

Event time Deadline Input
port

Assoc.
output
port

Value

00:05:000 00:05:060 in out 1
00:05:030 00:05:090 in out 1
00:05:060 00:05:120 in out 1
00:05:090 00:05:150 in out 1
00:05:120 00:05:180 in out 1
00:05:150 00:05:210 in out 1
00:05:180 00:05:240 in out 1
00:05:210 00:05:270 in out 1

(…) (…) (…) (…) (…)
00:34:910 00:34:970 in out 1
00:34:940 00:35:000 in out 1
00:34:970 00:35:030 in out 1

For instance, the first event arrives through the in port

at time 00:05:000 and its output must be issued though the
out port before 00:05:060. The second event arrives 30
milliseconds later, at 00:05:030, whereas its associated
deadline is 00:05:090, and so on.

Once the execution is over, we take into account the
number of deadlines that have been met and the number of
missed deadlines in order to compute the percentage of
success for each simulation. The worst-case response times
enable a more comprehensive study of the real time per-
formance. If the worst-case response time is smaller or
equal than the associated deadline for a given simulation,
then the number of missed deadlines is zero. This means
that all events have been completely processed before their
associated deadlines, and therefore we achieve a success of
one hundred percent.

The testing included Type-1 and Type-3 models. The
first is a very simple model type with a small number of
interconnections between components. The latter is a much
more complex model, with a greater number of intercon-
nections between components (further explanations about
the topology and contents of the testing workbench can be
found in (Glinsky and Wainer 2002b)).

We started studying models with fixed depth and vari-
able number of components per level. The following fig-
ures illustrate the results obtained.

Percentage of Success in different models

0

20

40

60

80

100

25 30 35 40 45 50

Number of Components
 in the Model

%
 o

f s
u

cc
es

s

Variable depth Type-1
models

Variable width Type-1
models
Variable depth Type-3
models

Variable width Type-3
models

Figure 1: Percentage of Success in Type-1 and Type-3
Models with Variable Width and Depth

Glinsky and Wainer

Worst-case response time in different models

0

2000

4000

6000

8000

10000

25 30 35 40 45 50

Number of Components
 in the Model

T
im

e
(m

s)

Variable depth Type-1
models

Variable width Type-1
models
Variable depth Type-3
models

Variable width Type-3
models

Figure 2: Worst-case Response Time in Type-1 and Type-3
Models with Variable Width and Depth

Figure 1 shows the percentage of success for Type-1
and Type-3 models when depth is variable and the width is
fixed, and also when the width is variable and the depth is
fixed.

Figure 2 illustrates the worst-case response time for
each case. Similarly, deeper models have worse response
times due to their larger size and increased complexity.
The same concept applies to wider models, whose size is
also increased.

In addition, both charts show that Type-3 models are
more difficult to manage due to their complex structure.

As we have explained before, the simulation is carried
out by exchanging messages between processors. The pre-
vious charts illustrate that if the number of active compo-
nents is increased, deadlines are more likely to be missed
and therefore the percentage of success is reduced accor-
dingly. This situation arises because the number messages
needed to perform the simulation grows in relation to the
size and complexity of the model.

Particularly, the figures show that it is harder to simu-
late Type-3 models when the number of components in-
creases due to their complex structure, in comparison with
the equivalent (and more simple) Type-1 models. Conse-
quently, the worst-case response times are remarkably in-
creased for Type-3 models.

Under these conditions, when a Type-1 model has up
to 50 active components in its structure, more than fifty-
percent of its deadlines are met. In contrast, a Type-3 mod-
el with more than 35 active components can achieve less
than twenty-percent of success in these experiments. Type-
3 models have a larger number of interconnections and,
consequently, the incurred overhead makes it harder to
complete the entire simulation cycle on time. On the other
hand, the deadlines for Type-1 models can be met more
easily by the simulator.

A second set of tests considered that events could ar-
rive at a different pace, depending on the surrounding envi-
ronment. In this experiments, the inter-event periods varied
from 20 to 80 milliseconds. Type-3 models were employed
in these cases.

In addition, the associated deadlines varied from 0 to
1000 milliseconds, showing how the strictness of deadlines
affected the percentage of success and the worst-case re-
sponse times.

The following figures show the obtained results after
the execution of a given Type-3 model with different fre-
quencies of event arrival and different associated deadlines
imposed by the user.

0
200

400
600

800
1000

20

40

60
80

0
10
20
30

40
50

60

70

80

90

100

%
 o

f
su

cc
es

s

Associated deadline time (ms)

Inter-event period
time (ms)

Percentage of Success under different scenarios

Figure 3: Percentage of Success in Executions in Type-3
Models with Varying Frequency of Events and Strictness
of Associated Deadlines

0 200 400 600 800
1000

20

600

1000

2000

3000

4000

5000

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 ti
m

e
(m

s)

Associated deadline time (ms)

Inter-event period time
(ms)

Worst-case response time under different scenarios

Figure 4: Worst-case Response Time in Type-3 Models
with Varying Frequency of Events and Strictness of Asso-
ciated Deadlines

These charts show the obtained results after the execu-

tion of several simulations performed under a combination
of different frequencies of event arrival and different
strictness on the imposed deadlines.

Figure 3 illustrates not only the favorable impact of
greater inter-event period times (i.e. lower frequencies),
but also greater associated deadlines (i.e. less strict con-
straints).

Extremely tight timing constraints do not allow the
simulator to meet those deadlines on time. In this particular
case, even with deadlines that are not very strict (1000 mil-
liseconds) if the inter-event period is 20 milliseconds, only
20% of the deadlines are met. As deadlines become more

Glinsky and Wainer

relaxed, the percentage of success is correspondingly in-
creased because constraints are more likely to be met, re-
gardless of the frequency of events.

Furthermore, we can point out that with fair con-
straints and frequencies, simulation results are correct, e.g.,
when a simulation is executed using 600 milliseconds in
deadlines and 60 milliseconds between event arrivals, a
success of 77% is achieved in these Type-3 models. If the
same frequency of events is received by a simulation
whose deadlines are 800 milliseconds, then the achieved
success is 100%.

In contrast, Figure 4 shows that worst-case response
times remain constant regardless of variations on the asso-
ciated deadline times. Actually, these experiments show
that the response time for an event is unrelated to the tim-
ing constraint it might have. However, the inter-event pe-
riods have an important effect on the worst-case response
times for a given simulation. When the frequency of event
arrival is extremely high, the worst-case response times are
remarkably increased. This situation occurs because exces-
sively small inter-event times do not allow the simulator to
process all the messages involved with the event ek before
the arrival of the next event, ek+1. The degradation of per-
formance can be noticed by observing the worst-case re-
sponse time for a given simulation.

The last set of tests to be discussed describe the effect
of executing different workloads in the transition functions.
Atomic models can execute time-consuming code in their
internal and external transition functions. Our synthetic
model generator produces Dhrystone code to resemble real
workload that would be executed by the atomic compo-
nents. Dhrystone code is a synthetic benchmark intended to
be representative for system (integer) programming
(Weicker 1984).

Simulations were run using different workloads in the
internal transition function only, in the external transition
function only and in both transition functions.

Percentage of Success in models with varying
transition times

0

20

40

60

80

100

0 50 100 150 200 250

Workload time (ms) per
function

%
 o

f
su

cc
es

s Varying time in
internal function

Varying time in
external function

Varying time in both
functions

Figure 5: Percentage of Success in Type-3 Models with
Varying time in their Transition Functions

Worst-case response times in models with varying
transition times

0

100000

200000

300000

400000

500000

0 50 100 150 200 250

Workload time (ms) per function

T
im

e
(m

s)

Varying time in internal
function

Varying time in
external function

Varying time in both
functions

Figure 6: Worst-case Response Time in Type-3 Models
with Varying Time in their Transition Functions

Figure 5 shows proper percentages of success when

the workload time per function is 0 or 50 milliseconds, in
spite of the place where the time-consuming code is being
executed. In contrast, a noticeable reduction in the percen-
tage of success is observed in all cases when the time in the
transition functions is increased to 100 milliseconds.

In general, as the workload in the transition functions
grows, the percentage of success is reduced in all the expe-
riments.

Additionally, Figure 6 shows the worst-case response
time for each case. The worst-case response times are evi-
dently increased, because of the time that has to be spent
on executing the atomic transition functions. When the
workload is executed in both transition functions, the
worst-case response time is doubled.

In general, the study shows appropriate results in the
execution of real-time DEVS models. However, missed
deadlines and extremely long response times may arise be-
cause of a remarkable degradation of performance. Recent-
ly, a non-hierarchical simulator has been developed in the
CD++ toolkit to overcome such loss of performance
(Glinsky and Wainer 2002a).

4 FLATTENED SIMULATION TECHNIQUE

We have explained before that the simulation process is
message-driven; it is based on the message exchange
among processors. The message passing consumes an im-
portant amount of time, mainly if the model structure is too
complex or extremely large (Glinsky and Wainer 2002a;
Kim et al. 2000).

The degradation of performance can be minimized if
the processor hierarchy is flattened. Thus, the number of
exchanged messages can be reduced accordingly and better
performance results can be obtained with the flattened si-
mulation approach.

4.1 Test Results Using the Flattened Simulator

A comparison of both hierarchical and flattened simulators
is presented here. The executed models have been created

Glinsky and Wainer

using our synthetic model generator. Different sizes and
shapes have been employed.

The first set of experiments show the execution of
Type-1 models with variable depth (i.e. number of levels in
the model hierarchy).

Not only the hierarchical and flattened results, but also
the theoretical results are shown in the next figure. The
theoretical results are simply the sum of all the time spent
in executing the workload that is found in the internal and
external transition functions. Neither the overhead incurred
by the simulators nor any other factors that may affect si-
mulation performance are included in the theoretical re-
sults.

Worst-case response time in Type-1 models with workload

0

500

1000

1500

2000

2500

4 5 6 7 8 9 10

Depth

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

Figure 7: Comparison of Worst-case Response Time Using
Hierarchical and Flattened Techniques in Type-1 Models
with Variable Depth

Figure 7 shows that the use of the flattened simulation

technique provides better response times in the execution
of these DEVS models. In deeper models, the difference
between the hierarchical and flattened approaches becomes
more noticeable.

The previous experiments have analyzed models
whose depth was variable. The next chart shows the results
for models whose depth is fixed and width (i.e. number of
components per level) is variable.

Worst-case response time in Type-1 models with workload

600

1100

1600

2100

2600

3100

3 4 5 6 7

Width

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

Figure 8: Comparison of Worst-case Response Time Using
Hierarchical and Flattened Techniques in Type-1 Models
with Variable Width

Figure 8 shows that the flattened simulator outper-
forms the hierarchical one, providing better response times
in real-time simulations.

Generally, the analysis suggests that the use of a non-
hierarchical simulator allows the execution of larger mod-
els with better performance results.

5 CONCLUSIONS

The real-time extension of the CD++ toolkit was tested us-
ing a variety of models. We executed small, medium and
large models to show the behavior and limitations of the
tool under several circumstances. Different model com-
plexities have been used. Moreover, different timing con-
straints and environments have been studied. The impacts
of both the frequency of event arrival and the strictness of
the associated deadlines have been analyzed.

The analysis shows adequate performance on most
cases, with response times that are quite reasonable for the
executed models. Nevertheless, missed deadlines and poor
response times may occur when extremely large (or com-
plex) model structures, excessive high frequency on event
arrivals or immoderate strictness on the imposed deadlines
are considered. Particularly, the accumulation of unpro-
cessed messages is an essential factor that affects perfor-
mance when the frequency of event arrival is high.

The flattened technique reduces the number of mes-
sages exchanged in a simulation. The analysis shows that
the non-hierarchical simulator is more efficient, allowing
the execution of larger and more complex DEVS models.

REFERENCES

Glinsky, E. and Wainer, G. 2002a. Definition of Real-Time
simulation in the CD++ toolkit. In Proceedings of SCS
Summer Computer Simulation Conference, San Diego,
CA.

Glinsky, E. and Wainer, G. 2002b. Performance analysis of
DEVS environments. In Proceedings of AI Simulation
and Planning. Lisbon, Portugal.

Kim, K., Kang W., Sagong, B. and Seo, H. 2000. Efficient
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-Hierarchical
One. In Proceedings of the 33rd Annual Simulation
Symposium. Washington DC.

Rodriguez, D. and Wainer, G. 1999. New Extensions to the
CD++ tool. In Proceedings of SCS Summer Computer
Simulation Conference, Chicago, IL.

Stankovic, J. 1988. Misconceptions about real time compu-
ting: A serious problem for next generation systems.
IEEE Computer, Vol. 21, No. 10, pp. 10-19.

Troccoli, A. and Wainer, G. 2001. Performance Analysis
of Cellular Models with Parallel Cell-DEVS. In Pro-
ceedings of SCS Summer Computer Simulation Confe-
rence, Orlando, FL.

Glinsky and Wainer

Weicker, R. P. 1984. Dhrystone: A synthetic systems pro-

gramming benchmark. In Communications of the
ACM, volume 27, pp. 1013-1030.

Zeigler, B., Kim, T. and Praehofer, H. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Academ-
ic Press.

AUTHOR BIOGRAPHIES

EZEQUIEL GLINSKY is a M. Sc. student in the Com-
puter Sciences Department of the Universidad de Buenos
Aires, Argentina. He is a Research and Teaching Assistant
in the same department, and a member of the ParDEVS
lab. He developed part of this work being a visiting re-
search scholar at Carleton University. Glinsky has worked
in the IT industry in Argentina for the past 7 years. Cur-
rently, he is an independent IT consultant. His e-mail ad-
dress is <eglinsky@dc.uba.ar>.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the Universi-
dad de Buenos Aires, Argentina, and Université d’Aix-
Marseille III, France. He is Assistant Professor at the Sys-
tems and Computer Engineering, Carleton University (Ot-
tawa, Canada). He was Assistant Professor at the Computer
Sciences Dept. of the Universidad de Buenos Aires, Argen-
tina. He has been the PI of several research projects, and
participated in different international research programs.
Prof. Wainer is a member of the Board of Directors of the
Society for Computer Simulation International (SCS). He
is also a Co-associate Director of the Ottawa Center of the
McLeod Institute of Simulation Sciences. His email and
web addresses <gwainer@sce.carleton.ca> and
<www.sce.carleton.ca/faculty/wainer/> .

