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Abstract

Modeling and simulation plays an important role thre development of computer
systems. This research work focuses on modelingrgecomputer hardware platforms
using the Discrete Event system Specification (DEM8deling formalism, and mapping

these models onto the High Level Architecture (HIféY)simulation interoperability.

An HLA-based system level framework for a genesaidiwvare platform is proposed, in
which hardware component details are modeled uSIEBYS atomic models. To verify
the proposed framework, a case study is presenotea $implified Intel 8088 processor
based platform. The components modeled in this sag#y are a processor, a memory

module, an interrupt controller, a bus controlled @ timer.

This research has developed an approach thatnattee modeling hierarchy by using
only DEVS atomic models mapped onto the HLA. Aseault, the simulation support
layer normally present to handle coupled modelsasneeded. The general hardware
platform framework influences aspects of componmwidels, and these aspects are
identified and related to their implications to tiA. This work has laid some
groundwork leading towards a simulation tool forrdveare platform modeling and

simulation that can be used by system designersgltire product development phase.
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CHAPTER 1

Introduction

The use of embedded computer systems to solvecapph problems requires an
understanding of both the hardware platform invdlead the software that customizes
the hardware for the particular application. Modgland simulation is used increasingly
in developing the hardware and software of suchegys. Modeling is required to
represent a system for the purpose of studyingyeem. A simulation is the imitation of
the operation of a system over time. The behavia system as it evolves over time is
studied by developing a simulation model [3]. Thedels created by hardware engineers
while developing hardware components often contdails that are irrelevant to
software developers. Furthermore, the simulatiothefhardware component models is
often fine-grained and computationally intensiviace the states of all of the individual
transistors in the components must be addressdtivé®e developers would prefer a
programmer’s model of the hardware platform, whiebuld abstract away irrelevant
hardware details and focus only on the informatielevant to software development.
Ideally, the more abstract programmer’s models d@dwdve larger-grained simulations

that are less computationally expensive than thewere models.

The goal of this research is to develop a genesiméwork that can be extended to model

and simulate specific computing platforms by introdg platform-specific details.



Software developers can use these models to dewahap test their software for
computing platforms. For modeling platform compdserihe DEVS (Discrete event
system specification) formalism is used. The sirotaframework for these models is
defined, following the specifications of the HLA i@-level architecture) standard. The

rationale for adopting the DEVS/HLA approach is lexped in chapter 4.

This research is seen as an initial step in a Ietegen research project that will (later)
include the development of tools to simplify théraaluction of platform-specific details
by handling the formal aspects associated with DEEvi8 the HLA (such tools would
allow designers to focus more attention on thef@iat-specific details by relieving the

designer of the unnecessary DEVS and HLA clutter).

A brief synopsis of the structure of the thesisuwtoent is as follows. Chapter 2 provides
the background information about the DEVS formalema the HLA. It briefly describes
different classes of the DEVS formalism and keyuess of the HLA that are required to
manage various aspects of the simulator. Chaptevidws the latest ideas in the DEVS
formalism and a subset of the tools developed f@ement the DEVS formalism. It also
describes a layered approach to use DEVS and tiefbiLa simulator. Chapter 4 states
the research motivation, a critical analysis offémes of chapter 3, the research question
under investigation, the approach adopted to anslweequestion and the scope of this
research. Chapter 5 describes the proposed frarkevidhe simulator and the general
models of basic hardware platform components. Thygseral models have a list of
parameters, which can be used for defining the tionality of these components.
Chapter 6 shows how this simulator can be usedaf@pecific hardware platform.

Execution of an example program (a few instructiohthe 8088 processor) is simulated



in order to illustrate the proposed DEVS/HLA apmioalt also describes the flow charts
of each hardware component used in the case stitthpter 7 shows the results of the
case study. Excerpts of some component logs amustied and the message flow
between different components is explained. Thege &md message flows are helpful in
verifying the simulator. Chapter 8 concludes theeezch. It discusses the contributions
and suggests some future research topics. Theusioiclis followed by the references

and two appendices. Appendix A refers to the saftweode for each hardware

component involved in the case study. Appendix fBreeto each component’s log in the

case study.



CHAPTER 2

Background for the DEVS and the

HLA

In this section a system development process @sisged with emphasis on the need for
modeling as an initial step in development. Compstestems being discrete in nature
require an appropriate modeling formalism and aukition framework to get the system
analyzed. This section describes the Discrete E&ydtem Specification (DEVS)
formalism to model various components of a compwgstem and the High-level

architecture (HLA) as a simulation framework staxdda
2.1 System Development Method

The products based on computer systems are inegeasmendously. In order to verify
the required features of these computer systemdelng is becoming an important part
of product development. Modeling has various lewélabstraction and complexity that

are normally used during the development cycle ©fstem.

Computer systems are discrete in nature. Much reflsedfort has been made in order to
find the most appropriate modeling formalism forctsusystems. One of the current

approaches is the use of computer simulation tdyamdhese models and explore the



properties of these systems. This modeling and laimn methodology is playing an

important role in the development of computer jplatfs and systems.

2.2 The DEVS Formalism

The DEVS (Discrete Event System Specification) system’s formalism, with a well-
defined concept of modularity and coupling of compats. The DEVS formalism
focuses on the changes of variable values and gesetime segments that are piecewise
constant. In essence the formalism defines hovet®i@ate new values for variables and
the times the new values should take effect. Anoirtgmt aspect of the formalism is that
the time intervals are continuous. There are twgpmaasses from which all the user-

defined models can be developed — atomic and cduple

A brief description of the DEVS Atomic model andupted model is as below. [4]

2.2.1 Atomic Model

An atomic model directly specifies the system’spmsse to events on its input ports,
state transitions, and the generation of evenitssayutput ports. It is defined as [4]:
AM =< 10, X, S, Y,int, Oext Ocon A, ta >
Where
IO is the model's interface (input/output ports).
X is the input events set.
Sis the state set.
Y is the output events set.

dint 1S the internal transition function.



dex IS the external transition function.
dcon IS the confluent transition function
A is the output function.

ta is the time advance function.

8con I 8int
ext > N S ¥ 7»=
ta i

Figure 1: Systematic representation of a basic (atomic) model

Figure 1 shows a graphical representation of amiatonodel. Each model is provided
with an interface consisting of input and outputtp@o communicate with other models.
When an input arrives the instance variable S watgd. Thedey function accepts the
input and changes the instance variable. Afterlapsed time, given by the ta function,
the system checks the internal variables and misteshal changes to bring the system
to the next state. The function that performstal ts theoi,: function. Thed.on function
decides what to do when both external and integmahts occur together. It might, for
example, decide the order betweendfeand thedi, functions. The. function produces
the output Y from the instance variables. The tacfion returns the time to the next

internal event.



2.2.2 Coupled Model

A DEVS coupled model is composed of several atoamnicoupled sub-models. It is
defined as [4]:
CM=<10, X, Y, D, {Mi}, {li}, {Zij} >
Where
IO is the model's interface (input/output ports).
X is the set of input events.
Y is the set of output events.
D is an index for the components of the coupled model
Mi is a basic DEVS (that is, an atomic or coupled rjode
li is the set of influencees of model i (that is, thadels that can be influenced by
outputs of model i).

Zij: Yi - Xj isito ] translation function.

We can see that coupled models are defined as af $&tsic components (atomic or
coupled), which are interconnected through the nsbdeerfaces. The influencees of a
model define the models to which outputs must bd. SEhe translation function is in

charge of converting the outputs of a model infwis for the others. To do so, an index
of influencees is created for each model (li). Tindex defines that the outputs of the

model Mi are connected to the inputs in the modghMere j is an element of the set Ii.



2.3 High Level Architecture (HLA)

The HLA was developed by the US Department of Defe(DoD) based on a process
involving government, industry and academia. ThghHLevel Architecture (HLA)
provides a general framework within which simulatidevelopers can structure and
describe their simulation application. In particulthe HLA addresses two key issues:
promoting interoperability between simulations amding the reuse of models. In the
terminology of the HLA [1]

» The combined simulation system created from thestiimient simulation is a

federation.

« Each simulation that is combined to form a federais a federate.

The baseline of the HLA, defined in IEEE Standa®d@, includes the following:

» The HLA Rules define the responsibilities and ielahips among the components
of an HLA federation. [5]

» The HLA Interface Specification provides a spedifion of the functional interface
between the HLA federates and the HLA Runtime Btfiecture (RTI) (RTI is
discussed in section 2.3.1). This specificationindsf all the RTI services and
identifies “callback” functions that must be progdiby each federate. [6]

* The HLA Object Model Template (OMT) provides a coompresentation format for
HLA Simulation and Federation Object Models (SOMMJ7]. A SOM defines the
objects and interactions within a federate, whil&@M defines object models,
communication between federates, condition for dg@ates and other information

for interoperability purposes. The Federation Exiecu Data (FED), which is



required as an input to the RTI, is a subset oDMFalong with the specification of
some default values for transport properties oa.dhat brief, the OMT provides an

interface between the models and the RTI/HLA.

2.3.1 Runtime Infrastructure (RTI)

The RTI is a middleware that provides common sewvi federates and/or federations.
It is an implementation of the HLA Interface Spawfion. The RTI software can be

executed on a standalone computer or distributed @wetwork.

2.3.1.1 Components of the RTI

Figure 2 shows the major components of the RTI aadh component is briefly

discussed after the figure.

Inter Process Communication

CEER-

Figure 2: RTI Major Components. [8]

The federation executive (FedExec) manages multiple federates within a federation. It
allows federates to join and to resign, and fai#i¢ data exchange between participating
federates. Each federate joining the federatiomssigned a federation wide unique

handle.



The RTI Executive (RtiExec) manages multiple federation executions in a nekwdr
helps in initializing RTI components for each feateyn executive (FedExec). It also

ensures that each FedExec has a unique name.

The RTI library (libRTI) provides the RTI services specified in the HLAehfdce

Specification to federate developers.

2.3.1.2 Management Areas of RTI

The HLA Interface Specification divides the sergicgrovided by the RTI into six

management areas. Table 1 summarizes the objeofieaxh of the management areas:

Management Area Activities Supported

Federation Management Manages federation executfiobializes name space

transportation, routing spaces etc.

Declaration Management Specifies the data a feelsmatds and/or receives.

Object Management Creates, modifies and deletescibjand interactions

U7

Facilitates object registration and distributiormo@inates
attribute updates among federates. Accommodatésugar

transportation and time management schemes.

Ownership Management Supports transfer of ownerdoip individual object

9%
o

attributes. Offers both “push” and “pull” bas

transactions.

10



Time Management

Establishes or associates eventh Widerate time|

Regulates interactions, attribute
or object deletion by federate
interaction between federates

schemes.

updates, objeftéation
time scheme. Supf

having different t

Data Distribution

Management

Supports efficient routing of data.

Dort

me

Table 1: RTI Management Areas partitioned in FedExec lifeley8]
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CHAPTER 3

State of the Art in the DEVS/HLA

This section briefly describes the research worthearea of the DEVS formalism and a

technique used to map the DEVS model formalism dmdHLA simulation framework.

3.1 Implementation of the DEVS formalism

The DEVS formalism is a well-defined means of espieg hierarchical, modular
models in discrete event simulation. A DEVS modehistate machine, and the state of
the model is changed by external or internal everits elapsed time. The following is a

subset of the tools developed to map the DEVS fismao simulation engines.

The DEVSC++ tool is based on the DEVS formalism. It is a moduiéerarchical
discrete event simulation environment implementethe object-oriented C++ language
[9]. The DEVS-C++ contains three libraries: cong&mindevs and devsHLA. The
container library provides methods, which are usedrganize the interacting objects
(e.g. atomic models). The devs library provideshods to implement the functions as
Oexty Oty A, ta and port information to be defined by the uSdre devsHLA library

provides easy access to the DEVS/HLA environmedtisiscussed in section 3.2.1.

The CD++ toolkit is developed with the goal of developingdasimulating models based
on the DEVS and Cell-DEVS [11] paradigms. The cofethe toolkit is the CD++

environment [11], which implements the DEVS and-O#VS theories.
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The DEVSm++ is another tool that provides the ability to deyetliscrete event models
using the hierarchical composition technology wittihe DEVS framework [12]. For
simulation, DEVSim++ implements hierarchical schedy in abstract simulators of

atomic and coupled models.

3.2 DEVS Implementation over the HLA/RTI

B.P.Zeigler [2] has designed and developed an Hadmiant simulation environment
using DEVS as a modeling tool and a way to mapDBE&/S models to the HLA as
shown in figure 3. The strategy underlying the miagmf the DEVS to the HLA is to
exploit the information contained within the DEVSodels to automate as much as
possible of the programming work required for comding the HLA compliant
simulations [9]. The final goal is to facilitate la-directional transfer of information
between the OMT Development Tool (OMDT) that capsuOMT information and the
DEVS model description. Figure 3 shows the layeaggroach and each layer is

discussed in the sub-sections below.

Modeling -- DEVS (using
DEVS-C++)

Simulation -- PDES Protocol

HLA C++ RTI

Networking (optional)

Figure 3: Layered approach to implement the DEVS/HLA. [2]
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3.2.1 DEVS Modeling using DEVS-C++

The top most DEVS layer of figure 3 is used forimie§ the models. The DEVS-C++
tool [9], as discussed in section 3.1, has a dewsHhrary required for interfacing
between DEVS and the HLA/RTI in a C++ environmdrite devsHLA library contains
methods for attribute updates, attribute refletjomteraction updates, interaction
receive, object discovery and quantizers. A quantibject is associated with each
attribute that the modeler would like to publishgAantizer is a demon that checks for
the attribute value crossing the threshold. Quargiare used to reduce message update
traffic and the size of the quantizers is directiated to the accuracy and the speed of

computation required.

3.2.2 The Parallel DEVS (PDES) Protocol

The Parallel and Distributed Discrete Event Simata{PDES) protocol layer of figure 3
introduces a simulation engine, which takes caralbthe time and data interactions
within the DEVS models. It also acts as a messagshator between the DEVS models

and the HLA/RTI.

There are three approaches to mapping the DEVSafam into the PDES protocols:
Conservative, Optimistic and the Parallel DEVS. lEapproach is briefly discussed

below.

The conservative scheme [9] processes events in strict time stamped or@enservative
schemes must somehow arrange for the potentiahort events with earlier time stamps

to be conveyed to affected models. This can be tmoeigh “lookahead” in which each
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model provides a time in the immediate future upvtoch it promises not to send input
events. The minimum of such blackout times at angelicomponent, called the Lower
bound time stamp (LBTS), is the time up to whichah safely process its time-stamped
inputs. Thus simulation proceeds incrementally goee by the lookahead, which is the
interval that a model/component adds to its curt&itS to obtain the blackout time sent

to other models/components.

The optimistic scheme [9] permits temporary time-stamped order violattbat must be
repaired before the final simulation output is preed. It allows models/components to
march forward in local time and process their ingd output queues as fast as they can.
But from time to time a model/component can recawder messages with old time-
stamps. To rectify this situation, queues of alygabcessed inputs and their outputs are
maintained so that the situation can be restoreshiat it was just before the arrival of

the old time-stamped message. This scheme hadamsase apparatus of overheads.

The Paralled DEVS scheme [9] differs from the other schemes in that theseai
coordinator to synchronize the simulation cycleotlgh its steps (see Figure 4). Unlike
other schemes it does not have overheads of loakahad local time rollbacks. In
parallel DEVS, the coordinator collects all timelsnext events from the component
simulators. It sends the minimum of these timeskbgx the components, thereby
allowing them to determine whether they are immin@omponent with the least time
for next event), and if so to generate output. Mben one component may be imminent,
and the outputs of all imminent components areeglasind distributed to others according
to the coupling rules. The transition functiongled imminent components, as well as all

other recipients of inputs, are then applied. Whrelmsition is applied, depends on the
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state and input of a component. The resulting cbaing states may cause new values for

time advances and these are sent to the coordiffdtercycle then repeats.

Coupled Model

Component
tN, tL

Component
tN, tL

Component
tN, tL

tN = time for next event
tL = time of last event

Figure 4: The Parallel DEVS simulation protocol [2]

3.2.3 Mapping of the PDES Protocol to the HLA/RTI

As shown in figure 3, B.P.Zeigler's approach to lempent the PDES protocol in the

HLA is as follows.

The DEVS simulation protocol is implemented with erplicit coordinator in the

DEVS/HLA approach as illustrated in figure 5. Heaeseparate Time Manager federate

is allocated to the coordinator. This techniquel@ip quantizers (defined in section

3.2.1) to efficiently share the times of next egemimong DEVS federate and the

coordinator. Only changes in local or global tN rfrmium of local tNs) greater than the

guantizer threshold are sent from one federated®ther using the RTI.
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Federate A Time Manager Federate Federate B

System Model System Model System Model
tN
Co-ordinator | N .| Co-ordinator
Image ' Co-ordinator |« Image
v . v
Simulator A Simulator B
A »| Simulator Image A A
User Model tNi User Model
Simulator Image Bi<€
Model A Model B tNi Model C Model D

; ; ;

Figure 5: Coordinator as a Federate (the PDES protocol mgppto the HLA) [2]
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CHAPTER 4

Modeling Hardware Platforms

In this chapter research motivation is discussdidvied by a brief research statement
and a critical analysis of the current solutiorthte problem as stated in chapter 3. Later,
in this chapter, a solution to the research probiemproposed along with the scope of

work, the contributions that are made and the ptasien of the solution are discussed.

The development of systems involving computer/hamwplatforms has increased
tremendously. An important step during the develepinphase is the modeling and
simulation at various levels of abstraction [LdnG&lation results play an important role

in assessing the properties of the systems atualavels of abstraction.

Chapter 3 discusses a general approach to moddiirmnthate different systems using the
DEVS and the HLA/RTI. This approach can also bedusemodeling and simulating
computer systems and hardware platforms. A criticellysis of the technique/approach
discussed in chapter 3 is as follows.

* The software tools for the DEVS implementationscijee 3.1) are focused for
hierarchical models (the DEVS coupled class). Hetloey have complicated
simulation and coordination engines in order to agmisynchronize different
components. These engines perform well in the DEV8ronment, but require

additional message translation functionality to kweith the HLA/RTI layer.
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» The DEVS/HLA layered approach, discussed in se@i@nis shown in figure 6. The
two layers of simulator middleware (i.e., the RTidahe DEVS) are on top of each

other. The DEVS layer is required to support the/SEoupled models.

Runtime Infrastructure (RTI)

DEVS Simulator DEVS Simulator
Implementation using Implementation using
DEVS tool e e e DEVS tool
DEVS formalism DEVS formalism
(coupled or atomic) (coupled or atomic)

Figure 6: The block diagram for basic approach from chapter 3
» B.P.Zeigler's work (chapter 3) adapts the DEVS-Qaal to the HLA/RTI structure.
This is quite useful to reuse old simulations depet under the DEVS-C++ tool but

suffers from the extra layer of DEVS middleware.

The motivation of this research work is to modelimas components of computer
systems and define a simulation framework so thes¢ components can interact with
each other and give some useful results at varleusls of abstractions. Another

motivation is that the components could be reuseather simulations.

The research problem is to define a framework fge@eral hardware platform model, of
a single master computer system, and to map thelnoodb the High Level Architecture

(HLA) simulation guideline.

To address the above research problem, the DEV@afmm is used to model a
hardware platform. This formalism is used, as tHeVB is an increasingly accepted

paradigm for understanding and supporting the gietsvof modeling and simulation. In
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order to provide a simple solution to the reseapabstion, only the DEVS atomic class is

used to model components. The rationale behindagipsoach is as follows.

» Atomic models can be controlled directly from th&lRtherefore an extra layer of
DEVS middleware to support coupled models is najuimed. This approach
effectively flattens the DEVS modeling hierarchy.

* Atomic models are a simple concept, and easilyatgesor future developments.

The suggested layered approach to address thedlegeablem is shown in Figure 7.

Runtime Infrastructure (RTI)

Implementation in Implementation in
C++ C++
e o [ )
DEVS formalism DEVS formalism
(atomic class) (atomic class)

Figure 7: A Model of the proposed solution.

The scope of this research is to

» Define a simulation framework for a general hardwanlatform. The general
hardware components to be modeled are a Processhirlen a Memory module, a
Bus controller module, an Interrupt module and endfi module. Being a single
master (Processor) platform, a bus arbiter is nodeted. The Processor module is
further divided into three units. An Execution U{EU) that is responsible for
decoding and executing all instructions, a Busrfate Unit (BIU) that is responsible
for performing all external bus operations and at@® Unit (CU) that is responsible

for minimum/maximum mode and interrupt signals frother devices. Any required
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hardware component can be modeled and added, aduee fwork, below the
simulation (RTI) layer.

Identify the general attributes of each hardwareymanent in order to use these
models in the initial development phase of the cat@p systems. The level of
abstraction for these components is in the unibws$ cycles. More detailed time
breakdown within a bus cycle and detailed bus lesighal implementation are
outside the scope of this work and may not be nesblatcurately. For the execution
unit (EU) of the processor the timing details anplemented up to a clock cycle.

Use the DEVS formalism to apply the modeling angpiag results to a case study
involving hardware platform components. For thissecastudy, a Processor (a
simplified version of Intel 8088), a basic Memonyitu a bus controller (a simplified
version of Intel 8288), a basic Interrupt controli@d a basic Timer unit are modeled.
Execute simple operational codes as a main prograiran interrupt routine on this
simulator for the case study and obtain resultsetdy the operation of the simulator.
Draw conclusions for the proposed solution’s (dssad above) implementation in
the case study.

Summarize the contributions made by this reseamndtlee case study.

Identify possible future research topics.

The following paragraphs identify the contributiaihst are made, and the approach to

presenting the proposed solution.

As a contribution, a mapping of computer/hardwatatf@rms to the HLA/RTI is

developed. An approach is defined for the DEVS aanodels to work under the HLA
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framework without using any additional DEVS simolgt A simulator is developed, as a
case study, by modeling the hardware platform comapts (as discussed above in the
scope of the research) using the DEVS formalism araking all the interactions

between these components using the HLA framework.

In order to present the solution, the body of thesis is organized in chapters starting
from the system level discussion of hardware ptatfmodeling using the HLA, defining
the DEVS models for each hardware component, imghtimg the design as a case study
for a simple (Intel 8088 based) platform by devaigpa simulator and analyzing the

simulator’s results to verify the proposed solutit@sign.

As discussed in the scope of the research, chdptaveral modules are modeled for the
platform. To reduce the amount of low-level detaily the memory module is presented
in depth. For the complete implementation of alldules, appendix A.2 refers to the

software code attached with the thesis. The remoselecting the memory module, as a

reference is that it is a simple module and alsorgoortant part of hardware platforms.
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CHAPTER 5

Simulation Framework and DEVS

Atomic models

This chapter includes the system level frameworgested to approach the solution.
The discussion below starts from a system levetiltiagram and is later divided into
two parts. In the first part the simulation flow afFederate is described, and in the

second part the DEVS atomic model for each fedésaggplained.

5.1 System Level Block diagram

Figure 8 shows a system level block diagram famgpke hardware platform simulator. It

contains the following basic hardware componentsc&ssor module, Bus controller
module, Memory module, Interrupt controller modaled Timer module. The Processor
module is further divided into three units: BIU, Bldd CU. For modeling a single master
hardware platform (chapter 4), a bus arbiter modislenot required. All these

components/modules are modeled using DEVS atomdaete@nd are discussed in detail
later in this chapter. In terms of the HLA, eactiiudual component is a federate, and all
federates collectively form a federation. The Ruetilnfrastructure (RTI) provides the

simulation platform for this federation.
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Bus Controller
Module
(DEVS-Atomic)

Interrupt Module| [ Timer Module
(DEVS-Atomic)| | (DEVS-Atomic)

Memory Module
(DEVS-Atomic)

| Runtime Infrastructure (RTI) |

Bus Interface Unif

(BIV)
(DEVS-Atomic)
Part of Processor
Module

Execution Unit (EU
(DEVS-Atomic)
Part of Processor
Module

Control Unit (CU)
(DEVS-Atomic)
Part of Processor
Module

Figure 8: System-level block diagram for Hardware platformsiator.

5.1.1 System Level Flow Diagram for a Federate

Figure 9 shows a basic simulation flow of a fedmr&n the left side, the figure is labeled
with numbers, which correspond to the steps infldwe chart in that row. Each step is

discussed in this section by using the label refezs.
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1 Create/Join
Federation
v
Initialization
Object/Model construction
2 Setup object/interaction communication (Publishuébscribe)
Initialize/enable time management
Registration with Federation
3 Parameters Input (CLI or GUI)
4 DEVS Model
- state executior]
s a Federate Time Incoming Event Comment
5 Sakre gra € Tim (only RO) from Wait till time advance
= Regulating only? other federates is granted by RTI
according to TSO
Comment
For any other Time Mangement
scheme (i.e., Time regulating &
constrained or Time constrained
only), a Federate follows this path. Incoming Event Comment
6 (TSO and/or RQ) Wait till time advance
from other is granted by RTI
federates according to LBTS
7z
Disable Time Management; Resign
8 from Federation; Delete Objec

Instances; In case of last federate
destroy the Federation.

End Simulation)

Figure 9: Simulation flow chart of a federate.

Step 1 is the initial step of the simulation in elhia federate creates or joins a federation.
If the federation does not exist, a new one i¢ irsated and then the federate is added to

it. If a federation already exists, then the fetkejains that federation.

At step 2, the federate is initialized. Initialimat consists of the Object/Model

construction, defining the attributes or/and paramse as to be published or/and
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subscribed (can be re-defined during simulatioajinthg the federate as time regulating
or/and time constrained (can be re-defined durimgkation) and the registration of the
federate with the federation executive. The SOM/FQ@fined in section 2.3) of each
federate must also contain these published andhmcsibed attributes and/or parameters.
The registration process registers the object Whiéhfederation execution, which returns

an HLA object handle — an identifier for all intet@ns within the federation.

Step 3 allows a user to input parameters for arééedefore starting the simulation loop.

This step is optional, as some federates do nat aeg user input.

Step 4 is the first step in the simulation loop.tihims step, a federate executes state
transition functions according to its DEVS atomiodel. The DEVS atomic models are

discussed later in this chapter.

Following step 4, a federate will perform one cépst 5 or 6, depending upon its time
management scheme. Step 5 is performed if a fedésatime regulating (capable of
sending Time Stamped Order (TSO) messages) only.RAl grants a time advance
according to the TSO message time. On the othat ifidinere is some incoming Receive
Order (RO) message, a message with no time stdropsanother federate then the RTI
delivers this message to the federate without grgrd time advance. Either a time
advance is granted or not, the simulation proceadsthe DEVS model transitions from

one state to another.

Step 6 is performed if a federate is using eitherttme regulating & time constrained
(capable of receiving TSO messages) both or the tiomstrained only scheme. The RTI
grants a time advance according to the Lower Bolinte Stamp (LBTS). The LBTS is

the maximum time to which a time constrained fetderaay advance. The LBTS is
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determined by the RTI after getting the lookahematinie period during which a federate
does not send out any message) values for eactatedend TSO messages from all the
time regulating federates. On the other hand ifeghe some incoming message (either
TSO or RO) from another federate then the RTI @etivthis message to the federate
without granting a time advance. If a time advarscgranted, the federate proceeds to
step 7. If a time advance is not granted, the fdereturns to the top of the simulation

loop for another DEVS model state transition.

At step 7, the federate checks whether the sinmidtop will continue or stop. At step
8, a federate removes itself from the federatiomiggbling time management, resigning
from the federation, deleting object instances, amthe case where it is the last federate,

destroys the federation.

5.1.2 DEVS Atomic Models for each Federate

Here, DEVS atomic models for each module in Figdirare discussed. The memory
module is discussed in detail with external/intérinansition functions, time advance
function and the output function. In the followisgb-sections, input and output ports
refer to the DEVS models as discussed in secti®ist2ould not be confused with similar

hardware terminology.

5.1.2.1 MEMORY MODULE

The level of abstraction, as discussed in the sobpeork chapter 4, can be achieved at

bus cycles level. So all of the detailed signalthinia bus cycle are not discussed in the
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model. The parameter that a user can set, as dextua step 3 of Figure 9, is the

following.

Parameter

* Memory size (MS). This parameter has an integeuerdMS > 0) and is defined in

terms of bytes.

Model

Memory =< |O X S YBint 89xt Scon}\. ta >

10 — Input and output ports

* Input ports:

0 Address bus: The size of address bus (AB_Size) istager (AB_Size > 0)
and is defined in the processor module’s parameterdion 5.1.2.2. To
support access to all memory locations, #Z®-57¢

o Data bus: The size of the data bus (DB_Size) ismt@ger (DB_Size > 0) and
is defined in the processor module’s parametersoses.1.2.2.

o Read control signal: This is a single bit signak Read, 0 = no operation
specified.

o Write control signal: This is a single bit signal= Write, 0 = no operation
specified.

* Output port:
o Data bus: The size of the data bus is DB_Size ageab
o Data acknowledge signal (for Motorola 68000 seridd)is is a single bit

signal. 1 = Acknowledge, 0 = no operation specified
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X — Input event set

Address on address bus: A binary value, in theearid0, ..., 2*®-°?21}. In order to
point to a memory location, the address must bess M

Data on data bus: A binary value in tiaege of {0,..., 28-5221}.

Read control signdl {0,1}.

Write control signall {0,1}.

Y — Output event set

Data to data bus: A binary value as above.
Data acknowledge signal (DTACK) informs the procesthat the bus cycle has
ended during an asynchronous processor's mode Blgtorola 68000 series

processors. DTACKI {0,1}.

S — State set

Read state: In this state the memory module waiti# it1 sends out data on the data
bus acquired from the memory location as addrekgete address bus. At this level
of abstraction (chapter 4), the delay function esded with this state is one bus
cycle.

Write state: In this state the memory module writata, provided by the data bus, to
a memory location which is addressed by the addsass The module then waits
until the time delay associated with this statelegpsed. At this level of abstraction
(chapter 4), the delay function associated with giéte is one bus cycle.

Wait state till nexbey. The delay function associated with this sfate”.
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dext— External transition function

» Thedeyx Starts with the arrival of read/write signal oe thput port of the module. In
case of write signal th&y: acquires the information from the address and ihgotat
ports. In case of read signal thg: only acquires the information from the address
input port. As an example the state diagram for orgmead and memory write
during a minimum operation mode is shown in

* Figure 10

ta — Time advance function

* The ta function introduces the time delay beforgedaling the next output function

A
» Figure 10shows an example where the ta function is intreduin the read state

before carrying out the function.

A — Output function

* Thel outputs the data on the output port (data bushguhe read cycle. For the case
of Motorola 68000 series processors the DTACK dignalso sent out on the output
port. As an example see

* Figure 10

dint — Internal transition function
» The i changes the internal state from read/write towhé state. In the wait state
the module stays until the n&d¢. As an example see

* Figure 10

30



dcon— Confluent transition function

* Thedi has higher priority than they:

State Diagram for minimum operation mode

Figure 10shows a state machine diagram for the memory reodging simpler, the
minimum operation mode is used to show the transstibetween different states of the

module for memory read and memory write operations.

Triggered by -
Read control signal Triggered by
along with the memory the ta delay and carried
location address Sext out before dint

Triggered by

Write control signal along—

with the memory location
address and data

Figure 10: State diagram for memory read and write for minimaperation mode.
5.1.2.2 PROCESSOR MODULE

A general-purpose processor module is further dwviohto three sub-modules. Each sub-
module can become a separate DEVS atomic modelkamununicate with the other

modules using RTI services. Figure 11 shows a biiimgram of the processor module.
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Execution [A—— N Bus A Address, Data &
Unit (EU) N———/ Interface N— Control signals
Unit (BIU)

II ﬁ Interrupt signals from

peripherial devices;
Control Unit (CU) /1—\ signals to bus controller;
request from DMA
controller

Figure 11: Block diagram showing sub-modules in a Processataino

Processor’'s Parameters

As discussed in step 3 of Figure 9, a user canneefhe following processor’s

parameters.

» Duration of Bus/Machine cycle (e.g., 8088l clock cycles).

* Instruction Queue size for Bus Interface Unit fi€gent).

» Size of External Data (DB_Size) and Address (ABepuses.

» External data/address buses are multiplexed orratepdfor multiplexed buses
external de-multiplexing circuitry is compulsory).

* Internal size of buses and registers.

* Minimum/Maximum mode (this feature is Intel specjfi

» Built in cache memory - if yes, cache size?

Each sub-module is modeled as follows.

5.1.2.2.1 Bus Interface Unit (BIU)

The BIU contains an instruction queue (first irsfiout), segment registers, instruction
pointer and address/data/control buses. The maipopes of the BIU are to keep the

instruction queue filled with instructions, to gesie and accept the system control
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signals and to act as a window between the exetutit (EU) and the memory/input-

output (I0) devices. The DEVS atomic model for Bi& is as follows.

BIU =< |O X S Y6int 69xt600n7\. ta >

X — Input event set

Data on external data bus.

Signal to indicate that the bus cycle has endeth fthe peripheral devices. This
signal is required if a processor is operating sgnahronous mode e.g., Motorola
68000 series processor.

Signals from the EU for data read/write (RD/WR)nfronemory or the 10 devices.
Address and Data from the EU via an internal bus.

Signal from the EU to update instruction queueustg@binter.

Signal from the control unit at the end of eachringion cycle indicating whether
there is an interrupt request.

In case of interrupt and jump, the execution undlisindicate to the BIU to reset the
instruction queue.

Signal from control unit at the end of each busleyo indicate whether the system
buses have been given under the control of DMA.

Processor’'s parameters set by the user.

Y — Output event set

Internal and external Address/data buses.

Control signals to peripheral devices.
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» Signal to control unit at the end of each bus c{ities signal helps the control unit to

act on the DMA’s request).

S — State set
» Opcode fetching state.
o Making physical address using code segment (CSjs&uction pointer (IP).
This is Intel specific.
0 Read data.
0 Increment IP register.
0 Increment instruction queue status/pointer.
» Data read state from the memory/lIO device.
» Data write state to the memory/IO devices.
* Interrupt state.
* Wait state until the processor gets control of¢ygem buses.

* Wait state until next external transition function.

5.1.2.2.2 Execution Unit (EU)

The purpose of the EU is to decode and executmstrictions that are fetched from the
instruction queue. The EU contains an arithmetid kgic unit (ALU) and a register
array. The ALU performs arithmetic and logic openaton memory or register data. It
also contains pointer or index registers used tdrem$ operand data located in the
memory. The DEVS atomic model for the EU is asoioi.

EU =< IO X S Yaint aext 600[])\4 ta >

X — Input event set
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Signal from the BIU:
o Aurrival of an opcode in the queue.
o A signal at the completion of each request.
Signals from the control unit:
o0 Interrupt request signal at the end of each instncycle.
0 A signal at the end of each bus cycle to indicatetiver the control of system
buses is given over to a DMA.

Processor’s parameters set by the user.

Signal to the BIU to execute RD/WR operation actwdo the decoded instruction.

Signal to the BIU to reset the instruction queueha case of jump and interrupt

Signal to the control unit at the end of each ungton cycle (The control unit can

only respond to an interrupt request signal aetiek of an instruction cycle).

Y — Output event set
statements.
S — State set

Opcode exection state. This state has followingtionality.
0 Read the opcode from the instruction queue.
o Decode the opcode.
o Execute the opcode. During this stage the EU hameelapse until the BIU
finishes the read or write cycle.
0 Updates instruction queue pointer.

0 Maintains the status of flag register.
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» Wait state until next external transition function.

5.1.2.2.3 Control Unit (CU)

The main function of the CU is to take care of thaskable interrupt request signal, to
check the non-maskable interrupt (NMI), to genesatmals for the bus controller and
execution unit and to check any request from theAlddntrollers to control the external

bus. The DEVS atomic model for the CU is as follows

CU =< IO X S Y6int aext 8(;0[])\; ta >

X — Input event set

Signal from the BIU at the end of each bus cycle.

» Signal from the EU at the end of each instructipcie

Signals from peripheral devices e.g., the DMA dralihterrupt controller.

« Processor’s parameters set by the user.

Y — Output event set

» Signal to the EU for the interrupt request and Dibkess to the buses.

» Signal to the BIU for the interrupt request and Didécess to the buses.

» Status signal to bus controller, prior to the atitn of bus cycle. These status signals
S S S are required for Intel specific maximum operatinade. These three bits are
decoded by the bus controller, which then (insteithe processor) generates the
appropriate control signals to the peripheral devie.g., memory RD/WR, 10 port

RD/WR, interrupt acknowledge and instruction fesamnals.

S — State set
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» The state of an interrupt request. (It checks itpeas from the interrupt controller, the
state of the instruction cycle of the processor twedstatus of the interrupt flag. If all
the conditions are in favor of executing the iniptrroutine, it generates appropriate
signals to the EU and the BIU).

* The state of an external bus control request.hgcks for a signal from the DMA
controller and the state of machine/bus cycle efglhocessor. If the conditions are
satisfied it generates appropriate signals to theafd the BIU in order to accomplish
the DMA request).

+ Wait state until next external transition function.

5.1.2.3 BUS CONTROLLER MODULE

The bus controller module generates the contraladsgfor the memory RD/WR from
memory/input output devices, interrupt acknowledgel instruction fetch depending
upon the status signal S, S;) [14] provided by the CU of the processor modileis
Intel specific bus controller module also generat@®e bus level control signals, which
are not in the scope of this work. The DEVS modehe bus controller is as follows.

BC =< IO X S Y6int 6ex[ Scon}\, ta >

X — Input event set

» Status signals,S5; S, from the processor module.

Y — Output event set

» Read/write control signals to the memory and irqauput devices.

» Interrupt acknowledge control signal.
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S — State set

* Read state from the memory/input output devices.

» Write state to the memory/input output devices.

* Interrupt state. It sends out an interrupt ackndggesignal to the interrupt module.

» Wait state until next external transition function.

5.1.2.4 INTERRUPT CONTROLLER MODULE

Function

The basic function of this module is to acquireeinipt signals from the peripheral
devices connected to the input ports, prioritizsthrequests and send the highest priority
signal to the processor. It also sends out therugetype number on the data lines after

getting the interrupt acknowledge signal from thecpssor or the bus controller.

Model

IM =< IO X S YSint Sextacony\z ta. >

X — Input event set

* Interrupt acknowledge signal from the processovarttie bus controller.
* Interrupt from external devices.
* Input data on the external address and data buses.

* RD/WR signal from the processor and/or the busrotiat.

Y — Output event set

* Interrupt request (INTR) signal or priority signalhree signals for the case of

Motorola 68000 series) to the processor.
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» Data out to the system data bus (to output vegpm)t
» Data acknowledge signal (DTACK) informs an asynadorgs processor that the bus

cycle has ended e.g., Motorola 68000 series process

S — State set

» State of initiating an interrupt request. It pricaés the incoming interrupt signals
from the peripheral devices and sends out therigerequest or the interrupt priority
code to the processor (CU).

» State of sending vector type. The interrupt cofdradends out the vector type on the
data bus as a result of receiving the interruphaekedge signal.

* Wait state till next external transition function.

5.1.2.5 TIMER MODULE

This module generates a periodic signal to actrasterrupt source for the interrupt
controller. As discussed in step 3 of Figure 9, serucan define the following

attributes/parameters.

Parameters

* Duty cycle of the periodic signal.
* Number of interrupts to be generated.
Model

TM =< IO S YSint aext 6con)\a ta >

Y — Output event set

» Periodic signal sent to the interrupt controller.
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S — State set
» Signal generation state.

* Wait state for time elapse. The user can set #ni®g.

40



CHAPTER 6

Case Study

6.1 Introduction

A hardware platform containing a processor (a diiegl version of Intel 8088), a basic
memory unit, a bus controller (a simplified versioh Intel 8288), a basic interrupt
controller and a basic timer unit is modeled usigVS formalism. These modules
interact with each other under a framework thadlig\ compliant. This case study is for
a synchronous platform, but no clock module is nele Each module assumes
synchronous interactions and requests to schetielduture bus events as an integral

number of clock ticks in the future.

The proposed simulation framework, as discussechapter 5, for hardware platform

modeling using the DEVS/HLA approach is verifiedthg case study. This case study is
done for the minimum and maximum operating modethefprocessor. The user makes
the selection of the operation mode (input throtlghkeyboard) at the beginning of the
execution of the processor federate as discusss@pn3 of Figure 9. For this case study,
a simple simulator is developed to run the instamctodes shown in Tables 2 and 3.
Later in this chapter the development of the sitoulaalong with the hardware

components’ implementation are discussed.
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6.1.1 Case study program

The example program generates 10 even numbers,drtonl8, and stores them in the
memory module. The opcodes are shown in Tabler&jaloth the opcode values and the
clock timing information [13]. Instruction executidimes are determined by taking the
number of clocks required per instruction plus effective address (EA) time required

for the operand. The EA for the indexed operanthenMOV [BX],CH instruction is 5

clocks.
Opcode (Hex) Program Instructions Clock Cycle
B500 MOV CH, 0 4
BFO000 MOV DI, 0 4
B102 MOV CL, 2 4
BB0O000 xyz : MOV BX, 00 4
03DF ADD BX, DI 3
882F MOV [BX], CH 9+EA=9+5=14
47 INC DI 2
02E9 ADD CH, CL 3
83C70A CMP 10, DI 4
750D JNE xyz 4 (when not executed)
16 (when jump executed)
F4 HLT 2

Table 2: Main program’sopcodes for the case study
During the execution of the main program, the mifet controller module sends interrupt

signals to the processor, resulting in the exeoutd the interrupt routine (opcodes
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shown in Table 3). The processor’s interrupt bebraincludes checking the interrupt
flag; pushing the IP, CS and IF; sending the iofgtrracknowledge to the interrupt
controller; reading the vector type from the intgxtr controller; calculating the starting
address for the interrupt routine residing in themmory and clearing the instruction
gueue. The interrupt routine used in the case stodsements a variable stored in
memory. The opcodes for the interrupt routine alaiitly the clock timing information

are shown in Table 3 [13].

Op-code (Hex)| Program Instructions Clocks

53 PUSH BX 15

BB0020 MOV BX , 32 4

8A07 MOV AL, [BX] 8+EA = 8+5 = 13
FECO INC AL 3

8807 MOV [BX] , AL 9+EA = 9+5 = 14
5B POP BX 12

CF IRET 32

Table 3: Interrupt routine’sopcodes for the case study

6.2 Simulator Implementation

This section briefly discusses the system levetibldiagram for the simulator required
for the case study. Later in this section each n&ddomponent is discussed in terms of

the assumptions made for the implementation amd ¢learts for the C++ code.

43



6.2.1 System level Block diagram

Here the Bus interface unit (BIU), execution urgU) and control unit (CU) are
combined as a single processor module and implesdeast a DEVS atomic class. A bus
controller module, a basic memory module, a basieriupt controller module and a
basic timer module are implemented as defined énsttope of the research, chapter 4.
The implementation details of each module are dsed later in this chapter. Figure 12

shows an overall system level block diagram implaiee for the case study.

Interrupt Module Timer Module
(DEVS-Atomic) (DEVS-Atomic)
Implementing basic Implementing basic
functionality functionality

Runtime Infrastructure (RTI)

Processor Module (Intel 8088

(DEVS-Atomic) Bus Controller Memory Module

including: Module (Intel (DEVS-Atomic)

Bus Interface Unit (BIU) 8288) Implementing basic
Execution Unit (EU) (DEVS-Atomic) functionality

Control Unit (CU)

Figure 12: System level block diagram implemented for the cagdy.

6.2.1.1 Level of abstraction for the simulator's tning

For this case study one bus cycle of the procassamssumed to be four time units of the
simulator. Within a bus cycle the timing details aot implemented accurately (scope of
the research, chapter 4). For the execution unthefprocessor the timing details are

implemented with one clock cycle accuracy.
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6.2.1.2 Algorithm to start the simulation

All federates in a federation should start the $ation simultaneously, as is the case for
components in real hardware platforms. To achigdvis bbjective, the following

algorithm with two steps of signaling is defined.

The first step requires that the processor showdd until the other modules join and
subscribe to the published attributes of the premesThis is achieved by executing the
“enableAttributeRelevanceAdvisorySwitch()” RTI se® so that the processor federate

could receive the callbacks from the other fedsrate

The second step requires that all federates shweaitifor a signal from the processor
federate to start the simulation. In this case \stin@ attribute SimEnd_Processor (see
Figure 15) is the signal published by the processmilule and subscribed by all the other
modules. The value SimEnd_Processor=0 indicatestdmting of the simulation. The
algorithm’s second step addresses the scenaribichva federate has joined a federation
and has no attributes to publish to a controlliedefrate (e.g., Processor) so the federate

will not get any callbacks from the controlling &dte.

6.2.1.3 Stopping the simulation

If the attribute SimEnd_Processor, as discusseseation 6.2.1.2, is set to 1 by the
processor module then a signal is provided to tfeeromodules (subscribers of the

attribute) to stop the simulation.
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6.2.1.4 Communication among Modules/Federates

Attributes are sent, from one federate to the othém the form of

AttributeHandleValuePairSet (AHVPS). AHVPS is a semprised of attribute handles,
values and the size of the values. To create th& 2%} a method CreateNVPSet(),
extracted from the memory module’s software codedefined in Figure 13. In this
example the RTI method “AttributeSetFactory::créhfecreates the AHVPS for only
one AHVP, as there is only one attribute to send i, “DataFromMem”. The

following example also shows that the AHVPS is ordseated if the attribute
“DataFromMem” is changed. Section 6.2.2.2.1 furte&plains how this AHVPS is

received and the attributes are extracted by adtele

/I Setting up the data structure required to sendhis object's state to the RTI.
RTI::AttributeHandleValuePairSet* Memory::CreateNVP Set()
{
RTI::AttributeHandleValuePairSet* pMemoryAttrites = NULL;
/l Make sure the RTI Ambassador is set.
if (ms_rtiAmb)
{
I
/I Set up the data structure required talgbis object's state to the RTI.
1
pMemoryAttributes = RTI::AttributeSetFacyacreate( 1 );
if ( hasDataFromMemChanged == RTI::RTI_TRUE

{
pMemoryAttributes -> add( this -> GetDatamMemRtild(),(char*) &this -> GetDataFromMem(),
(sizeoffiny;
out2file << "Data From Memory =" << DRtamMem << endl;
}
}
return pMemoryAttributes;

}

Figure 13: Creating an AHVPS for communication among Moduld&tates.
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6.2.1.5 Time elapse using RTI

The software code, in Figure 14, shows that theulgobas sent a time elapse request to
the RTI according to the time calculated (represegtity the “requestTime”) for the next
event. The lookahead value (see step 6 Figure®ti® 0.5, means that the federate will
not send any output until this period is elapsdte fime step value is set to 1.0, means
that this is the maximum limit for the time elapssuested to the RTI. The final
“requestTime” is calculated by adding the time stefue of 1.0 and the “grantTime”,
which is the time granted in the previous time séapequest. In other words the
“grantTime” is the  current simulation time. The  RTI method
“nextEventRequest(requestTime)” requests for theetelapse until the “requestTime”.
In return, the RTI grants the time advance ungl tiext event. The tick() function gives

control to the RTI for processing the ongoing es#asks.

[[-mmmmmmmme e Setting the lookahead time
lookahead = RTIfedTime(0.5);

RTIfedTime requestTime(1.0); // requestTime = tBtep = 1.0
requestTime += grantTime; // grantTime is the tignented by the RTI during the last time elapse
out2file << "\n\nRequest time =" << requestTime end|;
timeAdvGrant = RTI::RTI_FALSE;
rtiAmb.nextEventRequest( requestTime );

while( timeAdvGrant '= RTI::RTI_TRUE )

{
1
/I Tick will turn control over to the RTI so thiadtcan process an event.
1
rtiAmb.tick();

Figure 14: Time elapse requested by a Federate using thed®iite methods.
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6.2.1.6 Logging simulator activity

The logging capability is developed for all the mate$ of the simulator. Each module
has its own logging file. Whenever a module recgimeupdates an attribute it sends this
information to a file to maintain the logs. Thetstaof the internal registers (e.qg.,
processor module) and the memory dumps are alsedsito the file. All this information

is logged with the simulator’s time stamp. Thesgslare explained in chapter 7 and the
message flow and timing information is extracted analyzed. The “out2file” statement

in Figure 14 is sending data to a log file.

6.2.1.7 FOM/SOM

This section identifies the time management pararseand the interaction attributes
used by each federate. This information is a paa BED file (discussed in section 2.3)
that provides an interface between the DEVS modélthe RTI layer. Figure 15 shows

the names of the attributes used in this case silitlyse attributes are the input output
ports of the DEVS model of each component in theegtudy. As an example take the
memory and the processor modules/federates. Theegsor's relevant published

attributes (e.g., Address_Processor) are incluagedhe subscribed attributes of the

memory federate and vice versa.
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Interrupt Module
Time Management:

Attributes Published:

Regulating & constrained

Data_Interrupt
INTR_Interrupt
Attributes Subscribed:

Timer Module
Time Management:

AckTolnt_Processor
INTR_Timerl
InterruptRDwrACK_Bus
SimEnd_Processor

Regulating
Attributes Published:

INTR_Timerl

Runtime Infrastructure (RTI)

Processor Module
Time Management:
Regulating & constrained
Attributes Published:
Address_Processor
Data_Processor
ControlToBus_Processor
ControlToMem_Processor
AckTolnt_Processor
SimEnd_Processor
Attributes Subscribed:

Bus Module
Time Management:
Regulating & constrained
Attributes Published:

Memory Module
Time Management:
Regulating & constrained
Attributes Published:

MemoryRDWR_Bus
InterruptRDwrACK_Bus
Attributes Subscribed:

Data_Memory
Attributes Subscribed:

ControlToBus_Processor
SimEnd_Processor

Address_Processor
Data_Processor
ControlToMem_Processor
MemoryRDWR_Bus
SimEnd_Processor

Data_Memory
Data_Interrupt
INTR_Interrupt

Figure 15: Block diagram containing time management and aiteilmformation.

6.2.2 Memory Module

In this section the assumptions made for the memmgule, development of the module
using the DEVS formalism along with the excerptsnirthe software code and the

software flow chart are discussed.

6.2.2.1 Assumptions

The Memory size is assumed to be 144 Bytes adfilsfthe requirement of the case
study. It is assumed that this memory module doasimtroduce wait states. The
processor has divided the memory module into ldgiegments as shown in Figure 16.
Each number in this figure is a decimal value. Atr& segment is not implemented, as

there is no string operation involved in this cately.
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— 144

Stack space

—112
Data space

— 64
Code space

— 16
Vector table

— 0

Figure 16: Memory map for 8-bit structure (specific to theeatudy)
6.2.2.2 Development of Memory module

This section discusses the implementation of thenomg module on the basis of the
DEVS formalism. It explains the software developmef the module’s external
transition function, duration function, output ftion, internal transition function and
confluent transition function. For further detaithe complete software code of this

module along with the whole simulator is referred\ppendix A.2.

6.2.2.2.1 External transition function Qey;)

During the & function, the control signal (read/write) from tipgocessor or bus

controller module arrives along with the addresshenaddress bus. If the control signal
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is for a memory write operation, the data on theadaus is also required from the
processor. The software implementation of dagfunction is implemented as shown in

Figure 17. The figure is further divided into seas to facilitate discussion.

As an example, following is a detailed discussidrthe memory read operation. To
initiate the memory read cycle, the federate andmhssis informed through the RTI that
the “ControlSignalFromProToMem” and the “AddresshRro” attributes have arrived

through the input ports of the memory module (asulsed in section 6.2.1.6), each in
the form of AHVPS. In order to update the attrilsuté the memory module, the federate
ambassador then calls the “Update(const RTI::AiteblandleValuePairSet&)” method,

shown in Figure 17, section A. Due to the two incaymattributes, the value returned by
the “theAttributes.size()” equals to 2 and the *ftoop is executed twice. The actual
values of the incoming attributes are extracted saded using the getHandle() and
getValue() methods. The “Out2file” saves thesdlattes to a log file. The value of the
“ControlSignalFromProToMem?” attribute tells whethbis is a memory read or memory
write operation. Assuming this value is for a meynoread operation, the

‘DataFromMem” variable is updated as shown in Fegur7, section B. A flag

“hasDataFromMemChanged” is also set so that whedatéfFrromMem(FederateTime)
method (Figure 17, section D) is called this updatalue is sent out to the RTI. Figure
17, section D shows that the state of the memoumpdated in terms of time and the new
AHVPS are created for the variables that are chénfgeg., “DataFromMem”).

CreateNVPSet() method creates the AHVPS as disdussesection 6.2.1.4. These
AHVPS are sent out to the RTI during the outputction as discussed in section

6.2.2.2.3.
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------------- SECTION A -------------
void Memory::Update( const RTI::AttributeHandleValu ePairSet& theAttributes )
{
RTI::AttributeHandle attrHandle;
RTI::Ulong valueLength;
/I We need to iterate through the AttributeHaMilluePairSet to extract each AttributeHandleVaieP
/I Based on the type specified ( the value netdrby getHandle() ) we need to extract the data the
/I buffer that is returned by getValue().
for (unsigned inti = 0; i < theAttributes.sfza++ )
{
attrHandle = theAttributes.getHandle( i );
if (attrHandle == Memory::GetAddressFromRtild() )
{
int AddressFromPro;
theAttributes.getValue( i, (char*)&AdeisFromPro, valueLength );
out2file << "Address from Processor <<' AddressFromPro << endl;

}
if (attrHandle == Memory::GetDataFromProR¢)!)

{
int DataFromPro;
theAttributes.getValue( i, (char*)&D&@mPro, valueLength );
out2file << "Data from Processor = " BataFromPro << endl;

}
if (attrHandle == Memory::GetControlSignadRmProToMemRtild() )
{
int ControlSignalFromProToMem;
theAttributes.getValue( i, (char*)&CoalSignalFromProToMem, valueLength );
out2file << "Control Signal From Pro Mem =" << ControlSignalFromProToMem << endl;

}

if ( attrHandle == Memory::GetSimEndFromPtiddR) )

{
int SimEndFromPro;
theAttributes.getValue( i, (char*)&Sim&FromPro, valueLength );
out2file << "SimEndFromPro =" << SimBEwdmPro << end!;

}
if ( attrHandle == Memory::GetMemRDWRSigFrBosRtild() )

{

int MemRDWRSigFromBuUs;

theAttributes.getValue( i, (char*)&MerdRVRSigFromBus, valueLength );

out2file << "RD WR signal fro Bus (RD¥¥R=2) = " << MemRDWRSigFromBus << endl;
}

}
}

/I Reading from the Memory
/I MemoryMap] ] is an array of 150 bytes
myMemory -> DataFromMem = MemoryMap[myMemory -> AddsFromPro];
/I Set flag so that when UpdateFromMem( Fed@&rate ) is called we send this new value to the RTI.
hasDataFromMemChanged = RTI::RTI_TRUE;

/I Writing to the Memory
MemoryMap[myMemory -> AddressFromPro] = myMemoryDataFromPro;
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/I Updating the state of the Memory
void Memory::UpdateFromMem( RTI::FedTime& newTime )

/I Set last time to new time

this -> SetLastTime( newTime );
I
/I Updating the state of memory
1

/I'In order to send the values of ouiilatites, we must construct an AttributeHandleValueSed
/I (AHVPS) which is a set comprised ofiatite handles, values, and the size of the values.
/I CreateNVPSet() is a method definedrenMemory class - it is not part of the RTI. Lookide
// the method to see how to construct BIYRS

RTI::AttributeHandleValuePairSet* pNvpSethist-> CreateNVPSet();

}

Figure 17: Implementation of the external transition functiorthe simulation code.

6.2.2.2.2 Duration function (ta)

The ta function is used to elapse time until thréval of the next event or the lookahead
time which ever comes first. After the time is aag@, the module executes the output
function discussed in section 6.2.2.2.3 and sendthe AHVPS through the RTI. Figure
18 shows that if the module gets the time advamaetdgrom the RTI, it gives control to
the RTI by using tick() method. If there is no indag event, the RTI waits until the

elapse of lookahead period (the ta) and carriedheubutput function.

while( timeAdvGrant '= RTI::RTI_TRUE )
{
1
/I Tick will turn control over to the RTI so thitcan process an event.
1
rtiAmb.tick();

Figure 18: Implementation of the duration function in the slation code.
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6.2.2.2.3 Output function Q)

The A function sends out the module’s output to the rfagien. Once the AHVPS are
constructed, as discussed in section 6.2.1.4, haddupdateAttributeValues, see Figure
19) is called and the AHVPS along with the modul®sand time information is sent out

to the federation. This method is a part of RTI as#ador code.

/I Send the AHVPS to the federation.
1
/I this call sends out NVPSet(), at the currentugation time + loohahead.
I

(void) ms_rtiAmb->updateAttributeValueb(s->Getinstanceld(), *pNvpSet,
hig->GetLastTimePlusLookahead(), NULL );

Figure 19: Implementation of the output function in the sintida code.
6.2.2.2.4 Internal transition function @)

During a memory read operation tBg: function changes the module’s state from the
read to the wait (see

Figure 10. The module stays there until it receivesdfgefunction. During the execution
of the tick() method, shown in Figure 18, thg function is realized once thefunction

is carried out.

6.2.2.2.5 Confluent transition function d.on)

If there is a tie-break between tbg; function and thede function, the module gives
priority to thed,: function. For a memory read example, after exagutinedi,; function

the memory module should go to a wait state uh&l&.: function arrives. But in this

54



scenario theey function has already arrived so instead of gomdhe wait state, the

module starts executing tdg,; function.

6.2.2.3 Interaction between Memory module and the R

In this section the interaction between the memnmoglule and the RTI is discussed and,
as a future research work, this information is ulsed develop a tool that could help in
modeling hardware platform components. Each inpiput port of the DEVS memory
model has an attribute associated with it and camldfined as the published (i.e., an
output port) and/or subscribed (i.e., an input)pdihis port information for each federate
is redefined in the FED file and the RTI uses tim®rmation to map the ports of
different federates. During the initialization stagf the memory federate, time
management is enabled/initialized and the modulegsstered as a federate to the RTI
(see step 2 Figure 9). Tl function in the memory module is triggered by RiEl as
soon as it receives the updated value(s) of thecsilded attribute(s) on the input port(s).
Section 6.2.2.2.1 discusses in detail the use @Rl built-in methods by the memory
module’sdex function during the attribute(s) extraction froncoming AHVPS and the
creation of the new AHVPS to be sent out. For tehegpse during the ta and tBg
function, the RTI services are used by the memaogute and the definable parameters
are the lookahead time and the time step. Duriag@ flanction, the memory module calls
an RTI method “updateAttributeValues” and sendstbetAHVPS values created during

the dex: function.
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6.2.2.4 Software Flow diagram

After joining the federation, this module waits falt its attributes to be subscribed by

other federations. Figure 20 shows a flow chathisf module.

Wait till SimStart
signal from
Processor

O—

Control signal for
Memory RD or WR
operation

|

Get address fronj
address bus

Get Data from
Data bus
4
Time advance till Update Internal
"Lookahead" variables
period
v ]
Send Data to the i
. Time advance
Processor & wait| for Next Event
till LBTS period

No

®)

Figure 20: Flow Chart of the memory module

6.2.3 Processor Module

In this section the assumptions made for the psmranodule, the level of timing detail
implemented, the resolution of the interrupt requsegnal when the interrupt flag is

disabled and the software flow chart are discus$kd.concept for the development of
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the module using the DEVS formalism is the samédissussed for memory module in
section 6.2.2.2. For further details, the softwarde of this module along with the whole

simulator is referred in Appendix A.2.

6.2.3.1 Assumption

For this case study, the feature/functionality iempénted in the CU, EU and BIU is a
subset of the features discussed in section 5.1TAR detailed features/functionality of
the CU, EU and BIU is left for a future work. A éfidiscussion of the CU, EU and BIU

implemented is as follows.

The CU checks interrupt signals from Interrupt coligér at the end of each op-code
execution. The EU reads and decodes the op-codkates the instruction queue and
interacts with the CU and BIU as required during é&xecution of the op-code. The BIU
performs RD/WR operations, sends control signalthéobus and interrupt controller,
fetches opcode from memory and maintains the stdttise instruction queue. Since the
Intel 8088 micro-processor has an 8-bit data buws,BIU automatically executes two
read or write cycles for each 16-bit operand. Téesst significant byte of the word is
stored in the lower valued address location ofMlggnory and the most significant byte

in the next higher address location.

6.2.3.2 Internal Registers of the processor module

The following registers are implemented and iniged in the processor module for this
case study. The Code Segment (CS) register, tha 8gment (DS) register and the
Stack Segment (SS) register are initialized acogrdéd Figure 16. The values assigned

are CS=1, DS=4 and SS=7. The Instruction Pointy rg¢gister and Stack Pointer (SP)
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register are also implemented with the initial s wf IP=0 and SP=31. The SP register
is pointing at the top of the empty stack. The rimé Flag (IF) register defined with the
consideration of only the interrupt flag and theozdélag. During initialization the
interrupt flag bit is enabled (ready for an intgtuand the zero flag bit is set to 0. The
Data Index (DI), AX, BX and CX registers are alsoplemented and given an initial

value of zero.

The physical address to fetch the opcode is cdtdilas ((C816)+IP). The address
calculation for the direct addressing mode (e.g.©OW [BX],CH instruction) is
implemented as ((D&.6)+BX). The address calculation for PUSH and P@é&ations is

implemented as ((S86)+SP).

6.2.3.3 Resolution of the interrupt request (INTR)ignals

If the processor module is already executing agrinpt request, the interrupt flag will be
disabled and the processor will not acknowledge r@ew interrupt requests unless the
execution of the current interrupt routine hasstd and the interrupt flag is enabled. In
the scenario where the interrupt flag is disablady interrupt request sent by the
interrupt controller module will remain pending the interrupt controller module.

During this period, any new interrupt generatedhsytimer module will be lost as there
is no buffer implemented in the Interrupt controleodule. For future work a buffer or

gueue could be implemented in the interrupt col@rahodule and a priority mechanism

can also be implemented in the interrupt contrgtiedule.
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6.2.3.4 Software Flow diagram

After joining the federation, this module waits falt its attributes to be subscribed by

other federations. Figure 21 shows a flow chathisf module.

If the execution of an
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Figure 21: Flow chart of the processor module
6.2.4 Bus Controller Module

In this section the assumptions made for the bugralter module and the software flow

chart are discussed. The concept for the developwiethe module using the DEVS

59



formalism is the same as discussed for the memodute in section 6.2.2.2. For further
details, the software code of this module alonghwite whole simulator is referred in

Appendix A.2.

6.2.4.1 Assumption

The bus controller gets the status signal$;S5; (as discussed in section 5.1.2.2.3) from
the processor module, decodes them and genergisspapte bus cycles/signals to the

peripheral devices. The decoding of the statusassgs assumed as shown in table 4.

Status Signals $S; S, | Bus cycles/signals generated by the bus controllerodule

1 Memory read

2 Memory write

3 Interrupt acknowledge signal to the interrupttoolfer module
4 Request to clear interrupt acknowledge signal.

Table 4: Decoding of the status signals & $) by the bus controller module.

6.2.4.2 Software Flow diagram

After joining the federation, this module waits falt its attributes to be subscribed by

other federations. Figure 22 shows a flow chathsf module.
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Processor"” period & wait till LBTS

Log "Mem WR| [Time advance tifl Generate Memory
request from (> “"Lookahead" > WR sng. for Memory
Processor" period & wait till LBTS

S Log "ACK sng to| |Time advance ti|l | Generate ACK sng. fg
Interrupt Cont. (» "Lookahead"  Interrupt controller &
from Processor" period wait till LBTS

3

Log "Request td |Time advance ti|l | Generate clear ACK sn
clear ACK from—>» "Lookahead" p»{for Interrupt controller &
Processor"” period wait till LBTS

5

Log "Undefined -
sna from Ll Time advance .
9 for next Event

Processor"

Figure 22: Flow diagram of the bus controller module.
6.2.5 Interrupt Controller Module

In this section the assumptions made for the inggrcontroller module and the software
flow chart are discussed. The concept for the agreént of the module using the DEVS

formalism is the same as discussed for the memoduie in section 6.2.2.2. For further
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details, the software code of this module alonghwite whole simulator is referred in

Appendix A.2.

6.2.5.1 Assumption

It is assumed that, being a basic interrupt modhkse is no priority-resolving algorithm
implemented for the interrupt signals triggereddifferent peripheral devices. A buffer
or queue for the output signal (the interrupt resuiss not implemented and the effect of
this is discussed in section 6.2.3.3. The interaggttroller module sends out the vector
type after getting the interrupt acknowledge sigarad it is assumed that the vector type
for the timer interrupt is zero. More detailed ftionality of the interrupt controller was

discussed in section 5.1.2.4 and can be addedurefwork.

6.2.5.2 Software Flow diagram

After joining the federation, this module waits falt its attributes to be subscribed by

other federations. Figure 23 shows a flow chathisf module.
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Figure 23: Flow Chart of the interrupt controller module
6.2.6 Timer Module

In this section the assumptions made for the timedule and the software flow chart are
discussed. The concept for the development of théuhe using the DEVS formalism is
the same as discussed for the memory module ifoseg&2.2.2. For further details, the

software code of this module along with the whaheutator is referred in Appendix A.2.

6.2.6.1 Assumption

This module only interacts with the Interrupt cafigr module. It sends out an INT

signal after every 350 time units. The timer modides not wait for the simulation start
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signal from the processor. This module starts utscfion as soon as the interrupt
controller joins the federation and subscribesh®inhterrupt (INT) request signal of the

timer module. It generates 3 INT signals and tlesigns the federation.

6.2.6.2 Software Flow diagram

Figure 24 shows a flow chart of this module.

Initialize INT count

B—

Time advance till
"Lookahead" period

.

Increment to INT count

A 4
Wait till LBTS and
send INT signal to
Interrupt controller

Figure 24: Flow chart of the timer module.
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CHAPTER 7

Results

In this chapter the results of the simulator (depetl as a case study) are discussed. Each
module in the simulator, logs the messages senbrorgceived from the other modules
along with the timing information and the valuesappropriate internal state variables. In
this chapter, a detailed interpretation of the lofythe processor module and the memory
module is shown as a reference and the logs obttier modules can be interpreted in a
similar way. Later in the chapter the message esequiences, from each module’s logs,
are extracted and presented with respect to thelaiion time. These message event
sequence diagrams are drawn for the minimum andnmogix operation modes of the
case study processor. At the end of this chapteanalysis of these results is given, and
the acquired timing information for opcode execusios compared with the theoretical

values of Table 2 and 3.

This simulator is developed using Visual C++ vans@®0, the DMSO RTI-NG version
1.3, and the Win98se operating system. A standalomaputer (Intel Pentium-II
processor 400MHz) is used for the simulations &edcomputer’s execution time to run

a simulation of 1600 clock cycles is about 4 misute

65



7.1 Module Log Interpretations

The log files for different modules are referred appendix B. Below is the
explanation/interpretation of snap shots taken fribra logs of the process and the

memory modules. Other modules’ logs can be intézdrsimilarly.
7.1.1 Processor’s Log

The following discussion explains each line of Feg@5. Each number in the log is a

decimal value.

Line 1 of Figure 25 shows the time advance reqdelstethe processor module to the
RTI. In return the RTI calculates the LBTS for tleeleration and issues a time advance
grant to the processor module. This message isrshowine 3. The reason for not
granting (line 3) the requested time (line 1) bg RTI is the arrival of “Data From
Memory” attribute as shown in line 2. Line 4, 5 a@hdhow the contents of the internal
registers of the processor and the contents ofrigteuction queue. Line 6 reflects that
“2” has arrived in the processor from the memorydaie (line 2) and was added to the
instruction queue. Line 7 shows the lookahead vétwesending out the processor’s
attribute(s). Line 8 and 9 shows the messagesasgrity the processor to other modules

at time (29.0 + lookahead) units.

Processor log

Line 1 : Request time = 30.0000000000

Line 2 : Data from Menory = 2

Line 3 : FED HP: Tinme granted (ti meAdvanceGrant) to: 29.0000000000
Line 4 : Zero Flag=0 INT Flag=1 AL=0 DI =0 BX=0 CL=0 CH=0

Line 5 : 1P=7 CS=1 SS=7 SP=31 DS=4

Line 6 : Contents of the queue: 177 2

Line 7 : Lookahead = 3.0000000000

Line 8 : Control Signal FromProToMem = 1
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Line 9 : AddressFronPro = 23

Figure 25: Snap shot of Processor module’s log

7.1.2 Memory module’s Log

The following discussion explains each line of Fg@6. Line 1 and 4, the request time
and time advance grant, are explained in sectibri.7Line 2 and 3 show the messages
sent to the memory module via the RTI. Time 558.€he current time of the federation
as shown in line 4. Line 5 shows the lookaheadrmé&tion used by the RTI simulation
engine in order to calculate the LBTS for the fatien. Lookahead of 1.0 indicates that
the memory federate will not send any data untd3(B + 1.0) units. “Data from
memory” as shown on line 5 is actually sent o6&2.0 + 1.0) units. Lines 7 to 15 show
the 144 byte contents of memory (16 bytes per .li@egtion 6.2.2.1 (Figure 16) discusses
the logical memory segments along with each segrstmting addresses assumed for
this case study. Line 7 has 16 memory locationsttier vector table of the interrupt
vector types. First byte 30 is the least signiftchyte of the IP register. Next O is the
most significant byte of the IP and next two loca 1 and O, show the least and the
most significant bytes of the CS. This (IP+&18)) value points to a memory location
where the interrupt routine resides. From line 8 anwards, the code segment starts and
it has all the opcodes for the main program, aedta table 2. The last two bytes of line
9 and line 10 has the opcodes for the interruptimepas stated in table 3. From line 11
and onwards, the data segment starts and it hasefign numbers generated. The main
program actually generates ten even numbers, baittoluan interrupt call execution

control jumps from the main program to the intetrrqutine. Once the interrupt routine
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is fully executed, the main program’s execution tcares until it generates ten even
numbers. The first byte on line 13 shows the outgfuthe interrupt routine. Being a

simple counter, it increments this memory locatoneach interrupt call. Line 14 and 15
show the stack segment. Starting from the bottorthefstack, it contains the least and
the most significant bytes of the flag registeg thast and the most significant bytes of

the CS and the least and the most significant yftédse IP.

Memory log
Line 1 : Request time = 555. 0000000000
Line 2 : Control Signal FromPro To Mem =1
Line 3 : Address from Processor = 32
Line 4 : FED HP: Tinme granted (ti meAdvanceGrant) to: 552. 0000000000
Line 5 : LOOKAHEAD = 1.0000000000
Line 6 : Data From Menory = 233
Line7: 3001 000000000000O00O
Line 8 : 181 0 191 0 0 177 2 187 0 0 3 223 136 47 71 2
Line 9 : 233 131 199 10 117 13 244 0 0 0 0 O O O 83 187
Line 10 : 0 32 138 7 254 192 136 7 91 207 0 0 0 0 0 O
Linel1ll: 0246800000000000
Line12: 0000000000O0O0OO0OO0OO
Line13: 100000000000O0O0O0O
Line14: 000000000O0OO0OOOOOO
Line15: 00000000000100120

Figure 26: Snap shot of Memory module’s log

7.2 Message Event Sequence in Minimum Mode

Following results are taken from the log files,ereéd in appendix B, and presented in
the form of message event sequence diagrams. Asexample, the message event
sequence of memory read (RD), memory write (WR) iaberrupt acknowledge cycles
are discussed in section 7.2.1 and 7.2.2. Thecagréixis of these sequence diagrams
shows the time in terms of clock cycles and thezootal axis shows the interactions

between different modules.
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7.2.1 Memory RD and Memory WR Operations

Figure 27 shows the level of abstraction in terrhghe control signals and the timing
information. The implementation of all the contreignals and the detailed timing

information is outside the scope of this reseactiater 4).

PROCESSOR MEMORY PROCESSOR MEMORY
Mem RD control sng. and

t Address from Processor

t+3

t+4 t+4

Mem WR control sng.; Address
and Data from Processor

(@) (b)

Data from memory

Figure 27: (a) Memory Write (b) Memory Read operation in minim mode
7.2.2 Interrupt acknowledge Operation

For an interrupt acknowledge (INTA) operation, fhrcessor sends an acknowledge
signal and the interrupt controller replies witle trector type. One bus cycle is required
for the interrupt acknowledge signal and anotherafoquiring the vector type. This is
shown in Figure 28.

PROCESSOR INTERRUPT

t Interrupt Ack. (INTA) signal
t+4

+8 Return INT's Vector type

Figure 28: Interrupt acknowledge (INTA) operation in minimunode
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7.3 Message Event Sequence in Maximum Mode

Following results are extracted from the log fileferred in appendix B, and presented
in the form of message event sequence diagramsanAsxample, the message event
sequence of memory read (RD), memory write (WR) iaberrupt acknowledge cycles

are discussed in section 7.3.1 and 7.3.2.

7.3.1 Memory RD and Memory WR Operations

The processor sends a memory read or memory veqigest to the bus module, and the
bus module generates the appropriate control sigeathe memory module. Figure 29

shows the level of abstraction in terms of the mmrgignals and the timing information.

PROCESSOR BUS MEMORY PROCESSOR BUS MEMORY

WR Request (SO S1 . t RD Request (S0 S1S2)  Mem RD control snd.

t+2
t+3

t+2

Data WR to memory; Address & Data from
Processor

@) (b)

Data RD from memory

Figure 29: (a) Memory Write (b) Memory Read operation in maMximmode
7.3.2 Interrupt acknowledge Operation

For an interrupt acknowledge (INTA) operation inximaum mode, the processor sends a
signal to the bus module to originate the interraptnowledge signal to the interrupt
controller module. In response, the interrupt cafér sends out the vector type to the

processor. This operation is shown in Figure 30.
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PROCESSOR BUS INTERRUPT

INTA Request (SO S1 §2)
t INTA signal

\ t+1

t+8 Return INT's Vector type

Figure 30: Interrupt acknowledge (INTA) operation in maximunoche
7.4 Sequence diagram for Interrupt Call Operation

The sequence diagram, Figure 31, explains theaictiens between different modules in
terms of bus cycles during an interrupt call. Tingetx represents the total time elapsed
between the generation of the interrupt signalife¢ t) and the execution of the interrupt

return (IRET) statement.
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PROCESSOR INTERRUPT TIMER 1 MEMORY

INT generated
INTR tr4 t
t+8 Step }: PUSH Flag_Reg (Least Significant Byte)
t+12 Step 4: PUSH Flag_Reg (Most Significant Byfe) > t+12
t+16 Step 3: PUSH CS (Least Significant Byte) P» t+16
t+20 Step 4: PUSH CS (Most Significant Byte) P t+20
t+24 Step 5 PUSH IP (Least Significant Byte) P t+24
t+28 Step 6] PUSH IP (Most Significant Byte) P t+28
t+32 Step 7: INT ACK signal 436 — {+32
t+40 €D 8:Vector type
1444 La Step 9: Read CS from vector table (L SB) | t+42
48 Step 10: Read CY from vector table (MSB) — 1+46
t+
(+52 Step 11: Read IP from vector table (LSB) —) t+50
+
+56 Step 12: Read IP from vector table (MSB) e — ) t+54
+
Executing the
interrupt routing.
t+X -
POP IP (MSB)| t+x+2
tx+4 ————
POP IP (LSB) P t+x+6
t+x+8 1 —
POP CS (MSB — {+X+10
t+x+121 -
POP CS (LSB) tHx+14
t+x+16m
POP Flag_Reg (M3B) P t+x+18
t-+X+2 Op—
POP Flag_Reg (LSB) P t+x+22
t+x+24/<

Figure 31: Interaction flow between different modules duringekrupt operation.

7.5 Analysis of the results

As mentioned in chapter 4, the detailed bus lewghads are not the scope of this
research. But for implementing the interactionswieein different federates, the time
breakdowns within a bus cycle (represented as ¢ timts) are required. These time

breakdowns (figure 27, 29 & 30) should not be cormgavith the real timing diagrams.

To analyze the case study’s results the timingrmé&gion gathered from the logs of

different modules can be verified against the tegoal timing values given in Table 2
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and 3. The level of accuracy for the execution whithe processor is up to one clock
cycle. Hence the simulation results for the ex@rutiming for each program instruction
should match with the theoretical timing valuesTable 2 and 3. Here two program

instructions (opcodes) from the case study exarn@enalyzed.

MOV [BX],.CH

Table 3 shows that it requires 14 clock cyclesthe EU and the BIU to execute this
opcode. Figure 32 shows a snhap shot of the processdule’s log, when the MOV

[BX],CH opcode is at the top of the Instruction gaeThis opcode moves the value of
CH register to the memory location calculated 8S¥16)+BX). Lines 4 and 5 show the
values of the BX, CH and DS registers. Hence asxacution result of this opcode the
value 2 should be moved to a memory location>dfe41=65. Line 3 shows that 138.0 is

the execution start time for this opcode.

--------------------------- Processor 10Qg-----------c-cmmmmmmm e
Request time = 139. 0000000000

Data from Menory = 47

FED HP: Tinme granted (tineAdvanceGrant) to: 138. 0000000000

Zero Flag=0 INT Flag=1 AL=0 DI =1 BX=1 CL=2 CH=2

| P=14 CS=1 SS=7 SP=31 DS=4

Contents of the queue: 136 47

Lookahead = 3. 0000000000

Cont r ol Si gnal FronmProToMem = 1

Addr essFronmPro = 30

Figure 32: Snap shot of the Processor’s log for the anabyfsise MOV [BX],CH
instruction.

Figure 33 shows a snap shot of the memory modldg'svhen the content of the CH
register has been moved to the memory locatiorbofTis is shown in the second byte

of line 10. Line 5 shows that 152.0 is the execugad time for this opcode.

Request time = 155. 0000000000
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Control Signal FromPro To Mem = 2

Addr ess from Processor = 65

Data from Processor = 2

FED HP: Tinme granted (tineAdvanceGrant) to: 152. 0000000000
3001 00000000OO0OO0O0O0O

181 0 191 0 0 177 2 187 0 0 3 223 136 47 71 2
233 131 199 10 117 13 244 0 0 0 0 0 O O 83 187
0 32 138 7 254 192 136 7 91 207 0 0 00 0 O
20000000000000O00O
0000OO0O0OOOOOOOOOOO
0000OO0O0OOOOOOOOOOO
0000OO0O0OOOOOOOOOOO
0000OO0O0OOOOOOOOOOO

Figure 33: Snap shot of the Memory’s log for the analysishef MOV [BX],CH

instruction.

The difference between the execution start andtiemel is 14 clock cycles. This result
matches the theoretical clock cycle value (tablee®uired for the execution of MOV

[BX],CH instruction.

POP BX

Table 3 shows that it requires 12 clock cycleslier EU and the BIU to execute the POP
BX opcode. Figure 34 shows a snap shot of the psmcemodule’s log, which can be
interpreted as discussed in section 7.1.1. Linbdws that 91, the opcode of the POP
BX, is at the top of the instruction queue and lthehows that the simulation time is

515.0 units.

--------------------------- Processor 10Qg-----------c-mmmmmmmm e
Request time = 515. 0000000000

FED HP: Time granted (tinmeAdvanceGrant) to: 515.0000000000

Zero Flag=0 INT Flag=0 AL=1 DI =4 BX=32 CL=2 CH=8

| P=42 CS=1 SS=7 SP=23 DS=4

Contents of the queue: 91 207

Lookahead = 3. 0000000000

Cont r ol Si gnal FronProToMem = 1

Addr essFronmPro = 58

Figure 34: Snap shot of the Processor’s log, showing thé stahe execution of the

POP BX instruction.
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Figure 35 shows a snap shot of the processor lanwime contents of the BX register
have been retrieved (pulled) from the memory larafi(S&16)+SP). BX is a 16 bit
register, so the Intel 8088 processor requireskiuscycles to retrieve the register value.
The first bus cycle retrieves the most significeyte and the second bus cycle retrieves
the least significant byte. Figure 35 and line @veh the transfer of the least significant
byte (4), line 4 and 7 show that the value of therBgister has been updated from 32 to
4. Line 3 shows the execution end time (527.0 yhitsthe POP BX instruction. Line 9
shows that the opcode of POP BX (91) has been redhfvem the instruction queue after

the completion of this instruction.

--------------------------- Processor log------------“-“-“-“----------
Request time = 527. 0000000000

Data from Menory = 4

FED HP: Time granted (tinmeAdvanceGrant) to: 527.0000000000
Zero Flag=0 INT Flag=0 AL=1 DI =4 BX=32 CL=2 CH=8

| P=42 CS=1 SS=7 SP=25 DS=4

Contents of the queue: 91 207

Zero Flag=0 INT Flag=0 AL=1 DI =4 BX=4 CL=2 CH=8

| P=42 CS=1 SS=7 SP=25 DS=4

Contents of the queue: 207

Lookahead = 3. 0000000000

Cont r ol Si gnal FronProToMem = 1

Addr essFronmPro = 138

Figure 35: Snap shot of the Processor’s log, showing the étitkoexecution of the POP

BX instruction.

The difference of the instruction fetch time and &nd execution time is 12 clock cycles.
This result matches with the theoretical value (aB) and hence the simulator’s

execution has been verified against the theordiitahg values.
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CHAPTER 8

Conclusions

8.1 Conclusions

The following conclusions are drawn from this resha

* Hardware platform components have been modeled doyguthe DEVS atomic
formalism and simulated under the HLA framework.

» Conservative time advance approach has been usthe IDEVS atomic model, as
this is simple and HLA compliant.

* The level of details shown for each hardware compbin chapter 5, addresses the
requirements of the hardware designers to simulz¢& designs before physical
implementation. The case study has proved thatnipylementing these models,
accurate results can be gathered within a clockecfjo section 7.5). For this case
study, the implementation of all the features sstgge (in chapter 5) for the hardware
components were not required, as this study issedufor a specific hardware
platform (Intel 8088 based).

» The HLA-specific details that should be visible & component’s model of a

hardware platform are discussed in section 6.28d3concluded as follows.
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o The attributes for input and output ports shouldgbblished or subscribed to
the RTI and defined in the HLA compliant FOM/SOM.

o In the start of the simulation, a component shdwddable to register itself
with the RTI so that it becomes a part of the fatien. At the end it should be
able to resign.

o0 A component’s model should be able to react onRMé&s call for the dex
function. It should be able to schedule the ta fioncand any wait states
through the RTI. For th& function, the component’s model should be able to

create and send out the AHVPS using RTI methods.

8.2 Summary of Contributions

The list of contributions is as follows.

 The DEVS/HLA approach is developed to model andutate computer hardware
platforms.

* An approach is developed towards flattening theaholy when the systems are
modeled in the DEVS formalism and worked under BieA framework (section
5.1.2).

* An HLA framework is defined for the computer sysgeto be simulated (section
5.1.1).

* As a case study, a simple hardware platform (18688 based) is modeled and a
simulator is developed. These hardware componemtstels can be further
developed and generalized (as suggested in chapter build this simulator as a

simulation tool for computer systems designers.
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With the help of this case study, the mapping efltrdware platforms with the HLA

has been demonstrated.

Recommendations for future work have been mada@srsin section 8.3.

8.3 Future Research

Following are the recommendations for future wddng with some suggestion.

A software tool (as discussed in section 6.2.23%ed on the DEVS formalism and
Atomic models, can be developed. This tool shoutdable to send/receive the
transition functions directly to/from the RTI angetinput and output events should
be defined in the HLA compliant FOM/SOM.

The simulator developed in this research and usedht case study can be further
developed for general hardware platform modelstardevel of details in terms of
timing and bus level signals can also be implententéis development could be a
step in the direction of abstraction to reality.

Analyzing the performance for hierarchical modéte (DEVS-Coupled) versus flat
models (the DEVS-Atomic), using the HLA framewofihis analysis will be useful
for future simulator development. The processindaylefor the interaction of
components A and D (as shown in Figure 36) coultdobe of the parameters of

interest.
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Simulation Simulatior
engine engine
lA] [B] [c] [D]
LAl [B] [¢] [D]
(@) (b)

Figure 36: (a) Hierarchical models using the HLA framework ftgt models using the

HLA framework

* A case study could be done for the combinationystesns developed using flat (the
DEVS-atomic) approach and hierarchy (the DEVS-cedpbpproach, using the HLA
framework. Identification of all the issues and lerpentation requirements could be

a useful contribution for future simulator develamts. A block diagram is shown in

Figure 37.

RTI

Simulation
engine

[c]

(A ] L[B]

Figure 37: Combination of Flat and Hierarchical models usimg HLA framework
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APPENDIX A

Simulator’s Directory Structure &

Software Code in C++

This section describes the procedure to configeesimulator (developed for the case
study) on the computer and provides the softwade cof different modules, required to
run the simulator. The preliminary step during tb@nfiguration process is to get
registered and download the HLA/RTI software fromme tDMSO Internet site

(http://www.dmso.mil). Then run the Helloworld expla on the computer to verify the
computer’s configuration and the correct instabiatof the HLA software. Section A.1

describes the directory structure for the simuland section A.2 gives a list of files

attached with this document along with some basimiions.

For this research work, the RTI version 1.3 (OpegatSystem: Win98se; Compiler:

VC++6.0) is used.

A.1 Directory Structure

The directory structure of different modules iswhan Figure 38. This is one of many
possible structures/configurations. All the modules, Processor, Bus, Interrupt and

Timerl have the same directory structure as Memmuogule.
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apps

(folder)

[ Helloworld | HardwarePlatfor

|_ (folder) 0 (folder)
Processor Bus Memory Interrupt Timerl

(folder) (folder) (folder) (folder) (folder)
scr include data
(folder) (folder) (folder)

MemoryMain.cpp Memory.h HP.fed
Memory.cpp MemoryFederateAmbassador. RTLrid
MemoryFederateAmbassador.cpj

Figure 38: Simulator’s directory structure. (This is one cdimy possible configurations).

A.2 Software Code in C++

Following is the list of files, provided in a flopplisk, attached with this document.

* ProcessorMain.cpp: It contains the main flow ofd@ssor module.

Processor.cpp: It contains the body of ProcessassclCode of all the functions,

defined in Processor.hh, is present here.

* ProcessorFederateAmbassador.cpp: Functions of $agméeederateAmabassador.hh
are defined here. It contains a lot of error/exicephandling and appropriate code for
every function

» Processor.hh: It defines the functions, variables@nstants of Processor class.

* ProcessorFederateAmbassador.hh: It defines Pro€essmryateAmbassador as a

derived class of abstract FederateAmbassador tdasgplement methods so that RTI

can call functions in the federate.
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MemoryMain.cpp

Memory.cpp
MemoryFederateAmbassador.cpp
Memory.hh
MemoryFederateAmbassador.hh
BusMain.cpp

Bus.cpp
BusFederateAmbassador.cpp
Bus.hh
BusFederateAmbassador.hh
InterruptMain.cpp

Interrupt.cpp
InterruptFederateAmbassador.cpp
Interrupt.hh
InterruptFederateAmbassador.hh
Timer1lMain.cpp

Timerl.cpp
TimerlFederateAmbassador.cpp
Timerl.hh
TimerlFederateAmbassador.hh
HP.fed: HP (Hardware Platform) provides an intezfaetween the DEVS model and
RTI software. This HP.fed file is developed by @si@MDT tool. This tool and its

manual can be obtained, along with the HLA/RTI wafte, from www.dmso.mil.
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APPENDIX B

Loq Files for each Federate

This section contains a list of log files, provideda floppy disk, attached with this
document. The list contains minimum mode and marirmode log files.

* Processorlog_min.txt

* Memorylog_min.txt

* Interruptlog_min.txt

» Timerllog_min.txt

* Processorlog_max.txt

* Buslog_max.txt

* Memorylog_max.txt

* Interruptlog_max.txt

* Timerllog_max.txt
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