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Abstract
We describe an implementation where mapping of the Petri
Net (PN) modeling formalism into the DEVS modeling for-
malism was used for the purpose of simulating PNs using a
DEVS simulator.  The focal point of the paper is a descrip-
tion of the DEVS atomic models used to model PN transi-
tions and places along with a description of PN simulation
results obtained using an unmodified DEVS simulator.

INTRODUCTION

The DEVS Formalism
The DEVS formalism [5] was originally defined as a

discrete-event modeling specification mechanism. It is a
systems theoretical approach that allows the definitions of
hierarchical modular models that can be easily reused [Zei-
gler et al., 2000]. A real system modeled with DEVS is de-
scribed as a composite of submodels, each of them being be-
havioral (atomic) or structural (coupled).

A DEVS atomic model is formally described by:

M = < X, S, Y, δint, δext, λ, D >

where X is the input events set; S is the state set; Y is the out-
put events set; int is the internal transition function; ext is the
external transition function; is the output function; and D is
the duration function.

A DEVS coupled model is composed of several atomic
or coupled submodels. They are formally defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

where X is the set of input events; Y is the set of output
events; D is an index for the components of the coupled
model, and ∀ i ∈ D, Mi is a basic DEVS (that is, an atomic
or coupled model), Ii is the set of influencees of model i (that
is, the models that can be influenced by outputs of model i),
and ∀ j ∈ Ii, Zij is the i to j translation function. We can see
that coupled models are defined as a set of basic components
(atomic or coupled) interconnected through the model's inter-
faces. The translation function is in charge of converting the
outputs of a model into inputs for the others. To do so, an
index of influencees is created for each model (Ii). This index

defines that the outputs of the model Mi are connected to in-
puts in the model Mj, where j is an element of Ii.

DEVS hierarchical constructions enable multi-formalism
modeling (that is, the coupling of and transformation between
models described in different formalisms). Using different
formalisms to represent such systems enables a modeler to
chose the formalism that lends itself best to represent each
sub-systems.

The CD++ Tool
CD++ [3, 4] is a tool that allows a user to implement

DEVS models. The tool is built as a hierarchy of models,
each of them related with a simulation entity. Atomic models
can be programmed and incorporated onto a basic class hier-
archy programmed in C++. A specification language allows
defining the model's coupling, including the initial values and
external events.  The tool also enables a user to build models
using graph-based notations [5], which allows visualization
of the problem in a more abstract way. Therefore, we have
used an extended graphical notation to allow the user define
atomic models behavior. Each graph defines the state
changes according to internal and external transition func-
tions, and each is translated into an analytical definition. Our
long term goal is to provide the user with a set of libraries to
develop complex models based on multiformalisms. We have
already included Finite State Automata, Petri Nets, DEVS
graphs and DEVS atomic models written in C++, enabling
the users to use different formalisms to describe different
properties of a system. In this work we will focus in the im-
plementation of Petri Nets as an example of multi-formalism
model definition.

Petri Nets
Petri Nets (PNs) are a modeling formalism originally

developed by C.A Petri [1]. They are especially well suited to
model systems where concurrent events can take place. One
of their most appealing aspect is the simplicity of their
graphical representation. Static properties of PNs are can be
described using three elements illustrated in Figure 1: places
(large circles), transitions (bars) and arcs joining places to
transitions and vice-versa.

Petri Nets have the following semantics for static defini-
tions:
• A place may have zero or more inputs. For example, P1,
P4 and P2 have zero, one and two inputs respectively.



• A place may have zero or more outputs. For example, P4,
P5 and P3 have zero, one and two outputs respectively.
• A transition may have zero or more inputs. For example,
t4, t3 and t2 have zero, one and two inputs respectively. A
transition with no inputs is called a source.
• A transition may have zero or more outputs. For exam-
ple, t5, t1, t4 have zero, one and two outputs respectively. A
transition with no outputs is called a sink.

Tokens (black dots) are used to represent the model's
dynamic behavior. The idea is to represent states or physical
locations of the system using places and to show entities or
resources using tokens inside the places. The movement of
tokens from place to place models the movement of entities or
resources in the real system.  The following rules define the
semantics for the model dynamics:
•  A place may contain zero or more tokens. For example,
P2, P5 and P1 contain zero, one and two tokens respectively.
• A transition is either enabled or disabled. A transition is
enabled if all of its input places contain at least one token. A
source transition is always enabled hence it can be used as an
infinite source of tokens.
• A PN is executed by firing enabled transitions, one at a
time, for as long as there is at least one enabled transition.
• When more than one transition is enabled at any given
time, the one that fires is selected in a non deterministic man-
ner.
• When a transition fires, a token is removed from each
one of its input places and a token is deposited in each one of
the output places. Source and sink transitions are exceptions
to this rule.
Transition firing is instantaneous meaning that tokens are
removed from input places and deposited in the output places
at exactly the same time.

Figure 1. A Typical Petri net

Over the years extensions to PNs have been introduced
to increase their modelling capabilities. Two of these exten-
sions include the definition of inhibitor and multiple arcs. An
inhibitor arc is an arc which goes from a place to a transition
and it enables the transition only if the place is empty as op-
posed to containing at least one token.  A multiple arc is an
arc which goes from a place to a transition and vice-versa and
indicates the number of tokens being transferred is more than
one.

MAPPING PETRI NETS TO DEVS
The construction of a library of atomic models to repre-

sent PN transitions and places was straightforward since it
was shown in [2] that PNs can be embedded in DEVS be-
cause any discrete event behaviour can be expressed as a

DEVS model. Modeling and simulating PNs with an unmodi-
fied DEVS simulator is a concrete example showing PNs are
indeed embedded into DEVS.  The remaining sections are
devoted to decribe how this can be achieved.

Creating the DEVS equivalent of PNs requires, at the
minimum, that the PN characteristics explained previously
also exist in the DEVS implementation. Furthermore, for the
CD++ tool to be accepted as a useful PN modeling and
simulation tool, the DEVS implementation must have the
look and feel of PNs so PN modelers are comfortable using
it. Furthermore, it must be as simple to use as any PN simu-
lation tool and allow efficient analysis of simulation results.
With this in mind, the chosen solution for modeling PNs was
to create two DEVS atomic models. One to represent a place
and one to represent a transition. This is very versatile be-
cause any PN can be constructed by coupling the two types
of DEVS atomic models in a manner very similar to how
places and transitions are coupled in a PN. Furthermore, it
makes it easy for someone to map a PN into the proper .ma
file (model definition file) necessary for the CD++ tool to
execute the PN. That is, for every place or transition in the
PN there is an atomic model and every arc is represented by a
link between the atomic models.

The Place Model
Figure 2 illustrates the conceptual description for the

DEVS model of a PN place. It has one input port and one
output port described below.

Figure 2. Place conceptual model

in port: this input is used to receive tokens from zero or
more PN transitions. It is also used to tell the place to loose
tokens such as when a transition fires. The encoding of the
messages received from this port contains information re-
garding the number of tokens and the operation (subtraction
or addition) to be performed. This is how the model supports
multiple arcs.

out port: this output is used by the place to advertise the
number of tokens it contains so transitions that are connected
to it can determine if they are enabled. This process is exe-
cuted every time the number of tokens in the place is modi-
fied and when the model is initialized at the beginning of
simulation.

The formal specification for this model is:
M = < X, S, Y, δint, δext, D, λ > where:
X = {IN ∈ N+}
Y = {OUT ∈ N+}
S = {{tokens∈N0

+} ∪ {id∈N+} ∪ {phase∈{active, passive}}
Where tokens is the number of tokens contained in the place
and id is the identifier of the place as assigned by the DEVS
simulator.



δext (s,e,x) {
retrieve id and number of tokens from message
case id = 0 /* generic message */
increment tokens

hold in active 0  /* to advertise the number of
tokens */

case id != 0 /* specific message */
id matches id of this place?
     no: disregard the message
     yes: decrement tokens by the number of

tokens specified if there are enough. Otherwise
throw an exception.

   hold in active 0 /* to advertise the number
of tokens */
}end of external transition function

δint (s)  {
passivate /* wait for the next external event
*/
}

λ(s) {
combine id and tokens state variables in one mes-
sage and send on the out port.
}

The Transition Model
Figure 3 illustrates the conceptual description for the

DEVS model of a PN transition. It has five input ports and
five output ports described below.

Figure 3. Transition conceptual model

in1 port: this input port is used to be notified of the num-
ber of tokens contained in the place(s) which have their out
port connected to this input. Places which connect to this port
do so because the connection consists of a single connecting
arc. That is, if the transition fires, only one token will be re-
moved from the input place(s).

in2, in3 and in4 ports: these input ports serve the same
function as the in1 port except that the connection consists of
a double, triple and quadruple connecting arc respectively.
This implies the input place(s) will loose two, three or four
tokens if the transition fires.

in0 port: this input port serves the same function as the
in1 port except that the connection consists of an inhibitor
arc. That is, the input place must contain zero token for the
transition to be enabled and when it fires no token is removed
from the place.

out1 port: This output is used to feed one token to all the
places which have their in port connected to this port. The id
of the messages sent on this port is always zero which causes
all places receiving it to update the number of tokens they
hold.

out2, out3, out4 ports: These ports serve the same pur-
pose as out1 except they respectively feed two, three and four
tokens to all the places which have their in port connected to
these ports.

fired port: This output is used to remove tokens from the
input places which must have their in port connected to this
output port in addition to being connected to one of the input
ports.

The formal specification of the model is:

M = < X, S, Y, δint, δext, D, λ > where:
X = {IN0 ∈ N+, IN1 ∈ N+, IN2 ∈ N+, IN3 ∈ N+, IN4 ∈ N+}
Y = {OUT1 = 1, OUT2 = 2, OUT3 = 3, FIRED ∈ N+}
S = {{inputs ∈ N0

+} ∪ {enabled ∈ bool}

Where inputs is the number of input places the transition
has and enabled indicates if the transition is enabled or not.
Note that the model uses a database to store the id of the in-
put places, the number of tokens they contain and the width
of the arcs connecting the places to the transition. This in-
formation does not define the state of the transition model
which is why it is not included in the definition of S above.

δext (s,e,x) {
case port

in0: set arcwidth (temp var) to 0.
in1: set arcwidth (temp var) to 1.
in2: set arcwidth (temp var) to 2.
in3: set arcwidth (temp var) to 3.
in4: set arcwidth (temp var) to 4.

- extract id (place of origin) and number of tokens
from the message.
First message we get from this id?
yes: increment inputs.
no: continue
- save id, arcwidth and number of tokens in data-
base.
- scan the entire database to determine if all in-
put places have enough tokens to enable the transi-
tion.

transition is enabled ?
    yes: set enabled to true
 hold in (active, random (0 – 60 sec))
    no: set enabled to false

passivate
}end of external transition function

δint (s)  {
inputs = 0?
    yes: /* transition is a source */

              hold in (active, random (0 – 60 sec))
no: passivate

}

λ(s) {
- send 1 on out1 port.
- send 2 on out2 port.
- send 3 on out3 port.
- send 4 on out4 port.

- go through the database and send a message to
every input place via the fired port.
} /* end of output function */



Figure 4 illustrates an example of how transition and
place models are meant to be coupled to create a PN. Note
that for clarity reasons two fired ports where used but the
model actually only has one as mentioned previously. The
figure shows a transition which is enabled when P1 has no
token, P2 has at least two tokens and where P3 receives three
tokens when the transition fires. Additionally, P2 looses two
tokens because the fired port of the transition is connected to
its in port. Even though the fired port of t1 is connected to the
in port of P1, the latter does not loose tokens when t1 fires
because it is connected via an inhibitor arc.

Figure 4. Coupling places and transition

Figure 5 shows the CD++ coupled model definition file
equivalent to the coupled model illustrated on Figure 4.
Places use the pnPlace atomic model while transitions use the
pnTrans atomic model. The five links represent the five con-
necting arcs. By default, the place model is created with zero
tokens. In the case of P2, this has been overridden by the
modeler by specifying “tokens : 3” such that at the beginning
of the simulation the place would contain three tokens. An-
other optional parameter is the inputplaces parameter which
indicates the maximum number of input places that can con-
nect to the transition. By default the maximum is 10 but this
can be changed to a lesser or larger value. This parameter
limits the amount of memory the transition model allocates to
keep information about input places.

[top]
components : P1@pnPlace P2@pnPlace P3@pnPlace
t1@pnTrans

Link : out@P1 in0@t1
Link : out@P2 in2@t1
Link : out3@t1 in@P3
Link : fired@t1 in@P1
Link : fired@t1 in@P2

[P2]
tokens : 3

[t1]
inputplaces : 3

Figure 5. Model definition file for figure 4

ANALYZING SIMULATION RESULTS
A TCL tool was developed to assist modelers in analyz-

ing test results. Given that what is of interest is the marking

of the PN and the firing of the transitions, the tool provides
this information in a clear and concise manner as can be seen
in Figure 6. The tool does this by parsing the coupled model
file to determine the names of the places and transitions used
in the model and by parsing the .log file resulting from a
simulation.

The first two lines in Figure 6 list the name of the places
and transitions which make up the model. Then the initial
marking of the PN is shown. In this case, p1 = 5, p2 = 3 and
p3 = 0. Then t1 is seen to fire, which results in a (2,1,4)
marking. From this one can conclude p1 and p2 are input
places to t1 while p3 is an output place of t1. Furthermore, p1
has a triple arc to t1 because it lost 3 tokens due to the firing,
p2 has a double arc and p3 has a quadruple arc.

Petri Net places: p1 p2 p3
Petri Net transitions: t1

 (5,3,0)— t1->(2,1,4)

Figure 6. Output of the Petri tet marking tool

VALIDATION OF MODELS
A first set of tests verified the proper interactions be-

tween a place atomic model and a transition atomic model
using the simple PN shown in Figure 7. A 10 second simula-
tion run was done without using an external event file. Figure
8 shows the PN markings resulting from the simulation
which confirmed the expected results:
• Verify the transition fired continuously because it is al-
ways enabled.
• Verify the marking of the PN stayed at (1) because P1
always contained 1 token.

Figure 7.  Coupling test 1 model

Petri Net places: p1
Petri Net transitions: t1

(1)-- t1 ->(1)-- t1 ->(1) … and so on to the end
of the file.

Figure 8. Coupling test 1 PN markings

A second group of tests was aimed to study the proper
interactions between a place atomic model and a transition
atomic model using the PN shown in Figure 9. A 30 minute
simulation run was done without using an external event file.



Figure 9. Coupling test 2 model

 Figure 10 shows the PN markings resulting from the
simulation which confirms the expected results:
• Verify t2 is the first transition to fire.
• Verify t1 and t2 fire five times each in a non determinis-
tic manner when they are both enabled at the same time.
• Verify the initial marking is (0, 10, 5, 0)
• Verify the final marking is (0, 0, 0, 10)

Petri Net places: p1 p2 p3 p4
Petri Net transitions: t1 t2

(0,10,5,0)-- t2 ->(1,9,4,1)-- t1 ->(0,8,4,2)--
t2 ->(1,7,3,3)-- middle contents of file not
shown to save space->(1,1,0,9)-- t1 ->(0,0,0,10)

Figure 10. Coupling test 2 PN marking

Another set of tests verified the proper interactions be-
tween a place atomic model and a transition atomic model
using the PN shown in Figure 11. A 30 minute simulation run
was done without using an external event file. Figure 12
shows the PN markings resulting from the simulation which
confirms the expected results:
• Verify initial marking is(5, 3, 0)
• Verify t1 fires only once.
• Verify P1 and P2 loose 3 and 2 tokens respectively.
• Verify P3 receives 4 tokens.
• Verify final marking is (2, 1, 4)

Figure 11. Coupling test 3 model

Petri Net places: p1 p2 p3
Petri Net transitions: t1

(5,3,0)-- t1 ->(2,1,4)

Figure 12. Coupling test 3 PN markings

SIMULATION EXAMPLES
After having validated the place and transition models,

the next step was to simulate real systems. This section de-
scribes five simple systems which were modeled and simu-
lated and discusses the results.

Mutual Exclusion Scenario
Figure 13 illustrates a classical mutual exclusion prob-

lem as described in [1]. Two processes have to execute criti-
cal sections of code (places P3 and P4) but are not allowed to
do it at the same time. That is, P3 and P4 must be mutually
exclusive. To enforce this rule the processes must therefore
grab a semaphore (P5) before entering their critical section
(t1 or t2) and release the semaphore after exiting their critical
section (t3 or t4). The 30 minute simulation run was started
with the following marking: (1, 1, 0, 0, 1).

The set of markings resulting from the simulation
showed t1 fired first resulting in a marking of (0, 1, 1, 0, 0).
Then t3 fired to bring the PN back to its initial marking. This
was followed by the firing of t2 resulting in a marking of (1,
0, 0, 1, 0). t4 then fired bringing the net back to its initial
marking. The remainder of the markings were simply a repe-
tition of the above except for the order in which the processes
successfully took the semaphore. Sometimes a process got
the semaphore just after releasing it which is also expected
since transitions t1 and t2 are always enabled at the same
time and the decision to fire one or the other is made in a
non-deterministic manner.

Figure 13. Mutual exclusion scenario

Two-Unit Asynchronous Pipeline
Figure 14 illustrates a two-unit asynchronous pipeline.

This model is a modified version of the asynchronous pipe-
lined control unit found in [1]. The idea is to simulate the
flow of jobs in the pipeline with the assumption the process-
ing time of each job may be different in each of the units.
The 2 hour simulation started with all input and output reg-
isters empty: (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0).



Figure 14. Two-unit asynchronous pipeline

The set of markings generated by showed jobs moving in
the pipeline properly. That is they followed the P1-P2-P3-P4-
P8-P7-P9-P10-P12 path. Furthermore it was found, as ex-
pected, none of the places contained more than one token at
any given time and none of the units input registers were
empty and full at the same time. That is P3 and P5, P6 and
P8, P9 and P11 were found to be mutually exclusive respec-
tively.

CONCLUSIONS
We described how Petri Nets can be simulated using

DEVS atomic models for PN transitions and places with an
unmodified DEVS simulator and also showed that DEVS
simulation results can simply be filtered through a parsing
tool to give them a stronger PN flavour.  Many simulation
examples and results were described to validate the method
used and demonstrate its usefulness for implementing a PN-
DEVS multi-formalism.

A possible enhancement of the transition model de-
scribed in the previous sections would be to modify its inter-
nal transition function enabling timed Petri Nets modeling.
The advantage of doing so with a DEVS model would lie in
the fact the timing characteristics of the PN could be formally
specified which is not the case with the Petri Net formalism
presented earlier.

The implementation of the atomic models, the CD++
tool, the pnmark tool and a more extensive report are public
domain and can be obtained in:
 http://www.sce.carleton.ca/faculty/wainer/wbgraf/index.htm.
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