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Abstract 

Modeling and simulation plays an important role in the development of computer 

systems. This research work focuses on modeling general computer hardware platforms 

using the Discrete Event system Specification (DEVS) modeling formalism, and mapping 

these models onto the High Level Architecture (HLA) for simulation interoperability.  

An HLA-based system level framework for a general hardware platform is proposed, in 

which hardware component details are modeled using DEVS atomic models. To verify 

the proposed framework, a case study is presented for a simplified Intel 8088 processor 

based platform. The components modeled in this case study are a processor, a memory 

module, an interrupt controller, a bus controller and a timer. 

This research has developed an approach that flattens the modeling hierarchy by using 

only DEVS atomic models mapped onto the HLA. As a result, the simulation support 

layer normally present to handle coupled models is not needed. The general hardware 

platform framework influences aspects of component models, and these aspects are 

identified and related to their implications to the HLA. This work has laid some 

groundwork leading towards a simulation tool for hardware platform modeling and 

simulation that can be used by system designers during the product development phase.  
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CHAPTER 1 
 

 

Introduction  

The use of embedded computer systems to solve application problems requires an 

understanding of both the hardware platform involved and the software that customizes 

the hardware for the particular application. Modeling and simulation is used increasingly 

in developing the hardware and software of such systems. Modeling is required to 

represent a system for the purpose of studying the system. A simulation is the imitation of 

the operation of a system over time. The behavior of a system as it evolves over time is 

studied by developing a simulation model [3]. The models created by hardware engineers 

while developing hardware components often contain details that are irrelevant to 

software developers. Furthermore, the simulation of the hardware component models is 

often fine-grained and computationally intensive, since the states of all of the individual 

transistors in the components must be addressed. Software developers would prefer a 

programmer’s model of the hardware platform, which would abstract away irrelevant 

hardware details and focus only on the information relevant to software development. 

Ideally, the more abstract programmer’s models would have larger-grained simulations 

that are less computationally expensive than the hardware models. 

The goal of this research is to develop a generic framework that can be extended to model 

and simulate specific computing platforms by introducing platform-specific details. 
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Software developers can use these models to develop and test their software for 

computing platforms. For modeling platform components, the DEVS (Discrete event 

system specification) formalism is used. The simulation framework for these models is 

defined, following the specifications of the HLA (High-level architecture) standard. The 

rationale for adopting the DEVS/HLA approach is explained in chapter 4.  

This research is seen as an initial step in a longer-term research project that will (later) 

include the development of tools to simplify the introduction of platform-specific details 

by handling the formal aspects associated with DEVS and the HLA (such tools would 

allow designers to focus more attention on the platform-specific details by relieving the 

designer of the unnecessary DEVS and HLA clutter).  

A brief synopsis of the structure of the thesis document is as follows. Chapter 2 provides 

the background information about the DEVS formalism and the HLA. It briefly describes 

different classes of the DEVS formalism and key features of the HLA that are required to 

manage various aspects of the simulator. Chapter 3 reviews the latest ideas in the DEVS 

formalism and a subset of the tools developed to implement the DEVS formalism. It also 

describes a layered approach to use DEVS and the HLA for a simulator. Chapter 4 states 

the research motivation, a critical analysis of the facts of chapter 3, the research question 

under investigation, the approach adopted to answer the question and the scope of this 

research. Chapter 5 describes the proposed framework of the simulator and the general 

models of basic hardware platform components. These general models have a list of 

parameters, which can be used for defining the functionality of these components. 

Chapter 6 shows how this simulator can be used for a specific hardware platform. 

Execution of an example program (a few instructions of the 8088 processor) is simulated 
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in order to illustrate the proposed DEVS/HLA approach. It also describes the flow charts 

of each hardware component used in the case study. Chapter 7 shows the results of the 

case study. Excerpts of some component logs are discussed and the message flow 

between different components is explained. These logs and message flows are helpful in 

verifying the simulator. Chapter 8 concludes the research. It discusses the contributions 

and suggests some future research topics. The conclusion is followed by the references 

and two appendices. Appendix A refers to the software code for each hardware 

component involved in the case study. Appendix B refers to each component’s log in the 

case study.  
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CHAPTER 2 
 

 

Background for the DEVS and the 

HLA  

In this section a system development process is discussed with emphasis on the need for 

modeling as an initial step in development. Computer systems being discrete in nature 

require an appropriate modeling formalism and a simulation framework to get the system 

analyzed. This section describes the Discrete Event System Specification (DEVS) 

formalism to model various components of a computer system and the High-level 

architecture (HLA) as a simulation framework standard.  

2.1 System Development Method 

The products based on computer systems are increasing tremendously. In order to verify 

the required features of these computer systems, modeling is becoming an important part 

of product development. Modeling has various levels of abstraction and complexity that 

are normally used during the development cycle of a system.  

Computer systems are discrete in nature. Much research effort has been made in order to 

find the most appropriate modeling formalism for such systems. One of the current 

approaches is the use of computer simulation to analyze these models and explore the 
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properties of these systems. This modeling and simulation methodology is playing an 

important role in the development of computer platforms and systems.  

2.2 The DEVS Formalism 

The DEVS (Discrete Event System Specification) is a system’s formalism, with a well-

defined concept of modularity and coupling of components. The DEVS formalism 

focuses on the changes of variable values and generates time segments that are piecewise 

constant. In essence the formalism defines how to generate new values for variables and 

the times the new values should take effect. An important aspect of the formalism is that 

the time intervals are continuous. There are two major classes from which all the user-

defined models can be developed – atomic and coupled. 

A brief description of the DEVS Atomic model and Coupled model is as below. [4] 

2.2.1 Atomic Model 

An atomic model directly specifies the system’s response to events on its input ports, 

state transitions, and the generation of events on its output ports. It is defined as [4]: 

AM = < IO, X, S, Y, δint, δext, δcon, λ, ta > 

Where 

IO is the model's interface (input/output ports). 

X is the input events set. 

S is the state set. 

Y is the output events set. 

δint  is the internal transition function. 
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δext is the external transition function. 

δcon is the confluent transition function 

λ is the output function. 

ta is the time advance function. 

 

 

 

 

 

Figure 1: Systematic representation of a basic (atomic) model. 

Figure 1 shows a graphical representation of an atomic model. Each model is provided 

with an interface consisting of input and output ports to communicate with other models. 

When an input arrives the instance variable S is updated. The δext function accepts the 

input and changes the instance variable. After an elapsed time, given by the ta function, 

the system checks the internal variables and makes internal changes to bring the system 

to the next state. The function that performs all this is the δint function. The δcon function 

decides what to do when both external and internal events occur together. It might, for 

example, decide the order between the δext and the δint functions. The λ function produces 

the output Y from the instance variables. The ta function returns the time to the next 

internal event.  

δcon δint 

ta 

λ δext 
S 
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2.2.2 Coupled Model 

A DEVS coupled model is composed of several atomic or coupled sub-models. It is 

defined as [4]: 

CM = < IO, X, Y, D, {Mi}, {Ii}, {Zij} > 

Where 

IO is the model's interface (input/output ports). 

X is the set of input events. 

Y is the set of output events. 

D is an index for the components of the coupled model. 

Mi is a basic DEVS (that is, an atomic or coupled model). 

Ii is the set of influencees of model i (that is, the models that can be influenced by 

outputs of model i). 

Zij: Yi →→→→ Xj is i to j translation function. 

We can see that coupled models are defined as a set of basic components (atomic or 

coupled), which are interconnected through the models’ interfaces. The influencees of a 

model define the models to which outputs must be sent. The translation function is in 

charge of converting the outputs of a model into inputs for the others. To do so, an index 

of influencees is created for each model (Ii). This index defines that the outputs of the 

model Mi are connected to the inputs in the model Mj, where j is an element of the set Ii. 
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2.3 High Level Architecture (HLA) 

The HLA was developed by the US Department of Defense (DoD) based on a process 

involving government, industry and academia. The High Level Architecture (HLA) 

provides a general framework within which simulation developers can structure and 

describe their simulation application. In particular, the HLA addresses two key issues: 

promoting interoperability between simulations and aiding the reuse of models. In the 

terminology of the HLA [1] 

• The combined simulation system created from the constituent simulation is a 

federation. 

• Each simulation that is combined to form a federation is a federate. 

The baseline of the HLA, defined in IEEE Standard 1516, includes the following: 

• The HLA Rules define the responsibilities and relationships among the components 

of an HLA federation. [5] 

• The HLA Interface Specification provides a specification of the functional interface 

between the HLA federates and the HLA Runtime Infrastructure (RTI) (RTI is 

discussed in section 2.3.1). This specification defines all the RTI services and 

identifies “callback” functions that must be provided by each federate. [6] 

• The HLA Object Model Template (OMT) provides a common presentation format for 

HLA Simulation and Federation Object Models (SOM/FOM) [7]. A SOM defines the 

objects and interactions within a federate, while a FOM defines object models, 

communication between federates, condition for data updates and other information 

for interoperability purposes. The Federation Execution Data (FED), which is 
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required as an input to the RTI, is a subset of a FOM along with the specification of 

some default values for transport properties of data. In brief, the OMT provides an 

interface between the models and the RTI/HLA. 

2.3.1 Runtime Infrastructure (RTI) 

The RTI is a middleware that provides common services to federates and/or federations. 

It is an implementation of the HLA Interface Specification. The RTI software can be 

executed on a standalone computer or distributed over a network.  

2.3.1.1 Components of the RTI 

Figure 2 shows the major components of the RTI and each component is briefly 

discussed after the figure. 

Inter Process Communication

RtiExec FedExec
libRTI

Federate

libRTI

Federate

 

Figure 2: RTI Major Components. [8] 

The federation executive (FedExec) manages multiple federates within a federation. It 

allows federates to join and to resign, and facilitates data exchange between participating 

federates. Each federate joining the federation is assigned a federation wide unique 

handle. 
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The RTI Executive (RtiExec) manages multiple federation executions in a network. It 

helps in initializing RTI components for each federation executive (FedExec). It also 

ensures that each FedExec has a unique name. 

The RTI library (libRTI) provides the RTI services specified in the HLA Interface 

Specification to federate developers. 

2.3.1.2 Management Areas of RTI 

The HLA Interface Specification divides the services provided by the RTI into six 

management areas. Table 1 summarizes the objectives of each of the management areas: 

Management Area Activities Supported 

Federation Management Manages federation execution. Initializes name space, 

transportation, routing spaces etc. 

Declaration Management Specifies the data a federate sends and/or receives. 

Object Management Creates, modifies and deletes objects and interactions. 

Facilitates object registration and distribution. Coordinates 

attribute updates among federates. Accommodates various 

transportation and time management schemes. 

Ownership Management Supports transfer of ownership for individual object 

attributes. Offers both “push” and “pull” based 

transactions. 
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Time Management Establishes or associates events with federate time. 

Regulates interactions, attribute updates, object reflection 

or object deletion by federate time scheme. Supports 

interaction between federates having different time 

schemes. 

Data Distribution 

Management 

Supports efficient routing of data. 

Table 1: RTI Management Areas partitioned in FedExec life cycle [8] 
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CHAPTER 3 
 

 

State of the Art in the DEVS/HLA 

This section briefly describes the research work in the area of the DEVS formalism and a 

technique used to map the DEVS model formalism onto the HLA simulation framework.  

3.1 Implementation of the DEVS formalism 

The DEVS formalism is a well-defined means of expressing hierarchical, modular 

models in discrete event simulation. A DEVS model is a state machine, and the state of 

the model is changed by external or internal events with elapsed time. The following is a 

subset of the tools developed to map the DEVS formalism to simulation engines.  

The DEVS-C++ tool is based on the DEVS formalism. It is a modular hierarchical 

discrete event simulation environment implemented in the object-oriented C++ language 

[9]. The DEVS-C++ contains three libraries: container, devs and devsHLA. The 

container library provides methods, which are used to organize the interacting objects 

(e.g. atomic models). The devs library provides methods to implement the functions as 

δext, δint, λ, ta and port information to be defined by the user. The devsHLA library 

provides easy access to the DEVS/HLA environment and is discussed in section 3.2.1.  

The CD++ toolkit is developed with the goal of developing and simulating models based 

on the DEVS and Cell-DEVS [11] paradigms. The core of the toolkit is the CD++ 

environment [11], which implements the DEVS and Cell-DEVS theories. 
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The DEVSim++ is another tool that provides the ability to develop discrete event models 

using the hierarchical composition technology within the DEVS framework [12]. For 

simulation, DEVSim++ implements hierarchical scheduling in abstract simulators of 

atomic and coupled models. 

3.2 DEVS Implementation over the HLA/RTI 

B.P.Zeigler [2] has designed and developed an HLA compliant simulation environment 

using DEVS as a modeling tool and a way to map the DEVS models to the HLA as 

shown in figure 3. The strategy underlying the mapping of the DEVS to the HLA is to 

exploit the information contained within the DEVS models to automate as much as 

possible of the programming work required for constructing the HLA compliant 

simulations [9]. The final goal is to facilitate a bi-directional transfer of information 

between the OMT Development Tool (OMDT) that captures OMT information and the 

DEVS model description. Figure 3 shows the layered approach and each layer is 

discussed in the sub-sections below. 

Modeling -- DEVS (using
DEVS-C++)

Networking (optional)

HLA C++ RTI

Simulation -- PDES Protocol

 

Figure 3: Layered approach to implement the DEVS/HLA. [2] 
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3.2.1 DEVS Modeling using DEVS-C++ 

The top most DEVS layer of figure 3 is used for defining the models. The DEVS-C++ 

tool [9], as discussed in section 3.1, has a devsHLA library required for interfacing 

between DEVS and the HLA/RTI in a C++ environment. The devsHLA library contains 

methods for attribute updates, attribute reflections, interaction updates, interaction 

receive, object discovery and quantizers. A quantizer object is associated with each 

attribute that the modeler would like to publish. A quantizer is a demon that checks for 

the attribute value crossing the threshold. Quantizers are used to reduce message update 

traffic and the size of the quantizers is directly related to the accuracy and the speed of 

computation required. 

3.2.2 The Parallel DEVS (PDES) Protocol 

The Parallel and Distributed Discrete Event Simulation (PDES) protocol layer of figure 3 

introduces a simulation engine, which takes care of all the time and data interactions 

within the DEVS models. It also acts as a message translator between the DEVS models 

and the HLA/RTI. 

There are three approaches to mapping the DEVS formalism into the PDES protocols: 

Conservative, Optimistic and the Parallel DEVS. Each approach is briefly discussed 

below.  

The conservative scheme [9] processes events in strict time stamped order. Conservative 

schemes must somehow arrange for the potential for input events with earlier time stamps 

to be conveyed to affected models. This can be done through “lookahead” in which each 
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model provides a time in the immediate future up to which it promises not to send input 

events. The minimum of such blackout times at any model/component, called the Lower 

bound time stamp (LBTS), is the time up to which it can safely process its time-stamped 

inputs. Thus simulation proceeds incrementally governed by the lookahead, which is the 

interval that a model/component adds to its current LBTS to obtain the blackout time sent 

to other models/components. 

The optimistic scheme [9] permits temporary time-stamped order violation that must be 

repaired before the final simulation output is presented. It allows models/components to 

march forward in local time and process their input and output queues as fast as they can. 

But from time to time a model/component can receive order messages with old time-

stamps. To rectify this situation, queues of already processed inputs and their outputs are 

maintained so that the situation can be restored to what it was just before the arrival of 

the old time-stamped message. This scheme has an extensive apparatus of overheads. 

The Parallel DEVS scheme [9] differs from the other schemes in that there is a 

coordinator to synchronize the simulation cycle through its steps (see Figure 4). Unlike 

other schemes it does not have overheads of lookahead and local time rollbacks. In 

parallel DEVS, the coordinator collects all times of next events from the component 

simulators. It sends the minimum of these times back to the components, thereby 

allowing them to determine whether they are imminent (component with the least time 

for next event), and if so to generate output. More than one component may be imminent, 

and the outputs of all imminent components are sorted and distributed to others according 

to the coupling rules. The transition functions of the imminent components, as well as all 

other recipients of inputs, are then applied. Which transition is applied, depends on the 
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state and input of a component. The resulting changes in states may cause new values for 

time advances and these are sent to the coordinator. The cycle then repeats.  

Coupled Model

Co-ordinator

Simulator
tN

Component
tN, tL

Component
tN, tL

Component
tN, tL

Simulator
tN

Simulator
tN tN = time for next event

tL = time of last event

 

Figure 4: The Parallel DEVS simulation protocol [2] 

3.2.3 Mapping of the PDES Protocol to the HLA/RTI 

As shown in figure 3, B.P.Zeigler’s approach to implement the PDES protocol in the 

HLA is as follows. 

The DEVS simulation protocol is implemented with an explicit coordinator in the 

DEVS/HLA approach as illustrated in figure 5. Here, a separate Time Manager federate 

is allocated to the coordinator. This technique exploits quantizers (defined in section 

3.2.1) to efficiently share the times of next events among DEVS federate and the 

coordinator. Only changes in local or global tN (minimum of local tNs) greater than the 

quantizer threshold are sent from one federate to the other using the RTI. 
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tN tN
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Figure 5: Coordinator as a Federate (the PDES protocol mapping into the HLA) [2] 
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CHAPTER 4 
 

 

Modeling Hardware Platforms 

In this chapter research motivation is discussed followed by a brief research statement 

and a critical analysis of the current solution to the problem as stated in chapter 3. Later, 

in this chapter, a solution to the research problem is proposed along with the scope of 

work, the contributions that are made and the presentation of the solution are discussed.  

The development of systems involving computer/hardware platforms has increased 

tremendously. An important step during the development phase is the modeling and 

simulation at various levels of abstraction [10]. Simulation results play an important role 

in assessing the properties of the systems at various levels of abstraction.  

Chapter 3 discusses a general approach to model and simulate different systems using the 

DEVS and the HLA/RTI. This approach can also be used in modeling and simulating 

computer systems and hardware platforms. A critical analysis of the technique/approach 

discussed in chapter 3 is as follows.  

• The software tools for the DEVS implementations (section 3.1) are focused for 

hierarchical models (the DEVS coupled class). Hence they have complicated 

simulation and coordination engines in order to manage/synchronize different 

components. These engines perform well in the DEVS environment, but require 

additional message translation functionality to work with the HLA/RTI layer. 
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• The DEVS/HLA layered approach, discussed in section 3.2, is shown in figure 6. The 

two layers of simulator middleware (i.e., the RTI and the DEVS) are on top of each 

other. The DEVS layer is required to support the DEVS coupled models. 

Runtime Infrastructure (RTI)

DEVS formalism
(coupled or atomic)

Implementation using
DEVS tool

DEVS Simulator

DEVS formalism
(coupled or atomic)

Implementation using
DEVS tool

DEVS Simulator

 

Figure 6: The block diagram for basic approach from chapter 3.  

• B.P.Zeigler’s work (chapter 3) adapts the DEVS-C++ tool to the HLA/RTI structure. 

This is quite useful to reuse old simulations developed under the DEVS-C++ tool but 

suffers from the extra layer of DEVS middleware.  

The motivation of this research work is to model various components of computer 

systems and define a simulation framework so that these components can interact with 

each other and give some useful results at various levels of abstractions. Another 

motivation is that the components could be reused in other simulations. 

The research problem is to define a framework for a general hardware platform model, of 

a single master computer system, and to map the model onto the High Level Architecture 

(HLA) simulation guideline.  

To address the above research problem, the DEVS formalism is used to model a 

hardware platform. This formalism is used, as the DEVS is an increasingly accepted 

paradigm for understanding and supporting the activities of modeling and simulation. In 
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order to provide a simple solution to the research question, only the DEVS atomic class is 

used to model components. The rationale behind this approach is as follows. 

• Atomic models can be controlled directly from the RTI, therefore an extra layer of 

DEVS middleware to support coupled models is not required. This approach 

effectively flattens the DEVS modeling hierarchy. 

• Atomic models are a simple concept, and easily reusable for future developments. 

The suggested layered approach to address the research problem is shown in Figure 7. 

Runtime Infrastructure (RTI)

DEVS formalism
(atomic class)

Implementation in
C++

DEVS formalism
(atomic class)

Implementation in
C++

 

Figure 7: A Model of the proposed solution. 

The scope of this research is to  

• Define a simulation framework for a general hardware platform. The general 

hardware components to be modeled are a Processor module, a Memory module, a 

Bus controller module, an Interrupt module and a Timer module. Being a single 

master (Processor) platform, a bus arbiter is not modeled. The Processor module is 

further divided into three units. An Execution Unit (EU) that is responsible for 

decoding and executing all instructions, a Bus Interface Unit (BIU) that is responsible 

for performing all external bus operations and a Control Unit (CU) that is responsible 

for minimum/maximum mode and interrupt signals from other devices. Any required 
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hardware component can be modeled and added, as a future work, below the 

simulation (RTI) layer. 

• Identify the general attributes of each hardware component in order to use these 

models in the initial development phase of the computer systems. The level of 

abstraction for these components is in the unit of bus cycles. More detailed time 

breakdown within a bus cycle and detailed bus level signal implementation are 

outside the scope of this work and may not be modeled accurately. For the execution 

unit (EU) of the processor the timing details are implemented up to a clock cycle.  

• Use the DEVS formalism to apply the modeling and mapping results to a case study 

involving hardware platform components. For this case study, a Processor (a 

simplified version of Intel 8088), a basic Memory unit, a bus controller (a simplified 

version of Intel 8288), a basic Interrupt controller and a basic Timer unit are modeled.  

• Execute simple operational codes as a main program and an interrupt routine on this 

simulator for the case study and obtain results to verify the operation of the simulator.  

• Draw conclusions for the proposed solution’s (discussed above) implementation in 

the case study. 

• Summarize the contributions made by this research and the case study. 

• Identify possible future research topics. 

The following paragraphs identify the contributions that are made, and the approach to 

presenting the proposed solution.  

As a contribution, a mapping of computer/hardware platforms to the HLA/RTI is 

developed. An approach is defined for the DEVS atomic models to work under the HLA 
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framework without using any additional DEVS simulators. A simulator is developed, as a 

case study, by modeling the hardware platform components (as discussed above in the 

scope of the research) using the DEVS formalism and making all the interactions 

between these components using the HLA framework.  

In order to present the solution, the body of the thesis is organized in chapters starting 

from the system level discussion of hardware platform modeling using the HLA, defining 

the DEVS models for each hardware component, implementing the design as a case study 

for a simple (Intel 8088 based) platform by developing a simulator and analyzing the 

simulator’s results to verify the proposed solution/design. 

As discussed in the scope of the research, chapter 4, several modules are modeled for the 

platform. To reduce the amount of low-level detail only the memory module is presented 

in depth. For the complete implementation of all modules, appendix A.2 refers to the 

software code attached with the thesis. The reason for selecting the memory module, as a 

reference is that it is a simple module and also an important part of hardware platforms. 
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CHAPTER 5 
 
 

Simulation Framework and DEVS 

Atomic models 

This chapter includes the system level framework suggested to approach the solution. 

The discussion below starts from a system level block diagram and is later divided into 

two parts. In the first part the simulation flow of a Federate is described, and in the 

second part the DEVS atomic model for each federate is explained. 

5.1 System Level Block diagram 

Figure 8 shows a system level block diagram for a simple hardware platform simulator. It 

contains the following basic hardware components: Processor module, Bus controller 

module, Memory module, Interrupt controller module and Timer module. The Processor 

module is further divided into three units: BIU, EU and CU. For modeling a single master 

hardware platform (chapter 4), a bus arbiter module is not required. All these 

components/modules are modeled using DEVS atomic models and are discussed in detail 

later in this chapter. In terms of the HLA, each individual component is a federate, and all 

federates collectively form a federation. The Runtime Infrastructure (RTI) provides the 

simulation platform for this federation. 
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Runtime Infrastructure  (RTI)

Bus Controller
Module

(DEVS-Atomic)

Memory Module
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Interrupt Module
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Module

Control Unit (CU)
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(DEVS-Atomic)
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Module

 

Figure 8: System-level block diagram for Hardware platform simulator. 

5.1.1 System Level Flow Diagram for a Federate 

Figure 9 shows a basic simulation flow of a federate. On the left side, the figure is labeled 

with numbers, which correspond to the steps in the flow chart in that row. Each step is 

discussed in this section by using the label references.  
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 Figure 9: Simulation flow chart of a federate. 

Step 1 is the initial step of the simulation in which a federate creates or joins a federation. 

If the federation does not exist, a new one is first created and then the federate is added to 

it. If a federation already exists, then the federate joins that federation.  

At step 2, the federate is initialized. Initialization consists of the Object/Model 

construction, defining the attributes or/and parameters as to be published or/and 
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subscribed (can be re-defined during simulation), defining the federate as time regulating 

or/and time constrained (can be re-defined during simulation) and the registration of the 

federate with the federation executive. The SOM/FOM (defined in section 2.3) of each 

federate must also contain these published and/or subscribed attributes and/or parameters. 

The registration process registers the object with the federation execution, which returns 

an HLA object handle – an identifier for all interactions within the federation. 

Step 3 allows a user to input parameters for a federate before starting the simulation loop. 

This step is optional, as some federates do not need any user input. 

Step 4 is the first step in the simulation loop. In this step, a federate executes state 

transition functions according to its DEVS atomic model. The DEVS atomic models are 

discussed later in this chapter. 

Following step 4, a federate will perform one of steps 5 or 6, depending upon its time 

management scheme. Step 5 is performed if a federate is time regulating (capable of 

sending Time Stamped Order (TSO) messages) only. The RTI grants a time advance 

according to the TSO message time. On the other hand if there is some incoming Receive 

Order (RO) message, a message with no time stamps, from another federate then the RTI 

delivers this message to the federate without granting a time advance. Either a time 

advance is granted or not, the simulation proceeds and the DEVS model transitions from 

one state to another.  

Step 6 is performed if a federate is using either the time regulating & time constrained 

(capable of receiving TSO messages) both or the time constrained only scheme. The RTI 

grants a time advance according to the Lower Bound Time Stamp (LBTS). The LBTS is 

the maximum time to which a time constrained federate may advance. The LBTS is 
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determined by the RTI after getting the lookahead (a time period during which a federate 

does not send out any message) values for each federate and TSO messages from all the 

time regulating federates. On the other hand if there is some incoming message (either 

TSO or RO) from another federate then the RTI delivers this message to the federate 

without granting a time advance. If a time advance is granted, the federate proceeds to 

step 7. If a time advance is not granted, the federate returns to the top of the simulation 

loop for another DEVS model state transition.  

At step 7, the federate checks whether the simulation loop will continue or stop. At step 

8, a federate removes itself from the federation by disabling time management, resigning 

from the federation, deleting object instances, and, in the case where it is the last federate, 

destroys the federation. 

5.1.2 DEVS Atomic Models for each Federate 

Here, DEVS atomic models for each module in Figure 8 are discussed. The memory 

module is discussed in detail with external/internal transition functions, time advance 

function and the output function. In the following sub-sections, input and output ports 

refer to the DEVS models as discussed in section 2.2 should not be confused with similar 

hardware terminology. 

5.1.2.1 MEMORY MODULE 

The level of abstraction, as discussed in the scope of work chapter 4, can be achieved at 

bus cycles level. So all of the detailed signals within a bus cycle are not discussed in the 
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model. The parameter that a user can set, as discussed in step 3 of Figure 9, is the 

following.  

Parameter 

• Memory size (MS). This parameter has an integer value (MS > 0) and is defined in 

terms of bytes. 

Model 

 Memory = < IO X S Y δint δext δcon λ ta > 

IO – Input and output ports 

• Input ports:  

o Address bus: The size of address bus (AB_Size) is an integer (AB_Size > 0) 

and is defined in the processor module’s parameters section 5.1.2.2. To 

support access to all memory locations, MS ≤ 2AB_Size. 

o Data bus: The size of the data bus (DB_Size) is an integer (DB_Size > 0) and 

is defined in the processor module’s parameters section 5.1.2.2. 

o Read control signal: This is a single bit signal. 1 = Read, 0 = no operation 

specified. 

o Write control signal: This is a single bit signal. 1 = Write, 0 = no operation 

specified. 

• Output port:  

o Data bus: The size of the data bus is DB_Size as above.  

o Data acknowledge signal (for Motorola 68000 series): This is a single bit 

signal. 1 = Acknowledge, 0 = no operation specified. 
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X – Input event set 

• Address on address bus: A binary value, in the range of {0,…, 2AB_Size-1}. In order to 

point to a memory location, the address must be < MS.  

• Data on data bus: A binary value in the range of {0,…, 2DB_Size-1}.  

• Read control signal ∈ {0,1}. 

• Write control signal ∈ {0,1}. 

Y – Output event set 

• Data to data bus: A binary value as above.  

• Data acknowledge signal (DTACK) informs the processor that the bus cycle has 

ended during an asynchronous processor’s mode e.g., Motorola 68000 series 

processors. DTACK ∈ {0,1}. 

S – State set 

• Read state: In this state the memory module waits until it sends out data on the data 

bus acquired from the memory location as addressed by the address bus. At this level 

of abstraction (chapter 4), the delay function associated with this state is one bus 

cycle. 

• Write state: In this state the memory module writes data, provided by the data bus, to 

a memory location which is addressed by the address bus. The module then waits 

until the time delay associated with this state is elapsed. At this level of abstraction 

(chapter 4), the delay function associated with this state is one bus cycle. 

• Wait state till next δext. The delay function associated with this state ∈ R+.  
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δext – External transition function 

• The δext starts with the arrival of read/write signal on the input port of the module. In 

case of write signal the δext acquires the information from the address and data input 

ports. In case of read signal the δext only acquires the information from the address 

input port. As an example the state diagram for memory read and memory write 

during a minimum operation mode is shown in  

• Figure 10. 

ta – Time advance function 

• The ta function introduces the time delay before scheduling the next output function 

λ.  

• Figure 10 shows an example where the ta function is introduced in the read state 

before carrying out the λ function.  

λ – Output function 

• The λ outputs the data on the output port (data bus) during the read cycle. For the case 

of Motorola 68000 series processors the DTACK signal is also sent out on the output 

port. As an example see  

• Figure 10. 

δint – Internal transition function 

• The δint changes the internal state from read/write to the wait state. In the wait state 

the module stays until the next δext. As an example see  

• Figure 10. 
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δcon – Confluent transition function 

• The δint has higher priority than the δext 

 

 

State Diagram for minimum operation mode 

 

Figure 10 shows a state machine diagram for the memory module. Being simpler, the 

minimum operation mode is used to show the transitions between different states of the 

module for memory read and memory write operations. 
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Figure 10: State diagram for memory read and write for minimum operation mode. 

5.1.2.2 PROCESSOR MODULE 

A general-purpose processor module is further divided into three sub-modules. Each sub-

module can become a separate DEVS atomic model and communicate with the other 

modules using RTI services. Figure 11 shows a block diagram of the processor module.  
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Figure 11: Block diagram showing sub-modules in a Processor model. 

Processor’s Parameters 

As discussed in step 3 of Figure 9, a user can define the following processor’s 

parameters. 

• Duration of Bus/Machine cycle (e.g., 8086 ≈ 4 clock cycles). 

• Instruction Queue size for Bus Interface Unit (if present). 

• Size of External Data (DB_Size) and Address (AB_Size) buses. 

• External data/address buses are multiplexed or separate (for multiplexed buses 

external de-multiplexing circuitry is compulsory). 

• Internal size of buses and registers. 

• Minimum/Maximum mode (this feature is Intel specific). 

• Built in cache memory - if yes, cache size? 

Each sub-module is modeled as follows. 

5.1.2.2.1 Bus Interface Unit (BIU) 

The BIU contains an instruction queue (first in first out), segment registers, instruction 

pointer and address/data/control buses. The main purposes of the BIU are to keep the 

instruction queue filled with instructions, to generate and accept the system control 
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signals and to act as a window between the execution unit (EU) and the memory/input-

output (IO) devices. The DEVS atomic model for the BIU is as follows. 

  BIU = < IO X S Y δint δext δcon λ ta > 

X – Input event set 

• Data on external data bus. 

• Signal to indicate that the bus cycle has ended from the peripheral devices. This 

signal is required if a processor is operating in asynchronous mode e.g., Motorola 

68000 series processor. 

• Signals from the EU for data read/write (RD/WR) from memory or the IO devices.  

• Address and Data from the EU via an internal bus. 

• Signal from the EU to update instruction queue status/pointer. 

• Signal from the control unit at the end of each instruction cycle indicating whether 

there is an interrupt request.  

• In case of interrupt and jump, the execution unit shall indicate to the BIU to reset the 

instruction queue. 

• Signal from control unit at the end of each bus cycle to indicate whether the system 

buses have been given under the control of DMA.  

• Processor’s parameters set by the user. 

Y – Output event set 

• Internal and external Address/data buses. 

• Control signals to peripheral devices. 
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• Signal to control unit at the end of each bus cycle (this signal helps the control unit to 

act on the DMA’s request). 

S – State set 

• Opcode fetching state. 

o Making physical address using code segment (CS) & instruction pointer (IP). 

This is Intel specific. 

o Read data.  

o Increment IP register. 

o Increment instruction queue status/pointer. 

• Data read state from the memory/IO device.  

• Data write state to the memory/IO devices. 

• Interrupt state.  

• Wait state until the processor gets control of the system buses.  

• Wait state until next external transition function. 

5.1.2.2.2 Execution Unit (EU) 

The purpose of the EU is to decode and execute the instructions that are fetched from the 

instruction queue. The EU contains an arithmetic and logic unit (ALU) and a register 

array. The ALU performs arithmetic and logic operation on memory or register data. It 

also contains pointer or index registers used to address operand data located in the 

memory. The DEVS atomic model for the EU is as follows. 

EU = < IO X S Y δint δext δcon λ ta > 

X – Input event set 
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• Signal from the BIU: 

o Arrival of an opcode in the queue. 

o A signal at the completion of each request. 

• Signals from the control unit: 

o Interrupt request signal at the end of each instruction cycle. 

o A signal at the end of each bus cycle to indicate whether the control of system 

buses is given over to a DMA. 

• Processor’s parameters set by the user. 

Y – Output event set 

• Signal to the BIU to execute RD/WR operation according to the decoded instruction. 

• Signal to the BIU to reset the instruction queue in the case of jump and interrupt 

statements. 

• Signal to the control unit at the end of each instruction cycle (The control unit can 

only respond to an interrupt request signal at the end of an instruction cycle). 

S – State set 

• Opcode exection state. This state has following functionality. 

o Read the opcode from the instruction queue. 

o Decode the opcode. 

o Execute the opcode. During this stage the EU has a time elapse until the BIU 

finishes the read or write cycle. 

o Updates instruction queue pointer. 

o Maintains the status of flag register. 
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• Wait state until next external transition function. 

5.1.2.2.3 Control Unit (CU) 

The main function of the CU is to take care of the maskable interrupt request signal, to 

check the non-maskable interrupt (NMI), to generate signals for the bus controller and 

execution unit and to check any request from the DMA/controllers to control the external 

bus. The DEVS atomic model for the CU is as follows. 

CU = < IO X S Y δint δext δcon λ ta > 

X – Input event set 

• Signal from the BIU at the end of each bus cycle. 

• Signal from the EU at the end of each instruction cycle. 

• Signals from peripheral devices e.g., the DMA and the interrupt controller. 

• Processor’s parameters set by the user. 

Y – Output event set 

• Signal to the EU for the interrupt request and DMA access to the buses. 

• Signal to the BIU for the interrupt request and DMA access to the buses. 

• Status signal to bus controller, prior to the initiation of bus cycle. These status signals 

S0 S1 S2 are required for Intel specific maximum operation mode. These three bits are 

decoded by the bus controller, which then (instead of the processor) generates the 

appropriate control signals to the peripheral devices e.g., memory RD/WR, IO port 

RD/WR, interrupt acknowledge and instruction fetch signals. 

S – State set 
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• The state of an interrupt request. (It checks the signal from the interrupt controller, the 

state of the instruction cycle of the processor and the status of the interrupt flag. If all 

the conditions are in favor of executing the interrupt routine, it generates appropriate 

signals to the EU and the BIU). 

• The state of an external bus control request. (It checks for a signal from the DMA 

controller and the state of machine/bus cycle of the processor. If the conditions are 

satisfied it generates appropriate signals to the EU and the BIU in order to accomplish 

the DMA request). 

• Wait state until next external transition function. 

5.1.2.3 BUS CONTROLLER MODULE 

The bus controller module generates the control signals for the memory RD/WR from 

memory/input output devices, interrupt acknowledge and instruction fetch depending 

upon the status signal (S0 S1 S2) [14] provided by the CU of the processor module. This 

Intel specific bus controller module also generates some bus level control signals, which 

are not in the scope of this work. The DEVS model of the bus controller is as follows.  

  BC = < IO X S Y δint δext δcon λ ta > 

X – Input event set 

• Status signals S0 S1 S2 from the processor module. 

Y – Output event set 

• Read/write control signals to the memory and input output devices. 

• Interrupt acknowledge control signal. 



 38

S – State set 

• Read state from the memory/input output devices. 

• Write state to the memory/input output devices. 

• Interrupt state. It sends out an interrupt acknowledge signal to the interrupt module. 

• Wait state until next external transition function. 

5.1.2.4 INTERRUPT CONTROLLER MODULE 

Function 

The basic function of this module is to acquire interrupt signals from the peripheral 

devices connected to the input ports, prioritize these requests and send the highest priority 

signal to the processor. It also sends out the interrupt type number on the data lines after 

getting the interrupt acknowledge signal from the processor or the bus controller.  

Model 

  IM = < IO X S Y δint δext δcon λ ta > 

X – Input event set 

• Interrupt acknowledge signal from the processor and/or the bus controller.  

• Interrupt from external devices. 

• Input data on the external address and data buses.  

• RD/WR signal from the processor and/or the bus controller.  

Y – Output event set 

• Interrupt request (INTR) signal or priority signals (three signals for the case of 

Motorola 68000 series) to the processor.  
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• Data out to the system data bus (to output vector type). 

• Data acknowledge signal (DTACK) informs an asynchronous processor that the bus 

cycle has ended e.g., Motorola 68000 series processors. 

S – State set 

• State of initiating an interrupt request. It prioritizes the incoming interrupt signals 

from the peripheral devices and sends out the interrupt request or the interrupt priority 

code to the processor (CU). 

• State of sending vector type. The interrupt controller sends out the vector type on the 

data bus as a result of receiving the interrupt acknowledge signal. 

• Wait state till next external transition function. 

5.1.2.5 TIMER MODULE 

This module generates a periodic signal to act as an interrupt source for the interrupt 

controller. As discussed in step 3 of Figure 9, a user can define the following 

attributes/parameters. 

Parameters 

• Duty cycle of the periodic signal. 

• Number of interrupts to be generated. 

Model 

  TM = < IO S Y δint δext δcon λ ta > 

Y – Output event set 

• Periodic signal sent to the interrupt controller. 
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S – State set 

• Signal generation state. 

• Wait state for time elapse. The user can set this period. 
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CHAPTER 6 
 

 

Case Study 

6.1 Introduction 

A hardware platform containing a processor (a simplified version of Intel 8088), a basic 

memory unit, a bus controller (a simplified version of Intel 8288), a basic interrupt 

controller and a basic timer unit is modeled using DEVS formalism. These modules 

interact with each other under a framework that is HLA compliant. This case study is for 

a synchronous platform, but no clock module is modeled. Each module assumes 

synchronous interactions and requests to schedule the future bus events as an integral 

number of clock ticks in the future.  

The proposed simulation framework, as discussed in chapter 5, for hardware platform 

modeling using the DEVS/HLA approach is verified by the case study. This case study is 

done for the minimum and maximum operating modes of the processor. The user makes 

the selection of the operation mode (input through the keyboard) at the beginning of the 

execution of the processor federate as discussed in step 3 of Figure 9. For this case study, 

a simple simulator is developed to run the instruction codes shown in Tables 2 and 3. 

Later in this chapter the development of the simulator along with the hardware 

components’ implementation are discussed. 
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6.1.1 Case study program 

The example program generates 10 even numbers, from 0 to 18, and stores them in the 

memory module. The opcodes are shown in Table 2 along with the opcode values and the 

clock timing information [13]. Instruction execution times are determined by taking the 

number of clocks required per instruction plus any effective address (EA) time required 

for the operand. The EA for the indexed operand in the MOV [BX],CH instruction is 5 

clocks. 

Opcode (Hex) Program Instructions Clock Cycle 

B500 MOV CH , 0 4 

BF0000 MOV DI , 0 4 

B102 MOV CL , 2  4 

BB0000 xyz : MOV BX , 00 4 

03DF ADD BX , DI 3 

882F MOV [BX] , CH  9+EA = 9+5 = 14 

47 INC DI 2 

02E9 ADD CH , CL 3 

83C70A CMP 10 , DI 4 

750D JNE xyz 4 (when not executed) 

16 (when jump executed) 

F4 HLT 2 

Table 2: Main program’s opcodes for the case study  

During the execution of the main program, the interrupt controller module sends interrupt 

signals to the processor, resulting in the execution of the interrupt routine (opcodes 
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shown in Table 3). The processor’s interrupt behavior includes checking the interrupt 

flag; pushing the IP, CS and IF; sending the interrupt acknowledge to the interrupt 

controller; reading the vector type from the interrupt controller; calculating the starting 

address for the interrupt routine residing in the memory and clearing the instruction 

queue. The interrupt routine used in the case study increments a variable stored in 

memory. The opcodes for the interrupt routine along with the clock timing information 

are shown in Table 3 [13]. 

Op-code (Hex) Program Instructions Clocks  

53 PUSH BX 15 

BB0020 MOV BX , 32 4 

8A07 MOV AL , [BX] 8+EA = 8+5 = 13 

FEC0 INC AL 3 

8807 MOV [BX] , AL 9+EA = 9+5 = 14 

5B POP BX 12 

CF IRET 32 

Table 3: Interrupt routine’s opcodes for the case study 

6.2 Simulator Implementation 

This section briefly discusses the system level block diagram for the simulator required 

for the case study. Later in this section each module/component is discussed in terms of 

the assumptions made for the implementation and flow charts for the C++ code.  
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6.2.1 System level Block diagram 

Here the Bus interface unit (BIU), execution unit (EU) and control unit (CU) are 

combined as a single processor module and implemented as a DEVS atomic class. A bus 

controller module, a basic memory module, a basic interrupt controller module and a 

basic timer module are implemented as defined in the scope of the research, chapter 4. 

The implementation details of each module are discussed later in this chapter. Figure 12 

shows an overall system level block diagram implemented for the case study. 

Runtime Infrastructure  (RTI)

Bus Controller
Module (Intel

8288)
(DEVS-Atomic)

Memory Module
(DEVS-Atomic)

Implementing basic
functionality

Interrupt Module
 (DEVS-Atomic)

Implementing basic
functionality

Processor Module (Intel 8088)
(DEVS-Atomic)

 including:
Bus Interface Unit (BIU)

Execution Unit (EU)
Control Unit (CU)

Timer Module
(DEVS-Atomic)

Implementing basic
functionality

 

Figure 12: System level block diagram implemented for the case study. 

6.2.1.1 Level of abstraction for the simulator's timing 

For this case study one bus cycle of the processor is assumed to be four time units of the 

simulator. Within a bus cycle the timing details are not implemented accurately (scope of 

the research, chapter 4). For the execution unit of the processor the timing details are 

implemented with one clock cycle accuracy.  
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6.2.1.2 Algorithm to start the simulation 

All federates in a federation should start the simulation simultaneously, as is the case for 

components in real hardware platforms. To achieve this objective, the following 

algorithm with two steps of signaling is defined.  

The first step requires that the processor should wait until the other modules join and 

subscribe to the published attributes of the processor. This is achieved by executing the 

“enableAttributeRelevanceAdvisorySwitch()” RTI service so that the processor federate 

could receive the callbacks from the other federates. 

The second step requires that all federates should wait for a signal from the processor 

federate to start the simulation. In this case study the attribute SimEnd_Processor (see 

Figure 15) is the signal published by the processor module and subscribed by all the other 

modules. The value SimEnd_Processor=0 indicates the starting of the simulation. The 

algorithm’s second step addresses the scenario in which a federate has joined a federation 

and has no attributes to publish to a controlling federate (e.g., Processor) so the federate 

will not get any callbacks from the controlling federate. 

6.2.1.3 Stopping the simulation 

If the attribute SimEnd_Processor, as discussed in section 6.2.1.2, is set to 1 by the 

processor module then a signal is provided to the other modules (subscribers of the 

attribute) to stop the simulation.  
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6.2.1.4 Communication among Modules/Federates 

Attributes are sent, from one federate to the other, in the form of 

AttributeHandleValuePairSet (AHVPS). AHVPS is a set comprised of attribute handles, 

values and the size of the values. To create the AHVPS, a method CreateNVPSet(), 

extracted from the memory module’s software code, is defined in Figure 13. In this 

example the RTI method “AttributeSetFactory::create(1)” creates the AHVPS for only 

one AHVP, as there is only one attribute to send out i.e., “DataFromMem”. The 

following example also shows that the AHVPS is only created if the attribute 

“DataFromMem” is changed. Section 6.2.2.2.1 further explains how this AHVPS is 

received and the attributes are extracted by a federate. 

______________________________________________________________________ 

// Setting up the data structure required to send this object's state to the RTI. 
RTI::AttributeHandleValuePairSet* Memory::CreateNVP Set() 
{ 
   RTI::AttributeHandleValuePairSet* pMemoryAttributes = NULL; 
   // Make sure the RTI Ambassador is set. 
   if ( ms_rtiAmb ) 
   { 
        //------------------------------------------------------ 
        // Set up the data structure required to send this object's state to the RTI. 
        //------------------------------------------------------ 
        pMemoryAttributes = RTI::AttributeSetFactory::create( 1 ); 
        if ( hasDataFromMemChanged == RTI::RTI_TRUE ) 
       { 
          pMemoryAttributes -> add( this -> GetDataFromMemRtiId(),(char*) &this -> GetDataFromMem(), 
                                        (sizeof(int)) ); 
          out2file << "Data From Memory = " << DataFromMem << endl; 
       } 
   } 
   return pMemoryAttributes; 
} 
______________________________________________________________________ 

Figure 13: Creating an AHVPS for communication among Module/Federates. 
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6.2.1.5 Time elapse using RTI 

The software code, in Figure 14, shows that the module has sent a time elapse request to 

the RTI according to the time calculated (represented by the “requestTime”) for the next 

event. The lookahead value (see step 6 Figure 9) is set to 0.5, means that the federate will 

not send any output until this period is elapsed. The time step value is set to 1.0, means 

that this is the maximum limit for the time elapse requested to the RTI. The final 

“requestTime” is calculated by adding the time step value of 1.0 and the “grantTime”, 

which is the time granted in the previous time elapse request. In other words the 

“grantTime” is the current simulation time. The RTI method 

“nextEventRequest(requestTime)” requests for the time elapse until the “requestTime”. 

In return, the RTI grants the time advance until the next event. The tick() function gives 

control to the RTI for processing the ongoing events/tasks. 

______________________________________________________________________ 
//-------------------Setting the lookahead time 

lookahead = RTIfedTime(0.5); 
 //------------------- 
 RTIfedTime requestTime(1.0); // requestTime = timeStep = 1.0 
 requestTime += grantTime; // grantTime is the time granted by the RTI during the last time elapse 
 out2file << "\n\nRequest time = " << requestTime << endl; 
 timeAdvGrant = RTI::RTI_FALSE; 
 rtiAmb.nextEventRequest( requestTime ); 
   while( timeAdvGrant != RTI::RTI_TRUE ) 
   { 
 //------------------------------------------------------ 
 // Tick will turn control over to the RTI so that it can process an event.  
 //------------------------------------------------------ 
    rtiAmb.tick(); 
   } 
______________________________________________________________________ 

Figure 14: Time elapse requested by a Federate using the RTI service methods. 
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6.2.1.6 Logging simulator activity 

The logging capability is developed for all the modules of the simulator. Each module 

has its own logging file. Whenever a module receives or updates an attribute it sends this 

information to a file to maintain the logs. The status of the internal registers (e.g., 

processor module) and the memory dumps are also stored in the file. All this information 

is logged with the simulator’s time stamp. These logs are explained in chapter 7 and the 

message flow and timing information is extracted and analyzed. The “out2file” statement 

in Figure 14 is sending data to a log file.  

6.2.1.7 FOM/SOM 

This section identifies the time management parameters and the interaction attributes 

used by each federate. This information is a part of a FED file (discussed in section 2.3) 

that provides an interface between the DEVS model and the RTI layer. Figure 15 shows 

the names of the attributes used in this case study. These attributes are the input output 

ports of the DEVS model of each component in the case study. As an example take the 

memory and the processor modules/federates. The processor’s relevant published 

attributes (e.g., Address_Processor) are included in the subscribed attributes of the 

memory federate and vice versa. 
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Runtime Infrastructure  (RTI)

Bus Module
Time Management:
Regulating & constrained
Attributes Published:
MemoryRDWR_Bus
InterruptRDwrACK_Bus
Attributes Subscribed:
ControlToBus_Processor
SimEnd_Processor

Memory Module
Time Management:
Regulating & constrained
Attributes Published:
Data_Memory
Attributes Subscribed:
Address_Processor
Data_Processor
ControlToMem_Processor
MemoryRDWR_Bus
SimEnd_Processor

Interrupt Module
Time Management:
Regulating & constrained
Attributes Published:
Data_Interrupt
INTR_Interrupt
Attributes Subscribed:
AckToInt_Processor
INTR_Timer1
InterruptRDwrACK_Bus
SimEnd_Processor

Processor Module
Time Management:
Regulating & constrained
Attributes Published:
Address_Processor
Data_Processor
ControlToBus_Processor
ControlToMem_Processor
AckToInt_Processor
SimEnd_Processor
Attributes Subscribed:
Data_Memory
Data_Interrupt
INTR_Interrupt

Timer Module
Time Management:
Regulating
Attributes Published:
INTR_Timer1

 

Figure 15: Block diagram containing time management and attribute information. 

6.2.2 Memory Module 

In this section the assumptions made for the memory module, development of the module 

using the DEVS formalism along with the excerpts from the software code and the 

software flow chart are discussed.  

6.2.2.1 Assumptions 

The Memory size is assumed to be 144 Bytes as it fulfils the requirement of the case 

study. It is assumed that this memory module does not introduce wait states. The 

processor has divided the memory module into logical segments as shown in Figure 16. 

Each number in this figure is a decimal value. An Extra segment is not implemented, as 

there is no string operation involved in this case study. 
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Figure 16: Memory map for 8-bit structure (specific to the case study) 

6.2.2.2 Development of Memory module 

This section discusses the implementation of the memory module on the basis of the 

DEVS formalism. It explains the software development of the module’s external 

transition function, duration function, output function, internal transition function and 

confluent transition function. For further details, the complete software code of this 

module along with the whole simulator is referred in Appendix A.2. 

6.2.2.2.1 External transition function (δδδδext) 

During the δext function, the control signal (read/write) from the processor or bus 

controller module arrives along with the address on the address bus. If the control signal 
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is for a memory write operation, the data on the data bus is also required from the 

processor. The software implementation of the δext function is implemented as shown in 

Figure 17. The figure is further divided into sections to facilitate discussion.  

As an example, following is a detailed discussion of the memory read operation. To 

initiate the memory read cycle, the federate ambassador is informed through the RTI that 

the “ControlSignalFromProToMem” and the “AddressFromPro” attributes have arrived 

through the input ports of the memory module (as discussed in section 6.2.1.6), each in 

the form of AHVPS. In order to update the attributes of the memory module, the federate 

ambassador then calls the “Update(const RTI::AttributeHandleValuePairSet&)” method, 

shown in Figure 17, section A. Due to the two incoming attributes, the value returned by 

the “theAttributes.size()” equals to 2 and the “for” loop is executed twice. The actual 

values of the incoming attributes are extracted and saved using the getHandle() and 

getValue() methods. The “Out2file” saves these attributes to a log file. The value of the 

“ControlSignalFromProToMem” attribute tells whether this is a memory read or memory 

write operation. Assuming this value is for a memory read operation, the 

“DataFromMem” variable is updated as shown in Figure 17, section B. A flag 

“hasDataFromMemChanged” is also set so that when UpdateFromMem(FederateTime) 

method (Figure 17, section D) is called this updated value is sent out to the RTI. Figure 

17, section D shows that the state of the memory is updated in terms of time and the new 

AHVPS are created for the variables that are changed (e.g., “DataFromMem”). 

CreateNVPSet() method creates the AHVPS as discussed in section 6.2.1.4. These 

AHVPS are sent out to the RTI during the output function as discussed in section 

6.2.2.2.3. 
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______________________________________________________________________ 
 

------------- SECTION A ------------- 
void Memory::Update( const RTI::AttributeHandleValu ePairSet& theAttributes ) 
{ 
   RTI::AttributeHandle attrHandle; 
   RTI::Ulong             valueLength; 
   // We need to iterate through the AttributeHandleValuePairSet to extract each AttributeHandleValuePair. 
   // Based on the type specified ( the value returned by getHandle() ) we need to extract the data from the 
   // buffer that is returned by getValue().  
   for ( unsigned int i = 0; i < theAttributes.size(); i++ ) 
   { 
        attrHandle = theAttributes.getHandle( i ); 
        if ( attrHandle == Memory::GetAddressFromProRtiId() ) 
       { 
            int AddressFromPro;  
            theAttributes.getValue( i, (char*)&AddressFromPro, valueLength ); 
           out2file << "Address from Processor = " << AddressFromPro << endl; 
       } 
      if ( attrHandle == Memory::GetDataFromProRtiId() ) 
      { 
            int DataFromPro;  
            theAttributes.getValue( i, (char*)&DataFromPro, valueLength ); 
           out2file << "Data from Processor = " << DataFromPro << endl; 
      } 
      if ( attrHandle == Memory::GetControlSignalFromProToMemRtiId() ) 
      { 
            int ControlSignalFromProToMem;  
            theAttributes.getValue( i, (char*)&ControlSignalFromProToMem, valueLength ); 
           out2file << "Control Signal From Pro To Mem = " << ControlSignalFromProToMem << endl; 
       } 
       if ( attrHandle == Memory::GetSimEndFromProRtiId() ) 
      { 
            int SimEndFromPro;  
            theAttributes.getValue( i, (char*)&SimEndFromPro, valueLength ); 
           out2file << "SimEndFromPro = " << SimEndFromPro << endl; 
       } 
       if ( attrHandle == Memory::GetMemRDWRSigFromBusRtiId() ) 
      { 
            int MemRDWRSigFromBus;  
            theAttributes.getValue( i, (char*)&MemRDWRSigFromBus, valueLength ); 
            out2file << "RD WR signal fro Bus (RD=1 WR=2) = " << MemRDWRSigFromBus << endl; 
       } 
   } 
} 

------------- SECTION B ------------- 
// Reading from the Memory 
// MemoryMap[ ] is an array of 150 bytes 
myMemory -> DataFromMem = MemoryMap[myMemory -> AddressFromPro]; 
   // Set flag so that when UpdateFromMem( FederateTime ) is called we send this new value to the RTI. 
hasDataFromMemChanged = RTI::RTI_TRUE; 
 

------------- SECTION C ------------- 
// Writing to the Memory 
MemoryMap[myMemory -> AddressFromPro] = myMemory -> DataFromPro; 
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------------- SECTION D ------------- 
// Updating the state of the Memory 
void Memory::UpdateFromMem( RTI::FedTime& newTime )  
{ 
   // Set last time to new time 
   this -> SetLastTime( newTime ); 
      //------------------------------------------------------ 
      // Updating the state of memory 
      //------------------------------------------------------ 
         // In order to send the values of our attributes, we must construct an AttributeHandleValuePairSet 
         // (AHVPS) which is a set comprised of attribute handles, values, and the size of the values. 
         // CreateNVPSet() is a method defined on the Memory class - it is not part of the RTI. Look inside 
         // the method to see how to construct an AHVPS 
      RTI::AttributeHandleValuePairSet* pNvpSet = this -> CreateNVPSet(); 
} 
______________________________________________________________________________________ 

Figure 17: Implementation of the external transition function in the simulation code. 

6.2.2.2.2 Duration function (ta) 

The ta function is used to elapse time until the arrival of the next event or the lookahead 

time which ever comes first. After the time is elapsed, the module executes the output 

function discussed in section 6.2.2.2.3 and sends out the AHVPS through the RTI. Figure 

18 shows that if the module gets the time advance grant from the RTI, it gives control to 

the RTI by using tick() method. If there is no incoming event, the RTI waits until the 

elapse of lookahead period (the ta) and carried out the output function.  

______________________________________________________________________ 
 
   while( timeAdvGrant != RTI::RTI_TRUE ) 
   { 
 //------------------------------------------------------ 
 // Tick will turn control over to the RTI so that it can process an event.  
 //------------------------------------------------------ 
    rtiAmb.tick(); 
   } 
______________________________________________________________________ 

Figure 18: Implementation of the duration function in the simulation code. 

 

 



 54

6.2.2.2.3 Output function (λλλλ) 

The λ function sends out the module’s output to the federation. Once the AHVPS are 

constructed, as discussed in section 6.2.1.4, a method (updateAttributeValues, see Figure 

19) is called and the AHVPS along with the module’s ID and time information is sent out 

to the federation. This method is a part of RTI ambassador code. 

______________________________________________________________________ 
 
// Send the AHVPS to the federation. 
//--------------------------------------------- 
// this call sends out NVPSet(), at the current simulation time + loohahead. 
//--------------------------------------------- 
         (void) ms_rtiAmb->updateAttributeValues( this->GetInstanceId(), *pNvpSet, 
                                                  this->GetLastTimePlusLookahead(), NULL ); 
_____________________________________________________________________________________ 

Figure 19: Implementation of the output function in the simulation code. 

6.2.2.2.4 Internal transition function (δδδδint) 

During a memory read operation the δint function changes the module’s state from the 

read to the wait (see  

Figure 10). The module stays there until it receives the δext function. During the execution 

of the tick() method, shown in Figure 18, the δint function is realized once the λ function 

is carried out.   

6.2.2.2.5 Confluent transition function (δδδδcon) 

If there is a tie-break between the δint function and the δext function, the module gives 

priority to the δint function. For a memory read example, after executing the δint function 

the memory module should go to a wait state until the δext function arrives. But in this 
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scenario the δext function has already arrived so instead of going to the wait state, the 

module starts executing the δext function. 

6.2.2.3 Interaction between Memory module and the RTI 

In this section the interaction between the memory module and the RTI is discussed and, 

as a future research work, this information is useful to develop a tool that could help in 

modeling hardware platform components. Each input output port of the DEVS memory 

model has an attribute associated with it and can be defined as the published (i.e., an 

output port) and/or subscribed (i.e., an input port). This port information for each federate 

is redefined in the FED file and the RTI uses this information to map the ports of 

different federates. During the initialization stage of the memory federate, time 

management is enabled/initialized and the module is registered as a federate to the RTI 

(see step 2 Figure 9). The δext function in the memory module is triggered by the RTI as 

soon as it receives the updated value(s) of the subscribed attribute(s) on the input port(s). 

Section 6.2.2.2.1 discusses in detail the use of the RTI built-in methods by the memory 

module’s δext function during the attribute(s) extraction from incoming AHVPS and the 

creation of the new AHVPS to be sent out.  For time elapse during the ta and the δint 

function, the RTI services are used by the memory module and the definable parameters 

are the lookahead time and the time step. During the λ function, the memory module calls 

an RTI method “updateAttributeValues” and sends out the AHVPS values created during 

the δext function. 
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6.2.2.4 Software Flow diagram 

After joining the federation, this module waits for all its attributes to be subscribed by 

other federations. Figure 20 shows a flow chart of this module. 
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  Figure 20: Flow Chart of the memory module 

6.2.3 Processor Module 

In this section the assumptions made for the processor module, the level of timing detail 

implemented, the resolution of the interrupt request signal when the interrupt flag is 

disabled and the software flow chart are discussed. The concept for the development of 
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the module using the DEVS formalism is the same as discussed for memory module in 

section 6.2.2.2. For further details, the software code of this module along with the whole 

simulator is referred in Appendix A.2. 

6.2.3.1 Assumption 

For this case study, the feature/functionality implemented in the CU, EU and BIU is a 

subset of the features discussed in section 5.1.2.2. The detailed features/functionality of 

the CU, EU and BIU is left for a future work. A brief discussion of the CU, EU and BIU 

implemented is as follows. 

The CU checks interrupt signals from Interrupt controller at the end of each op-code 

execution. The EU reads and decodes the op-code, updates the instruction queue and 

interacts with the CU and BIU as required during the execution of the op-code. The BIU 

performs RD/WR operations, sends control signals to the bus and interrupt controller, 

fetches opcode from memory and maintains the status of the instruction queue. Since the 

Intel 8088 micro-processor has an 8-bit data bus, the BIU automatically executes two 

read or write cycles for each 16-bit operand. The least significant byte of the word is 

stored in the lower valued address location of the Memory and the most significant byte 

in the next higher address location. 

6.2.3.2 Internal Registers of the processor module 

The following registers are implemented and initialized in the processor module for this 

case study. The Code Segment (CS) register, the Data segment (DS) register and the 

Stack Segment (SS) register are initialized according to Figure 16. The values assigned 

are CS=1, DS=4 and SS=7. The Instruction Pointer (IP) register and Stack Pointer (SP) 
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register are also implemented with the initial values of IP=0 and SP=31. The SP register 

is pointing at the top of the empty stack. The Internal Flag (IF) register defined with the 

consideration of only the interrupt flag and the zero flag. During initialization the 

interrupt flag bit is enabled (ready for an interrupt) and the zero flag bit is set to 0. The 

Data Index (DI), AX, BX and CX registers are also implemented and given an initial 

value of zero.  

The physical address to fetch the opcode is calculated as ((CS×16)+IP). The address 

calculation for the direct addressing mode (e.g., MOV [BX],CH instruction) is 

implemented as ((DS×16)+BX). The address calculation for PUSH and POP operations is 

implemented as ((SS×16)+SP). 

6.2.3.3 Resolution of the interrupt request (INTR) signals 

If the processor module is already executing an interrupt request, the interrupt flag will be 

disabled and the processor will not acknowledge any new interrupt requests unless the 

execution of the current interrupt routine has finished and the interrupt flag is enabled. In 

the scenario where the interrupt flag is disabled, any interrupt request sent by the 

interrupt controller module will remain pending in the interrupt controller module. 

During this period, any new interrupt generated by the timer module will be lost as there 

is no buffer implemented in the Interrupt controller module. For future work a buffer or 

queue could be implemented in the interrupt controller module and a priority mechanism 

can also be implemented in the interrupt controller module. 
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6.2.3.4 Software Flow diagram 

After joining the federation, this module waits for all its attributes to be subscribed by 

other federations. Figure 21 shows a flow chart of this module. 
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Figure 21: Flow chart of the processor module 

6.2.4 Bus Controller Module 

In this section the assumptions made for the bus controller module and the software flow 

chart are discussed. The concept for the development of the module using the DEVS 
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formalism is the same as discussed for the memory module in section 6.2.2.2. For further 

details, the software code of this module along with the whole simulator is referred in 

Appendix A.2. 

6.2.4.1 Assumption 

The bus controller gets the status signals S0 S1 S2 (as discussed in section 5.1.2.2.3) from 

the processor module, decodes them and generates appropriate bus cycles/signals to the 

peripheral devices. The decoding of the status signals is assumed as shown in table 4.  

Status Signals S0 S1 S2 Bus cycles/signals generated by the bus controller module 

1 Memory read 

2 Memory write 

3 Interrupt acknowledge signal to the interrupt controller module 

4 Request to clear interrupt acknowledge signal. 

Table 4: Decoding of the status signals (S0 S1 S2) by the bus controller module. 

6.2.4.2 Software Flow diagram 

After joining the federation, this module waits for all its attributes to be subscribed by 

other federations. Figure 22 shows a flow chart of this module. 
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Figure 22: Flow diagram of the bus controller module. 

6.2.5 Interrupt Controller Module 

In this section the assumptions made for the interrupt controller module and the software 

flow chart are discussed. The concept for the development of the module using the DEVS 

formalism is the same as discussed for the memory module in section 6.2.2.2. For further 
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details, the software code of this module along with the whole simulator is referred in 

Appendix A.2. 

6.2.5.1 Assumption 

It is assumed that, being a basic interrupt module, there is no priority-resolving algorithm 

implemented for the interrupt signals triggered by different peripheral devices. A buffer 

or queue for the output signal (the interrupt request) is not implemented and the effect of 

this is discussed in section 6.2.3.3. The interrupt controller module sends out the vector 

type after getting the interrupt acknowledge signal and it is assumed that the vector type 

for the timer interrupt is zero. More detailed functionality of the interrupt controller was 

discussed in section 5.1.2.4 and can be added in future work. 

6.2.5.2 Software Flow diagram 

After joining the federation, this module waits for all its attributes to be subscribed by 

other federations. Figure 23 shows a flow chart of this module. 
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Figure 23: Flow Chart of the interrupt controller module 

6.2.6 Timer Module 

In this section the assumptions made for the timer module and the software flow chart are 

discussed. The concept for the development of the module using the DEVS formalism is 

the same as discussed for the memory module in section 6.2.2.2. For further details, the 

software code of this module along with the whole simulator is referred in Appendix A.2. 

6.2.6.1 Assumption 

This module only interacts with the Interrupt controller module. It sends out an INT 

signal after every 350 time units. The timer module does not wait for the simulation start 
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signal from the processor. This module starts its function as soon as the interrupt 

controller joins the federation and subscribes to the interrupt (INT) request signal of the 

timer module. It generates 3 INT signals and then resigns the federation. 

6.2.6.2 Software Flow diagram 

Figure 24 shows a flow chart of this module. 

Wait till LBTS and
send INT signal to
Interrupt controller

Time advance till
"Lookahead" period

Initialize INT count

Increment to INT count

A

if INT count < max.
INT STOP

Yes

No

A
 

Figure 24: Flow chart of the timer module. 
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CHAPTER 7 
 

 

Results 

In this chapter the results of the simulator (developed as a case study) are discussed. Each 

module in the simulator, logs the messages sent out or received from the other modules 

along with the timing information and the values of appropriate internal state variables. In 

this chapter, a detailed interpretation of the logs of the processor module and the memory 

module is shown as a reference and the logs of the other modules can be interpreted in a 

similar way. Later in the chapter the message event sequences, from each module’s logs, 

are extracted and presented with respect to the simulation time. These message event 

sequence diagrams are drawn for the minimum and maximum operation modes of the 

case study processor. At the end of this chapter, an analysis of these results is given, and 

the acquired timing information for opcode executions is compared with the theoretical 

values of Table 2 and 3. 

This simulator is developed using Visual C++ version 6.0, the DMSO RTI-NG version 

1.3, and the Win98se operating system. A standalone computer (Intel Pentium-II 

processor 400MHz) is used for the simulations and the computer’s execution time to run 

a simulation of 1600 clock cycles is about 4 minutes.  
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7.1 Module Log Interpretations 

The log files for different modules are referred in appendix B. Below is the 

explanation/interpretation of snap shots taken from the logs of the process and the 

memory modules. Other modules’ logs can be interpreted similarly. 

7.1.1 Processor’s Log 

The following discussion explains each line of Figure 25. Each number in the log is a 

decimal value. 

Line 1 of Figure 25 shows the time advance requested by the processor module to the 

RTI. In return the RTI calculates the LBTS for the federation and issues a time advance 

grant to the processor module. This message is shown in line 3. The reason for not 

granting (line 3) the requested time (line 1) by the RTI is the arrival of “Data From 

Memory” attribute as shown in line 2. Line 4, 5 and 6 show the contents of the internal 

registers of the processor and the contents of the instruction queue. Line 6 reflects that 

“2” has arrived in the processor from the memory module (line 2) and was added to the 

instruction queue. Line 7 shows the lookahead value for sending out the processor’s 

attribute(s). Line 8 and 9 shows the messages sent out by the processor to other modules 

at time (29.0 + lookahead) units.  

 
-------------------------------------------------------Processor log------------------------------------------------------- 

Line 1 : Request time = 30.0000000000 
Line 2 : Data from Memory = 2 
Line 3 : FED_HP: Time granted (timeAdvanceGrant) to: 29.0000000000 
Line 4 : Zero Flag=0 INT Flag=1 AL=0 DI=0 BX=0 CL=0 CH=0 
Line 5 : IP=7 CS=1 SS=7 SP=31 DS=4 
Line 6 : Contents of the queue: 177 2  
Line 7 : Lookahead = 3.0000000000 
Line 8 : ControlSignalFromProToMem = 1 
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Line 9 : AddressFromPro = 23 
 ----------------------------------------------------------------------------------------------------------------------------- 

Figure 25: Snap shot of Processor module’s log 

7.1.2 Memory module’s Log 

The following discussion explains each line of Figure 26. Line 1 and 4, the request time 

and time advance grant, are explained in section 7.1.1. Line 2 and 3 show the messages 

sent to the memory module via the RTI. Time 552.0 is the current time of the federation 

as shown in line 4. Line 5 shows the lookahead information used by the RTI simulation 

engine in order to calculate the LBTS for the federation. Lookahead of 1.0 indicates that 

the memory federate will not send any data until (543.0 + 1.0) units. “Data from 

memory” as shown on line 5 is actually sent out at (552.0 + 1.0) units. Lines 7 to 15 show 

the 144 byte contents of memory (16 bytes per line). Section 6.2.2.1 (Figure 16) discusses 

the logical memory segments along with each segment starting addresses assumed for 

this case study. Line 7 has 16 memory locations for the vector table of the interrupt 

vector types. First byte 30 is the least significant byte of the IP register. Next 0 is the 

most significant byte of the IP and next two locations 1 and 0, show the least and the 

most significant bytes of the CS. This (IP+(CS×16)) value points to a memory location 

where the interrupt routine resides. From line 8 and onwards, the code segment starts and 

it has all the opcodes for the main program, as stated in table 2. The last two bytes of line 

9 and line 10 has the opcodes for the interrupt routine, as stated in table 3. From line 11 

and onwards, the data segment starts and it has five even numbers generated. The main 

program actually generates ten even numbers, but due to an interrupt call execution 

control jumps from the main program to the interrupt routine. Once the interrupt routine 
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is fully executed, the main program’s execution continues until it generates ten even 

numbers. The first byte on line 13 shows the output of the interrupt routine. Being a 

simple counter, it increments this memory location on each interrupt call. Line 14 and 15 

show the stack segment. Starting from the bottom of the stack, it contains the least and 

the most significant bytes of the flag register, the least and the most significant bytes of 

the CS and the least and the most significant bytes of the IP. 

--------------------------------------------------------Memory log--------------------------------------------------------- 

Line 1 : Request time = 555.0000000000 
Line 2 : Control Signal From Pro To Mem = 1 
Line 3 : Address from Processor = 32 
Line 4 : FED_HP: Time granted (timeAdvanceGrant) to: 552.0000000000 
Line 5 : LOOKAHEAD = 1.0000000000 
Line 6 : Data From Memory = 233 
Line 7 : 30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
Line 8 : 181 0 191 0 0 177 2 187 0 0 3 223 136 47 71 2  
Line 9 : 233 131 199 10 117 13 244 0 0 0 0 0 0 0 83 187  
Line 10 : 0 32 138 7 254 192 136 7 91 207 0 0 0 0 0 0  
Line 11 : 0 2 4 6 8 0 0 0 0 0 0 0 0 0 0 0  
Line 12 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Line 13 : 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Line 14 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Line 15 : 0 0 0 0 0 0 0 0 0 0 0 10 0 1 2 0  
 ------------------------------------------------------------------------------------------------------------------------------ 

Figure 26: Snap shot of Memory module’s log 

7.2 Message Event Sequence in Minimum Mode 

Following results are taken from the log files, referred in appendix B, and presented in 

the form of message event sequence diagrams. As an example, the message event 

sequence of memory read (RD), memory write (WR) and interrupt acknowledge cycles 

are discussed in section 7.2.1 and 7.2.2. The vertical axis of these sequence diagrams 

shows the time in terms of clock cycles and the horizontal axis shows the interactions 

between different modules. 
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7.2.1 Memory RD and Memory WR Operations 

Figure 27 shows the level of abstraction in terms of the control signals and the timing 

information. The implementation of all the control signals and the detailed timing 

information is outside the scope of this research (chapter 4). 

t

t+4

Mem RD control sng. and
Address from Processor

Data from memory

t+3

PROCESSOR MEMORY

(b)

PROCESSOR MEMORY

Mem WR control sng.; Address
and Data from Processor

t

t+4

(a)  

Figure 27: (a) Memory Write (b) Memory Read operation in minimum mode 

7.2.2 Interrupt acknowledge Operation 

For an interrupt acknowledge (INTA) operation, the processor sends an acknowledge 

signal and the interrupt controller replies with the vector type. One bus cycle is required 

for the interrupt acknowledge signal and another for acquiring the vector type. This is 

shown in Figure 28. 

t+4

INTERRUPTPROCESSOR

Interrupt Ack. (INTA) signalt

 Return INT's Vector typet+8

 

Figure 28: Interrupt acknowledge (INTA) operation in minimum mode 
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7.3 Message Event Sequence in Maximum Mode 

Following results are extracted from the log files, referred in appendix B, and presented 

in the form of message event sequence diagrams. As an example, the message event 

sequence of memory read (RD), memory write (WR) and interrupt acknowledge cycles 

are discussed in section 7.3.1 and 7.3.2.  

7.3.1 Memory RD and Memory WR Operations 

The processor sends a memory read or memory write request to the bus module, and the 

bus module generates the appropriate control signals to the memory module. Figure 29 

shows the level of abstraction in terms of the control signals and the timing information.  

t+4

t
RD Request (S0 S1 S2) Mem RD control sng.

Data RD from memory

t+1
t+2t+2

t+3Address from Processor

PROCESSOR BUS MEMORY

(b)

t+4

t+2t+2

PROCESSOR BUS MEMORY

t
t+1

WR Request (S0 S1 S2)
Mem WR control sng.

Data WR to memory; Address & Data from
Processor

(a)  

Figure 29: (a) Memory Write (b) Memory Read operation in maximum mode 

7.3.2 Interrupt acknowledge Operation 

For an interrupt acknowledge (INTA) operation in maximum mode, the processor sends a 

signal to the bus module to originate the interrupt acknowledge signal to the interrupt 

controller module. In response, the interrupt controller sends out the vector type to the 

processor. This operation is shown in Figure 30. 
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t+4

PROCESSOR BUS

t
t+1

INTA Request (S0 S1 S2)
INTA signal

INTERRUPT

 Return INT's Vector typet+8

 

Figure 30: Interrupt acknowledge (INTA) operation in maximum mode 

7.4 Sequence diagram for Interrupt Call Operation 

The sequence diagram, Figure 31, explains the interactions between different modules in 

terms of bus cycles during an interrupt call. The time x represents the total time elapsed 

between the generation of the interrupt signal (at time t) and the execution of the interrupt 

return (IRET) statement.  
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Figure 31: Interaction flow between different modules during Interrupt operation. 

7.5 Analysis of the results  

As mentioned in chapter 4, the detailed bus level signals are not the scope of this 

research. But for implementing the interactions between different federates, the time 

breakdowns within a bus cycle (represented as 4 time units) are required. These time 

breakdowns (figure 27, 29 & 30) should not be compared with the real timing diagrams. 

To analyze the case study’s results the timing information gathered from the logs of 

different modules can be verified against the theoretical timing values given in Table 2 



 73

and 3. The level of accuracy for the execution unit of the processor is up to one clock 

cycle. Hence the simulation results for the execution timing for each program instruction 

should match with the theoretical timing values of Table 2 and 3. Here two program 

instructions (opcodes) from the case study example are analyzed.  

MOV [BX],CH 

Table 3 shows that it requires 14 clock cycles for the EU and the BIU to execute this 

opcode. Figure 32 shows a snap shot of the processor module’s log, when the MOV 

[BX],CH opcode is at the top of the Instruction queue. This opcode moves the value of 

CH register to the memory location calculated as ((DS×16)+BX). Lines 4 and 5 show the 

values of the BX, CH and DS registers. Hence as an execution result of this opcode the 

value 2 should be moved to a memory location of 4×16+1=65. Line 3 shows that 138.0 is 

the execution start time for this opcode.  

---------------------------Processor log------------------------------ 
Request time = 139.0000000000 
Data from Memory = 47 
FED_HP: Time granted (timeAdvanceGrant) to: 138.0000000000 
Zero Flag=0 INT Flag=1 AL=0 DI=1 BX=1 CL=2 CH=2 
IP=14 CS=1 SS=7 SP=31 DS=4 
Contents of the queue: 136 47  
Lookahead = 3.0000000000 
ControlSignalFromProToMem = 1 
AddressFromPro = 30 
---------------------------------------------------------------------- 

Figure 32: Snap shot of the Processor’s log for the analysis of the MOV [BX],CH 
instruction. 

Figure 33 shows a snap shot of the memory module’s log when the content of the CH 

register has been moved to the memory location of 65. This is shown in the second byte 

of line 10. Line 5 shows that 152.0 is the execution end time for this opcode.  

-------------------------------Memory log------------------------------ 
Request time = 155.0000000000 
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Control Signal From Pro To Mem = 2 
Address from Processor = 65 
Data from Processor = 2 
FED_HP: Time granted (timeAdvanceGrant) to: 152.0000000000 
30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
181 0 191 0 0 177 2 187 0 0 3 223 136 47 71 2  
233 131 199 10 117 13 244 0 0 0 0 0 0 0 83 187  
0 32 138 7 254 192 136 7 91 207 0 0 0 0 0 0  
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
----------------------------------------------------------------------- 

Figure 33: Snap shot of the Memory’s log for the analysis of the MOV [BX],CH 

instruction. 

The difference between the execution start and end time is 14 clock cycles. This result 

matches the theoretical clock cycle value (table 2) required for the execution of MOV 

[BX],CH instruction. 

POP BX 

Table 3 shows that it requires 12 clock cycles for the EU and the BIU to execute the POP 

BX opcode. Figure 34 shows a snap shot of the processor module’s log, which can be 

interpreted as discussed in section 7.1.1. Line 5 shows that 91, the opcode of the POP 

BX, is at the top of the instruction queue and line 2 shows that the simulation time is 

515.0 units. 

---------------------------Processor log------------------------------ 
Request time = 515.0000000000 
FED_HP: Time granted (timeAdvanceGrant) to: 515.0000000000 
Zero Flag=0 INT Flag=0 AL=1 DI=4 BX=32 CL=2 CH=8 
IP=42 CS=1 SS=7 SP=23 DS=4 
Contents of the queue: 91 207  
Lookahead = 3.0000000000 
ControlSignalFromProToMem = 1 
AddressFromPro = 58  
---------------------------------------------------------------------- 

Figure 34: Snap shot of the Processor’s log, showing the start of the execution of the 

POP BX instruction. 
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Figure 35 shows a snap shot of the processor log when the contents of the BX register 

have been retrieved (pulled) from the memory location ((SS×16)+SP). BX is a 16 bit 

register, so the Intel 8088 processor requires two bus cycles to retrieve the register value. 

The first bus cycle retrieves the most significant byte and the second bus cycle retrieves 

the least significant byte. Figure 35 and line 2 shows the transfer of the least significant 

byte (4), line 4 and 7 show that the value of the BX register has been updated from 32 to 

4. Line 3 shows the execution end time (527.0 units) for the POP BX instruction. Line 9 

shows that the opcode of POP BX (91) has been removed from the instruction queue after 

the completion of this instruction. 

---------------------------Processor log------------------------------ 
Request time = 527.0000000000 
Data from Memory = 4 
FED_HP: Time granted (timeAdvanceGrant) to: 527.0000000000 
Zero Flag=0 INT Flag=0 AL=1 DI=4 BX=32 CL=2 CH=8 
IP=42 CS=1 SS=7 SP=25 DS=4 
Contents of the queue: 91 207 
Zero Flag=0 INT Flag=0 AL=1 DI=4 BX=4 CL=2 CH=8 
IP=42 CS=1 SS=7 SP=25 DS=4 
Contents of the queue: 207  
Lookahead = 3.0000000000 
ControlSignalFromProToMem = 1 
AddressFromPro = 138 
----------------------------------------------------------------------- 

Figure 35: Snap shot of the Processor’s log, showing the end of the execution of the POP 

BX instruction. 

The difference of the instruction fetch time and the end execution time is 12 clock cycles. 

This result matches with the theoretical value (Table 3) and hence the simulator’s 

execution has been verified against the theoretical timing values. 
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CHAPTER 8 
 

 

Conclusions 

 

8.1 Conclusions 

The following conclusions are drawn from this research. 

• Hardware platform components have been modeled by using the DEVS atomic 

formalism and simulated under the HLA framework.  

• Conservative time advance approach has been used in the DEVS atomic model, as 

this is simple and HLA compliant. 

• The level of details shown for each hardware component in chapter 5, addresses the 

requirements of the hardware designers to simulate their designs before physical 

implementation. The case study has proved that by implementing these models, 

accurate results can be gathered within a clock cycle (in section 7.5). For this case 

study, the implementation of all the features suggested (in chapter 5) for the hardware 

components were not required, as this study is focused for a specific hardware 

platform (Intel 8088 based). 

• The HLA-specific details that should be visible in a component’s model of a 

hardware platform are discussed in section 6.2.2.3 and concluded as follows. 
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o The attributes for input and output ports should be published or subscribed to 

the RTI and defined in the HLA compliant FOM/SOM. 

o In the start of the simulation, a component should be able to register itself 

with the RTI so that it becomes a part of the federation. At the end it should be 

able to resign. 

o A component’s model should be able to react on the RTI’s call for the δext 

function. It should be able to schedule the ta function and any wait states 

through the RTI. For the λ function, the component’s model should be able to 

create and send out the AHVPS using RTI methods.  

8.2 Summary of Contributions 

The list of contributions is as follows. 

• The DEVS/HLA approach is developed to model and simulate computer hardware 

platforms.  

• An approach is developed towards flattening the hierarchy when the systems are 

modeled in the DEVS formalism and worked under the HLA framework (section 

5.1.2). 

• An HLA framework is defined for the computer systems to be simulated (section 

5.1.1).  

• As a case study, a simple hardware platform (Intel 8088 based) is modeled and a 

simulator is developed. These hardware components’ models can be further 

developed and generalized (as suggested in chapter 5) to build this simulator as a 

simulation tool for computer systems designers. 
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• With the help of this case study, the mapping of the hardware platforms with the HLA 

has been demonstrated. 

• Recommendations for future work have been made as shown in section 8.3. 

8.3 Future Research 

Following are the recommendations for future work along with some suggestion. 

• A software tool (as discussed in section 6.2.2.3), based on the DEVS formalism and 

Atomic models, can be developed. This tool should be able to send/receive the 

transition functions directly to/from the RTI and the input and output events should 

be defined in the HLA compliant FOM/SOM. 

• The simulator developed in this research and used for the case study can be further 

developed for general hardware platform models and the level of details in terms of 

timing and bus level signals can also be implemented. This development could be a 

step in the direction of abstraction to reality. 

• Analyzing the performance for hierarchical models (the DEVS-Coupled) versus flat 

models (the DEVS-Atomic), using the HLA framework. This analysis will be useful 

for future simulator development. The processing delay for the interaction of 

components A and D (as shown in Figure 36) could be one of the parameters of 

interest. 
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RTI

Simulation
engine

A

Simulation
engine
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RTI
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Figure 36: (a) Hierarchical models using the HLA framework (b) Flat models using the 

HLA framework 

• A case study could be done for the combination of systems developed using flat (the 

DEVS-atomic) approach and hierarchy (the DEVS-coupled) approach, using the HLA 

framework. Identification of all the issues and implementation requirements could be 

a useful contribution for future simulator developments. A block diagram is shown in 

Figure 37. 

RTI

Simulation
engine

A B

C

 

Figure 37: Combination of Flat and Hierarchical models using the HLA framework 
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APPENDIX A 

 

Simulator’s Directory Structure & 

Software Code in C++ 

This section describes the procedure to configure the simulator (developed for the case 

study) on the computer and provides the software code, of different modules, required to 

run the simulator. The preliminary step during the configuration process is to get 

registered and download the HLA/RTI software from the DMSO Internet site 

(http://www.dmso.mil). Then run the Helloworld example on the computer to verify the 

computer’s configuration and the correct installation of the HLA software. Section A.1 

describes the directory structure for the simulator and section A.2 gives a list of files 

attached with this document along with some basic definitions. 

For this research work, the RTI version 1.3 (Operating System: Win98se; Compiler: 

VC++6.0) is used.  

A.1 Directory Structure 

The directory structure of different modules is shown in Figure 38. This is one of many 

possible structures/configurations. All the modules i.e., Processor, Bus, Interrupt and 

Timer1 have the same directory structure as Memory module. 
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apps
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Helloworld
(folder)
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(folder)
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(folder)
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data
(folder)

(Files)
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(Files)
Memory.h
MemoryFederateAmbassador.h

(Files)
HP.fed
RTI.rid

 

Figure 38: Simulator’s directory structure. (This is one of many possible configurations). 

A.2 Software Code in C++ 

Following is the list of files, provided in a floppy disk, attached with this document. 

• ProcessorMain.cpp: It contains the main flow of Processor module. 

• Processor.cpp: It contains the body of Processor class. Code of all the functions, 

defined in Processor.hh, is present here. 

• ProcessorFederateAmbassador.cpp: Functions of ProcessorFederateAmabassador.hh 

are defined here. It contains a lot of error/exception handling and appropriate code for 

every function 

• Processor.hh: It defines the functions, variables and constants of Processor class. 

• ProcessorFederateAmbassador.hh: It defines ProcessorFederateAmbassador as a 

derived class of abstract FederateAmbassador class to implement methods so that RTI 

can call functions in the federate. 
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• MemoryMain.cpp 

• Memory.cpp 

• MemoryFederateAmbassador.cpp 

• Memory.hh 

• MemoryFederateAmbassador.hh 

• BusMain.cpp 

• Bus.cpp 

• BusFederateAmbassador.cpp 

• Bus.hh 

• BusFederateAmbassador.hh 

• InterruptMain.cpp 

• Interrupt.cpp 

• InterruptFederateAmbassador.cpp 

• Interrupt.hh 

• InterruptFederateAmbassador.hh 

• Timer1Main.cpp 

• Timer1.cpp 

• Timer1FederateAmbassador.cpp 

• Timer1.hh 

• Timer1FederateAmbassador.hh 

• HP.fed: HP (Hardware Platform) provides an interface between the DEVS model and 

RTI software. This HP.fed file is developed by using OMDT tool. This tool and its 

manual can be obtained, along with the HLA/RTI software, from www.dmso.mil.
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APPENDIX B 
 
 

Log Files for each Federate 

This section contains a list of log files, provided in a floppy disk, attached with this 

document. The list contains minimum mode and maximum mode log files. 

• Processorlog_min.txt 

• Memorylog_min.txt 

• Interruptlog_min.txt 

• Timer1log_min.txt 

• Processorlog_max.txt 

• Buslog_max.txt 

• Memorylog_max.txt 

• Interruptlog_max.txt 

• Timer1log_max.txt 

 


