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ABSTRACT

We present the use of the CD++ tool to model amilikite
forest fire-spread. A semi-physical fire spread pioid
implemented using the Cell-DEVS formalism. The o$e
Cell-DEVS enables proving the correctness of theuk-
tion engines and permits to model the problem dwem
non-science computer specialist. The high levetjlage
of CD++ reduces the algorithmic complexity for timed-
eler while allowing complex cellular timing behasso Dif-
ferent Cell-DEVS quantization techniques are used a
developed to decrease execution time. The studdalized
regarding time improvement and trades-off betweedeh
evolution, simulation time and incurred error. Hipa
based on experimentations, interesting perspectiresle-
fined to develop new quantization techniques.

1 INTRODUCTION

At present, concerns for environment engender asing
interest in monitoring and predicting ecosystemngjes.
The damage induced by devastating fires that oedurr
over the last few years stressed the necessitfiréofigh-
ters to dispose of a tool that would provide ragidi rela-
tively accurate information concerning fire positio

In fire spreading, the use of computer simulai®m
good choice to solve the problem due to the compéha-
vior of the phenomena studied and the volume o tizdt
ecological models have to grasp. However, real-simau-
lators for fire spread are tricky to elaborate tuéoth fire
complexity and landscape size.

The Cell-DEVS formalism (Wainer and Giambiasi
2001) is well suited to solve this kind of applicats. A
Cell-DEVS model enables the definition of a celasp
with explicit timing delays. Each cell is defined an
atomic DEVS model (Zeigler et al. 2000), and a pthoe
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to couple cells is depicted. Delay functions alldefining
timing behavior explicitly.
Each cell is described as:

TDC =< X, Y,0, N, delay, ddint, dext, T, A, D >

X defines the external input¥, the external outputs
defining the interface of the modd.is the cell state defi-
nition, andN is the set of inputdelay defines the kind of
delay for the cell (transport or inertial), addts duration.

A transport delay can be associated with each cell, which
defers the outputs for the cell. A state changé vl dis-
carded if it is not steady during amertial delay. Each cell
takes uses the set of inputs to computes its figiate us-
ing the = functions. Finally, there are several functions
driving the cell behavio@y; for internal transitionsdeyfor
external transitionsj, for outputs and for the state’s du-
ration.

A Cell-DEVS coupled model is defined by:

GCC =< Xst, Yiist, X, Y, n, {tg,...., t}, N, C, B, Z >

Here, Xt andY)s; are input/output coupling lists, used
to define the model interfac&X andY represent the in-
put/output events. The value defines the dimension of the
cell spaceity,..., t.} is the number of cells in each dimen-
sion andN is the neighborhood set. The cell space is de-
fined byC, together withB, the set of border cells, ad
the translation function.

A modeler simply has to focus on three basic aspect
dimension (size and shape of the cell space), énftas
and behavior. As we can see in Figure 1, the modhele
to define the local computing function, the kind delay
and its length. The influences are specified bynitaf the
neighborhood of the cell.
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Figure 1: Informal Definition of a Cell-DEVS Modelnd
its Neighborhood

Recently, quantized DEVS theory has been introduce
(Zeigler 1998). As depicted in Figure 2, quantizatap-
proach consists in quantizing the value space inaleq
guantum steps. A fixed quantum size g is used. (uean
are associated with each model. It is a signifieasint de-
tector which monitors its input and uses a logamaidition
to decide when a significant change, such as crgsai
threshold has occurred. Whenever a crossing odbers
new value is sent to the receiver. The problemistsé a
trade-off between reducing number of messages laad t
error induced by this reduction.
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Figure 2: Continuous Models Quantization

Promising empirical results have been obtainednwhe
using quantization theory in Cell-DEVS models (\Wain
and Zeigler 2000). As seen in Figure 3, quanti&sare
associated to each output port of a cell. As lasitha out-
put information is not considered as significantei does
not send information. This produces a significaauction
in the number of messages involved in the simutatio
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Figure 3: Cell-DEVS Quantization
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We will show how quantized Cell-DEVS models can
be applied in reducing and controlling error fomgaex
cellular models of fire spread.

2 FIRE SPREAD MODELING

In a first stage of our research, we studied fipeead
across a 1-m2 pine needles fuel empirically (Babial.
1998). This study uses elementary cells composeah
and plant matter, and did not consider wind orelop
The phenomenon was described using a set of PDEs.
In the domain:

ar do
—=—k(T-T,)+KAT - Y la
Y (T-Ta) Q Y (1a)
If T < Ty
a4, = G (1b)
IfT =T .
g, = Go.e 9 (1c)
At the boundary:
T(x,y,t) =Ta (1d)

Here, T, (27 °C) is the ambient temperaturd,,
(300°C) is the ignition temperaturg, (s) is the ignition
time, T (°C) isthe temperaturek (m2.s") is the thermal
diffusion, @ (s*) combustion time constang, (kg.nm) is
the vegetable surface mass, amg (kg.m?) is the initial
vegetable surface mass (before the cell combustion)

We discretized the model using finite differences
(FDM) and finite elements (FEM) (Santoni 1997). The
study domain was meshed uniformly with cells ofmizc
and we use a time step of 0.01s. Both methods gedvi
similar results, but FEM was more complex to apglyd
produce longer execution time. The physical modsblu-
tion by FDM led to the following algebraic equation

dO' k+1
m%mmﬂmﬁwmmﬁm%dﬂ+ﬂﬁm

i

Where T is the temperature of a grid node. The coef-
ficients a, b, ¢ and d depend on the time step raagh
size. Those coefficients are identified from expemtal
data of temperature versus time. This equationessts
the temperature curve of a cell in the domain, ehsleetch
is depicted in Figure 4. Above the threshold terapge
Tig, the combustion occurs, and undél; aemperature, the
combustion finishes.
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Figure 4: Simplified Temperature Curve of a Celltbé
Domain

In order to improve model definition and includenea
complex behavior, we faced its definition using tbell-
DEVS formalism. The CD++ environment (Rodriguez and
Wainer 1999) allows implementing DEVS and Cell-DEVS
models. The modeler simply specifies the cell donuii
mensions, the cell’'s neighborhood and the cell’saveor
by defining simple logical rules. They have thenfat {re-
sulf} delay{conditior}. The semantics of the sentences is
that, if theconditionis true, the cell will take theesult
value and will send it through output ports aftededay
time. If the condition is not valid, the next ruseevaluated
(according to the order in that they were definedpeat-
ing this process until a rule is satisfied. The hwmBnmon
operators are included: booleaAND, OR, NOT, XOR
IMP and EQV), comparison (=, !=, <, >, <= and >=), and
arithmetic (+, -, * and /). In addition, differetypes of
functions are available: trigonometric, roots, paweund-
ing and truncation, module, logarithm, absoluteigamin-
imum, maximum, G.C.D. and L.C.M. Other existing ¢un
tions allow checking if a number is integer, evedd or
prime. Spaceones defined by a cell range, can be asso-
ciated with a set of rules different from the refthe cell
space.

Each cell uses a single state variable (represgiits
own state). The language permits to manipulate n-
dimensional references. Likewise, a neighborhoad lma
composed of non-adjacent cells, and the neighbalboo
dimension can be similar or inferior to the modédlimen-
sion.

With these considerations in mind, we used thé&-hig
level specification language included in CD++ tedébe
the fire model using the Cell-DEVS formalism (Muey
al., 2002). We used two planes representing difteva-
riables in our model. The first plane stores théteenper-
ature. The second plane stores the ignition tignef each
cell (see equation 1c). In this plane, every cetedts when
the corresponding cell of the propagation plandsstaurn-
ing. Figure 5 represents the model specificatioBn++.

00 #include(rules.inc)

01 [top]

02 conponents : ForestFire

03 [ForestFire]

04 type : cell

05 dim: (100,100, 2)

06 delay : transport

07 defaultDelayTinme : 1

08 border : now apped

09 neighbors : (-1,0,0)(0,-1,0)(1,0,0)(0,1,0)
10 neighbors : (0,0,0)(0,0,-1)(0,0,1)
11 initialValue : 27.0

12 initialCellsValue : init.val

13 zone : cst {(0,0,0)..(0,99,0)}

14 zone : cst {(1,99,0)..(99,99,0)}
15 zone : cst {(99,0,0)..(99,98,0)}
16 zone : cst {(1,0,0)..(98,0,0)}

17 zone : ti {(0,0,1)..(99,99,1)}

18 local Transition : FireBehavior

19 [ti]

20 rule : {time * 0.01} 1 {(0,0,0) = 1.0 AND

(0,0,-1) >= 300}
21 rule : {(0,0,0) } 1 {t}

22 J[ecst]
%Const ant border cells

23 rule : {(0,0,0)} 1 {t}

24 [ FireBehavior]

%eat i ng

25 rule : {#macro(heating)} 1 {(0,0,0) < 300
AND (0,0,0) != 26 AND (#macro(heating) >
(0,0,0) ORtine <= 20)}

%Bur ni ng

26 rule : {#macro(burning)} 1 {(0,0,0) != 26

AND (((0, 0, 0)>#macr o( burni ng) AND( 0, 0, 0) >60) OR
(#macr o(burning)>(0,0,0)AND (0,0,0) >= 300))}
%Bur ned
27 rule : {26} 1 {(0,0,0) <= 60 AND (0,0,0)
1= 26 AND (0,0,0) > #macro(burning)}
%St ay Burned or constant
28 rule : {(0,0,0)} 1 {t}

Figure 5: Fire Spread Model Specification

Lines 01 and 02 of this specification, declare ¢bm-
ponents of the top level coupled model. From liBed®18,
we include a definition for the Cell-DEVS coupledde!
representing the fire-spread model. This is donebld-
ing the parameters mentioned earlier (neighborhaldd,
mension, type of delay etc.).

In lines 20 and 21, the zotierepresents the plane 1 in
charge of storing ignition times. These rules shmw we
store the ignition times: if the corresponding dellthe
propagation plane 0 begins to burn, we record threent
time in the cell.

In the propagation plane we defined a border ztste
corresponding to the model behavior in the bourdaof
the cell space (see equation 1d). The cells stalyeatim-
bient temperature (lines 22 and 23). The rules used
compute the cell temperature start in line 24. fitst one
corresponds to thanburnedphase. If the computed cell
temperature is higher than the present value, ¢tlendl
take the computed value. The same occurs duringrdhe
sient period (simulation time smaller than twentyhen
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the state of the cell is neithiearning norburned Based on
the same principles, the rules lines 26 and 27espond to
the phaseburningandburned

The last rule in line 28 is used for cells tha away
from the fire front oburned These cells keep their value
at the next time step.

The model specification was simplified using macro
Figure 6 shows the file where the macros were ddfin
which contains the rules corresponding to the teatpee
calculus when the cell is in phasaburnedor burning
The file is included in the model specification ngithe

#include directive in line 00 of Figure 5.
#Begi nMacr o( heat i ng)
(0.98689 * (0,0,0) + 0.0031 * ( (0,-1,0)
(0,1,0) + (1,0,0) + (-1,0,0) ) + 0.213)
#EndMacr o

+

#Begi nMacr o( bur ni ng)

(0.98689 * (0,0,0) + 0.0031 * ((0,-1,0) +
(0,1,0) + (1,0,0) + (-1,0,0) ) + 2.74 * exp(-
0.19 * ((time + 1) * 0.01 - (0,0,1))) +0.213)
#EndMacr o

Figure 6: Definition of the Macros: rules.inc

The simulation results obtained when executing thi
model are displayed in Figure 7 and 8. The whitgases
represent the experimental front. In Figure 7 rst fbbser-
vation at t=30s of the circular wave front give g@me re-
sults. Nevertheless, in Figure 8, a difference appen the
simulated fire front width at time 50s. Indeed, fine front
cools more quickly. This can be explained by the eom-
bustion assumption (E 60 °C) effect.

temperature (Celsius)
1000

930.5
861
7915
722
652.5
583
5135
444
3745

-0.

R T T WS O Y e

X(m)
Figure 7: Comparison between Experimental and Simu-
lated Circular Fronts at t=30s
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Figure 8: Comparison between Experimental and Simu-
lated Circular Fronts at t=50s

In Figure 9, we can note that after an acceleration
stage corresponding to the initialization, the @ftespread
of the fire front becomes quite constant.
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Figure 9: Predicted Rate of Spread Over the Time

The use of Cell-DEVS will enable us to take easily
to account the semi-physical model behavioral mcalif
tions for wind and slope effects and non-homogenais
getation. Nevertheless, execution time needs to be
improved in order to provide real-time recommenufati
Cell-DEVS allows simulating continuous systems by
means of events, which produce a high degree aheae
with the message inter-module interactions. In otdemi-
nimize these interactions, we have developed aptieab
guantized Cell-DEVS mechanisms.

3 QUANTIZING CELL-DEVS

Numerical problems are very sensitive to temporad a
spatial conditions. Quantizing the space changegithe
step and can make the system diverge. Therefdfereatit
methods, with regard to time and space, have tefiaed
to manage with the error induced by quantization.

We applied Cell-DEVS quantization to a 20x20 prop-
agation domain simulating a real propagation of. 2Use
temperature of each cell was quantized using differ
guantum sizes. In Figure 10, we observe the intiaeof
the message reduction on the execution time anduhre
ber of messages involved.
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Figure 10: Message and execution time comparison
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To make qualitative comparison of the results, we d
fine an average relative error for quantized rasult
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Figure 11: Message and error comparison

In Figure 11, we note that the use of quantization
troduces an exponential error while the messagebeum
diminishes. The average relative error of the qaadt
domain calculation can be expressed as follows:

£=021(e*% - 021 (4)
If we have good results incurring little error, teeor
does not converge to a fix value for high quanee (Big-

ure 12) while after the initial ignition the raté spread of
the fire front became quite steady.
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w

Figure 12: Average relative error convergence f0.d

If the quantum is too large and the energy brobgh
the neighboring cells is not important enough,tdrepera-
ture of the cell cannot reach the boundary and iresrize-
tween two states. Hence, the cell is consideredtiirea

Dynamic Cell-DEVS quantization has been developed t
deal with this problem.

4 DYNAMIC QUANTIZATION

In order to improve the error rate while keeping thum-
ber of messages small, we dynamically changeditieeo$

the quantum according to a ratio in order to redheeer-
ror introduced by quantization. The quantum sizeenses
or decreases of the ratio according to the levedabivity

of the cell (see Figure 13). The level of activisymeas-
ured by seeing how much the cell changes. If theevaf

the cell passes the threshold, the quantum is asexk of
the ratio. If the cell's value does not pass theghold, the
guantum decreases of the ratio.
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11D
10D = |
9D pZ i
8D

real curve

— Cuantized curve

6D \I/

ratio

.
[ s
)

t
Figure 13: Dynamic quantization of real curve

In Figure 14, we use different ratios to improke te-
sults obtained for g=1. The greater the ratio ésldwer the
error is the longer the calculation time is. Foratio of
0.1%, the error decreases from 21 % to 9.2 % imduci
small execution time overhead (from 5 min 50 s tmi
335s).
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Figure 14: Error and execution time comparisongfet

We plot the results for Dynamic quantization im-
provements in Figure 15. This solution consisteettucing
the error (inducing small overhead) for high quaanta to
reduce the execution time for low quanta, whichehegry
small error.
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Figure 15: Dynamic quantization gain

Comparing standard and Dynamic quantization, the

error reduction leads to an execution time reductior a
guantum of 0.85, we obtained an execution time wiirY 7
s and an error of 9.6 % with the basic quantizatidsing a
dynamic quantum of 1 and a ratio of 0.1%, the ersor
about 9.2 % for an execution time of 6 min 33s.

The Dynamic quantization allowed us to optimize the

guantum size of each cell according to cell’s phasance,
the error and the execution time have been redideder-
theless, error still does not converge for highraaDis-
crete quantization has been investigated to enhdmee
control of the error.

5 DISCRETE EXPERIMENTATION
In our fire-spread model, time is discrete and bead-

vances from time t to t+1. Basic quantization does
work this way.

Figure 16 depicts the difference between basic and

discrete quantization. We have chosen the casesywivith
basic quantization, the future value computed leycdll at
time t1 does not reach the boundary (i+1)D. Therelen
the quantizer compares this intermediate value thighold
one (the last boundary iD), the cell will be comsit to be
quiescent. Unless a neighbor reactivates it imntekjia
(which would be pure causality), the cell will ndd any-
thing else. This problem appears especially inhéating
phase, where the temperature growth is not as tautoas

in the burning phase (see Figure 4). As basic quantization

does not take well into account this heating, ttieres ac-
cumulated during the whole simulation.

State s State s,
(i+1)D (i+1)D
AN J — real curve
= (uantized curve
iD iD
ot tl t

Basic quantization
Figure 16: Discrete quantization of a real curve

Discrete quantization

To experiment discrete quantization we added a
neighboring cell to each cell of the propagatiormdon.
This cell changes its state in each time step demto re-
activate the quantized one, which re-computegéit® and
hence passes the boundary. When the boundarydsedo
the cell returns to a quiescent state. This ektantakes
longer than basic and dynamic quantization but we e
periment the error gain of this method.

In Figure 17 and 18, we observe that, due to efscr
verification, the quanta used are larger. Neveedsl
above =30, Discrete quantization has not any reffect
on message number and execution time for high quant

Physically this message reduction can be explaiimed.
small quanta, the message gain is realised betheszc-
tive cells amounts to the fire front and the whaokls
(even the cells away from the fire front) easilpde the
guantum boundary and pass to quiescent state.ghmehi
guanta, all the cells of the domain try to reachlibundary
and cells away from the front are constantly caltog
their temperatures increasing the number of message
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g2 Nt e e . DE
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g=5 : 20 2 execution time
GE4 i + 15 2
g3 i 110 3
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Figure 17: Message and execution time comparison
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Figure 18: Message and error comparison

The average relative error becomes linear andbean
approximated by:
£=0 for g0 [0,34] (5)

£=1.0272D-35261 for q0[34,100 (6)
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Moreover, in Figure 19, we note that the error con-
verges now for every value of the quantum and iallest
than one of basic quantization.

2,5

15

0,5

average relative error (%)

0 500 1000 1500

number of iterations

2000

Figure 19: Average relative error convergence f8Q

To reduce the error, we combined Dynamic and Dis-
crete quantization. Figure 20 shows that for a \@mall
execution time overhead, error becomes insignifidan
all quanta sizes. Moreover, as depicted in FiguretBe
error for =30 regresses now to very small value.
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Figure 20: Dynamic and Discrete quantization gain

average relative error (%)

0 500 1000 1500 2000

number of iterations

Figure 21: Average relative error convergence fB8Q

Figure 22 sums up the error gain obtained by the d
ferent quantization methods used. However, obsgrvin
Figure 11, 18 and 20 we can notice that the egarow
totally controlled.

—&—quantized error

/ ~—— discrete error

dynamic error

——®— dynamic & discrete error

average relative error (%)
=
1S53
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Figure 22: Average relative error comparison
6 CONCLUSION

We have presented the use of the Cell-DEVS formmatis
model a semi-physical fire spread model. The achged
of our modeling method can be summarized as fotlows
* The evolution of propagation models is eased by
the hierarchy description of DEVS and the high-
level language of Cell-DEVS,
» Events and quantization allow us to activate only
the most heated cells of the fire front,
» Quantization reduces simulation time incurring er-
ror,
 Dynamic quantization reduces the error slightly
reducing or increasing the simulation time,
» Discrete quantization permits to highly reduce and
control the error.

In a first time, we plan to implement the discrgtan-
tization in order to enhance the execution timeng@ince
the simulation will be optimized on a single prams pa-
rallel simulation seems to be the only possibitiysimu-
late this type of processes on large scales. Isetltases,
the use of quantized DEVS will be interesting tduee the
message number of parallel and distributed simarati
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