

Computer System Modeling

At The Hardware Platform Level

by

Amir Saghir

A thesis submitted to the

Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the

degree of

Master of Applied Sciences

In Electrical Engineering

Ottawa-Carleton Institute of Electrical and Computer Engineering

Faculty of Engineering

Department of Systems and Computer Engineering

Carleton University

September 2002

 ii

The undersigned hereby recommend to the Faculty of Graduate Studies and Research

the acceptance of the thesis

“ Computer System Modeling

At The Hardware Platform Level”

Submitted By

Amir Saghir

In Partial Fulfillment of the Requirements for the Degree of Master of Applied Science

_________________________ _________________________
Dr. Gabriel Wainer Dr. Trevor Pearce
(Thesis Co-supervisor) (Thesis Co-supervisor)

Dr. Rafik Goubran
(Department Chair, Systems and Computer Engineering)

Department of Systems and Computer Engineering
Faculty of Engineering, Carleton University

September 2002

 iii

Abstract

Modeling and simulation plays an important role in the development of computer

systems. This research work focuses on modeling general computer hardware platforms

using the Discrete Event system Specification (DEVS) modeling formalism, and mapping

these models onto the High Level Architecture (HLA) for simulation interoperability.

An HLA-based system level framework for a general hardware platform is proposed, in

which hardware component details are modeled using DEVS atomic models. To verify

the proposed framework, a case study is presented for a simplified Intel 8088 processor

based platform. The components modeled in this case study are a processor, a memory

module, an interrupt controller, a bus controller and a timer.

This research has developed an approach that flattens the modeling hierarchy by using

only DEVS atomic models mapped onto the HLA. As a result, the simulation support

layer normally present to handle coupled models is not needed. The general hardware

platform framework influences aspects of component models, and these aspects are

identified and related to their implications to the HLA. This work has laid some

groundwork leading towards a simulation tool for hardware platform modeling and

simulation that can be used by system designers during the product development phase.

 iv

Acknowledgements

I express my heartiest and most sincere gratitude to my supervisors Dr. Trevor Pearce

and Dr. Gabriel Wainer for their help, supervision, and full support towards the

completion of this thesis.

Needless to say, I am grateful to my parents and my dear wife for providing me all the

emotional support and encouragement.

 v

TABLE OF CONTENTS

ABSTRACT .. III

LIST OF ACRONYMS ... X

LIST OF FIGURES ... XII

LIST OF TABLES ... XIV

CHAPTER 1

INTRODUCTION .. 1

CHAPTER 2

BACKGROUND FOR THE DEVS AND THE HLA .. 4

2.1 SYSTEM DEVELOPMENT METHOD ... 4

2.2 THE DEVS FORMALISM ... 5

2.2.1 Atomic Model ... 5

2.2.2 Coupled Model .. 7

2.3 HIGH LEVEL ARCHITECTURE (HLA) .. 8

2.3.1 Runtime Infrastructure (RTI) .. 9

2.3.1.1 Components of the RTI ... 9

2.3.1.2 Management Areas of RTI.. 10

CHAPTER 3

STATE OF THE ART IN THE DEVS/HLA ... 12

3.1 IMPLEMENTATION OF THE DEVS FORMALISM .. 12

3.2 DEVS IMPLEMENTATION OVER THE HLA/RTI ... 13

3.2.1 DEVS Modeling using DEVS-C++ .. 14

 vi

3.2.2 The Parallel DEVS (PDES) Protocol .. 14

3.2.3 Mapping of the PDES Protocol to the HLA/RTI .. 16

CHAPTER 4

MODELING HARDWARE PLATFORMS... 18

CHAPTER 5

SIMULATION FRAMEWORK AND DEVS ATOMIC MODELS 23

5.1 SYSTEM LEVEL BLOCK DIAGRAM ... 23

5.1.1 System Level Flow Diagram for a Federate.. 24

5.1.2 DEVS Atomic Models for each Federate .. 27

5.1.2.1 MEMORY MODULE .. 27

5.1.2.2 PROCESSOR MODULE.. 31

5.1.2.2.1 Bus Interface Unit (BIU) .. 32

5.1.2.2.2 Execution Unit (EU) ... 34

5.1.2.2.3 Control Unit (CU) ... 36

5.1.2.3 BUS CONTROLLER MODULE ... 37

5.1.2.4 INTERRUPT CONTROLLER MODULE ... 38

5.1.2.5 TIMER MODULE .. 39

CHAPTER 6

CASE STUDY .. 41

6.1 INTRODUCTION ... 41

6.1.1 Case study program ... 42

6.2 SIMULATOR IMPLEMENTATION ... 43

6.2.1 System level Block diagram .. 44

 vii

6.2.1.1 Level of abstraction for the simulator's timing ... 44

6.2.1.2 Algorithm to start the simulation .. 45

6.2.1.3 Stopping the simulation .. 45

6.2.1.4 Communication among Modules/Federates ... 46

6.2.1.5 Time elapse using RTI .. 47

6.2.1.6 Logging simulator activity .. 48

6.2.1.7 FOM/SOM .. 48

6.2.2 Memory Module .. 49

6.2.2.1 Assumptions .. 49

6.2.2.2 Development of Memory module ... 50

6.2.2.2.1 External transition function (δext) ... 50

6.2.2.2.2 Duration function (ta) ... 53

6.2.2.2.3 Output function (λ) ... 54

6.2.2.2.4 Internal transition function (δint) ... 54

6.2.2.2.5 Confluent transition function (δcon) .. 54

6.2.2.3 Interaction between Memory module and the RTI 55

6.2.2.4 Software Flow diagram ... 56

6.2.3 Processor Module .. 56

6.2.3.1 Assumption ... 57

6.2.3.2 Internal Registers of the processor module ... 57

6.2.3.3 Resolution of the interrupt request (INTR) signals..................................... 58

6.2.3.4 Software Flow diagram ... 59

6.2.4 Bus Controller Module .. 59

 viii

6.2.4.1 Assumption ... 60

6.2.4.2 Software Flow diagram ... 60

6.2.5 Interrupt Controller Module .. 61

6.2.5.1 Assumption ... 62

6.2.5.2 Software Flow diagram ... 62

6.2.6 Timer Module .. 63

6.2.6.1 Assumption ... 63

6.2.6.2 Software Flow diagram ... 64

CHAPTER 7

RESULTS ... 65

7.1 MODULE LOG INTERPRETATIONS .. 66

7.1.1 Processor’s Log ... 66

7.1.2 Memory module’s Log .. 67

7.2 MESSAGE EVENT SEQUENCE IN MINIMUM MODE ... 68

7.2.1 Memory RD and Memory WR Operations ... 69

7.2.2 Interrupt acknowledge Operation .. 69

7.3 MESSAGE EVENT SEQUENCE IN MAXIMUM MODE ... 70

7.3.1 Memory RD and Memory WR Operations ... 70

7.3.2 Interrupt acknowledge Operation .. 70

7.4 SEQUENCE DIAGRAM FOR INTERRUPT CALL OPERATION .. 71

7.5 ANALYSIS OF THE RESULTS ... 72

CHAPTER 8

CONCLUSIONS... 76

 ix

8.1 CONCLUSIONS ... 76

8.2 SUMMARY OF CONTRIBUTIONS ... 77

8.3 FUTURE RESEARCH ... 78

REFERENCES ... 80

APPENDIX A ... 82

SIMULATOR’S DIRECTORY STRUCTURE & SOFTWARE CODE IN C++ 82

A.1 DIRECTORY STRUCTURE .. 82

A.2 SOFTWARE CODE IN C++ ... 83

APPENDIX B ... 85

LOG FILES FOR EACH FEDERATE... 85

 x

List of Acronyms

BIU Bus Interface Unit

CU Control Unit

CS Code Segment

DEVS Discrete Event System Specification

DS Data Segment

EA Effective Address

EU Execution Unit

FED Federation Execution Data

FedExec The Federation Executive

FOM Federation Object Model

HLA High level Architecture

IF Internal Flags

INTA Interrupt Acknowledge

INTR Interrupt Request

IP Instruction Pointer

LBTS Lower Bound Time Stamp

LibRTI The RTI library

LSB Least Significant Byte

MSB Most Significant Byte

OMDT Object Model Development Tool

RO Receive Order

 xi

RTI Run time Infrastructure

RtiExec The RTI Executive

SOM Simulation Object Model

SP Stack Pointer

SS Stack Segment

TSO Time Stamped Order

 xii

List of Figures

Figure 1: Systematic representation of a basic (atomic) model. ... 6

Figure 2: RTI Major Components. [8] .. 9

Figure 3: Layered approach to implement the DEVS/HLA. [2] 13

Figure 4: The Parallel DEVS simulation protocol [2] .. 16

Figure 5: Coordinator as a Federate (the PDES protocol mapping into the HLA) [2] 17

Figure 6: The block diagram for basic approach from chapter 3. 19

Figure 7: A Model of the proposed solution. .. 20

Figure 8: System-level block diagram for Hardware platform simulator. 24

Figure 9: Simulation flow chart of a federate. .. 25

Figure 10: State diagram for memory read and write for minimum operation mode. 31

Figure 11: Block diagram showing sub-modules in a Processor model. 32

Figure 12: System level block diagram implemented for the case study. 44

Figure 13: Creating an AHVPS for communication among Module/Federates. 46

Figure 14: Time elapse requested by a Federate using the RTI service methods. 47

Figure 15: Block diagram containing time management and attribute information. 49

Figure 16: Memory map for 8-bit structure (specific to the case study) 50

Figure 17: Implementation of the external transition function in the simulation code. 53

Figure 18: Implementation of the duration function in the simulation code. 53

Figure 19: Implementation of the output function in the simulation code. 54

Figure 20: Flow Chart of the memory module ... 56

Figure 21: Flow chart of the processor module .. 59

 xiii

Figure 22: Flow diagram of the bus controller module. ... 61

Figure 23: Flow Chart of the interrupt controller module .. 63

Figure 24: Flow chart of the timer module. .. 64

Figure 25: Snap shot of Processor module’s log .. 67

Figure 26: Snap shot of Memory module’s log .. 68

Figure 27: (a) Memory Write (b) Memory Read operation in minimum mode 69

Figure 28: Interrupt acknowledge (INTA) operation in minimum mode 69

Figure 29: (a) Memory Write (b) Memory Read operation in maximum mode 70

Figure 30: Interrupt acknowledge (INTA) operation in maximum mode 71

Figure 31: Interaction flow between different modules during Interrupt operation. 72

Figure 32: Snap shot of the Processor’s log for the analysis of the MOV [BX],CH

instruction. .. 73

Figure 33: Snap shot of the Memory’s log for the analysis of the MOV [BX],CH

instruction. .. 74

Figure 34: Snap shot of the Processor’s log, showing the start of the execution of the POP

BX instruction. ... 74

Figure 35: Snap shot of the Processor’s log, showing the end of the execution of the POP

BX instruction. ... 75

Figure 36: (a) Hierarchical models using the HLA framework (b) Flat models using the

HLA framework ... 79

Figure 37: Combination of Flat and Hierarchical models using the HLA framework 79

Figure 38: Simulator’s directory structure. (This is one of many possible configurations).

 .. 83

 xiv

List of Tables

Table 1: RTI Management Areas partitioned in FedExec life cycle [8] 11

Table 2: Main program’s opcodes for the case study ... 42

Table 3: Interrupt routine’s opcodes for the case study .. 43

Table 4: Decoding of the status signals (S0 S1 S2) by the bus controller module. 60

 1

CHAPTER 1

Introduction

The use of embedded computer systems to solve application problems requires an

understanding of both the hardware platform involved and the software that customizes

the hardware for the particular application. Modeling and simulation is used increasingly

in developing the hardware and software of such systems. Modeling is required to

represent a system for the purpose of studying the system. A simulation is the imitation of

the operation of a system over time. The behavior of a system as it evolves over time is

studied by developing a simulation model [3]. The models created by hardware engineers

while developing hardware components often contain details that are irrelevant to

software developers. Furthermore, the simulation of the hardware component models is

often fine-grained and computationally intensive, since the states of all of the individual

transistors in the components must be addressed. Software developers would prefer a

programmer’s model of the hardware platform, which would abstract away irrelevant

hardware details and focus only on the information relevant to software development.

Ideally, the more abstract programmer’s models would have larger-grained simulations

that are less computationally expensive than the hardware models.

The goal of this research is to develop a generic framework that can be extended to model

and simulate specific computing platforms by introducing platform-specific details.

 2

Software developers can use these models to develop and test their software for

computing platforms. For modeling platform components, the DEVS (Discrete event

system specification) formalism is used. The simulation framework for these models is

defined, following the specifications of the HLA (High-level architecture) standard. The

rationale for adopting the DEVS/HLA approach is explained in chapter 4.

This research is seen as an initial step in a longer-term research project that will (later)

include the development of tools to simplify the introduction of platform-specific details

by handling the formal aspects associated with DEVS and the HLA (such tools would

allow designers to focus more attention on the platform-specific details by relieving the

designer of the unnecessary DEVS and HLA clutter).

A brief synopsis of the structure of the thesis document is as follows. Chapter 2 provides

the background information about the DEVS formalism and the HLA. It briefly describes

different classes of the DEVS formalism and key features of the HLA that are required to

manage various aspects of the simulator. Chapter 3 reviews the latest ideas in the DEVS

formalism and a subset of the tools developed to implement the DEVS formalism. It also

describes a layered approach to use DEVS and the HLA for a simulator. Chapter 4 states

the research motivation, a critical analysis of the facts of chapter 3, the research question

under investigation, the approach adopted to answer the question and the scope of this

research. Chapter 5 describes the proposed framework of the simulator and the general

models of basic hardware platform components. These general models have a list of

parameters, which can be used for defining the functionality of these components.

Chapter 6 shows how this simulator can be used for a specific hardware platform.

Execution of an example program (a few instructions of the 8088 processor) is simulated

 3

in order to illustrate the proposed DEVS/HLA approach. It also describes the flow charts

of each hardware component used in the case study. Chapter 7 shows the results of the

case study. Excerpts of some component logs are discussed and the message flow

between different components is explained. These logs and message flows are helpful in

verifying the simulator. Chapter 8 concludes the research. It discusses the contributions

and suggests some future research topics. The conclusion is followed by the references

and two appendices. Appendix A refers to the software code for each hardware

component involved in the case study. Appendix B refers to each component’s log in the

case study.

 4

CHAPTER 2

Background for the DEVS and the

HLA

In this section a system development process is discussed with emphasis on the need for

modeling as an initial step in development. Computer systems being discrete in nature

require an appropriate modeling formalism and a simulation framework to get the system

analyzed. This section describes the Discrete Event System Specification (DEVS)

formalism to model various components of a computer system and the High-level

architecture (HLA) as a simulation framework standard.

2.1 System Development Method

The products based on computer systems are increasing tremendously. In order to verify

the required features of these computer systems, modeling is becoming an important part

of product development. Modeling has various levels of abstraction and complexity that

are normally used during the development cycle of a system.

Computer systems are discrete in nature. Much research effort has been made in order to

find the most appropriate modeling formalism for such systems. One of the current

approaches is the use of computer simulation to analyze these models and explore the

 5

properties of these systems. This modeling and simulation methodology is playing an

important role in the development of computer platforms and systems.

2.2 The DEVS Formalism

The DEVS (Discrete Event System Specification) is a system’s formalism, with a well-

defined concept of modularity and coupling of components. The DEVS formalism

focuses on the changes of variable values and generates time segments that are piecewise

constant. In essence the formalism defines how to generate new values for variables and

the times the new values should take effect. An important aspect of the formalism is that

the time intervals are continuous. There are two major classes from which all the user-

defined models can be developed – atomic and coupled.

A brief description of the DEVS Atomic model and Coupled model is as below. [4]

2.2.1 Atomic Model

An atomic model directly specifies the system’s response to events on its input ports,

state transitions, and the generation of events on its output ports. It is defined as [4]:

AM = < IO, X, S, Y, δint, δext, δcon, λ, ta >

Where

IO is the model's interface (input/output ports).

X is the input events set.

S is the state set.

Y is the output events set.

δint is the internal transition function.

 6

δext is the external transition function.

δcon is the confluent transition function

λ is the output function.

ta is the time advance function.

Figure 1: Systematic representation of a basic (atomic) model.

Figure 1 shows a graphical representation of an atomic model. Each model is provided

with an interface consisting of input and output ports to communicate with other models.

When an input arrives the instance variable S is updated. The δext function accepts the

input and changes the instance variable. After an elapsed time, given by the ta function,

the system checks the internal variables and makes internal changes to bring the system

to the next state. The function that performs all this is the δint function. The δcon function

decides what to do when both external and internal events occur together. It might, for

example, decide the order between the δext and the δint functions. The λ function produces

the output Y from the instance variables. The ta function returns the time to the next

internal event.

δcon δint

ta

λ δext
S

 7

2.2.2 Coupled Model

A DEVS coupled model is composed of several atomic or coupled sub-models. It is

defined as [4]:

CM = < IO, X, Y, D, {Mi}, {Ii}, {Zij} >

Where

IO is the model's interface (input/output ports).

X is the set of input events.

Y is the set of output events.

D is an index for the components of the coupled model.

Mi is a basic DEVS (that is, an atomic or coupled model).

Ii is the set of influencees of model i (that is, the models that can be influenced by

outputs of model i).

Zij: Yi →→→→ Xj is i to j translation function.

We can see that coupled models are defined as a set of basic components (atomic or

coupled), which are interconnected through the models’ interfaces. The influencees of a

model define the models to which outputs must be sent. The translation function is in

charge of converting the outputs of a model into inputs for the others. To do so, an index

of influencees is created for each model (Ii). This index defines that the outputs of the

model Mi are connected to the inputs in the model Mj, where j is an element of the set Ii.

 8

2.3 High Level Architecture (HLA)

The HLA was developed by the US Department of Defense (DoD) based on a process

involving government, industry and academia. The High Level Architecture (HLA)

provides a general framework within which simulation developers can structure and

describe their simulation application. In particular, the HLA addresses two key issues:

promoting interoperability between simulations and aiding the reuse of models. In the

terminology of the HLA [1]

• The combined simulation system created from the constituent simulation is a

federation.

• Each simulation that is combined to form a federation is a federate.

The baseline of the HLA, defined in IEEE Standard 1516, includes the following:

• The HLA Rules define the responsibilities and relationships among the components

of an HLA federation. [5]

• The HLA Interface Specification provides a specification of the functional interface

between the HLA federates and the HLA Runtime Infrastructure (RTI) (RTI is

discussed in section 2.3.1). This specification defines all the RTI services and

identifies “callback” functions that must be provided by each federate. [6]

• The HLA Object Model Template (OMT) provides a common presentation format for

HLA Simulation and Federation Object Models (SOM/FOM) [7]. A SOM defines the

objects and interactions within a federate, while a FOM defines object models,

communication between federates, condition for data updates and other information

for interoperability purposes. The Federation Execution Data (FED), which is

 9

required as an input to the RTI, is a subset of a FOM along with the specification of

some default values for transport properties of data. In brief, the OMT provides an

interface between the models and the RTI/HLA.

2.3.1 Runtime Infrastructure (RTI)

The RTI is a middleware that provides common services to federates and/or federations.

It is an implementation of the HLA Interface Specification. The RTI software can be

executed on a standalone computer or distributed over a network.

2.3.1.1 Components of the RTI

Figure 2 shows the major components of the RTI and each component is briefly

discussed after the figure.

Inter Process Communication

RtiExec FedExec
libRTI

Federate

libRTI

Federate

Figure 2: RTI Major Components. [8]

The federation executive (FedExec) manages multiple federates within a federation. It

allows federates to join and to resign, and facilitates data exchange between participating

federates. Each federate joining the federation is assigned a federation wide unique

handle.

 10

The RTI Executive (RtiExec) manages multiple federation executions in a network. It

helps in initializing RTI components for each federation executive (FedExec). It also

ensures that each FedExec has a unique name.

The RTI library (libRTI) provides the RTI services specified in the HLA Interface

Specification to federate developers.

2.3.1.2 Management Areas of RTI

The HLA Interface Specification divides the services provided by the RTI into six

management areas. Table 1 summarizes the objectives of each of the management areas:

Management Area Activities Supported

Federation Management Manages federation execution. Initializes name space,

transportation, routing spaces etc.

Declaration Management Specifies the data a federate sends and/or receives.

Object Management Creates, modifies and deletes objects and interactions.

Facilitates object registration and distribution. Coordinates

attribute updates among federates. Accommodates various

transportation and time management schemes.

Ownership Management Supports transfer of ownership for individual object

attributes. Offers both “push” and “pull” based

transactions.

 11

Time Management Establishes or associates events with federate time.

Regulates interactions, attribute updates, object reflection

or object deletion by federate time scheme. Supports

interaction between federates having different time

schemes.

Data Distribution

Management

Supports efficient routing of data.

Table 1: RTI Management Areas partitioned in FedExec life cycle [8]

 12

CHAPTER 3

State of the Art in the DEVS/HLA

This section briefly describes the research work in the area of the DEVS formalism and a

technique used to map the DEVS model formalism onto the HLA simulation framework.

3.1 Implementation of the DEVS formalism

The DEVS formalism is a well-defined means of expressing hierarchical, modular

models in discrete event simulation. A DEVS model is a state machine, and the state of

the model is changed by external or internal events with elapsed time. The following is a

subset of the tools developed to map the DEVS formalism to simulation engines.

The DEVS-C++ tool is based on the DEVS formalism. It is a modular hierarchical

discrete event simulation environment implemented in the object-oriented C++ language

[9]. The DEVS-C++ contains three libraries: container, devs and devsHLA. The

container library provides methods, which are used to organize the interacting objects

(e.g. atomic models). The devs library provides methods to implement the functions as

δext, δint, λ, ta and port information to be defined by the user. The devsHLA library

provides easy access to the DEVS/HLA environment and is discussed in section 3.2.1.

The CD++ toolkit is developed with the goal of developing and simulating models based

on the DEVS and Cell-DEVS [11] paradigms. The core of the toolkit is the CD++

environment [11], which implements the DEVS and Cell-DEVS theories.

 13

The DEVSim++ is another tool that provides the ability to develop discrete event models

using the hierarchical composition technology within the DEVS framework [12]. For

simulation, DEVSim++ implements hierarchical scheduling in abstract simulators of

atomic and coupled models.

3.2 DEVS Implementation over the HLA/RTI

B.P.Zeigler [2] has designed and developed an HLA compliant simulation environment

using DEVS as a modeling tool and a way to map the DEVS models to the HLA as

shown in figure 3. The strategy underlying the mapping of the DEVS to the HLA is to

exploit the information contained within the DEVS models to automate as much as

possible of the programming work required for constructing the HLA compliant

simulations [9]. The final goal is to facilitate a bi-directional transfer of information

between the OMT Development Tool (OMDT) that captures OMT information and the

DEVS model description. Figure 3 shows the layered approach and each layer is

discussed in the sub-sections below.

Modeling -- DEVS (using
DEVS-C++)

Networking (optional)

HLA C++ RTI

Simulation -- PDES Protocol

Figure 3: Layered approach to implement the DEVS/HLA. [2]

 14

3.2.1 DEVS Modeling using DEVS-C++

The top most DEVS layer of figure 3 is used for defining the models. The DEVS-C++

tool [9], as discussed in section 3.1, has a devsHLA library required for interfacing

between DEVS and the HLA/RTI in a C++ environment. The devsHLA library contains

methods for attribute updates, attribute reflections, interaction updates, interaction

receive, object discovery and quantizers. A quantizer object is associated with each

attribute that the modeler would like to publish. A quantizer is a demon that checks for

the attribute value crossing the threshold. Quantizers are used to reduce message update

traffic and the size of the quantizers is directly related to the accuracy and the speed of

computation required.

3.2.2 The Parallel DEVS (PDES) Protocol

The Parallel and Distributed Discrete Event Simulation (PDES) protocol layer of figure 3

introduces a simulation engine, which takes care of all the time and data interactions

within the DEVS models. It also acts as a message translator between the DEVS models

and the HLA/RTI.

There are three approaches to mapping the DEVS formalism into the PDES protocols:

Conservative, Optimistic and the Parallel DEVS. Each approach is briefly discussed

below.

The conservative scheme [9] processes events in strict time stamped order. Conservative

schemes must somehow arrange for the potential for input events with earlier time stamps

to be conveyed to affected models. This can be done through “lookahead” in which each

 15

model provides a time in the immediate future up to which it promises not to send input

events. The minimum of such blackout times at any model/component, called the Lower

bound time stamp (LBTS), is the time up to which it can safely process its time-stamped

inputs. Thus simulation proceeds incrementally governed by the lookahead, which is the

interval that a model/component adds to its current LBTS to obtain the blackout time sent

to other models/components.

The optimistic scheme [9] permits temporary time-stamped order violation that must be

repaired before the final simulation output is presented. It allows models/components to

march forward in local time and process their input and output queues as fast as they can.

But from time to time a model/component can receive order messages with old time-

stamps. To rectify this situation, queues of already processed inputs and their outputs are

maintained so that the situation can be restored to what it was just before the arrival of

the old time-stamped message. This scheme has an extensive apparatus of overheads.

The Parallel DEVS scheme [9] differs from the other schemes in that there is a

coordinator to synchronize the simulation cycle through its steps (see Figure 4). Unlike

other schemes it does not have overheads of lookahead and local time rollbacks. In

parallel DEVS, the coordinator collects all times of next events from the component

simulators. It sends the minimum of these times back to the components, thereby

allowing them to determine whether they are imminent (component with the least time

for next event), and if so to generate output. More than one component may be imminent,

and the outputs of all imminent components are sorted and distributed to others according

to the coupling rules. The transition functions of the imminent components, as well as all

other recipients of inputs, are then applied. Which transition is applied, depends on the

 16

state and input of a component. The resulting changes in states may cause new values for

time advances and these are sent to the coordinator. The cycle then repeats.

Coupled Model

Co-ordinator

Simulator
tN

Component
tN, tL

Component
tN, tL

Component
tN, tL

Simulator
tN

Simulator
tN tN = time for next event

tL = time of last event

Figure 4: The Parallel DEVS simulation protocol [2]

3.2.3 Mapping of the PDES Protocol to the HLA/RTI

As shown in figure 3, B.P.Zeigler’s approach to implement the PDES protocol in the

HLA is as follows.

The DEVS simulation protocol is implemented with an explicit coordinator in the

DEVS/HLA approach as illustrated in figure 5. Here, a separate Time Manager federate

is allocated to the coordinator. This technique exploits quantizers (defined in section

3.2.1) to efficiently share the times of next events among DEVS federate and the

coordinator. Only changes in local or global tN (minimum of local tNs) greater than the

quantizer threshold are sent from one federate to the other using the RTI.

 17

RTI Exec FedExec

Co-ordinator

Simulator Image A

Simulator Image B

System Model

Time Manager Federate

Model A Model B

User Model

Simulator A

Co-ordinator
Image

System Model

Federate A

Model C Model D

User Model

Simulator B

Co-ordinator
Image

System Model

Federate B

tN tN

tNi

tNi

Figure 5: Coordinator as a Federate (the PDES protocol mapping into the HLA) [2]

 18

CHAPTER 4

Modeling Hardware Platforms

In this chapter research motivation is discussed followed by a brief research statement

and a critical analysis of the current solution to the problem as stated in chapter 3. Later,

in this chapter, a solution to the research problem is proposed along with the scope of

work, the contributions that are made and the presentation of the solution are discussed.

The development of systems involving computer/hardware platforms has increased

tremendously. An important step during the development phase is the modeling and

simulation at various levels of abstraction [10]. Simulation results play an important role

in assessing the properties of the systems at various levels of abstraction.

Chapter 3 discusses a general approach to model and simulate different systems using the

DEVS and the HLA/RTI. This approach can also be used in modeling and simulating

computer systems and hardware platforms. A critical analysis of the technique/approach

discussed in chapter 3 is as follows.

• The software tools for the DEVS implementations (section 3.1) are focused for

hierarchical models (the DEVS coupled class). Hence they have complicated

simulation and coordination engines in order to manage/synchronize different

components. These engines perform well in the DEVS environment, but require

additional message translation functionality to work with the HLA/RTI layer.

 19

• The DEVS/HLA layered approach, discussed in section 3.2, is shown in figure 6. The

two layers of simulator middleware (i.e., the RTI and the DEVS) are on top of each

other. The DEVS layer is required to support the DEVS coupled models.

Runtime Infrastructure (RTI)

DEVS formalism
(coupled or atomic)

Implementation using
DEVS tool

DEVS Simulator

DEVS formalism
(coupled or atomic)

Implementation using
DEVS tool

DEVS Simulator

Figure 6: The block diagram for basic approach from chapter 3.

• B.P.Zeigler’s work (chapter 3) adapts the DEVS-C++ tool to the HLA/RTI structure.

This is quite useful to reuse old simulations developed under the DEVS-C++ tool but

suffers from the extra layer of DEVS middleware.

The motivation of this research work is to model various components of computer

systems and define a simulation framework so that these components can interact with

each other and give some useful results at various levels of abstractions. Another

motivation is that the components could be reused in other simulations.

The research problem is to define a framework for a general hardware platform model, of

a single master computer system, and to map the model onto the High Level Architecture

(HLA) simulation guideline.

To address the above research problem, the DEVS formalism is used to model a

hardware platform. This formalism is used, as the DEVS is an increasingly accepted

paradigm for understanding and supporting the activities of modeling and simulation. In

 20

order to provide a simple solution to the research question, only the DEVS atomic class is

used to model components. The rationale behind this approach is as follows.

• Atomic models can be controlled directly from the RTI, therefore an extra layer of

DEVS middleware to support coupled models is not required. This approach

effectively flattens the DEVS modeling hierarchy.

• Atomic models are a simple concept, and easily reusable for future developments.

The suggested layered approach to address the research problem is shown in Figure 7.

Runtime Infrastructure (RTI)

DEVS formalism
(atomic class)

Implementation in
C++

DEVS formalism
(atomic class)

Implementation in
C++

Figure 7: A Model of the proposed solution.

The scope of this research is to

• Define a simulation framework for a general hardware platform. The general

hardware components to be modeled are a Processor module, a Memory module, a

Bus controller module, an Interrupt module and a Timer module. Being a single

master (Processor) platform, a bus arbiter is not modeled. The Processor module is

further divided into three units. An Execution Unit (EU) that is responsible for

decoding and executing all instructions, a Bus Interface Unit (BIU) that is responsible

for performing all external bus operations and a Control Unit (CU) that is responsible

for minimum/maximum mode and interrupt signals from other devices. Any required

 21

hardware component can be modeled and added, as a future work, below the

simulation (RTI) layer.

• Identify the general attributes of each hardware component in order to use these

models in the initial development phase of the computer systems. The level of

abstraction for these components is in the unit of bus cycles. More detailed time

breakdown within a bus cycle and detailed bus level signal implementation are

outside the scope of this work and may not be modeled accurately. For the execution

unit (EU) of the processor the timing details are implemented up to a clock cycle.

• Use the DEVS formalism to apply the modeling and mapping results to a case study

involving hardware platform components. For this case study, a Processor (a

simplified version of Intel 8088), a basic Memory unit, a bus controller (a simplified

version of Intel 8288), a basic Interrupt controller and a basic Timer unit are modeled.

• Execute simple operational codes as a main program and an interrupt routine on this

simulator for the case study and obtain results to verify the operation of the simulator.

• Draw conclusions for the proposed solution’s (discussed above) implementation in

the case study.

• Summarize the contributions made by this research and the case study.

• Identify possible future research topics.

The following paragraphs identify the contributions that are made, and the approach to

presenting the proposed solution.

As a contribution, a mapping of computer/hardware platforms to the HLA/RTI is

developed. An approach is defined for the DEVS atomic models to work under the HLA

 22

framework without using any additional DEVS simulators. A simulator is developed, as a

case study, by modeling the hardware platform components (as discussed above in the

scope of the research) using the DEVS formalism and making all the interactions

between these components using the HLA framework.

In order to present the solution, the body of the thesis is organized in chapters starting

from the system level discussion of hardware platform modeling using the HLA, defining

the DEVS models for each hardware component, implementing the design as a case study

for a simple (Intel 8088 based) platform by developing a simulator and analyzing the

simulator’s results to verify the proposed solution/design.

As discussed in the scope of the research, chapter 4, several modules are modeled for the

platform. To reduce the amount of low-level detail only the memory module is presented

in depth. For the complete implementation of all modules, appendix A.2 refers to the

software code attached with the thesis. The reason for selecting the memory module, as a

reference is that it is a simple module and also an important part of hardware platforms.

 23

CHAPTER 5

Simulation Framework and DEVS

Atomic models

This chapter includes the system level framework suggested to approach the solution.

The discussion below starts from a system level block diagram and is later divided into

two parts. In the first part the simulation flow of a Federate is described, and in the

second part the DEVS atomic model for each federate is explained.

5.1 System Level Block diagram

Figure 8 shows a system level block diagram for a simple hardware platform simulator. It

contains the following basic hardware components: Processor module, Bus controller

module, Memory module, Interrupt controller module and Timer module. The Processor

module is further divided into three units: BIU, EU and CU. For modeling a single master

hardware platform (chapter 4), a bus arbiter module is not required. All these

components/modules are modeled using DEVS atomic models and are discussed in detail

later in this chapter. In terms of the HLA, each individual component is a federate, and all

federates collectively form a federation. The Runtime Infrastructure (RTI) provides the

simulation platform for this federation.

 24

Runtime Infrastructure (RTI)

Bus Controller
Module

(DEVS-Atomic)

Memory Module
(DEVS-Atomic)

Interrupt Module
 (DEVS-Atomic)

Timer Module
(DEVS-Atomic)

Bus Interface Unit
(BIU)

(DEVS-Atomic)
Part of Processor

Module

Control Unit (CU)
(DEVS-Atomic)

Part of Processor
Module

Execution Unit (EU)
(DEVS-Atomic)

Part of Processor
Module

Figure 8: System-level block diagram for Hardware platform simulator.

5.1.1 System Level Flow Diagram for a Federate

Figure 9 shows a basic simulation flow of a federate. On the left side, the figure is labeled

with numbers, which correspond to the steps in the flow chart in that row. Each step is

discussed in this section by using the label references.

 25

Create/Join
Federation

Initialization
Object/Model construction

Setup object/interaction communication (Publish & Subscribe)
Initialize/enable time management

Registration with Federation

DEVS Model
state execution

A

Parameters Input (CLI or GUI)

B

1

2

3

4

5

6

7

8

Is a Federate Time
Regulating only?

Is a Time
advance granted

by the RTI?

Incoming Events
(only RO) from
other federates

A

No

Yes

Yes

No

Comment
Wait till time advance
is granted by RTI
according to TSO

Is a Time
advance granted

by the RTI?

Incoming Events
(TSO and/or RO)

from other
federates

A

No

Yes
B

Comment
Wait till time advance
is granted by RTI
according to LBTS

Disable Time Management; Resign
from Federation; Delete Object

Instances; In case of last federate
destroy the Federation.

Is simulation
time finished?

A
No

End Simulation

Yes

Comment
For any other Time Mangement
scheme (i.e., Time regulating &
constrained or Time constrained
only), a Federate follows this path.

 Figure 9: Simulation flow chart of a federate.

Step 1 is the initial step of the simulation in which a federate creates or joins a federation.

If the federation does not exist, a new one is first created and then the federate is added to

it. If a federation already exists, then the federate joins that federation.

At step 2, the federate is initialized. Initialization consists of the Object/Model

construction, defining the attributes or/and parameters as to be published or/and

 26

subscribed (can be re-defined during simulation), defining the federate as time regulating

or/and time constrained (can be re-defined during simulation) and the registration of the

federate with the federation executive. The SOM/FOM (defined in section 2.3) of each

federate must also contain these published and/or subscribed attributes and/or parameters.

The registration process registers the object with the federation execution, which returns

an HLA object handle – an identifier for all interactions within the federation.

Step 3 allows a user to input parameters for a federate before starting the simulation loop.

This step is optional, as some federates do not need any user input.

Step 4 is the first step in the simulation loop. In this step, a federate executes state

transition functions according to its DEVS atomic model. The DEVS atomic models are

discussed later in this chapter.

Following step 4, a federate will perform one of steps 5 or 6, depending upon its time

management scheme. Step 5 is performed if a federate is time regulating (capable of

sending Time Stamped Order (TSO) messages) only. The RTI grants a time advance

according to the TSO message time. On the other hand if there is some incoming Receive

Order (RO) message, a message with no time stamps, from another federate then the RTI

delivers this message to the federate without granting a time advance. Either a time

advance is granted or not, the simulation proceeds and the DEVS model transitions from

one state to another.

Step 6 is performed if a federate is using either the time regulating & time constrained

(capable of receiving TSO messages) both or the time constrained only scheme. The RTI

grants a time advance according to the Lower Bound Time Stamp (LBTS). The LBTS is

the maximum time to which a time constrained federate may advance. The LBTS is

 27

determined by the RTI after getting the lookahead (a time period during which a federate

does not send out any message) values for each federate and TSO messages from all the

time regulating federates. On the other hand if there is some incoming message (either

TSO or RO) from another federate then the RTI delivers this message to the federate

without granting a time advance. If a time advance is granted, the federate proceeds to

step 7. If a time advance is not granted, the federate returns to the top of the simulation

loop for another DEVS model state transition.

At step 7, the federate checks whether the simulation loop will continue or stop. At step

8, a federate removes itself from the federation by disabling time management, resigning

from the federation, deleting object instances, and, in the case where it is the last federate,

destroys the federation.

5.1.2 DEVS Atomic Models for each Federate

Here, DEVS atomic models for each module in Figure 8 are discussed. The memory

module is discussed in detail with external/internal transition functions, time advance

function and the output function. In the following sub-sections, input and output ports

refer to the DEVS models as discussed in section 2.2 should not be confused with similar

hardware terminology.

5.1.2.1 MEMORY MODULE

The level of abstraction, as discussed in the scope of work chapter 4, can be achieved at

bus cycles level. So all of the detailed signals within a bus cycle are not discussed in the

 28

model. The parameter that a user can set, as discussed in step 3 of Figure 9, is the

following.

Parameter

• Memory size (MS). This parameter has an integer value (MS > 0) and is defined in

terms of bytes.

Model

 Memory = < IO X S Y δint δext δcon λ ta >

IO – Input and output ports

• Input ports:

o Address bus: The size of address bus (AB_Size) is an integer (AB_Size > 0)

and is defined in the processor module’s parameters section 5.1.2.2. To

support access to all memory locations, MS ≤ 2AB_Size.

o Data bus: The size of the data bus (DB_Size) is an integer (DB_Size > 0) and

is defined in the processor module’s parameters section 5.1.2.2.

o Read control signal: This is a single bit signal. 1 = Read, 0 = no operation

specified.

o Write control signal: This is a single bit signal. 1 = Write, 0 = no operation

specified.

• Output port:

o Data bus: The size of the data bus is DB_Size as above.

o Data acknowledge signal (for Motorola 68000 series): This is a single bit

signal. 1 = Acknowledge, 0 = no operation specified.

 29

X – Input event set

• Address on address bus: A binary value, in the range of {0,…, 2AB_Size-1}. In order to

point to a memory location, the address must be < MS.

• Data on data bus: A binary value in the range of {0,…, 2DB_Size-1}.

• Read control signal ∈ {0,1}.

• Write control signal ∈ {0,1}.

Y – Output event set

• Data to data bus: A binary value as above.

• Data acknowledge signal (DTACK) informs the processor that the bus cycle has

ended during an asynchronous processor’s mode e.g., Motorola 68000 series

processors. DTACK ∈ {0,1}.

S – State set

• Read state: In this state the memory module waits until it sends out data on the data

bus acquired from the memory location as addressed by the address bus. At this level

of abstraction (chapter 4), the delay function associated with this state is one bus

cycle.

• Write state: In this state the memory module writes data, provided by the data bus, to

a memory location which is addressed by the address bus. The module then waits

until the time delay associated with this state is elapsed. At this level of abstraction

(chapter 4), the delay function associated with this state is one bus cycle.

• Wait state till next δext. The delay function associated with this state ∈ R+.

 30

δext – External transition function

• The δext starts with the arrival of read/write signal on the input port of the module. In

case of write signal the δext acquires the information from the address and data input

ports. In case of read signal the δext only acquires the information from the address

input port. As an example the state diagram for memory read and memory write

during a minimum operation mode is shown in

• Figure 10.

ta – Time advance function

• The ta function introduces the time delay before scheduling the next output function

λ.

• Figure 10 shows an example where the ta function is introduced in the read state

before carrying out the λ function.

λ – Output function

• The λ outputs the data on the output port (data bus) during the read cycle. For the case

of Motorola 68000 series processors the DTACK signal is also sent out on the output

port. As an example see

• Figure 10.

δint – Internal transition function

• The δint changes the internal state from read/write to the wait state. In the wait state

the module stays until the next δext. As an example see

• Figure 10.

 31

δcon – Confluent transition function

• The δint has higher priority than the δext

State Diagram for minimum operation mode

Figure 10 shows a state machine diagram for the memory module. Being simpler, the

minimum operation mode is used to show the transitions between different states of the

module for memory read and memory write operations.

Wait
ta=

Read
ta=f(read)

Write
ta=f(write)

δext

δext

δ in t

δ in t

λ

Triggered by
Read control signal

along with the memory
location address

Triggered by
Write control signal along
with the memory location

address and data

δ in t

Triggered by
the ta delay and carried

out before

∝

Figure 10: State diagram for memory read and write for minimum operation mode.

5.1.2.2 PROCESSOR MODULE

A general-purpose processor module is further divided into three sub-modules. Each sub-

module can become a separate DEVS atomic model and communicate with the other

modules using RTI services. Figure 11 shows a block diagram of the processor module.

 32

Execution
Unit (EU)

Bus
Interface

Unit (BIU)

Control Unit (CU)

Interrupt signals from
peripherial devices;
signals to bus controller;
request from DMA
controller

Address, Data &
Control signals

Figure 11: Block diagram showing sub-modules in a Processor model.

Processor’s Parameters

As discussed in step 3 of Figure 9, a user can define the following processor’s

parameters.

• Duration of Bus/Machine cycle (e.g., 8086 ≈ 4 clock cycles).

• Instruction Queue size for Bus Interface Unit (if present).

• Size of External Data (DB_Size) and Address (AB_Size) buses.

• External data/address buses are multiplexed or separate (for multiplexed buses

external de-multiplexing circuitry is compulsory).

• Internal size of buses and registers.

• Minimum/Maximum mode (this feature is Intel specific).

• Built in cache memory - if yes, cache size?

Each sub-module is modeled as follows.

5.1.2.2.1 Bus Interface Unit (BIU)

The BIU contains an instruction queue (first in first out), segment registers, instruction

pointer and address/data/control buses. The main purposes of the BIU are to keep the

instruction queue filled with instructions, to generate and accept the system control

 33

signals and to act as a window between the execution unit (EU) and the memory/input-

output (IO) devices. The DEVS atomic model for the BIU is as follows.

 BIU = < IO X S Y δint δext δcon λ ta >

X – Input event set

• Data on external data bus.

• Signal to indicate that the bus cycle has ended from the peripheral devices. This

signal is required if a processor is operating in asynchronous mode e.g., Motorola

68000 series processor.

• Signals from the EU for data read/write (RD/WR) from memory or the IO devices.

• Address and Data from the EU via an internal bus.

• Signal from the EU to update instruction queue status/pointer.

• Signal from the control unit at the end of each instruction cycle indicating whether

there is an interrupt request.

• In case of interrupt and jump, the execution unit shall indicate to the BIU to reset the

instruction queue.

• Signal from control unit at the end of each bus cycle to indicate whether the system

buses have been given under the control of DMA.

• Processor’s parameters set by the user.

Y – Output event set

• Internal and external Address/data buses.

• Control signals to peripheral devices.

 34

• Signal to control unit at the end of each bus cycle (this signal helps the control unit to

act on the DMA’s request).

S – State set

• Opcode fetching state.

o Making physical address using code segment (CS) & instruction pointer (IP).

This is Intel specific.

o Read data.

o Increment IP register.

o Increment instruction queue status/pointer.

• Data read state from the memory/IO device.

• Data write state to the memory/IO devices.

• Interrupt state.

• Wait state until the processor gets control of the system buses.

• Wait state until next external transition function.

5.1.2.2.2 Execution Unit (EU)

The purpose of the EU is to decode and execute the instructions that are fetched from the

instruction queue. The EU contains an arithmetic and logic unit (ALU) and a register

array. The ALU performs arithmetic and logic operation on memory or register data. It

also contains pointer or index registers used to address operand data located in the

memory. The DEVS atomic model for the EU is as follows.

EU = < IO X S Y δint δext δcon λ ta >

X – Input event set

 35

• Signal from the BIU:

o Arrival of an opcode in the queue.

o A signal at the completion of each request.

• Signals from the control unit:

o Interrupt request signal at the end of each instruction cycle.

o A signal at the end of each bus cycle to indicate whether the control of system

buses is given over to a DMA.

• Processor’s parameters set by the user.

Y – Output event set

• Signal to the BIU to execute RD/WR operation according to the decoded instruction.

• Signal to the BIU to reset the instruction queue in the case of jump and interrupt

statements.

• Signal to the control unit at the end of each instruction cycle (The control unit can

only respond to an interrupt request signal at the end of an instruction cycle).

S – State set

• Opcode exection state. This state has following functionality.

o Read the opcode from the instruction queue.

o Decode the opcode.

o Execute the opcode. During this stage the EU has a time elapse until the BIU

finishes the read or write cycle.

o Updates instruction queue pointer.

o Maintains the status of flag register.

 36

• Wait state until next external transition function.

5.1.2.2.3 Control Unit (CU)

The main function of the CU is to take care of the maskable interrupt request signal, to

check the non-maskable interrupt (NMI), to generate signals for the bus controller and

execution unit and to check any request from the DMA/controllers to control the external

bus. The DEVS atomic model for the CU is as follows.

CU = < IO X S Y δint δext δcon λ ta >

X – Input event set

• Signal from the BIU at the end of each bus cycle.

• Signal from the EU at the end of each instruction cycle.

• Signals from peripheral devices e.g., the DMA and the interrupt controller.

• Processor’s parameters set by the user.

Y – Output event set

• Signal to the EU for the interrupt request and DMA access to the buses.

• Signal to the BIU for the interrupt request and DMA access to the buses.

• Status signal to bus controller, prior to the initiation of bus cycle. These status signals

S0 S1 S2 are required for Intel specific maximum operation mode. These three bits are

decoded by the bus controller, which then (instead of the processor) generates the

appropriate control signals to the peripheral devices e.g., memory RD/WR, IO port

RD/WR, interrupt acknowledge and instruction fetch signals.

S – State set

 37

• The state of an interrupt request. (It checks the signal from the interrupt controller, the

state of the instruction cycle of the processor and the status of the interrupt flag. If all

the conditions are in favor of executing the interrupt routine, it generates appropriate

signals to the EU and the BIU).

• The state of an external bus control request. (It checks for a signal from the DMA

controller and the state of machine/bus cycle of the processor. If the conditions are

satisfied it generates appropriate signals to the EU and the BIU in order to accomplish

the DMA request).

• Wait state until next external transition function.

5.1.2.3 BUS CONTROLLER MODULE

The bus controller module generates the control signals for the memory RD/WR from

memory/input output devices, interrupt acknowledge and instruction fetch depending

upon the status signal (S0 S1 S2) [14] provided by the CU of the processor module. This

Intel specific bus controller module also generates some bus level control signals, which

are not in the scope of this work. The DEVS model of the bus controller is as follows.

 BC = < IO X S Y δint δext δcon λ ta >

X – Input event set

• Status signals S0 S1 S2 from the processor module.

Y – Output event set

• Read/write control signals to the memory and input output devices.

• Interrupt acknowledge control signal.

 38

S – State set

• Read state from the memory/input output devices.

• Write state to the memory/input output devices.

• Interrupt state. It sends out an interrupt acknowledge signal to the interrupt module.

• Wait state until next external transition function.

5.1.2.4 INTERRUPT CONTROLLER MODULE

Function

The basic function of this module is to acquire interrupt signals from the peripheral

devices connected to the input ports, prioritize these requests and send the highest priority

signal to the processor. It also sends out the interrupt type number on the data lines after

getting the interrupt acknowledge signal from the processor or the bus controller.

Model

 IM = < IO X S Y δint δext δcon λ ta >

X – Input event set

• Interrupt acknowledge signal from the processor and/or the bus controller.

• Interrupt from external devices.

• Input data on the external address and data buses.

• RD/WR signal from the processor and/or the bus controller.

Y – Output event set

• Interrupt request (INTR) signal or priority signals (three signals for the case of

Motorola 68000 series) to the processor.

 39

• Data out to the system data bus (to output vector type).

• Data acknowledge signal (DTACK) informs an asynchronous processor that the bus

cycle has ended e.g., Motorola 68000 series processors.

S – State set

• State of initiating an interrupt request. It prioritizes the incoming interrupt signals

from the peripheral devices and sends out the interrupt request or the interrupt priority

code to the processor (CU).

• State of sending vector type. The interrupt controller sends out the vector type on the

data bus as a result of receiving the interrupt acknowledge signal.

• Wait state till next external transition function.

5.1.2.5 TIMER MODULE

This module generates a periodic signal to act as an interrupt source for the interrupt

controller. As discussed in step 3 of Figure 9, a user can define the following

attributes/parameters.

Parameters

• Duty cycle of the periodic signal.

• Number of interrupts to be generated.

Model

 TM = < IO S Y δint δext δcon λ ta >

Y – Output event set

• Periodic signal sent to the interrupt controller.

 40

S – State set

• Signal generation state.

• Wait state for time elapse. The user can set this period.

 41

CHAPTER 6

Case Study

6.1 Introduction

A hardware platform containing a processor (a simplified version of Intel 8088), a basic

memory unit, a bus controller (a simplified version of Intel 8288), a basic interrupt

controller and a basic timer unit is modeled using DEVS formalism. These modules

interact with each other under a framework that is HLA compliant. This case study is for

a synchronous platform, but no clock module is modeled. Each module assumes

synchronous interactions and requests to schedule the future bus events as an integral

number of clock ticks in the future.

The proposed simulation framework, as discussed in chapter 5, for hardware platform

modeling using the DEVS/HLA approach is verified by the case study. This case study is

done for the minimum and maximum operating modes of the processor. The user makes

the selection of the operation mode (input through the keyboard) at the beginning of the

execution of the processor federate as discussed in step 3 of Figure 9. For this case study,

a simple simulator is developed to run the instruction codes shown in Tables 2 and 3.

Later in this chapter the development of the simulator along with the hardware

components’ implementation are discussed.

 42

6.1.1 Case study program

The example program generates 10 even numbers, from 0 to 18, and stores them in the

memory module. The opcodes are shown in Table 2 along with the opcode values and the

clock timing information [13]. Instruction execution times are determined by taking the

number of clocks required per instruction plus any effective address (EA) time required

for the operand. The EA for the indexed operand in the MOV [BX],CH instruction is 5

clocks.

Opcode (Hex) Program Instructions Clock Cycle

B500 MOV CH , 0 4

BF0000 MOV DI , 0 4

B102 MOV CL , 2 4

BB0000 xyz : MOV BX , 00 4

03DF ADD BX , DI 3

882F MOV [BX] , CH 9+EA = 9+5 = 14

47 INC DI 2

02E9 ADD CH , CL 3

83C70A CMP 10 , DI 4

750D JNE xyz 4 (when not executed)

16 (when jump executed)

F4 HLT 2

Table 2: Main program’s opcodes for the case study

During the execution of the main program, the interrupt controller module sends interrupt

signals to the processor, resulting in the execution of the interrupt routine (opcodes

 43

shown in Table 3). The processor’s interrupt behavior includes checking the interrupt

flag; pushing the IP, CS and IF; sending the interrupt acknowledge to the interrupt

controller; reading the vector type from the interrupt controller; calculating the starting

address for the interrupt routine residing in the memory and clearing the instruction

queue. The interrupt routine used in the case study increments a variable stored in

memory. The opcodes for the interrupt routine along with the clock timing information

are shown in Table 3 [13].

Op-code (Hex) Program Instructions Clocks

53 PUSH BX 15

BB0020 MOV BX , 32 4

8A07 MOV AL , [BX] 8+EA = 8+5 = 13

FEC0 INC AL 3

8807 MOV [BX] , AL 9+EA = 9+5 = 14

5B POP BX 12

CF IRET 32

Table 3: Interrupt routine’s opcodes for the case study

6.2 Simulator Implementation

This section briefly discusses the system level block diagram for the simulator required

for the case study. Later in this section each module/component is discussed in terms of

the assumptions made for the implementation and flow charts for the C++ code.

 44

6.2.1 System level Block diagram

Here the Bus interface unit (BIU), execution unit (EU) and control unit (CU) are

combined as a single processor module and implemented as a DEVS atomic class. A bus

controller module, a basic memory module, a basic interrupt controller module and a

basic timer module are implemented as defined in the scope of the research, chapter 4.

The implementation details of each module are discussed later in this chapter. Figure 12

shows an overall system level block diagram implemented for the case study.

Runtime Infrastructure (RTI)

Bus Controller
Module (Intel

8288)
(DEVS-Atomic)

Memory Module
(DEVS-Atomic)

Implementing basic
functionality

Interrupt Module
 (DEVS-Atomic)

Implementing basic
functionality

Processor Module (Intel 8088)
(DEVS-Atomic)

 including:
Bus Interface Unit (BIU)

Execution Unit (EU)
Control Unit (CU)

Timer Module
(DEVS-Atomic)

Implementing basic
functionality

Figure 12: System level block diagram implemented for the case study.

6.2.1.1 Level of abstraction for the simulator's timing

For this case study one bus cycle of the processor is assumed to be four time units of the

simulator. Within a bus cycle the timing details are not implemented accurately (scope of

the research, chapter 4). For the execution unit of the processor the timing details are

implemented with one clock cycle accuracy.

 45

6.2.1.2 Algorithm to start the simulation

All federates in a federation should start the simulation simultaneously, as is the case for

components in real hardware platforms. To achieve this objective, the following

algorithm with two steps of signaling is defined.

The first step requires that the processor should wait until the other modules join and

subscribe to the published attributes of the processor. This is achieved by executing the

“enableAttributeRelevanceAdvisorySwitch()” RTI service so that the processor federate

could receive the callbacks from the other federates.

The second step requires that all federates should wait for a signal from the processor

federate to start the simulation. In this case study the attribute SimEnd_Processor (see

Figure 15) is the signal published by the processor module and subscribed by all the other

modules. The value SimEnd_Processor=0 indicates the starting of the simulation. The

algorithm’s second step addresses the scenario in which a federate has joined a federation

and has no attributes to publish to a controlling federate (e.g., Processor) so the federate

will not get any callbacks from the controlling federate.

6.2.1.3 Stopping the simulation

If the attribute SimEnd_Processor, as discussed in section 6.2.1.2, is set to 1 by the

processor module then a signal is provided to the other modules (subscribers of the

attribute) to stop the simulation.

 46

6.2.1.4 Communication among Modules/Federates

Attributes are sent, from one federate to the other, in the form of

AttributeHandleValuePairSet (AHVPS). AHVPS is a set comprised of attribute handles,

values and the size of the values. To create the AHVPS, a method CreateNVPSet(),

extracted from the memory module’s software code, is defined in Figure 13. In this

example the RTI method “AttributeSetFactory::create(1)” creates the AHVPS for only

one AHVP, as there is only one attribute to send out i.e., “DataFromMem”. The

following example also shows that the AHVPS is only created if the attribute

“DataFromMem” is changed. Section 6.2.2.2.1 further explains how this AHVPS is

received and the attributes are extracted by a federate.

__

// Setting up the data structure required to send this object's state to the RTI.
RTI::AttributeHandleValuePairSet* Memory::CreateNVP Set()
{
 RTI::AttributeHandleValuePairSet* pMemoryAttributes = NULL;
 // Make sure the RTI Ambassador is set.
 if (ms_rtiAmb)
 {
 //--
 // Set up the data structure required to send this object's state to the RTI.
 //--
 pMemoryAttributes = RTI::AttributeSetFactory::create(1);
 if (hasDataFromMemChanged == RTI::RTI_TRUE)
 {
 pMemoryAttributes -> add(this -> GetDataFromMemRtiId(),(char*) &this -> GetDataFromMem(),
 (sizeof(int)));
 out2file << "Data From Memory = " << DataFromMem << endl;
 }
 }
 return pMemoryAttributes;
}
__

Figure 13: Creating an AHVPS for communication among Module/Federates.

 47

6.2.1.5 Time elapse using RTI

The software code, in Figure 14, shows that the module has sent a time elapse request to

the RTI according to the time calculated (represented by the “requestTime”) for the next

event. The lookahead value (see step 6 Figure 9) is set to 0.5, means that the federate will

not send any output until this period is elapsed. The time step value is set to 1.0, means

that this is the maximum limit for the time elapse requested to the RTI. The final

“requestTime” is calculated by adding the time step value of 1.0 and the “grantTime”,

which is the time granted in the previous time elapse request. In other words the

“grantTime” is the current simulation time. The RTI method

“nextEventRequest(requestTime)” requests for the time elapse until the “requestTime”.

In return, the RTI grants the time advance until the next event. The tick() function gives

control to the RTI for processing the ongoing events/tasks.

__
//-------------------Setting the lookahead time

lookahead = RTIfedTime(0.5);
 //-------------------
 RTIfedTime requestTime(1.0); // requestTime = timeStep = 1.0
 requestTime += grantTime; // grantTime is the time granted by the RTI during the last time elapse
 out2file << "\n\nRequest time = " << requestTime << endl;
 timeAdvGrant = RTI::RTI_FALSE;
 rtiAmb.nextEventRequest(requestTime);
 while(timeAdvGrant != RTI::RTI_TRUE)
 {
 //--
 // Tick will turn control over to the RTI so that it can process an event.
 //--
 rtiAmb.tick();
 }
__

Figure 14: Time elapse requested by a Federate using the RTI service methods.

 48

6.2.1.6 Logging simulator activity

The logging capability is developed for all the modules of the simulator. Each module

has its own logging file. Whenever a module receives or updates an attribute it sends this

information to a file to maintain the logs. The status of the internal registers (e.g.,

processor module) and the memory dumps are also stored in the file. All this information

is logged with the simulator’s time stamp. These logs are explained in chapter 7 and the

message flow and timing information is extracted and analyzed. The “out2file” statement

in Figure 14 is sending data to a log file.

6.2.1.7 FOM/SOM

This section identifies the time management parameters and the interaction attributes

used by each federate. This information is a part of a FED file (discussed in section 2.3)

that provides an interface between the DEVS model and the RTI layer. Figure 15 shows

the names of the attributes used in this case study. These attributes are the input output

ports of the DEVS model of each component in the case study. As an example take the

memory and the processor modules/federates. The processor’s relevant published

attributes (e.g., Address_Processor) are included in the subscribed attributes of the

memory federate and vice versa.

 49

Runtime Infrastructure (RTI)

Bus Module
Time Management:
Regulating & constrained
Attributes Published:
MemoryRDWR_Bus
InterruptRDwrACK_Bus
Attributes Subscribed:
ControlToBus_Processor
SimEnd_Processor

Memory Module
Time Management:
Regulating & constrained
Attributes Published:
Data_Memory
Attributes Subscribed:
Address_Processor
Data_Processor
ControlToMem_Processor
MemoryRDWR_Bus
SimEnd_Processor

Interrupt Module
Time Management:
Regulating & constrained
Attributes Published:
Data_Interrupt
INTR_Interrupt
Attributes Subscribed:
AckToInt_Processor
INTR_Timer1
InterruptRDwrACK_Bus
SimEnd_Processor

Processor Module
Time Management:
Regulating & constrained
Attributes Published:
Address_Processor
Data_Processor
ControlToBus_Processor
ControlToMem_Processor
AckToInt_Processor
SimEnd_Processor
Attributes Subscribed:
Data_Memory
Data_Interrupt
INTR_Interrupt

Timer Module
Time Management:
Regulating
Attributes Published:
INTR_Timer1

Figure 15: Block diagram containing time management and attribute information.

6.2.2 Memory Module

In this section the assumptions made for the memory module, development of the module

using the DEVS formalism along with the excerpts from the software code and the

software flow chart are discussed.

6.2.2.1 Assumptions

The Memory size is assumed to be 144 Bytes as it fulfils the requirement of the case

study. It is assumed that this memory module does not introduce wait states. The

processor has divided the memory module into logical segments as shown in Figure 16.

Each number in this figure is a decimal value. An Extra segment is not implemented, as

there is no string operation involved in this case study.

 50

Figure 16: Memory map for 8-bit structure (specific to the case study)

6.2.2.2 Development of Memory module

This section discusses the implementation of the memory module on the basis of the

DEVS formalism. It explains the software development of the module’s external

transition function, duration function, output function, internal transition function and

confluent transition function. For further details, the complete software code of this

module along with the whole simulator is referred in Appendix A.2.

6.2.2.2.1 External transition function (δδδδext)

During the δext function, the control signal (read/write) from the processor or bus

controller module arrives along with the address on the address bus. If the control signal

Data space

0

144

16

Vector table

64

Code space

112

Stack space

 51

is for a memory write operation, the data on the data bus is also required from the

processor. The software implementation of the δext function is implemented as shown in

Figure 17. The figure is further divided into sections to facilitate discussion.

As an example, following is a detailed discussion of the memory read operation. To

initiate the memory read cycle, the federate ambassador is informed through the RTI that

the “ControlSignalFromProToMem” and the “AddressFromPro” attributes have arrived

through the input ports of the memory module (as discussed in section 6.2.1.6), each in

the form of AHVPS. In order to update the attributes of the memory module, the federate

ambassador then calls the “Update(const RTI::AttributeHandleValuePairSet&)” method,

shown in Figure 17, section A. Due to the two incoming attributes, the value returned by

the “theAttributes.size()” equals to 2 and the “for” loop is executed twice. The actual

values of the incoming attributes are extracted and saved using the getHandle() and

getValue() methods. The “Out2file” saves these attributes to a log file. The value of the

“ControlSignalFromProToMem” attribute tells whether this is a memory read or memory

write operation. Assuming this value is for a memory read operation, the

“DataFromMem” variable is updated as shown in Figure 17, section B. A flag

“hasDataFromMemChanged” is also set so that when UpdateFromMem(FederateTime)

method (Figure 17, section D) is called this updated value is sent out to the RTI. Figure

17, section D shows that the state of the memory is updated in terms of time and the new

AHVPS are created for the variables that are changed (e.g., “DataFromMem”).

CreateNVPSet() method creates the AHVPS as discussed in section 6.2.1.4. These

AHVPS are sent out to the RTI during the output function as discussed in section

6.2.2.2.3.

 52

__

------------- SECTION A -------------
void Memory::Update(const RTI::AttributeHandleValu ePairSet& theAttributes)
{
 RTI::AttributeHandle attrHandle;
 RTI::Ulong valueLength;
 // We need to iterate through the AttributeHandleValuePairSet to extract each AttributeHandleValuePair.
 // Based on the type specified (the value returned by getHandle()) we need to extract the data from the
 // buffer that is returned by getValue().
 for (unsigned int i = 0; i < theAttributes.size(); i++)
 {
 attrHandle = theAttributes.getHandle(i);
 if (attrHandle == Memory::GetAddressFromProRtiId())
 {
 int AddressFromPro;
 theAttributes.getValue(i, (char*)&AddressFromPro, valueLength);
 out2file << "Address from Processor = " << AddressFromPro << endl;
 }
 if (attrHandle == Memory::GetDataFromProRtiId())
 {
 int DataFromPro;
 theAttributes.getValue(i, (char*)&DataFromPro, valueLength);
 out2file << "Data from Processor = " << DataFromPro << endl;
 }
 if (attrHandle == Memory::GetControlSignalFromProToMemRtiId())
 {
 int ControlSignalFromProToMem;
 theAttributes.getValue(i, (char*)&ControlSignalFromProToMem, valueLength);
 out2file << "Control Signal From Pro To Mem = " << ControlSignalFromProToMem << endl;
 }
 if (attrHandle == Memory::GetSimEndFromProRtiId())
 {
 int SimEndFromPro;
 theAttributes.getValue(i, (char*)&SimEndFromPro, valueLength);
 out2file << "SimEndFromPro = " << SimEndFromPro << endl;
 }
 if (attrHandle == Memory::GetMemRDWRSigFromBusRtiId())
 {
 int MemRDWRSigFromBus;
 theAttributes.getValue(i, (char*)&MemRDWRSigFromBus, valueLength);
 out2file << "RD WR signal fro Bus (RD=1 WR=2) = " << MemRDWRSigFromBus << endl;
 }
 }
}

------------- SECTION B -------------
// Reading from the Memory
// MemoryMap[] is an array of 150 bytes
myMemory -> DataFromMem = MemoryMap[myMemory -> AddressFromPro];
 // Set flag so that when UpdateFromMem(FederateTime) is called we send this new value to the RTI.
hasDataFromMemChanged = RTI::RTI_TRUE;

------------- SECTION C -------------
// Writing to the Memory
MemoryMap[myMemory -> AddressFromPro] = myMemory -> DataFromPro;

 53

------------- SECTION D -------------
// Updating the state of the Memory
void Memory::UpdateFromMem(RTI::FedTime& newTime)
{
 // Set last time to new time
 this -> SetLastTime(newTime);
 //--
 // Updating the state of memory
 //--
 // In order to send the values of our attributes, we must construct an AttributeHandleValuePairSet
 // (AHVPS) which is a set comprised of attribute handles, values, and the size of the values.
 // CreateNVPSet() is a method defined on the Memory class - it is not part of the RTI. Look inside
 // the method to see how to construct an AHVPS
 RTI::AttributeHandleValuePairSet* pNvpSet = this -> CreateNVPSet();
}
__

Figure 17: Implementation of the external transition function in the simulation code.

6.2.2.2.2 Duration function (ta)

The ta function is used to elapse time until the arrival of the next event or the lookahead

time which ever comes first. After the time is elapsed, the module executes the output

function discussed in section 6.2.2.2.3 and sends out the AHVPS through the RTI. Figure

18 shows that if the module gets the time advance grant from the RTI, it gives control to

the RTI by using tick() method. If there is no incoming event, the RTI waits until the

elapse of lookahead period (the ta) and carried out the output function.

__

 while(timeAdvGrant != RTI::RTI_TRUE)
 {
 //--
 // Tick will turn control over to the RTI so that it can process an event.
 //--
 rtiAmb.tick();
 }
__

Figure 18: Implementation of the duration function in the simulation code.

 54

6.2.2.2.3 Output function (λλλλ)

The λ function sends out the module’s output to the federation. Once the AHVPS are

constructed, as discussed in section 6.2.1.4, a method (updateAttributeValues, see Figure

19) is called and the AHVPS along with the module’s ID and time information is sent out

to the federation. This method is a part of RTI ambassador code.

__

// Send the AHVPS to the federation.
//---
// this call sends out NVPSet(), at the current simulation time + loohahead.
//---
 (void) ms_rtiAmb->updateAttributeValues(this->GetInstanceId(), *pNvpSet,
 this->GetLastTimePlusLookahead(), NULL);

Figure 19: Implementation of the output function in the simulation code.

6.2.2.2.4 Internal transition function (δδδδint)

During a memory read operation the δint function changes the module’s state from the

read to the wait (see

Figure 10). The module stays there until it receives the δext function. During the execution

of the tick() method, shown in Figure 18, the δint function is realized once the λ function

is carried out.

6.2.2.2.5 Confluent transition function (δδδδcon)

If there is a tie-break between the δint function and the δext function, the module gives

priority to the δint function. For a memory read example, after executing the δint function

the memory module should go to a wait state until the δext function arrives. But in this

 55

scenario the δext function has already arrived so instead of going to the wait state, the

module starts executing the δext function.

6.2.2.3 Interaction between Memory module and the RTI

In this section the interaction between the memory module and the RTI is discussed and,

as a future research work, this information is useful to develop a tool that could help in

modeling hardware platform components. Each input output port of the DEVS memory

model has an attribute associated with it and can be defined as the published (i.e., an

output port) and/or subscribed (i.e., an input port). This port information for each federate

is redefined in the FED file and the RTI uses this information to map the ports of

different federates. During the initialization stage of the memory federate, time

management is enabled/initialized and the module is registered as a federate to the RTI

(see step 2 Figure 9). The δext function in the memory module is triggered by the RTI as

soon as it receives the updated value(s) of the subscribed attribute(s) on the input port(s).

Section 6.2.2.2.1 discusses in detail the use of the RTI built-in methods by the memory

module’s δext function during the attribute(s) extraction from incoming AHVPS and the

creation of the new AHVPS to be sent out. For time elapse during the ta and the δint

function, the RTI services are used by the memory module and the definable parameters

are the lookahead time and the time step. During the λ function, the memory module calls

an RTI method “updateAttributeValues” and sends out the AHVPS values created during

the δext function.

 56

6.2.2.4 Software Flow diagram

After joining the federation, this module waits for all its attributes to be subscribed by

other federations. Figure 20 shows a flow chart of this module.

Control signal for
Memory RD or WR

operation

Get address from
address bus

Memory RD
or WR

Time advance till
"Lookahead"

period

Send Data to the
Processor & wait
till LBTS period

Get Data from
Data bus

Time advance
for Next Event

WR

RD

Wait till SimStart
signal from
Processor

A

Update Internal
variables

if SimEnd

No

Yes

A

STOP

 Figure 20: Flow Chart of the memory module

6.2.3 Processor Module

In this section the assumptions made for the processor module, the level of timing detail

implemented, the resolution of the interrupt request signal when the interrupt flag is

disabled and the software flow chart are discussed. The concept for the development of

 57

the module using the DEVS formalism is the same as discussed for memory module in

section 6.2.2.2. For further details, the software code of this module along with the whole

simulator is referred in Appendix A.2.

6.2.3.1 Assumption

For this case study, the feature/functionality implemented in the CU, EU and BIU is a

subset of the features discussed in section 5.1.2.2. The detailed features/functionality of

the CU, EU and BIU is left for a future work. A brief discussion of the CU, EU and BIU

implemented is as follows.

The CU checks interrupt signals from Interrupt controller at the end of each op-code

execution. The EU reads and decodes the op-code, updates the instruction queue and

interacts with the CU and BIU as required during the execution of the op-code. The BIU

performs RD/WR operations, sends control signals to the bus and interrupt controller,

fetches opcode from memory and maintains the status of the instruction queue. Since the

Intel 8088 micro-processor has an 8-bit data bus, the BIU automatically executes two

read or write cycles for each 16-bit operand. The least significant byte of the word is

stored in the lower valued address location of the Memory and the most significant byte

in the next higher address location.

6.2.3.2 Internal Registers of the processor module

The following registers are implemented and initialized in the processor module for this

case study. The Code Segment (CS) register, the Data segment (DS) register and the

Stack Segment (SS) register are initialized according to Figure 16. The values assigned

are CS=1, DS=4 and SS=7. The Instruction Pointer (IP) register and Stack Pointer (SP)

 58

register are also implemented with the initial values of IP=0 and SP=31. The SP register

is pointing at the top of the empty stack. The Internal Flag (IF) register defined with the

consideration of only the interrupt flag and the zero flag. During initialization the

interrupt flag bit is enabled (ready for an interrupt) and the zero flag bit is set to 0. The

Data Index (DI), AX, BX and CX registers are also implemented and given an initial

value of zero.

The physical address to fetch the opcode is calculated as ((CS×16)+IP). The address

calculation for the direct addressing mode (e.g., MOV [BX],CH instruction) is

implemented as ((DS×16)+BX). The address calculation for PUSH and POP operations is

implemented as ((SS×16)+SP).

6.2.3.3 Resolution of the interrupt request (INTR) signals

If the processor module is already executing an interrupt request, the interrupt flag will be

disabled and the processor will not acknowledge any new interrupt requests unless the

execution of the current interrupt routine has finished and the interrupt flag is enabled. In

the scenario where the interrupt flag is disabled, any interrupt request sent by the

interrupt controller module will remain pending in the interrupt controller module.

During this period, any new interrupt generated by the timer module will be lost as there

is no buffer implemented in the Interrupt controller module. For future work a buffer or

queue could be implemented in the interrupt controller module and a priority mechanism

can also be implemented in the interrupt controller module.

 59

6.2.3.4 Software Flow diagram

After joining the federation, this module waits for all its attributes to be subscribed by

other federations. Figure 21 shows a flow chart of this module.

A

B

If the execution of an
Instruction is in progress

INTR sng. from
Interrupt controller

module.

CU informs EU

The processor is
executing (or starts

executing) an
interrupt routine

Instruction
queue empty?

Fetch the op-code
from the Ins. Queue

Update the Ins. Queue and
start executing the op-code

Yes

Yes
No

No

If the interrupt flag is
enabled

No

B

Yes

Time advance till
"Lookahead" period

Generate an Output
Event and wait till

LBTS

C

C

Read Op-code from
memory and store it

in the Ins. Queue and
wait till LBTS

if SimEnd

No

Yes

A

STOP

Time advance till
"Lookahead" period

Yes

No

Figure 21: Flow chart of the processor module

6.2.4 Bus Controller Module

In this section the assumptions made for the bus controller module and the software flow

chart are discussed. The concept for the development of the module using the DEVS

 60

formalism is the same as discussed for the memory module in section 6.2.2.2. For further

details, the software code of this module along with the whole simulator is referred in

Appendix A.2.

6.2.4.1 Assumption

The bus controller gets the status signals S0 S1 S2 (as discussed in section 5.1.2.2.3) from

the processor module, decodes them and generates appropriate bus cycles/signals to the

peripheral devices. The decoding of the status signals is assumed as shown in table 4.

Status Signals S0 S1 S2 Bus cycles/signals generated by the bus controller module

1 Memory read

2 Memory write

3 Interrupt acknowledge signal to the interrupt controller module

4 Request to clear interrupt acknowledge signal.

Table 4: Decoding of the status signals (S0 S1 S2) by the bus controller module.

6.2.4.2 Software Flow diagram

After joining the federation, this module waits for all its attributes to be subscribed by

other federations. Figure 22 shows a flow chart of this module.

 61

If Status sng
= 2

Log "Mem WR
request from
Processor"

Time advance till
"Lookahead"

period

Generate Memory
WR sng. for Memory

& wait till LBTS
B

If Status sng
= 3

Log "ACK sng to
Interrupt Cont.
from Processor"

Time advance till
"Lookahead"

period

Generate ACK sng. for
Interrupt controller &

wait till LBTS
B

If Control sng
= 4

Log "Request to
clear ACK from

Processor"

Time advance till
"Lookahead"

period

Generate clear ACK sng.
for Interrupt controller &

wait till LBTS
B

Yes

Yes

Yes

No

No

No

If Status sng
 = 1

Log "Mem. RD
request from
Processor"

Time advance till
"Lookahead"

period

Generate Memory
RD sng. for Memory

& wait till LBTS
B

Yes

No

Wait till SimStart
signal from
Processor

Status signal
from Processor

A

If Status sng
>5 or < 1

Log "Undefined
sng from

Processor"

Time advance
for next Event

B

if SimEnd

No

Yes

A

STOP

Yes

NoB

Figure 22: Flow diagram of the bus controller module.

6.2.5 Interrupt Controller Module

In this section the assumptions made for the interrupt controller module and the software

flow chart are discussed. The concept for the development of the module using the DEVS

formalism is the same as discussed for the memory module in section 6.2.2.2. For further

 62

details, the software code of this module along with the whole simulator is referred in

Appendix A.2.

6.2.5.1 Assumption

It is assumed that, being a basic interrupt module, there is no priority-resolving algorithm

implemented for the interrupt signals triggered by different peripheral devices. A buffer

or queue for the output signal (the interrupt request) is not implemented and the effect of

this is discussed in section 6.2.3.3. The interrupt controller module sends out the vector

type after getting the interrupt acknowledge signal and it is assumed that the vector type

for the timer interrupt is zero. More detailed functionality of the interrupt controller was

discussed in section 5.1.2.4 and can be added in future work.

6.2.5.2 Software Flow diagram

After joining the federation, this module waits for all its attributes to be subscribed by

other federations. Figure 23 shows a flow chart of this module.

 63

Wait till SimStart
signal from
Processor

Wait for DEVS-
input event

ACK sng from
Processor/bus

Time advance for
next event

Time advance till
"Lookahead"

period

Send Vector type to
the Processor &

wait till LBTS period

Interrupt from
Timer module

Time advance till
"Lookahead"

period

Send Interrupt
Request signal to the
Processor & wait till

LBTS period

A

Yes Yes

No No

if SimEnd

No

Yes

A

STOP

Figure 23: Flow Chart of the interrupt controller module

6.2.6 Timer Module

In this section the assumptions made for the timer module and the software flow chart are

discussed. The concept for the development of the module using the DEVS formalism is

the same as discussed for the memory module in section 6.2.2.2. For further details, the

software code of this module along with the whole simulator is referred in Appendix A.2.

6.2.6.1 Assumption

This module only interacts with the Interrupt controller module. It sends out an INT

signal after every 350 time units. The timer module does not wait for the simulation start

 64

signal from the processor. This module starts its function as soon as the interrupt

controller joins the federation and subscribes to the interrupt (INT) request signal of the

timer module. It generates 3 INT signals and then resigns the federation.

6.2.6.2 Software Flow diagram

Figure 24 shows a flow chart of this module.

Wait till LBTS and
send INT signal to
Interrupt controller

Time advance till
"Lookahead" period

Initialize INT count

Increment to INT count

A

if INT count < max.
INT STOP

Yes

No

A

Figure 24: Flow chart of the timer module.

 65

CHAPTER 7

Results

In this chapter the results of the simulator (developed as a case study) are discussed. Each

module in the simulator, logs the messages sent out or received from the other modules

along with the timing information and the values of appropriate internal state variables. In

this chapter, a detailed interpretation of the logs of the processor module and the memory

module is shown as a reference and the logs of the other modules can be interpreted in a

similar way. Later in the chapter the message event sequences, from each module’s logs,

are extracted and presented with respect to the simulation time. These message event

sequence diagrams are drawn for the minimum and maximum operation modes of the

case study processor. At the end of this chapter, an analysis of these results is given, and

the acquired timing information for opcode executions is compared with the theoretical

values of Table 2 and 3.

This simulator is developed using Visual C++ version 6.0, the DMSO RTI-NG version

1.3, and the Win98se operating system. A standalone computer (Intel Pentium-II

processor 400MHz) is used for the simulations and the computer’s execution time to run

a simulation of 1600 clock cycles is about 4 minutes.

 66

7.1 Module Log Interpretations

The log files for different modules are referred in appendix B. Below is the

explanation/interpretation of snap shots taken from the logs of the process and the

memory modules. Other modules’ logs can be interpreted similarly.

7.1.1 Processor’s Log

The following discussion explains each line of Figure 25. Each number in the log is a

decimal value.

Line 1 of Figure 25 shows the time advance requested by the processor module to the

RTI. In return the RTI calculates the LBTS for the federation and issues a time advance

grant to the processor module. This message is shown in line 3. The reason for not

granting (line 3) the requested time (line 1) by the RTI is the arrival of “Data From

Memory” attribute as shown in line 2. Line 4, 5 and 6 show the contents of the internal

registers of the processor and the contents of the instruction queue. Line 6 reflects that

“2” has arrived in the processor from the memory module (line 2) and was added to the

instruction queue. Line 7 shows the lookahead value for sending out the processor’s

attribute(s). Line 8 and 9 shows the messages sent out by the processor to other modules

at time (29.0 + lookahead) units.

---Processor log---

Line 1 : Request time = 30.0000000000
Line 2 : Data from Memory = 2
Line 3 : FED_HP: Time granted (timeAdvanceGrant) to: 29.0000000000
Line 4 : Zero Flag=0 INT Flag=1 AL=0 DI=0 BX=0 CL=0 CH=0
Line 5 : IP=7 CS=1 SS=7 SP=31 DS=4
Line 6 : Contents of the queue: 177 2
Line 7 : Lookahead = 3.0000000000
Line 8 : ControlSignalFromProToMem = 1

 67

Line 9 : AddressFromPro = 23

Figure 25: Snap shot of Processor module’s log

7.1.2 Memory module’s Log

The following discussion explains each line of Figure 26. Line 1 and 4, the request time

and time advance grant, are explained in section 7.1.1. Line 2 and 3 show the messages

sent to the memory module via the RTI. Time 552.0 is the current time of the federation

as shown in line 4. Line 5 shows the lookahead information used by the RTI simulation

engine in order to calculate the LBTS for the federation. Lookahead of 1.0 indicates that

the memory federate will not send any data until (543.0 + 1.0) units. “Data from

memory” as shown on line 5 is actually sent out at (552.0 + 1.0) units. Lines 7 to 15 show

the 144 byte contents of memory (16 bytes per line). Section 6.2.2.1 (Figure 16) discusses

the logical memory segments along with each segment starting addresses assumed for

this case study. Line 7 has 16 memory locations for the vector table of the interrupt

vector types. First byte 30 is the least significant byte of the IP register. Next 0 is the

most significant byte of the IP and next two locations 1 and 0, show the least and the

most significant bytes of the CS. This (IP+(CS×16)) value points to a memory location

where the interrupt routine resides. From line 8 and onwards, the code segment starts and

it has all the opcodes for the main program, as stated in table 2. The last two bytes of line

9 and line 10 has the opcodes for the interrupt routine, as stated in table 3. From line 11

and onwards, the data segment starts and it has five even numbers generated. The main

program actually generates ten even numbers, but due to an interrupt call execution

control jumps from the main program to the interrupt routine. Once the interrupt routine

 68

is fully executed, the main program’s execution continues until it generates ten even

numbers. The first byte on line 13 shows the output of the interrupt routine. Being a

simple counter, it increments this memory location on each interrupt call. Line 14 and 15

show the stack segment. Starting from the bottom of the stack, it contains the least and

the most significant bytes of the flag register, the least and the most significant bytes of

the CS and the least and the most significant bytes of the IP.

--Memory log---

Line 1 : Request time = 555.0000000000
Line 2 : Control Signal From Pro To Mem = 1
Line 3 : Address from Processor = 32
Line 4 : FED_HP: Time granted (timeAdvanceGrant) to: 552.0000000000
Line 5 : LOOKAHEAD = 1.0000000000
Line 6 : Data From Memory = 233
Line 7 : 30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 8 : 181 0 191 0 0 177 2 187 0 0 3 223 136 47 71 2
Line 9 : 233 131 199 10 117 13 244 0 0 0 0 0 0 0 83 187
Line 10 : 0 32 138 7 254 192 136 7 91 207 0 0 0 0 0 0
Line 11 : 0 2 4 6 8 0 0 0 0 0 0 0 0 0 0 0
Line 12 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 13 : 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 14 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 15 : 0 0 0 0 0 0 0 0 0 0 0 10 0 1 2 0
 --

Figure 26: Snap shot of Memory module’s log

7.2 Message Event Sequence in Minimum Mode

Following results are taken from the log files, referred in appendix B, and presented in

the form of message event sequence diagrams. As an example, the message event

sequence of memory read (RD), memory write (WR) and interrupt acknowledge cycles

are discussed in section 7.2.1 and 7.2.2. The vertical axis of these sequence diagrams

shows the time in terms of clock cycles and the horizontal axis shows the interactions

between different modules.

 69

7.2.1 Memory RD and Memory WR Operations

Figure 27 shows the level of abstraction in terms of the control signals and the timing

information. The implementation of all the control signals and the detailed timing

information is outside the scope of this research (chapter 4).

t

t+4

Mem RD control sng. and
Address from Processor

Data from memory

t+3

PROCESSOR MEMORY

(b)

PROCESSOR MEMORY

Mem WR control sng.; Address
and Data from Processor

t

t+4

(a)

Figure 27: (a) Memory Write (b) Memory Read operation in minimum mode

7.2.2 Interrupt acknowledge Operation

For an interrupt acknowledge (INTA) operation, the processor sends an acknowledge

signal and the interrupt controller replies with the vector type. One bus cycle is required

for the interrupt acknowledge signal and another for acquiring the vector type. This is

shown in Figure 28.

t+4

INTERRUPTPROCESSOR

Interrupt Ack. (INTA) signalt

 Return INT's Vector typet+8

Figure 28: Interrupt acknowledge (INTA) operation in minimum mode

 70

7.3 Message Event Sequence in Maximum Mode

Following results are extracted from the log files, referred in appendix B, and presented

in the form of message event sequence diagrams. As an example, the message event

sequence of memory read (RD), memory write (WR) and interrupt acknowledge cycles

are discussed in section 7.3.1 and 7.3.2.

7.3.1 Memory RD and Memory WR Operations

The processor sends a memory read or memory write request to the bus module, and the

bus module generates the appropriate control signals to the memory module. Figure 29

shows the level of abstraction in terms of the control signals and the timing information.

t+4

t
RD Request (S0 S1 S2) Mem RD control sng.

Data RD from memory

t+1
t+2t+2

t+3Address from Processor

PROCESSOR BUS MEMORY

(b)

t+4

t+2t+2

PROCESSOR BUS MEMORY

t
t+1

WR Request (S0 S1 S2)
Mem WR control sng.

Data WR to memory; Address & Data from
Processor

(a)

Figure 29: (a) Memory Write (b) Memory Read operation in maximum mode

7.3.2 Interrupt acknowledge Operation

For an interrupt acknowledge (INTA) operation in maximum mode, the processor sends a

signal to the bus module to originate the interrupt acknowledge signal to the interrupt

controller module. In response, the interrupt controller sends out the vector type to the

processor. This operation is shown in Figure 30.

 71

t+4

PROCESSOR BUS

t
t+1

INTA Request (S0 S1 S2)
INTA signal

INTERRUPT

 Return INT's Vector typet+8

Figure 30: Interrupt acknowledge (INTA) operation in maximum mode

7.4 Sequence diagram for Interrupt Call Operation

The sequence diagram, Figure 31, explains the interactions between different modules in

terms of bus cycles during an interrupt call. The time x represents the total time elapsed

between the generation of the interrupt signal (at time t) and the execution of the interrupt

return (IRET) statement.

 72

PROCESSOR

t+8

t+12

t+4

MEMORYINTERRUPT TIMER 1

tINT generated
INTR

Step 1: PUSH Flag_Reg (Least Significant Byte)

Step 3: PUSH CS (Least Significant Byte) t+16

t+20

Step 7: INT ACK signal

Step 8:Vector type

Step 9: Read CS from vector table (LSB)

Step 2: PUSH Flag_Reg (Most Significant Byte)t+12

Step 4: PUSH CS (Most Significant Byte)

Step 5: PUSH IP (Least Significant Byte)

Step 6: PUSH IP (Most Significant Byte)

t+16

t+20

t+24

t+28

t+32

t+24

t+28

t+32

t+40
t+36

Step 10: Read CS from vector table (MSB)
t+44

t+42

t+48
t+46

Step 11: Read IP from vector table (LSB)

Executing the
interrupt routine.

Step 12: Read IP from vector table (MSB)
t+52

t+56

t+50

t+54

t+x

t+x+4

t+x+8

t+x+12

t+x+16

t+x+20

t+x+24

t+x+2

t+x+6

t+x+10

t+x+14

t+x+18

t+x+22

POP IP (MSB)

POP IP (LSB)

POP CS (MSB)

POP Flag_Reg (MSB)

POP CS (LSB)

POP Flag_Reg (LSB)

Figure 31: Interaction flow between different modules during Interrupt operation.

7.5 Analysis of the results

As mentioned in chapter 4, the detailed bus level signals are not the scope of this

research. But for implementing the interactions between different federates, the time

breakdowns within a bus cycle (represented as 4 time units) are required. These time

breakdowns (figure 27, 29 & 30) should not be compared with the real timing diagrams.

To analyze the case study’s results the timing information gathered from the logs of

different modules can be verified against the theoretical timing values given in Table 2

 73

and 3. The level of accuracy for the execution unit of the processor is up to one clock

cycle. Hence the simulation results for the execution timing for each program instruction

should match with the theoretical timing values of Table 2 and 3. Here two program

instructions (opcodes) from the case study example are analyzed.

MOV [BX],CH

Table 3 shows that it requires 14 clock cycles for the EU and the BIU to execute this

opcode. Figure 32 shows a snap shot of the processor module’s log, when the MOV

[BX],CH opcode is at the top of the Instruction queue. This opcode moves the value of

CH register to the memory location calculated as ((DS×16)+BX). Lines 4 and 5 show the

values of the BX, CH and DS registers. Hence as an execution result of this opcode the

value 2 should be moved to a memory location of 4×16+1=65. Line 3 shows that 138.0 is

the execution start time for this opcode.

---------------------------Processor log------------------------------
Request time = 139.0000000000
Data from Memory = 47
FED_HP: Time granted (timeAdvanceGrant) to: 138.0000000000
Zero Flag=0 INT Flag=1 AL=0 DI=1 BX=1 CL=2 CH=2
IP=14 CS=1 SS=7 SP=31 DS=4
Contents of the queue: 136 47
Lookahead = 3.0000000000
ControlSignalFromProToMem = 1
AddressFromPro = 30
--

Figure 32: Snap shot of the Processor’s log for the analysis of the MOV [BX],CH
instruction.

Figure 33 shows a snap shot of the memory module’s log when the content of the CH

register has been moved to the memory location of 65. This is shown in the second byte

of line 10. Line 5 shows that 152.0 is the execution end time for this opcode.

-------------------------------Memory log------------------------------
Request time = 155.0000000000

 74

Control Signal From Pro To Mem = 2
Address from Processor = 65
Data from Processor = 2
FED_HP: Time granted (timeAdvanceGrant) to: 152.0000000000
30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
181 0 191 0 0 177 2 187 0 0 3 223 136 47 71 2
233 131 199 10 117 13 244 0 0 0 0 0 0 0 83 187
0 32 138 7 254 192 136 7 91 207 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33: Snap shot of the Memory’s log for the analysis of the MOV [BX],CH

instruction.

The difference between the execution start and end time is 14 clock cycles. This result

matches the theoretical clock cycle value (table 2) required for the execution of MOV

[BX],CH instruction.

POP BX

Table 3 shows that it requires 12 clock cycles for the EU and the BIU to execute the POP

BX opcode. Figure 34 shows a snap shot of the processor module’s log, which can be

interpreted as discussed in section 7.1.1. Line 5 shows that 91, the opcode of the POP

BX, is at the top of the instruction queue and line 2 shows that the simulation time is

515.0 units.

---------------------------Processor log------------------------------
Request time = 515.0000000000
FED_HP: Time granted (timeAdvanceGrant) to: 515.0000000000
Zero Flag=0 INT Flag=0 AL=1 DI=4 BX=32 CL=2 CH=8
IP=42 CS=1 SS=7 SP=23 DS=4
Contents of the queue: 91 207
Lookahead = 3.0000000000
ControlSignalFromProToMem = 1
AddressFromPro = 58
--

Figure 34: Snap shot of the Processor’s log, showing the start of the execution of the

POP BX instruction.

 75

Figure 35 shows a snap shot of the processor log when the contents of the BX register

have been retrieved (pulled) from the memory location ((SS×16)+SP). BX is a 16 bit

register, so the Intel 8088 processor requires two bus cycles to retrieve the register value.

The first bus cycle retrieves the most significant byte and the second bus cycle retrieves

the least significant byte. Figure 35 and line 2 shows the transfer of the least significant

byte (4), line 4 and 7 show that the value of the BX register has been updated from 32 to

4. Line 3 shows the execution end time (527.0 units) for the POP BX instruction. Line 9

shows that the opcode of POP BX (91) has been removed from the instruction queue after

the completion of this instruction.

---------------------------Processor log------------------------------
Request time = 527.0000000000
Data from Memory = 4
FED_HP: Time granted (timeAdvanceGrant) to: 527.0000000000
Zero Flag=0 INT Flag=0 AL=1 DI=4 BX=32 CL=2 CH=8
IP=42 CS=1 SS=7 SP=25 DS=4
Contents of the queue: 91 207
Zero Flag=0 INT Flag=0 AL=1 DI=4 BX=4 CL=2 CH=8
IP=42 CS=1 SS=7 SP=25 DS=4
Contents of the queue: 207
Lookahead = 3.0000000000
ControlSignalFromProToMem = 1
AddressFromPro = 138

Figure 35: Snap shot of the Processor’s log, showing the end of the execution of the POP

BX instruction.

The difference of the instruction fetch time and the end execution time is 12 clock cycles.

This result matches with the theoretical value (Table 3) and hence the simulator’s

execution has been verified against the theoretical timing values.

 76

CHAPTER 8

Conclusions

8.1 Conclusions

The following conclusions are drawn from this research.

• Hardware platform components have been modeled by using the DEVS atomic

formalism and simulated under the HLA framework.

• Conservative time advance approach has been used in the DEVS atomic model, as

this is simple and HLA compliant.

• The level of details shown for each hardware component in chapter 5, addresses the

requirements of the hardware designers to simulate their designs before physical

implementation. The case study has proved that by implementing these models,

accurate results can be gathered within a clock cycle (in section 7.5). For this case

study, the implementation of all the features suggested (in chapter 5) for the hardware

components were not required, as this study is focused for a specific hardware

platform (Intel 8088 based).

• The HLA-specific details that should be visible in a component’s model of a

hardware platform are discussed in section 6.2.2.3 and concluded as follows.

 77

o The attributes for input and output ports should be published or subscribed to

the RTI and defined in the HLA compliant FOM/SOM.

o In the start of the simulation, a component should be able to register itself

with the RTI so that it becomes a part of the federation. At the end it should be

able to resign.

o A component’s model should be able to react on the RTI’s call for the δext

function. It should be able to schedule the ta function and any wait states

through the RTI. For the λ function, the component’s model should be able to

create and send out the AHVPS using RTI methods.

8.2 Summary of Contributions

The list of contributions is as follows.

• The DEVS/HLA approach is developed to model and simulate computer hardware

platforms.

• An approach is developed towards flattening the hierarchy when the systems are

modeled in the DEVS formalism and worked under the HLA framework (section

5.1.2).

• An HLA framework is defined for the computer systems to be simulated (section

5.1.1).

• As a case study, a simple hardware platform (Intel 8088 based) is modeled and a

simulator is developed. These hardware components’ models can be further

developed and generalized (as suggested in chapter 5) to build this simulator as a

simulation tool for computer systems designers.

 78

• With the help of this case study, the mapping of the hardware platforms with the HLA

has been demonstrated.

• Recommendations for future work have been made as shown in section 8.3.

8.3 Future Research

Following are the recommendations for future work along with some suggestion.

• A software tool (as discussed in section 6.2.2.3), based on the DEVS formalism and

Atomic models, can be developed. This tool should be able to send/receive the

transition functions directly to/from the RTI and the input and output events should

be defined in the HLA compliant FOM/SOM.

• The simulator developed in this research and used for the case study can be further

developed for general hardware platform models and the level of details in terms of

timing and bus level signals can also be implemented. This development could be a

step in the direction of abstraction to reality.

• Analyzing the performance for hierarchical models (the DEVS-Coupled) versus flat

models (the DEVS-Atomic), using the HLA framework. This analysis will be useful

for future simulator development. The processing delay for the interaction of

components A and D (as shown in Figure 36) could be one of the parameters of

interest.

 79

RTI

Simulation
engine

A

Simulation
engine

B C D

RTI

A B C D

(a) (b)

Figure 36: (a) Hierarchical models using the HLA framework (b) Flat models using the

HLA framework

• A case study could be done for the combination of systems developed using flat (the

DEVS-atomic) approach and hierarchy (the DEVS-coupled) approach, using the HLA

framework. Identification of all the issues and implementation requirements could be

a useful contribution for future simulator developments. A block diagram is shown in

Figure 37.

RTI

Simulation
engine

A B

C

Figure 37: Combination of Flat and Hierarchical models using the HLA framework

 80

References

[1] Dahmann, J.S. “High Level Architecture for simulation” Distributed Interactive

Simulation and Real Time Applications, 1997., First International Workshop on ,

1997. Page(s): 9 -14

[2] Zeigler, B.P., et al. “Implementation of the DEVS Formalism over the

HLA/RTI: Problems and Solutions”, Simulation Interoperability Workshop,

March 1999. Orlando,FL.

[3] Banks, Jerry, Carson, John S., Nelson, Barry L. “Discrete-Event System

Simulation”. Second Edition, Prentice-Hall International Series, 1996

ISBN 0-13-217449-9

[4] Wainer, G “CD++: A toolkit to develop DEVS models” Online report, Systems

and computer engineering department, Carleton University.

URL: http://www.sce.carleton.ca/faculty/wainer/wbgraf/index.html

[5] IEEE standard for modeling and simulation (M&S;) high level architecture (HLA)

- Framework and Rules IEEE Std. 1516-2000 , Sep. 2000; Page(s): i -22

[6] IEEE standard for modeling and simulation (M&S;) high level architecture (HLA)

- Federate Interface Specification IEEE Std 1516.1-2000 , 2001; Page(s): i –

467

[7] IEEE standard for modeling and simulation (M&S;) high level architecture

(HLA)-object model template (OMT) specification IEEE Std 1516.2-

2000 , 2001; Page(s): i -130

 81

[8] High-level Architecture / Runtime Infrastructure

 RTI 1.3-Next Generation, Programmer’s Guide Version 3.2; 7 September 2000

 www.dmso.mil

[9] Zeigler, B., Cho, H.; Lee, J.; Sarjoughian, H. "The DEVS/HLA Distributed

Simulation Environment And Its Support for Predictive Filtering". DARPA

Contract N6133997K-0007: ECE Dept., UA, Tucson, AZ. 1998.

[10] Zeigler, B. P., Kim, T. G., and Praehofer, H. “Theory of Modelling and

Simulation”, Academic Press, 2nd Edition, 2000.

[11] Rodriguez, D.; Wainer, G. "New Extensions to the CD++ tool". In Proceedings of

SCS Summer Multiconference on Computer Simulation. 1999.

[12] Kim, Tag Gon “DEVS Research at KAIST CORE LAB: From Theory to

Practice” Computer engineering (CORE) Lab. Department of Electrical

Engineering, KAIST, Korea. July 3, 1995

Online report URL: http://sim.kaist.ac.kr/~tkim/devsim.html

[13] Intel iAPX 88 Book July 1981.

[14] Triebel A. Walter and Singh, Avtar “16-bit Micro-Processors. Architecture,

Software and Interface Techniques.”; Prentice-Hall, Inc, Englewood Cliffs, NJ.

 ISBN 0-13-811407-2 01

 82

APPENDIX A

Simulator’s Directory Structure &

Software Code in C++

This section describes the procedure to configure the simulator (developed for the case

study) on the computer and provides the software code, of different modules, required to

run the simulator. The preliminary step during the configuration process is to get

registered and download the HLA/RTI software from the DMSO Internet site

(http://www.dmso.mil). Then run the Helloworld example on the computer to verify the

computer’s configuration and the correct installation of the HLA software. Section A.1

describes the directory structure for the simulator and section A.2 gives a list of files

attached with this document along with some basic definitions.

For this research work, the RTI version 1.3 (Operating System: Win98se; Compiler:

VC++6.0) is used.

A.1 Directory Structure

The directory structure of different modules is shown in Figure 38. This is one of many

possible structures/configurations. All the modules i.e., Processor, Bus, Interrupt and

Timer1 have the same directory structure as Memory module.

 83

apps
(folder)

Helloworld
(folder)

HardwarePlatform
(folder)

Memory
(folder)

Processor
(folder)

Interrupt
(folder)

Bus
(folder)

Timer1
(folder)

scr
(folder)

include
(folder)

data
(folder)

(Files)
MemoryMain.cpp
Memory.cpp
MemoryFederateAmbassador.cpp

(Files)
Memory.h
MemoryFederateAmbassador.h

(Files)
HP.fed
RTI.rid

Figure 38: Simulator’s directory structure. (This is one of many possible configurations).

A.2 Software Code in C++

Following is the list of files, provided in a floppy disk, attached with this document.

• ProcessorMain.cpp: It contains the main flow of Processor module.

• Processor.cpp: It contains the body of Processor class. Code of all the functions,

defined in Processor.hh, is present here.

• ProcessorFederateAmbassador.cpp: Functions of ProcessorFederateAmabassador.hh

are defined here. It contains a lot of error/exception handling and appropriate code for

every function

• Processor.hh: It defines the functions, variables and constants of Processor class.

• ProcessorFederateAmbassador.hh: It defines ProcessorFederateAmbassador as a

derived class of abstract FederateAmbassador class to implement methods so that RTI

can call functions in the federate.

 84

• MemoryMain.cpp

• Memory.cpp

• MemoryFederateAmbassador.cpp

• Memory.hh

• MemoryFederateAmbassador.hh

• BusMain.cpp

• Bus.cpp

• BusFederateAmbassador.cpp

• Bus.hh

• BusFederateAmbassador.hh

• InterruptMain.cpp

• Interrupt.cpp

• InterruptFederateAmbassador.cpp

• Interrupt.hh

• InterruptFederateAmbassador.hh

• Timer1Main.cpp

• Timer1.cpp

• Timer1FederateAmbassador.cpp

• Timer1.hh

• Timer1FederateAmbassador.hh

• HP.fed: HP (Hardware Platform) provides an interface between the DEVS model and

RTI software. This HP.fed file is developed by using OMDT tool. This tool and its

manual can be obtained, along with the HLA/RTI software, from www.dmso.mil.

 85

APPENDIX B

Log Files for each Federate

This section contains a list of log files, provided in a floppy disk, attached with this

document. The list contains minimum mode and maximum mode log files.

• Processorlog_min.txt

• Memorylog_min.txt

• Interruptlog_min.txt

• Timer1log_min.txt

• Processorlog_max.txt

• Buslog_max.txt

• Memorylog_max.txt

• Interruptlog_max.txt

• Timer1log_max.txt

