10

20

25

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 1

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 32:1-46 (DOI: 10.1002/spe.482)

CD++: a toolkit to develop RZ
DEVS models

Gabriel Wainer*:

Department of Systems and Computer Engineering, Carleton University, 4456 Mackenzie Building,
1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

SUMMARY

The features of a toolkit for modeling and simulation based on the DEVS formalism are presented. The
tool is built as a set of independent software pieces running on different platforms. Not only are the main
characteristics of the environment presented, a focus on its use is also considered by inclusion of application
examples for a variety of problems. Many models can be defined in an automated fashion, simplifying the
construction of new models and easing their verification. The use of this formal approach has allowed the
development of safe and cost-effective simulations, significantly reducing development time. Copyright ©
2002 John Wiley & Sons, Ltd.

KEY WORDS: discrete event modeling and simulation; modeling methodologies; DEVS formalism; Cell-DEVS;
modeling and simulation tools

INTRODUCTION

In recent years, a number of modeling techniques have been introduced in order to improve the
definition and analysis of complex dynamic systems. The development of simulation tools has often
been closely related to the execution of these models. A considerable effort has been put into the
development of formal modeling techniques, which proved to be useful thanks to their ability to
define executable models. Several of these methodologies were created with the purpose of analyzing
discrete-event systems; that is, systems that can be represented using continuous time and discrete state
variables [1].

The use of a continuous time base enables accurate timing definitions, which improves model
precision. Continuous time representations avoid small discrete time segments, thus reducing
processing requirements. A discrete-event formalism that has gained popularity in recent years is called
DEVS (discrete event systems specification). It allows a modular description of models that can be
integrated using a hierarchical approach [2,3]. It was developed as a theory for discrete event models,

*Correspondence to: G. Wainer, Department of Systems and Computer Engineering, Carleton University, 4456 Mackenzie
Building, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6.
TE-mail: gwainer @sce.carleton.ca

Received 19 January 2001
Copyright © 2002 John Wiley & Sons, Ltd. Revised 30 May 2002
Accepted 27 June 2002

10

15

20

25

30

35

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 2

2 G. WAINER SR E

but recent extensions allow the inclusion of continuous variable systems [4—6]. Using these approaches,
quantized or generalized DEVS can be applied to define arbitrary ordinary differential equations. The
Cell-DEVS formalism [7] is a combination of DEVS and cellular automata [8] formalisms with timing
delays. The idea is to permit a complex physical system to be described as a space composed by cells,
in which each element in the grid is defined as a DEVS model using explicit timing.

We have built a toolkit to develop models based on DEVS and Cell-DEVS. The core of the
toolkit is the CD++ environment [9], which implements DEVS and Cell-DEVS theory (including
quantized systems). The toolkit has been built as a set of independent software pieces. Each tool
runs in different operating environments (Windows 95/NT, Linux, AIX, IRIX, HP-UX and Solaris).
Graphical interfaces were built as independent front-ends and current versions use Java and VRML to
insure platform-independent execution. This approach lets the user, for instance, debug the models
in a workstation, execute them in a high-performance environment and visualize the results on a
personal computer. The visualization of the execution results can be done locally or remotely, as we
have included facilities for Web-based simulation. In this paper, we present the main features of the
toolkit and its use in the development of simulation models, focusing on the development process.
After reviewing the basic concepts related to DEVS and Cell-DEVS theory, we introduce the main
features of the toolkit and show how to define new models. Then, we show how to execute models and
present some simulation results.

THE DEVS FORMALISM

DEVS was originally defined in the 1970s as a discrete-event modeling specification mechanism. It
was derived from systems theory and allows hierarchical modular models that can be easily reused to
be defined. A real system modeled with DEVS is described as a composite of submodels, each of them
being behavioral (atomic) or structural (coupled). Closure under coupling allows coupled models to be
integrated into a model hierarchy. Consequently, the security of the simulations is enhanced, testing
time is reduced and productivity is improved.

Each model is defined by a time base, inputs, states, outputs and functions to compute the next states
and outputs. A DEVS atomic model is formally described by

M = <Xa Sa Y7 5int’ 56)(1’)"7 ta)

where X is the input events set, S is the state set, Y is the output events set, iy is the internal transition
function, Jex; is the external transition function, A is the output function and 7a is the time advance
function.

Each model is seen as having input and output ports to communicate with other models. The input
and output events determine the values to appear in those ports. The input external events are received
in input ports and the specification of the external transition function defines the behavior under such
inputs. The internal transition function is activated after the lifetime of the present state has been
consumed, which is defined by the time advance function. Its goal is to produce an internal event,
which leads to a state change. The desired results are spread through output ports by the output function,
which executes before the internal transition.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 3

SRE CD++: A TOOLKIT TO DEVELOP DEVS MODELS 3

A DEVS coupled model is composed of several atomic or coupled submodels. They are formally
defined as
CM =(X,Y, D, {M;}, {Ii},{Zi;})

where X is the set of input events, Y is the set of output events, D is an index for the components of
the coupled model and, for all i € D, M; is a basic DEVS (that is, an atomic or coupled model). I; is
the set of influencees of model i (that is, models that can be influenced by outputs of model i) and, for
all j € I;, Z;j isthe i to j translation function.

We can see that coupled models are defined as a set of basic components (atomic or coupled),
which are interconnected. The influencees of a model define to which model outputs must be sent. The
translation function is in charge of converting the outputs of a model into inputs for the others. To do
so, an index of influencees is created for each model (/;). This index defines that the outputs of the
model M; are connected to inputs in the model M, where j is an element of I;.

Cell-DEVS [10] is an extension to the DEVS formalism, which allows the implementation of cellular
models with timing delays. A cellular model can be defined as an infinite n-dimensional lattice with
cells whose values are updated according to a local rule. This is done using the present cell state and
those of a finite set of nearby cells (called its neighborhood). The goal of Cell-DEVS is to improve the
execution performance of cellular models by using a discrete-event approach and to enhance timing
definition by making it more expressive. Here, each cell is defined as an atomic model using timing
delays and it can be later integrated to a coupled model representing the cell space. Cell-DEVS atomic
models can be specified as

IDC = (X, Y, S, N, delay, d, 8in, Sext, T, A, ta)

where X defines external input events, Y is the set of external output events, S is the set of sequential
states for the cell, N is the set of input events, delay defines the kind of delay for the cell, d defines the
delay’s length, §in is the internal transition function, dex¢ the external transition function, 7 is a local
computing function, A the output function and ¢a is the time advance function.

Each cell uses N inputs to compute its next state. These inputs, which are received through the model
interface, activate the local computing function. A delay can be associated with each cell, allowing the
deferral of the computed result to be transmitted to other models. Transport delays model a variable
commuting time. On the other hand, inertial delays have pre-emptive semantics (some scheduled events
can be avoided). The model advances through the activation of the internal, external, output and state’s
duration functions, as in other DEVS models.

Once the cell behavior is defined, they can be put together to form a coupled model:

GCC = (Xlist, Ylist, X, Y, n, {t1, ..., t,}, N, C, B, Z)

where Xlist is an input coupling list, Ylist is an output coupling list, X is the set of external input
events, Y is the set of external output events, n defines the dimension of the cell space, {f1, ..., ,} is
the number of cells in each dimension, NV is the neighborhood set, C is the cell space state set, B is the
set of border cells and Z is the translation function.

This specification defines a coupled model for an n-dimensional array of atomic cells. Each of them
is connected to its neighborhood, whose shape must be defined. In order to define the cell space within
finite boundaries, the border cells should be provided with a different behavior than the rest of the
space. Otherwise, it is considered that the cells in a border are connected with those in the opposite

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

30

35

40

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 4

4 G. WAINER SR E

one. Finally, the Z function defines the external couplings using the Xlist and the Ylist and internal
coupling using the neighborhood definition.

As explained above, both formalisms provide the advantages of being discrete-event approaches
in terms of execution performance. Discrete event models evolve in continuous time, represented by
the occurrence of instantaneous events that can occur asynchronously at unpredictable times. The
hierarchical and modular organization allows multiple layers of a given application to be described.
DEVS models are closed under coupling, therefore a coupled model is equivalent to an atomic one,
improving reuse. This organization makes the definition of submodels easier, which in turn makes the
definition of different levels of abstraction easier. The existence of an internal transition function eases
the definition of certain properties. Internal state changes can be captured, describing complex internal
interactions in a simple and natural way.

Both DEVS and Cell-DEVS provide the advantages of being a formal approach. Formal specification
mechanisms are useful to improve the security and development costs of a simulation. DEVS supplies
facilities to translate the formal specifications into executable models. In this way, the behavior of a
conceptual model can be validated against the real system and the response of the executable model
can be verified against the conceptual specification. The formal specification of the models makes the
verification of the simulators easier, as they should mimic the behavior of the models in a homomorphic
fashion. In [11], a mechanism for achieving this goal was proposed and we have used a simulation
approach based on this strategy. Simulation engines are independent from the models and a modeler
only has to focus on defining the model correctly following the previous specifications.

DEVS has also been shown to be a general formalism, such that several other existing formalisms
can be expressed as DEVS models (including Petri nets, FSM, cellular automata, VHDL or timed
graphs). Consequently, a modeler can express different properties in an adequate formalism and use
DEVS hierarchical coupling as an integration mechanism.

The hierarchical nature of the formalism makes the reuse of previously defined models easy.
Therefore, model databases can be created and models included in these repositories can be integrated
to new hierarchies if their input/output trajectories have equivalent semantics. A related advantage is
that the learning curve for DEVS tools is short enough to enable new modelers to learn the basics
of the formalism without going into details about the underlying theories. In the following, we will
exemplify these issues, showing how to develop new models and analyze several examples focusing
on the mentioned advantages.

DEVS MODEL DEFINITION IN CD++

CD++ [12,13] allows the definition of models following the specifications introduced in the previous
section. The tool is built as a hierarchy of models, each of them related to a simulation entity. Atomic
models can be programmed and incorporated into a basic class hierarchy programmed in C++.

This class hierarchy implements the model theoretical definition presented in the previous section.
New atomic models must be incorporated into the class hierarchy as subclasses of the atomic model
class. The hierarchical nature of the formalism made the implementation of the tool in an object-
oriented language straightforward. We can see the tool as a modeling environment that complements
the programming capabilities of C++.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

25

30

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 5

SRE CD++: A TOOLKIT TO DEVELOP DEVS MODELS 5

The use of C++ also enabled us to obtain good performance in terms of model execution. Our
models executed one order of magnitude faster than current existing Java environments [14]. The use
of an object-oriented implementation reduced the time spent in testing, as reported in [15]. The formal
definition permits the focus of the model to develop, whereas the object-oriented approach makes it
much easier to find related errors. A specification language allows the definition of coupled and Cell-
DEVS models. This language provides a textual representation independent from any tool and chosen
development environment.

The abstract simulation mechanism provided enables the modeler to focus on the definition of
the models. The only relationship between the models and the simulation engine is defined by the
manipulation of a variable containing the time of the next scheduled event, called sigma. This variable
is used to implement the time advance function: it stores the time remaining until the next scheduled.
The internal transition function is activated when sigma = 0, and sigma must be recomputed every
time a model is activated, as each state has an associated lifetime. Every model also includes a ‘phase’
variable (whose basic states are active/passive), which can be used to verify the correctness of the
functions defined. For instance, a model in the passive phase cannot have an internally scheduled event.
Likewise, an active model cannot have an infinite value for sigma. The expression of these constraints
is straightforward. In the following, we explain how to incorporate atomic and coupled models to be
simulated.

Atomic model definition

A new atomic model is created by including a new class derived from Afomic. In doing so, the following
methods may be overloaded.

e initFunction. This method is invoked when the simulation starts. It allows one to define initial
values and to execute setup functions for the model.

e externalFunction. This method is invoked when an external event arrives from an input port.

e internalFunction. This method is started when an internal event occurs (that is, the value of
sigma is zero).

e outputFunction. This method executes before the internal function in order to generate outputs
for the model.

These functions are equivalent to those defined in the formal specifications for atomic models.
Consequently, different properties may be verified: inconsistent states (i.e. an internal transition
function is activated before the scheduled internal events, external functions are activated before/after
the proper timeslots, inconsistent states or values are received via input ports, etc.). The newly defined
models can be incorporated into the modeling class hierarchy. The following primitives can be used
when defining an atomic model.

e holdIn(state, time). A model executing this sentence remains in state during time(sigma = time).
When the time is consumed (sigma = 0), the model executes the internal transition. This macro
was included to make the definition of the duration function easy.

e passivate(). The model enters in passive mode (phase = passive; sigma = infinite) and it is
only reactivated by an external event.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au: lines 1-7
Please check sense here.

Query
Au: line 21
`overloaded' OK?

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 6

6 G. WAINER SR E

*

0. to del
’—‘ N Model
Processor Processor DoHl | parerd

|

ident parentld
InputList ChatputList
addInputPort inputPorts
addCntputPorts cutPorts
nextChanze lastChange

¥ ¥

Atornic-Maodel Coupled-Model
Si.tjnu.]ator_ Fhase children receivers
InitFanction() addModel]) modellist
internalFunetionl]) type inflences
- outpatFmetion (] addTnfhe:
il e
L 1 —

Figure 1. Cell-DEVS models and processors.

o sendOutput(time, port, value). Sends an output message through the given port.
e state(). Returns the present model phase.

Let us consider the modeling of the activities in a small airport. The environment to be modeled
includes several planes arriving and leaving the airport, a control tower, the runway and a hangar where
planes needing service can be sent to. For instance, we can define an atomic model for the control tower
as follows:

Control = (X, S, Y, Sint, Sext, A, ta)
X elinde N,in_a € N};
S € {rnwy-use_time, preparation_time € R}

U {pl_queue € {fl_number € N x arr_time € R + rmwy-use_time € R* x port_name € I}*}
U {which € N} U {phase € passive, rnwy-use, prep-rnwy-use};

Y € {rnwy-use/rnwy-use € N} U {departing/departing € N} U {done_a, done_d € boolean}
U {stop-a, stop_d € boolean}.

A formal specification for the transition functions can be found in [16]. Here, we show how to
implement the transition functions using the tool. This model uses two input ports (X) and four output
ports (Y). The rnwy-use_time variable stores the landing or departure time for the following plane. The
preparation_time is related to the delay of the control tower controller to decide the next plane to be
authorized. We use a plane queue, containing instances of (flight number, arrival time, rnwy-use time,
use of the runway), which includes the basic information of each flight received by the control tower.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au:
Please cite all figures in text.

10

15

20

25

30

35

40

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 7

SRE CD++: A TOOLKIT TO DEVELOP DEVS MODELS 7

Two different port names are used in order to recognize if it is a landing or departing flight. The which
variable stores a pointer to the plane chosen to use the runway.

The transition functions for this model define the activities carried out by the control tower. New
requests for landing and departures are received at any moment, thus they are implemented in the
external transition function. Whenever a new plane needs to use the runway, it sends a request to the
control tower and the request is queued. We use two input ports (landing or departing) to define the type
of use for the runway. We also detect emergencies here. If the model phase is rnwy-use, this means that
the runway is being used. During this time, the planes do not send new requests to the control tower,
unless they are in an emergency state. In this case, we use the elapsed time variable to decide how to
react. If half of the time needed to depart/land has been elapsed, the control tower lets the present plane
finish using the runway. Otherwise, the plane is pre-empted and queued again, letting the emergency
plane land first.

The operator needs some time to do the related work (preparation_time). During this time, the control
tower remains in the prep_rnwy-use state. Then, a plane must be chosen. When this has been decided,
the control tower remains in the state rnwy-use during the use of the runway. During the use, other
waiting planes are informed and they do not request to use the runway. The query_time function
analyzes the flight number and computes the time it takes the plane to depart/land, according to the
kind of aircraft, weather conditions, etc. When this time is consumed, the output function is executed.
If the model was in prep_rnwy-use phase, this means that the control tower is prepared to let a new
plane use the runway. Hence, we send a ‘STOP’ signal in order to avoid new planes being sent. Instead,
if the present phase is rnwy-use, this means that a plane has finished using the runway and the model
can receive new planes. Therefore, a ‘GO’ signal is sent to other models. When an airplane departs, its
number is sent to other models through the ‘departing’ port. When the plane is landing, its information
is sent through the ‘landing’ port. This information could be used to collect statistics, or to interact
with other models.

As we can see, the formal specification provides a clear separation between input, output and
internal functions. It also facilitates verifying the model behavior. The occurrence of different states is
automatically informed. For instance, if a phase different than those programmed is detected, an error
is raised. If a message arrives in the wrong port or its associated time is wrong, the tool automatically
raises an error. This procedure reduces the possibility of errors and makes the testing phase easy, as
the user only has to focus on the behavior of the corresponding function. In addition, the user only has
to focus on the modeling activities (as we can see, there is no relationship with the simulation code at
all).

These facilities enabled us to build an independent tool that facilitates model verification [17]. Once
an atomic model has been built and incorporated into the modeling hierarchy, we can control if the
model being verified returns the expected results at a given time. An experimental framework composed
of a generator and an acceptor can be coupled to a base model to be verified. The generator recognizes
the input ports of the base model and connects its outputs to the inputs of the model. The acceptor
recognizes output ports to be analyzed.

The generator verification data are provided by the modeler, who should write an entry table
indicating the testing values and their corresponding correct results. The data corresponding to external
transitions are sent by the generator to the base model in order to be processed. Data corresponding
to internal transitions are sent to the acceptor, which stores this information and later compares it with
the real values issued by the model. Consequently, output error messages are issued. The results file

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 8

8 G. WAINER

control::control (const string &name) : Atomic(name),

in_a(this->addInputPort ("in_a")), in_d(this->addInputPort ("in_d"))

done_a (this->addOutputPort ("done_a")), done_d(this->addOutputPort ("done_d")),

stop_a (this->addOutputPort ("stop_a")), stop_d(this->addOutputPort ("stop_d")),

rowy-use (this->addOutputPort ("rnwy-use")), departing(this->addOutputPort ("departing")) ({
}

Model &control::initFunction () {

Preparation_time = control_ tower preparation();
fl_number=0 ;
return *this ;

}

Model &control::externalFunction(const ExternalMessage &msg) {
fl_number = msg.value();
rnwy-use_time = query_time();

if (port() == in_a) // The chosen plane lands
runwy-use = "landing";

if (port() == in d) // The chosen plane departs
runwy-use = "departing";

// Only emergency planes are accepted while the runway is being used
if (state() == rnwy-use) ({
// If the previous plane is finishing rnwy-use, continue
if (elapsed_time < rnwy-use_time/2) { // Otherwise, empty the runway
queue (f1_number, msg.time(), rnwy-use_time, "emergency");
holdIn(emergency, preparation_time) ;
return (*this);

// A new plane wants to use the runway. Queue its information.
queue (f1_number, msg.time(), rnwy-use_time, runwy-use);
if (state() != rnwy-use)
this->holdIn(prep_ rnwy-use, preparation_time);
return *this;

}

Model &control::internalFunction(const InternalMessage &) {
if (state() == rnwy-use or state()==emergency)
if (queue == EMPTY)

this->passivate () ;
else

this->holdIn(prep_ rnwy-use, preparation_time);

if (state() == prep_rnwy-use) {
// Choose the first plane to be landed in the queue.
which = schedule (queue) ;
tail (queue); // Delete the first element in the queue, that was chosen
this->holdIn(rnwy-use, rnwy-use_ time);

}

return *this ;

Figure 2. Control tower transition functions.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 9

CD++: A TOOLKIT TO DEVELOP DEVS MODELS

Model &control::outputFunction(const InternalMessage &msg) {
if (state() == emergency) {
this->sendOutput (msg.time(), rnwy-use , RNWY-USE CANCEL) ;

if (state() == rnwy-use)
this->sendOutput (msg.time(), done_a ,
this->sendOutput (msg.time(), done_d ,

GO) ;
GO) ;
if (use == "landing") { // The chosen plane lands
// Record the landing
this->sendOutput (msg.time(),
}
if (use == "departing")
// Record the departure
this->sendOutput (msg.time(),
}
}
if (state() == prep_rnwy-use) {

"landing" ,
{ // The chosen plane departs

"departing"

f1_number) ;

, fl1_number) ;

// While using the runway stop receiving new requests

STOP) ;
STOP) ;

this->sendOutput (msg.time(), stop_a ,
this->sendOutput (msg.time(), stop_d ,

}

return *this ;

Figure 2. Continued.

Generater g ﬁ

Base Model

v

Acceptor

r
Cotuclus ons

anid results,

“——_.__—/Hd_

Figure 3. Format for the verification framework.

allows the differences between the expected data and the outputs issued by the model to be checked.

In addition, differences in timing can be analyzed.

For instance, the runway model definition was tested using the data shown in Figure 4. We have
injected different types of inputs to show the possible errors that can be obtained. The transition type

Copyright © 2002 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2002; 32:1-46

10

15

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 10

10 G. WAINER SR E

E 00:01:08:000 2 Output file:

I 00:05:11:000 2

E 00:10:10:000 15 00:05:08:003 out 2
I 00:15:13:000 15 00:15:13:000 out 15
E 00:20:12:000 40 00:25:17:000 out 20
I 00:25:17:000 40 00:35:18:000 out 60
E 00:30:15:000 60 00:45:19:000 out 70
I 00:35:18:000 60

E 00:40:19:000 70

I 00:45:22:000 70

Figure 4. Input/output data for the runway model.

Verification results file:

Invalid result:
Expecting: 2.000000 At: 00:05:11:000
Getting: 2.000000 At: 00:05:08:003

Invalid result:
Expecting: 40.000000 At: 00:20:17:000
Getting: 20.000000 At: 00:20:17:000

Invalid result:
Expecting: 70.000000 At: 00:45:22:000
Getting: 70.000000 At: 00:45:19:000

Figure 5. Output data for the runway model.

might be /or E, indicating if it refers to an internal or external transition, respectively. For an E-
type transition, data in the table should be interpreted as ‘value X enters the model at time T’. Taking
line number 1 in the example as a reference, we should interpret it as ‘value 2 enters the model at
00:01:08:000°. Likewise, for an /-type transition, data in the table should be interpreted as ‘model
must output value Y at time T’. Line 4 of the example should be read as ‘model must output value 15
at 00:15:13:00.

The behavior of the runway model is to receive planes. Every time a plane leaving or departing
is received, it uses the runway for a period, after which an output (representing the flight number) is
generated. When we run the verification frame in this model, we obtain the results presented in Figure 5.
We first inject the flight number 2 and expect the runway to be ready at 5:11:000. Nevertheless, the
runway outputs the plane 2 only 4 min and 0.003 s after the input. This execution results in an output
error. Then we inject flight 15, whose output is expected at 15:13:000. As we can see, no errors were
raised in this case. The following error shows that, after injecting a value 20 at 20:12:000, the model
returns a 20 at 25:17:000, which is an unexpected value according to the input definition. The final
error shows another timing problem according to the inputs specified.

The verification mechanism highly enhances the testing procedures. The user can provide a set of
test cases, whose definition can be done simultaneously with the model specification.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

20

25

30

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 11

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 11

Figure 6. Graphical notation for a state: identifier and time length.

Graphical definition of atomic models

Coding in C++ allows the user great flexibility in defining model behavior. Nevertheless, non-
experienced users can have difficulties in defining models using this approach. The provision of a
graphical notation to specify the model behavior can provide the modeler with a powerful tool to define
models. Graph-based notations have the advantage of allowing the user to think about the problem in
a more abstract way. Therefore, we have used an extended graph to allow the user to define atomic
model behavior [18].

Each graph defines the state changes according to internal and external transition functions and each
is translated into a textual definition. In this way, the users do not need to compile the new added
models, which are interpreted by the modeling tool. The graphical notation of a model is just a frame
with the model name. The corresponding textual notation has the syntax [idModel]. This identifier
declares a DEVS model that can be used subsequently.

The graph-based specification for atomic models represents their state changes. Each state is
represented by a bubble including an identifier and the duration for the state. This allows one to define
the pair (state, duration) associated with internal transition functions. Figure 6 shows a state called
‘Start’, whose duration is 15 time units.

The text representation for states uses the following syntax:

state : stateIdl ... stateldn
stateIdj : lifetimej

We first enumerate all the states present in the model and associate each of them with their
corresponding lifetime. When the lifetime is consumed, the model changes the state by executing an
internal transition function.

As explained earlier, each model includes an interface with input/output ports. We represent them
as arrowheads associated to a model definition. The text specification for the ports includes their name
and a type, based on the formal specification for DEVS models, as follows:

in : portId:type portId:type
out : portId:type portId:type

For instance, the model in Figure 7 is specified as

in : p2:integer , pl; /* integer default values */
out : gl:float , g2: integer;

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

15

20

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 12

12 G. WAINER SR E

pl gl: float

pZiinteger oldiinteger

Figure 7. Graphical notation for input/output ports.

qlls
q214

A g3rlz

TL=2 » B

Figure 8. Definition of an internal transition function.

Internal transition functions are represented by arrows connecting two states. Each of them can be
associated to pairs of ports with values (p, v) corresponding to the output function. The syntax for the
output function values is p ! v. For instance, Figure 8 represents that the model changes from state A
to state B after 2 time units. First, the output function sends the value 8 through the port q1, 4 through
the port g2 and 12 through the port q3.

The syntax for the internal transition function construction is

int : startState endState [outPort!valuel]+

Here we indicate the origin and destination states, and a port list with the corresponding values. For
instance, the model in Figure 8 can be described as

int : A B gl!8 g2!4 g3!12

External transition functions are represented graphically by a dashed arrow connecting two states. The
notation used to represent ports and expected values is similar to the one used for external transition, but
replacing the exclamation mark by a question mark: p?v [t;...ts]. Here, t; .. .ts represent the
initial and final expected simulated times for the external transitions. These values allow the verification
of the timing of the models, raising an error if an external transition comes out of time. The syntax for
this construction is

ext : startState endState inPort value timeRange

This syntax describes the origin and destination states, an input port and a time range counted since the
instance of arriving at the start state. All these constructions can be combined to define the behavior of
atomic models. For instance, Figure 9 represents a simple model using all the constructions.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 13

S &E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 13

Atomic

L. in?4 [1.3]
itvinteger ’ Start Process

TL=a 77T T 0T TL=10 ’ outinteger
-

Figure 9. Definition of an atomic model.

This model can be formally specified as
Simple_Proc = (X, S, Y, Sint, Oext, A, ta)
X = {(“in”, integer)}; Y = {(“out”, integer)};
S = {Start, Process, Finish};
Sext(s, e, x){
case port (in){
4. if (e <1ore> 3)error();
phase = Process; o = 10;
2: if (e <2ore>>5)error();
if (phase = finish)

phase = Process; o = 10;

}
}
2O
case (phase){
Finish: send(out, 6);
Process: send(out, 1);
}
}
Sint O
case (phase):
Finish: passivate();
Process: hold_in(Finish, 7);
}

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 14

14 G. WAINER SR E

4 GGAD - Graphic Tool [_[=]x]

File Tools Help
o e == "l @

Mame Im
[=)- Atomic Mods!
=) States
| Start
- Process
[F i
1 Interal Transitions
.~ ProcessFinish

© - Finish-Start
E External Transitions
- StatProcess
¢ - Finish-Process
£ Input Parts
[
=3 Output Parts

ot

Wite properties

Properties Y alug

Name

Timeddvance i

Builtin M) =
function

Figure 10. Graphical specification of a simple problem.

In the following, we show the definition of this model using the tool, and the intermediate code
generated.

The tool uses the graphical specification shown in Figure 10 to generate the text specification that
is used by CD++ (Figure 11). The behavior generated when this specification is read is that explained
previously.

This notation enables a clear and clean graphical representation for DEVS atomic models, enabling
non-expert users to define models using the toolkit. It also enables a faster learning curve. The core of
the tool remains unchanged; therefore, the verification mechanisms mentioned earlier are still valid. It
is even easier to detect ambiguous states or timing errors thanks to the reduction in expressivity of the
associated language. This simple notation enables the user to develop complex applications thanks to
the hierarchical nature of the formalism. If the model states are too complex to be defined in a certain
level of abstraction, several simpler submodels can be created and combined together. Nevertheless, in
many cases, state machines are not powerful enough to solve complex problems in which one cannot

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 15

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 15

[exampleGG]

in: in

out: out

state: Start Process Finish
int: Process Finish out!l
int: Finish Start out!é
ext: Start Process in 10
ext: Finish Process in 2
Start:0

Process:10

Finish:7

Figure 11. Textual definition of the problem.

simply analyze state changes (as in FSM or Petri nets). To attack these cases we have allowed the
transition functions to invoke user-defined routines written in C++. They can be associated to the
links representing the transition functions. In addition, if models that are more complex are needed,
the user can directly define them in C++ as explained earlier. This variety of ways to express atomic
models, combined with libraries of existing models, lets each user attack the problem solving tasks
at an adequate level of complexity. For instance, graph-based notations can be used for educational
purposes, or for problems well-suited to state-based approaches (such as communication protocols),
whereas C++ coding can be used for defining complex hybrid systems.

Coupled model definition

After defining the atomic models for a given application, they can be combined into a multicomponent
model. Coupled models are defined using a specification language specially defined with this purpose
in mind. The language was built following the formal definitions for DEVS coupled models. Therefore,
each of the components defined formally for DEVS coupled models can be included. Optionally,
configuration values for the atomic models can be included.

The [top] model always defines the coupled model at the top level. As shown in the formal
specifications presented earlier, four properties must be configured: components, output ports, input
ports and links between models. The following syntax is used.

e Components. This describes the models integrating a coupled model. The syntax is
model name@class._name, allowing more than one instance of the same model using
different names. The class name reference to either atomic or coupled models (which should
be defined in the same configuration file).

e Out. This defines the names of output ports.

e In. This defines the names of input ports.

e Link. This describes the internal and external coupling scheme. The syntax is:
source_port [@model] destination_port [@model]. The name of the model is
optional and, if it is not indicated, the coupled model being defined is used.

Let us consider the coupled model representing the airport example of the previous section
(Figure 12).

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 16

16 G. WAINER SR E

9
Out

.

Departures queue

& A
Deze Stol 4
Out_d
In p
Out
Doed Stpd Ind
Ful Sl
|| -
—p Landing Landing —pf . —’-I.n
Control Tower Rumway Hangar

|—» Depurting Depating]

N EEEE N NN AN NN NN AN NN NN AN AN EEE SN ENEEEEAEIEEEEEEEEIEEEEEEEEEEEEE

[In

Figure 12. Model interconnection for the airport coupled model.

We can see that the control tower is connected to two queues: one for departures and the other for
arrivals. These queues are used to model the time employed by planes to enter or leave the airport
area. The control tower is also connected to a model representing the runway. Every time a plane is
authorized to depart or land, the runway model is activated. Finally, all landed planes go to a hangar for
maintenance. A plane can only leave after service. The hangar can be defined as another atomic model
or as a coupled model with different service stations for the planes. The airport coupled model can be
formally specified as

Airport = (X, Y, D, {M;}, {1;},{Zi;})

X = {(“In”, unsigned int)}; Y = {(“Out”, unsigned int)};

D = {DeparturesQ, Control Tower, RunwayQ, Runway, Hangar};
Iseir = {RunwayQ};

IRunwayo = {Control Tower};

Icontrol Tower = {RunwayQ, DeparturesQ, Runway};

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 17

CD++: A TOOLKIT TO DEVELOP DEVS MODELS 17

[top]

components: DeparturesQ@StoppableQueue Rnwy-useQ@StoppableQueue Runway@Runway Hangar
components: ControlTower@ControlTower

in : In out : Out

link : out@DeparturesQ In_deControlTower

link : out@RunwayQ In_a@ControlTower

link : In in@RunwayQ

link : Out_a@Runway In@Hangar

link : Out_deRunway Out

link : Done_a@ControlTower in@RunwayQ

link : Stop_a@ControlTower stop@RunwayQ

link : Departing@ControlTower Departing@Runway
link : Rnwy-use@ControlTower Runway@Runway
link : Done_deControlTower in@DeparturesQ

link : Stop_deControlTower stop@DeparturesQ
link : Out@Hangar in@DeparturesQ

[Hangar]

components : selector@selector depositl@queue deposit4@queue deposit3@queue Chosen@DeMux
components : deposit2@queue

in : In out : Out

link : outl@selector in@depositl
link : out2@selector in@deposit2
link : out3@selector inedeposit3
link : out4@selector inedeposit4
link : out@depositl inl@Chosen
link : out@deposit4 in4@Chosen
link : out@deposit3 in3@Chosen
link : out@deposit2 in2@Chosen
link : In ineselector

link : out@Chosen Out

Figure 13. Coupled model definition.

IRunway = {Self, Hangar};
IHangar = {DeparturesQ};

Figure 13 shows the definition of this formal description using the coupling specification language
of the tool. In this case, the hangar was also defined as a coupled model, which is included in the
specification.

The tool uses this information to generate instances of previously defined atomic models or creates
new instances of coupled models that can later be reused to form other multicomponent models.

Coupled models can be defined using a graphical specification that maps the representation for
coupled models explained earlier. In this case, squares represent submodels (atomic or coupled)
and circles the model’s input/output ports. Internal links are represented using arrows connecting
the components. The previous specification can be graphically defined as shown in Figure 14. The
tool translates each graphical construct into the corresponding syntax element (for instance, the
previous text specification was generated using the tool). Both ways of specifying coupled models
are straightforward and easy to learn by new users. The modeler does not need to learn a programming
language to define new coupled models.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 18

18 G. WAINER SR E

-1 Visual DEVS v1.1 [_[a]x]
File | Edit View Model Window Help
3 T 1
a 4 C:\My Documents\Leer\T o-do\Hangar.mdr M [=] EF || £+ C:\My Documents\Leer\T o-do\Airport. mdr O] x|
-

sTOP
E deposit1

Departures

deposit2
out -1 In_

Done > in

->

ol L

deposit3
Hangar

Donefa -> i

top_d-> stof

[ES

STOP

n
4
=1
bl

>
LandingQ

HE

(2

- -

« | [l | [
[Estada 1/12/2000 328PM

Figure 14. Graphical specification for the airport coupled model.

Model reuse is straightforward thanks to the hierarchical construction of the models. In the previous
example, for instance, several of the models were defined as instances of others previously created.
We reused two kinds of queues: non-stoppable and stoppable. The hangar was implemented using a
selector and a demultiplexor previously defined for a model of a digital computer, because the model
semantics for both cases is similar. The only new models specifically defined for this example are the
control tower and the runway (which is also a variation of the queue model).

The formal specification of DEVS models makes the verification of coupled models easy. First, it
is easy to recognize non-existing submodels or models using the wrong names, as coupled models are
constructed using the textual specifications, which implement coupled model formal specifications. We
have also included verification tools in charge of authenticating ports and their links to atomic DEVS
models.

We first create a list of influencees associated to each output port. This list holds all the input ports
linked to the current output port and it can be analyzed to find if there is any unlinked port. First we

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 19

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 19

Figure 15. Unlinked input/output ports.

Switch Center

Generator 552

v
B
y
3
=
)
=
¥
=
o
(o]
5
=3

h 4

thronghiont BSC
ol Hrmghpat anival [in y HLE ot ing| ST ot gl
dore

easage
- neosage solved

Figure 16. Switching station coupled model.

check every output port, analyzing their influencee lists for every model. An empty list means that the
output port is not linked to any input port in the simulation. In addition, a global influencee’s list is
built using all the input ports that are linked to any output port. This list must contain all the input ports
defined in the coupled model. If a port does not belong to it, no output port is linked to it.

In both cases, CD++ raises an error message, enabling the analysis of the problem. In some cases, the
modeler does not want to use an existing port, but in others this can result in complex undesirable errors
being discovered. No other couplings are verified, as this is not needed. We have followed the DEVS
specifications for couplings and the tool uses this constructive approach. Therefore, we know that the
links built from the specifications are correct. The tool includes type validation, ensuring compatibility
of the data shared through input/output ports.

A coupled model representing a switching station for mobile phones was verified using the services
of the tool (Figure 16).

The HLR model is in charge of managing the call flow. When it receives a request, it queues it and
advances the switching time associated to the call. When the call is sent, it receives an ACK signal.
When the coupled model was verified, we found the errors in Figure 17.

In this case, the HLR class includes an input port named stop; therefore, the user is informed about
this situation enabling them to solve the problem, if needed.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 20

20 G. WAINER SR E

Version 2.0-R.43
Starting simulation. Stop at time: Infinity

Exception thrown!

Model Name: HLR1

Input Port Name: stop, is not influenced.
Description: Input Ports without Influences!

Model Name: HLR2
Input Port Name: stop, is not influenced.

Description: Input Ports without Influences!

Aborting simulation...

Figure 17. Error detected: unlinked ports.

1 and (truecount or truecount = 4) }

=3
0 and truecount = 3 }

Figure 18. Rule definition for the Life game.

Cell-DEVS model definition

The tool includes a specification language allowing the description of Cell-DEVS models. These
definitions are based on the formal specifications defined earlier and can be completed by considering a
few parameters: size, influencees, neighborhood and borders. These are used to generate the complete
cell space. The behavior of the local computing function is defined using a set of rules of the form
VALUE DELAY {CONDITION}. These indicate that when the CONDITION is satisfied, the state of
the cell changes to the designated VALUE, and it is DELAYed for the specified time. If the condition is
false, the next rule in the list is evaluated until a rule is satisfied or there are no more rules. In the latter
case, an error is raised, indicating that the model specification is incomplete. The existence of two or
more rules with the same condition but with different state values or delays is also detected, avoiding
the creation of ambiguous models. In these situations, the simulation is aborted.

Figure 18 shows the rules for the ‘Life’ game [19]. This model represents a cell space with entities
that evolve according to the neighbors’ states. A cell remains active when the number of active
neighbors is three or four (fruecount indicates the number of active cells) using a transport delay of
10 ms. If the cell is inactive and the neighborhood has three active cells, the cell activates. In every
other case, the cell remains inactive (¢ indicates that whenever the rule is evaluated, a true value is
returned).

Several useful operations are included: Boolean (AND, OR, NOT, XOR, IMP and EQV'), comparison

=,! =, <, >, <= and >=) and arithmetic (+, —, % and /). In addition, different types of functions are

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 21

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 21

Figure 19. A zone defined by the range {(3,3)...(5,7)}.

available: trigonometric, roots, power, rounding and truncation, module, logarithmic, absolute value,
minimum, maximum, greatest common denominator and lowest common multiple. Other existing
functions allow one to check if a number is an integer, even, odd or prime. Some of the functions
allow one to query the cell state of the neighborhood, e.g. truecount, falsecount, undefcount and
statecount(n).

The Time function returns the model simulated time. Functions RadToDeg and DegToRad are used
for angle conversion. There are also conversions for polar and rectangular coordinates and temperatures
in Celsius, Fahrenheit or Kelvin degrees. Other functions allow the evaluation of certain conditions. The
function IF(c, t, f) returns ¢ if ¢ evaluates to true and f otherwise. On the other hand, IFU(c, ¢, f, u)
evaluates ¢ and, if it is true, it returns the ¢ value. If it is false it returns f and u if it is undefined.

Some common constants are predefined: 7, e, gravitational constant, light speed, Planck constant,
etc. Finally, pseudorandom number generation is included. Different probability distributions are
considered, including uniform, chi-square, Beta, exponential, &, Gamma, Gaussian, binomial and
Poisson.

The cells can use integer or real values. Undefined values can be used, allowing one to apply three-
valued logic. The undefined value is also useful for other purposes. For example, in the rule

10 100 {random >= 0.4}

the condition is evaluated to true in some cases and to false in others. Therefore, a model using this rule
could return all the rules evaluated as false, which occurs when a model is incomplete. Nevertheless,
in this case the model is well-specified but the use of a random number produces this result for the
present state. The tool automatically identifies these cases and assigns the undefined value to the cell,
informing the user of this situation and continuing with the simulation.

The language permits the manipulation of n-dimensional references. Likewise, a neighborhood can
be composed of non-adjacent cells and the neighborhood’s dimension can be similar or inferior to the
dimension of the model. n-dimensional space zones, defined by a cell range, can be associated with a
set of rules different from the rest of the cell space.

Several applications of the formalism can be found in [12,20,21]. We show the definition of a well-
known model for fire propagation in forest fires [22]. This model uses environmental and vegetation
conditions to infer the fire spread ratio and the intensity. Three parameter groups determine the
fire spread ratio: vegetation type, fuel properties (vegetation classified according to its size) and
environmental parameters (wind speed, fuel humidity and field slope).

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 22

22 G. WAINER SR E

Wind direction = 45.000000 (bearing) Wind speed = 8.045000 [kphl]

NFFL model = 1 Cell Width = 15.240000 [m] (E-W)
Cell Height 15.240000 [m] (N-8)

Max. Spread 17.967136 [mpm] (in the direction of the wind)

0° Spread = 5.106976 [mpm] Distance = 15.240000 [m]
45° Spread = 17.967136 [mpm] Distance = 21.552615 [m]
90° Spread = 5.106976 [mpm] Distance = 15.240000 [m]
135° Spread = 1.872060 [mpm] Distance = 21.552615 [m]
180° Spread = 1.146091 [mpm] Distance = 15.240000 [m]
225° Spread = 0.987474 [mpm] Distance = 21.552615 [m]
270° Spread = 1.146091 [mpm] Distance = 15.240000 [m]
315° Spread = 1.872060 [mpm] Distance = 21.552615 [m]

Figure 20. Parameter definition for a Rothermel fire model.

[ForestFire]

type : cell dim : (20,20)

delay : inertial border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (o0,-1) (o0,0) (0,1) (1,-1) (1,0) (1,1)

localtransition : FireBehavior

[FireBehavior]
rule : {(1, -1) (21.552615/17. 967136)} {(21.552615/17.967136) *60000} {(0,0)=0 and 0<(1,-1)}

rule : {(1, (15.24/5.106976) } {(15.24/5.106976)*60000} {(0,0)=0 and 0<(1,0)}

rule : { (0, —1 (15.24/5.106976) } {(15.24/5.106976)*60000} {(0,0)=0 and 0<(0,-1)}

rule : {(-1 +(21.552615/1.872060) } {(21.552615/1.872060)*60000} {(0,0)=0 and 0<(-1,-1)}
rule : {(1,) 21 552615/1.872060) } {(21.552615/1.872060)*60000} {(0,0)=0 and 0<(1,1)}
rule : {(-1,0)+(15.24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and 0<(-1,0)}

rule : {(0,1)+ 15 24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and 0<(0,1)}

rule : {(-1,1)+(21.552615/0.987474)} {(21.552615/0.987474)*60000} {(0,0)=0 and 0<(-1,1)}
rule : {(0,0)} {t}

Figure 21. Definition of a fire forest model.

The fuel model, the speed and direction of the wind, terrain topology and dimensions of a cell are
used to get the spread ratio in each direction. For instance, Figure 20 shows the values obtained for a
fuel model group number 9, a SE wind of 24.135 km per hour and a cell size of 15.24 x 15.24 m?.

In CD++, this model can be defined as a 20 x 20 cellular model representing the terrain and
vegetation. A cell value of 0 indicates the absence of fire and other values indicate the time the fire
has started on that cell. We use a non-wrapped border, a 3 x 3 neighborhood and inertial delays.

The local computing function is called FireBehavior and the rules are devoted to the detection of
the presence of fire in the eight neighboring cells. If there is fire in one of the them, the cell can burn.
For instance, the first rule checks if the current cell is not burning ((0, 0) = 0) or the SW neighbor
has started to burn (0 < (1, —1)). If this condition is met, the value for the cell is set to the result of
the expression (1, —1) + (21.552615/17.967136), which is the time the fire starts in the cell, using the
values previously computed. As the spread ratio for the fire in the NE direction is 17.967136 m min~!
(mpm) and a cell has a diagonal of 21.552615 m, it takes (21.552615/17.967136) min for the fire to
reach the cell once it has started in its SW neighbor. The delay component of the rule says this value is

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

30

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 23

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 23

[new-1life-rule]
rule : 2 100 { (0,0)
rule : 1 100 { (0,0)

o
o
——

Figure 22. Redefinition of the Life game.

set after (21.552615/17.967136) x 60 000 ms. The remaining rules represent the behavior associated
with the remaining neighbors.

We could use inertial delays to model other behavior. For instance, if rain is considered, wet cells
do not burn and if any of the cells scheduled to start burning get wet before the fire starts, they do not
burn either. Inertial delays pre-empt any scheduled change if it receives an event from a neighbor cell
before the scheduled time, causing the present state to acquire a different value.

As we can see, the burn time for each cell depends on the spread ratio in the direction of the burning
cell. It is important to notice that the cells are updated at different times, as set by a rule’s delay
component. This is a clear departure from the classical approach to cellular automata where all active
cells are updated at the same time. A non-burning cell in the direction of the fire spread is updated
in a shorter period than a non-burning cell in the opposite direction. Another advantage is that the
expression of a timing delay is done in a natural fashion (compared, for instance, with the timing
control defined in the airport model). In this way, the modeler can reduce the development time related
to timing control programming.

We also have included verification facilities that can be applied when executing Cell-DEVS models.
The simplest ones include checks on the number of cells in each dimension, initialization of each of the
cells, the positions of the border cells and zones and the positions of the cells representing the X/ist and
Ylist. The most complex verification aids are related to the definition of the local computing function
rules. These aids allow the detection of some inconsistencies in the model definition:

e ambiguous models—a cell with the same precondition (state and neighbors) can produce
different results;

e incomplete models—no result exists for a certain precondition;

e non-deterministic models—different preconditions are valid simultaneously. If they produce
the same result, the simulation can continue, but the modeler must be notified. Otherwise, if
different results are found, the simulation should stop because the future state of the cell cannot
be determined.

Figure 22 shows a modification of the Life game model (using 0, 1 or 2 as cell values), in which the
rules are not completely defined. Here, we can find cases in which all the preconditions are false (i.e.
if the cell being evaluated has a value of 2).

In these situations an error is raised, as shown in Figure 23. The message describes the event that
has occurred and shows the state values for the neighboring cells.

The error describes the fact that the rules are not complete (in the absence of this verification the
simulation would crash, as there are no rules to be executed). In this case, the origin cell has a value of
2 and there is no rule whose precondition is valid for this case.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 24

24 G. WAINER SR E

Version 2.0-R.43
Starting simulation. Stop at time: 00:00:05:000

Exception thrown!

Description: None of the rules evaluates TRUE!
Model used is: new-life-rule
The state of the Neighbors is:

B el +
| 0.00000 1.00000 2.00000 |
| 1.00000 2.00000 1.00000 |
| 0.00000 1.00000 2.00000 |
oo o oo oo oo oo — o —————- - +

Aborting simulation...

Figure 23. Error detected: no valid rule.

[new-life-rule2]

rule : 2 100 { (0,0) = 1 and (0,1) = ? }
rule : 1 100 { (0,0) =0 }
rule : 0 100 { (0,0) = 2 }

Figure 24. Life game with undefined values.

Version 2.0-R.43
Starting simulation. Stop at time: 00:00:05:000

Warning! - None of the rules evaluate to True, but any evaluates to undefined

Figure 25. Warning: undefined state for a cell.

The tool includes rule definitions using three-valued logic. Therefore, when a set of rules is being
defined, the values true, false or undefined can be obtained. If any of the rules result in an undefined
value, the cell state is undefined. In this case, a warning is issued. Figure 24 shows a redefinition of the
previous example.

When the state value for the cell is 1 and the neighbor (0, 1) is not undefined (?), the first rule results
in an undefined state. In that case, when we evaluate (0, 1) = ?,the resultis ? and the result of the
AND operation is undefined. When the rest of the rules are evaluated, no valid precondition is found.
In this case, the value of the cell is set to undefined and the warning message shown in Figure 25 is
issued.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 25

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 25

[new-1life-rule3]

rule : 2 100 { (0,0)
rule : 1 100 { (0,0)
rule : 0 100 { (0,0)

o
N O R

Figure 26. Life game with ambiguous rules.

Version 2.0-R.43
Starting simulation. Stop at time: 00:00:05:000

Exception thrown!

Description: Two rules evaluate to TRUE and the result is different!
Model used is: new-life-rule3
The state of the Neighbors is:

B ittt +
| 1.00000 0.00000 0.00000 |
| 1.00000 0.00000 1.00000 |
| 1.00000 0.00000 0.00000 |
B ittt +

Aborting simulation...

Figure 27. Error detected: ambiguous rules.

If there are two or more rules whose condition evaluate to true, and their postconditions or delays
are different, an error is raised. In this case, the model is ambiguous and the simulation is aborted,
avoiding the execution of models running in a non-deterministic fashion. In Figure 26, we show a set
of ambiguous rules for the Life game.

In this case, if a cell has a value of 1, the first and second rules are valid, but the results are different.
Figure 27 shows the execution when these rules are evaluated. When two different rules are valid, but
their results are the same, a warning is raised, but the simulation continues. In this case, although two
rules are valid simultaneously, the simulation results would be the same if any of them is executed. The
warning enables the modeler to check possible ambiguities.

There are a few special cases to consider: if a stochastic model is used, it might happen that either
multiple rules are valid or that none of them are. For the first case, the first valid rule is considered.
For the second case, the cells have an undefined value (?) and the delay time is the default delay time
specified for the model. In any case, the simulator notifies this situation to the user, showing a warning
message on standard output, but the simulation is not aborted.

As we can see, Cell-DEVS formal specifications were directly mapped into CD++. These
specifications allowed us to define formal verification mechanisms and to prove properties of the
model. Likewise, they make the definition of a cellular model easier. These models can be defined
using very simple rules and a few parameters. The delay functions enable the simple definition of
timing relations. Therefore, a very simple set of procedures is needed to define complex models,
thus improving the development process. The following section shows other extensions that make the

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

15

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 26

26 G. WAINER SR E

[3d1]

type : cell dim : (7,7,3)

delay : transport border : wrapped

neighbors: (-1,-1,-1) (-1,0,-1) (-1,1,-1) (0,-1,-1) (0,0,-1) (0,1,-1)
neighbors: (1,-1,-1) (1,0,-1) (1,1,-1) (-1,-1,0) (-1,0,0) (-1,1,0) (0,1,1)
neighbors: (0,-1,0) (0,0,0) (0,1,0) (1,-1,0) (1,0,0) (1,1,0) (0,0,1)
neighbors: (-1,-1,1) (-1,0,1) (-1,1,1) (0,-1,1) (1,-1,1) (1,0,1) (1,1,1)
localtransition: 3dl-rule

[3dl-rule]

rule : 1 100 { ,0, 1 and (truecount = 8 or truecount = 10) }

0,0
rule : 1 100 { (0,0,0)

(
(0 and truecount >= 10 }
rule : 0 100 { t }

Figure 28. Definition of the 3D Life game.

definition of complex models easier (including n-dimensional models or alternative topologies for the
meshes). Moreover, important improvements in the development times can be obtained when expert
users of the tool are compared with experienced programmers in other environments.

n-dimensional model definition

Cell-shaped real systems are usually modeled using two-dimensional representations. Nevertheless,
several theoretical problems can be defined as cellular models with three or more dimensions.
Therefore, provisions for the inclusion of n-dimensional models were included in the tool. Two-
dimensional models are stored in an array of 71 - #; cells, where the element (x1, x2), x; € [0,#; — 1],
is in the position x1 + x» - f1. Likewise, we use an array of [[,_; , i cells to store the states for the
cellular automata with dimensions (¢, f2, . . ., t,;). In this case (x1, x2, . . ., x,) occupies the position

) xi.(k I tk).

i=l..n =l...i—1

We show the use of multidimensional models presenting a simple variation of the ‘Life’ game. We
consider a population of active cells represented by ‘1’ values, distributed in an area of 7 x 7 x 3 cells.
The neighborhood has 3 x 3 x 3 cells. Inactive cells have a ‘0’ value. An inactive cell activates when it
has over 10 living neighbors. In addition, a cell remains active when the neighborhood contains 8 or 10
active neighbors. Otherwise, the cell is deactivated. Figure 28 shows a description for this model using
the cell description language.

The first lines define the dimension parameters of the cell space. The kind of delay and the shape
of the neighborhood are also included. Finally, we include the local computing function. Models of
higher dimensions are defined in the same way.

Coupling DEVS and Cell-DEVS models

Cellular models can be coupled with other DEVS and can be integrated into the model hierarchy using
a standard interface. The portInTransition directive is used by a cell to query the value of a message

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 27

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 27

N ouTI
v OTTFITL
[

QUTHITZ \’
OuUTz2

Figure 29. Coupling scheme of the previous example.

[EX]

type : cell dim = (2, 2)

delay : transport border : wrapped

neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
in : in

out : outl out2

link : in ine@(1,1)

link : outputle@l(l,1) outl

link : output2@(1l,1) out2
portInTransition : in@(1,1) specialRule
localtransition : nothing-rule

zone : generateOut { (1,1) }

[nothing-rule]
rule : { (0,0) } 1 { t }

[specialRule]
rule: { portvalue(thisPort) } 1 { t }

[generateOut]
rule : {(0,0)+send(outputl,9.9999)} 1 {(0,0)>=10}
rule : {(0,0)+send(output2,3.3333)} 1 {(0,0)<10}

Figure 30. Example of use of the new features.

arriving at a different input port to those connected to the neighbors. On the other hand, output ports
are activated using the send function.

Figure 29 [13] presents a simple cellular model to show the use of these directives. It is a 2 x 2
Cell-DEVS receiving inputs in the cell (1, 1). It also uses the values of cell (1, 1) to send outputs to
other models using two output ports.

First, we define the Cell-DEVS coupled model values. In this case, it is a 2 x 2 cell space with
transport delays. The borders are wrapped and all the adjacent cells form the neighborhood. We use
the link directive to define the internal and external coupling. In this case, the coupled model input port
‘in’ is connected to the ‘in’ port of the cell (1, 1). Then we can see that two output ports are defined
for cell (1, 1) (outputl and output2). They are linked to the coupled model output ports. Then, the

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au: Figure 29
Please clarify `the previous example'?

15

20

25

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 28

28 G. WAINER SR E

9

Figure 31. Mapping a hexagonal geometry into a square lattice.

portInTransition directive allows the definition of the name of the function to be used when a message
arrives through the specified port. In this case, the specialRule is executed when an input arrives at the
in port in cell (1, 1). When this rule is activated, the function portValue(x) gets the value of the last
message which arrived through the port x of the cell (thisPort returns the name of the port where the
message has arrived).

The local computing function, called nothingRule, just keeps the present value of the cell. The cell
(1, 1) is also defined as a special zone (generateOut) with different behavior. In this case, when the cell
is activated it checks the present cell value. If it is smaller than 10, the value 3.3333 is sent through the
port output2. Otherwise, the value 9.9999 is sent through the port outputl.

Cell-DEVS lattice translator

Most existing cellular models use grids with square geometry. They are simple to define and visualize,
but have poor isotropy capacities (the capacity of a phenomenon to be expanded in every direction in
an homogeneous fashion). Certain phenomena cannot even be modeled accurately if square grids are
used. The provision of other topologies can solve these problems. For instance, triangular grids use a
reduced number of neighbors and reduce the number of states to be evaluated. Hexagonal cells have
the highest isotropy, making the models more natural to develop. The difficulties with any of these
geometries are related to the model visualization.

CD++ was developed considering square geometry. Therefore, to include other geometrical shapes it
was necessary to extend the original definitions. In [23], some mappings between different geometries
have been proposed. Some of these functions are easy to implement, but the visualization of results is
difficult. Neighborhood definition is also complex. Figure 31 shows a possible mapping of hexagonal
meshes into square lattices.

This transformation is carried out by analyzing the parity of the row where a cell is located. If we
consider that a cell is in the position (x, y), where x is the row and y the column, the position is
translated as shown in Figure 32.

The mapping results in a correspondence that differs according to the original row position.
Therefore, the translated cellular model is inhomogeneous. The case for triangular meshes is similar.
Here, each cell is also provided with a different orientation than those of the neighboring cells. These
ideas can be seen in Figure 33.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 29

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 29

Figure 33. Mapping a hexagonal geometry into a square lattice.

VA y+xodd |ﬁ B
</ >

A ¥4x even A
5, —> [l

Figure 34. Distribution of close neighbors in the mapping.

Using this function, each row of triangles is mapped into a row of squares, providing a non-
homogeneous set of rules. In this case, the position depends on the parity of x + y; that is, the parity
of adding row and column positions, as shown in Figure 34.
These procedures were used to build a lattice translator. The translator allows the user to define rules
5 using triangular or hexagonal meshes. Then, it translates them to the original syntax using square rules
that can be executed by CD++. The specification language was extended to provide a different way of
referencing the neighboring cells. The new specification syntax is depicted in Figure 35.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 30

30 G. WAINER SR E

@@ (-L-17 | -1 | -LD

QO S 2N 7
[

0Y0T wlelw] W /N

Figure 35. Relative positions of the neighbors in the different geometries.

Rule: 1 10 {[3]=1 and statecount (9.99) =3}

Rule: 1 10 {(((0,1)=1) and (if((statecount(9.99)-(if((-1,1)=9.99,1,0))-
(1£((1,1)=9.99,1,0)))<0,0, (statecount (9.99) - (1£((-1,1)=9.99,1,0))-(if((1,1)=9.99,1,0))))=3))
and even(cellpos(0))}

Rule: 1 10 {(((0,1)=1) and (if((statecount(9.99)-(if((-1,-1)=9.99,1,0))-
(1£((1,-1)=9.99,1,0)))<0,0, (statecount (9.99)-(if((-1,-1)=9.99,1,0))-(i£((1,-1)=9.99,1,0))))=3))
and odd(cellpos (0))}

Figure 36. Example of a rule in an hexagonal geometry with the corresponding translation.

Each rule in a hexagonal or triangular lattice is translated into two different square rules, each of
them considering the parity of rows and columns, as explained earlier. The translation procedures must
know which row we are translating. The cellpos function returns the value of the ith position of a tuple
referenced by the cell where the rule is being executed. Figure 36 shows the translation of a simple rule
into a hexagonal geometry.

This example shows a rule saying that, if the value in the neighbor called [3] is 1, and there are three
cells in the neighborhood whose value is 9.99, the cell has a future value of 1. This value is sent to
the neighboring cells using a transport delay after 10 time units. The following two rules represent the
translation of that rule into a square mesh, using the definition shown in the previous figures.

In a square lattice, we use eight neighbors, against six used in the hexagonal mesh. Therefore, when
we translate the rules from one topology to the other, we should not count those neighbors that should
not be included. The function statecount(n), which returns the number of cells whose values are n, is
used for this purpose. We can see that we compute statecount(9.99), as in the previous case, and then
in the even rows we subtract the values of cells (—1, 1) and (1, 1). The following rule is evaluated only
in odd rows. The function cellpos(n), which returns the nth value of the tuple referencing a cell, is used
to check the cell row used.

Figure 37 shows the result obtained when the same procedure is applied to a triangular geometry.
The main difference in this rule is that we have more neighbors. Therefore, we have to control the
values corresponding to even and odd rows/columns.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 31

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 31

Rule: 1 10 {[3]=1 and statecount (9.99)=3}

Rule: 1 10 {(((0,-1)=1) and (if((statecount(9.99)-(if((-1,-1)=9.99,1,0))
(1£((-1,0)=9.99,1,0))-(1£((-1,1)=9.99,1,0))-(1£f((1,-1)=9.99,1,0))-

(if((1,1)=9.99,1,0)))<0,0, (statecount (9.99) - (if((-1,-1)=9.99,1,0))-(if((-1,0)=9.99,1,0))-
(1£((-1,1)=9.99,1,0))-(i£((1,-1)=9.99,1,0))-(i£((1,1)=9.99,1,0))))=3)) and

even (cellpos (0)+cellpos (1))}

rule: 1 10 {(((1,0)=1) and (if((statecount(9.99)-(if((-1,-1)=9.99,1,0))-(i£((-1,1)=9.99,1,0))-
(if((1,-1)=9.99,1,0))-(1£((1,0)=9.99,1,0))-(if((1,1)=9.99,1,0)))<0,0, (statecount (9.99) -
(if((-1,-1)=9.99,1,0)) - (1f((-1, 1)=9.99,1,o))—(1f((1 -1)=9.99,1,0))-(if((1,0)=9.99,1,0)) -
(1£((1,1)=9.99,1,0))))=3)) and odd(cellpos(0) + cellpos (1))}

Figure 37. Example of a rule in an triangular geometry with the corresponding translation.

SIMULATION MODELS

As we could see in the previous sections, the main advantage of the DEVS formalism is that the
models can be specified independently of the simulation mechanism. At present, we have implemented
a number of different simulation techniques; namely, hierarchical [13], flat [24], real-time [25] and
parallel [26]. In every case, the model specifications remained untouched and they could be reused,
even after changing a simulation technique completely. CD++ was defined using the abstract simulation
mechanisms presented in [11]. DEVS simulators can be seen as hierarchical schedulers of events that
activate the corresponding submodels. The schedules allow the skipping of periods of inactivity in the
simulation.

The basic idea is to provide independent basic abstract classes: models and processors. The first
is used to represent the behavior of the atomic and coupled models and they were presented in the
previous section. The second implements the simulation mechanisms associated with the models.
Figure 38 shows a detailed class hierarchy including all the modeling and simulation entities.

Each modeling entity is associated with a processor that is in charge of activating the model, which
is in charge of defining the behavior to be implemented. Each kind of model is associated with a
different processor. Simulators and coordinators are built to manage atomic and coupled models. The
root coordinator drives the simulation in its global aspects. It keeps the global time and it is in charge
of the start and finish of the simulation. It also collects the output results. It is related to the highest
level coupled model and its corresponding coordinator.

Hierarchical processors

As previously explained, different simulation processors are used: simulators, coordinators and root
coordinators. They are related to different models: simulators are associated with atomic models and
coordinators with coupled ones.

The coupling relationship is recorded in the instance variables devs-component and processor of the
processor and model, respectively. The parent variable indicates the parent processor in the simulators’

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8, 2002 Marked proof Ref: SPE482/24766ae

32 G. WAINER

Sheet number 32

Model
~Functional Type ~Parant
~ModelType ~ExtConnector
~ProcessorPtr ~IntConnector
~£ddEx tCom) ~4 ddIntConl)

Coupled

‘Atomnic

~figma ~FPhase ~2 ~Prionty ~CutLinks
~Timeddrance) ~InLinks ~IntLinks
~Int TransFnl) ~dddCmtLinks[)
~FautTransFnl) ~dhddlntLinks()
~CutputFa() ~GetChildren()
~izatInflaences()
~TatReceivars()

~SetPrionty()

Adomde- Cell

~statns ~old_statos
~delay ~row ~cobuonn

Coupled-Cell
~yorars ~cobimns

~neighborhood
~ExtTransFul) ~horder ~Tope
~CrutputFa() ~delay_class
~IntTransFan) el s;ace
~lacal_trans_fiu) A0t ks)

~dhddIntLinks()

-SetPrinyity()

Flai-Coupled-Cell
~oell_space
~meighborhood

Processor
~Parent ~TimeOfLastEvent
~TimeOfNextEvant

~ChangeDiate OfEvent()
~WerivDateOfE went()

//

i

Simulator
Phase ~= ~Sigma

~FeactionTo¥mess()
~FeactionTo*mess()

~Rollback()

'/C-ooﬂl.'inahr
~Children ~WaitList
~EtopList ~EventList
~FeartionTo¥mess()
~FeartionTo%*mess()
~FeactionToXmass()
~FeactionToDimess()

Y. ~Translate() /

Flat-Caordinater
~StopList ~EventList
~Clack
~FeartionTo¥mess()
~FeartionTo%*mess()
~FeactionToXmess()

Optimist_Par C
~Stabes_list ~Type

~FeactionToDimess()

Parallel- Coordinater

~Processors ~Type

~Processor_mapping
~Input_links ~LWT
~Jtpat_livks ~GVT
~Map_tasks()
~Transmit_messagel]
~Create_link()
~Fereive_massagel]

Root- Coordinater
~Children ~WWaitList
~StopList ~EventList
~AZloek

~FeactionTo¥mess()
~ReactionTo*mess()
~ReactionToXmess()
~ReactionTolmess()

Figure 38. Basic class hierarchy.

Pesgimist Par C
~Lookahead
~Deadlock_det_mech

~Recovery
~Transmit_messagel)
~Recelve_message()
~Block

hierarchy. The times of the last event and the next event are recorded to identify the imminent children
and to verify correctness in the message’s simulated times.

The simulation process is driven by message passing between the processors. The messages include
information related to the message’s origin, the time of the related event and a content consisting of a
port and a value. There are four types of messages: * (used to signal a state change due to an internal
event), X (used when an external event arrives), ¥ (the model’s output) and done (indicating that a

model has finished its task).

Copyright © 2002 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

30

35

40

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 33

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 33

The submodel with the smaller scheduled internal event in the hierarchy is called imminent.
When this model must execute, a *-message is sent to its simulator. The message passes through
the middle level coordinators, provided with a list of imminent children for this purpose. When
an external message arrives, an X-message is consumed and the external transition function
executed. The simulators return done-messages and Y -messages that are converted to new *-messages
and X-messages, respectively. Y-messages carry the results to be transmitted to other models.
done-messages are used to inform that each model has finished the task given by its higher level
coordinator.

If a basic model receives an external event x € X, the model executes the external transition function
dext- Consequently, the next internal event (that is, that produced by the consumption of time in the
model) is rescheduled. X-messages are also transmitted to the lower levels in the hierarchy using the
coupling scheme, up to the moment where it arrives in an atomic model.

The abstract simulator analyzes the external events and the scheduled internal transitions for all its
children and chooses the imminent child. These procedures are repeated up to the moment when a
simulator is chosen. This is the simulator related to the imminent model, which must be activated. The
imminent model starts by executing the output function A to generate an output event y € Y. Each
output is sent to the parent coordinator, which checks the influencees and translates it into new inputs,
using the Z;; translation function. Then, the internal transition function i, executes, resulting in a
state change and the scheduling of a new internal transition. Every activation of a model finishes with
a done-message used to update the future activation time of the model. The done-message with the
earlier future time is transmitted to the upper level coordinator, allowing the local time of the particular
coupled models to be maintained.

The SimLoader class is in charge of parsing the model specification, providing an interface to load
the simulator configuration. Once the models are loaded, there are two possible procedures to start the
simulation. The first is by using the class StandAloneLoader, responsible for loading the parameters.
The NetworkLoader class is responsible for getting the same parameters by using TCP/IP services.
In this way, the simulator can be executed as a simulation server and the parameters can be loaded
remotely, getting the results in a remote fashion. Finally, the Simulator class is responsible for the
creation of the model tree and for the establishment of the links between ports using the specification.
Once the hierarchy of the model is built, the simulation can begin. To do so, the external events are
added, an event list created and the stop time initialized.

Flat processors

The overhead that results from the exchange of messages between processors could be minimized if the
hierarchy is properly flattened. Therefore, the number of messages can be reduced accordingly [27]. It
is important to conserve the usual model definition, execution and the separation between models and
processors. We extended the flat simulators to introduce flat simulation in CD++. This new processor
is unique across all the processors’ hierarchy and replaces all the usual coordinators and simulators
existing in a hierarchical approach.

The processor hierarchy corresponding to a hierarchical simulator is shown in Figure 39. Whenever
the root coordinator has to schedule an event to lower-most simulators (simulators #4 and #5), the
overhead incurred by message passing can be considerable. The same phenomenon is produced if the

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 34

34 G. WAINER SR E

[aomic#1 ™. [[RootCoordinator | _»{ awmic#s]

Coordinator # 1 \ ‘ A

FLAT
[I I 1

e COORDINATOR
| Coordinator # 2 | | Simulator # 1 | | Simulator # 2 | | Simulator # 3 | 3 x
Atomic# 2
| simutator#a | [simutator#s | S

h |

Atomic# 4

Figure 39. Processors’ hierarchy (hierarchical and flat approaches).

simulator #5 sends an output through a port connected to simulator #3. The number of intermediate
coordinators can be arbitrarily high depending on the model studied.

If we simulate the model shown using a flat simulator, the resulting hierarchy is remarkably
simplified and the overhead incurred by message passing is significantly reduced. The flat coordinator
stores information concerning the atomic models it handles. Information about ports, links, time of
next event, time of the last event processed as well as the queue of pending events must be saved.

Real-time processors

We developed several modifications to the original simulation engines in order to provide real-time
responses. A real-time simulator must handle events in a timely fashion, where time constraints can
be stated and validated. These new features would allow interaction between the simulator and the
surrounding environment. Therefore, inputs could be received by ports connected to real input or even
data collected from human interaction. Similarly, outputs could be sent through output ports connected
to specialized devices.

In this case, the root coordinator manages the advance of time along the simulation. This coordinator
must wait until the physical time reaches the next event time to initiate the new cycle. Periods of
inactivity are not skipped; instead, the root coordinator expects the scheduled time to be reached and
only then starts the new simulation cycle.

Parallel processors

When a simulation is run in a distributed fashion, each machine runs one logical process which hosts
one or more DEVS processors. Under these assumptions, a coordinator’s children need not be executing
on the same logical process. If the correspondence between models and DEVS processors is one-to-
one, then every coupled model is associated to only one coordinator. Then every message sent to child
processors running on different CPUs requires inter-process communication. Figure 40(a) illustrates
this case. It shows a coordinator sending a message to its eight children distributed on two CPUs. Four
inter-process messages are required for the four children running on processor 1.

To reduce inter-process messages, coupled models use a coordinator on each logical process where
a child processor is running. Children processors send messages to the local coordinator, which
decides how to handle the received messages. Upon receiving a message from a child, a coordinator

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 35

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 35
CPU1 CPUO ! CPU1
Master ﬂ Slave
Coomdinator Coordinator
¥

Ce VB By <]
=] L] [][]

¥y ¥
BRIRRER

e

(@) (b)

Figure 40. (a) Coordinator sending messages; (b) slave—master pair (dashed lines are inter-process messages).

could forward this message to all the coordinators for the model. This organization would require
all coordinators to know about each other. For instance, if coupled model A is a child of coupled
model B, then B’s coordinators would have to interact with A’s coordinators. If not handled carefully,
this communication can turn out to produce a large number of inter-process messages. In such a
scenario, a way of keeping the number of inter-process messages to a minimum is to have only one
of the coordinators receiving messages from or routing messages to the parent model coordinator.
This specialized coordinator is known as a master coordinator, and all other coordinators are slaves
(Figure 40(b)). The master coordinator for model A is the only one that can receive or send messages
to B’s local coordinator.

When master and slave coordinators are used, DEVS processors are organized in a hierarchy,
which does not have a one-to-one correspondence with the model hierarchy. Therefore a parent—child
relationship that takes into account the existence of master and slave coordinators must be defined:

(a) for each simulator, the parent coordinator is the parent’s model local processor (it is guaranteed
that this one exists);

(b) for each slave coordinator, the parent coordinator is the master coordinator of the model;

(c) for each master coordinator, the parent coordinator is the parent’s model local processor—just
as if it were a simulator.

The simulation advances as a result of the exchange of messages between parent and child DEVS
processors. Every message is a pair of the form (zype, time) and can belong to one of two categories:
synchronization messages and content messages. The synchronization messages are (@, ¢), (*,) and
(done, t), and the contents messages are (y, t) and (q, t).

The synchronization messages (@, t), (*, t) are sent from a parent DEVS processor to its imminent
children. (@, ¢) is used to tell the children to send their outputs and (*,¢) tells the children to
invoke their transition function (whether it corresponds to executing an external, internal or confluent
transition). All outputs produced by a model are translated to (y, #) messages between a child DEVS
processor and its parent. Finally, those external messages that arrive from outside the system or that
are generated as a result of an output message being sent to an influencee are sent as (g, r) messages.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

20

25

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 36

36

G. WAINER SRE

Synfaxhods

| Stringtode | | Tim elde

Copst o Aade | Farhiods | FortRefhpd | Sphbde

| Cowmthingde

| LRy Qplode | Binary Opdiade

| Thyee Ophiade

Four Ophiod |

Figure 41. Subclasses of SyntaxNode.

Implementation of the Cell-DEVS specification language

The rules defining the model coupling and those related to the behavior of a cell should be translated
into an executable definition. We show how rules for cellular models are evaluated (those used for
coupled models and analytical specifications for atomic models are handled similarly). The rules’
specifications are associated with a function’s identifier, which is registered by each cell. When the
models to be simulated are loaded, if the definition of a transition function is not registered, then it
is added to a table. In this table, the function name acts as an identifier and each one of the rules is
represented with a tuple (value, delay, condition). Each element of the tuple is represented by a tree.
Figure 41 shows such a rule definition tree.

The SyntaxNode class is an abstract class that allows the description of a node in the rule evaluation
tree. It is composed of the following.

ConstantNode—stores a constant value with domain in real numbers, integers or three-valued
logic.

CountNode—allows the definition of the functions TrueCount, FalseCount and UndefCount.
VarNode—stores a reference to a neighbor cell, defined as an offset from the present cell.
PortDefNode—defines a reference to an input port of the cell.

StringNode—contains a string of characters representing the name of an input port of the cell. It
is used to evaluate the PortValue function.

TimeNode—allows the Time function to be defined, which returns the present simulated time.

e OpNode—an abstract class representing functions with one or more parameters. It has the

subclasses UnaryOpNode, BinaryOpNode, ThreeOpNode and FourOpNode, which represent the
functions with one, two, three or four parameters, respectively.

Each rule defining the behavior of a cell can be represented by a tree structure. For example, the
representation of the first rule of the Life game presented in Figure 18 can be represented as shown in
Figure 42.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

=

20

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 37

CD++: A TOOLKIT TO DEVELOP DEVS MODELS 37

SRE

‘ Vedor ‘ Delay | Condici on
/ r \
ConstemtNode ConsfatNode EBinaryOpNode
(@] (10) (4ND)
/ o T———
- Ei o
EBivary OpMNode m:gj%p) y
=

Comspa e Birary OpNode Binary Opliode
(1 = =

Cowrt Node ConstantNode Cowrf Node ConsfafNode
{TRUE COUNT) (3 {TRUE COUNT) (43

ConstantNode
(o

ConsfanfNode
o)

Figure 42. Tree structure used to represent the first rule of the Life game.

Therefore, to evaluate a rule it evaluates in recursive form the tree that represents the condition. If
the result of the evaluation is true, it proceeds to evaluate the trees corresponding to the value and the
delay, and the result of these evaluations are the values used by the cell.

Cell-DEVS quantized models

Recently, a theory of quantized DEVS models has been developed [4,5]. The theory has been verified
when applied to predictive quantization of arbitrary ordinary differential equation models. In this way,
continuous variable models can be defined as DEVS. A curve is represented by the crossings of an
equal spaced set of boundaries, separated by a quantum size. A quantizer checks for boundary crossings
whenever a change in a model takes place. Only when such a crossing occurs is a new value sent to
the receiver. This operation substantially reduces the frequency of message updates, while potentially
incurring into error.

The cost/benefit analysis between reduced traffic and increased error was discussed in [28]. It was
also shown that the technique is useful when it is applied to Cell-DEVS models [29]. It was found
that the number of messages involved in the simulation of Cell-DEVS models presented a reduction in
the number of messages involved, as can be seen in Figure 44 (including the results for two different
applications). The curves belong to the class of curves f(x) = bx~¢ with x € (0, 1]. These results
approximate the theoretical optimum results presented in [5].

The introduction of quantizers introduces an error factor, whose value is a function of the local
computing function, the number of simulation steps and the quantum. The future input values for a cell
are dependent on the present results for the cell. This dependence can lead to a nonlinear behavior of
the error, depending on the interconnection of the cell. In any case it can be seen that the higher the

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au: line 1
Please clarify `it'?

Query
Au: line 11
Sense OK?

Query
Au: line 21
Do you mean `In all cases'?

10

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 38

38 G. WAINER SR E

State s

Fib]
&1

B [s ——————————

|
4D !
| R
—_— |
Sender _— : Receiver
| _
|
|
|

D
2D
1o

timet

Figure 43. DEVS quantization [5].

30000
30000 e %‘='='='='
25000 25000
20000 $—\ 20000 \\
15000 LN 15000 ~
10000 AW 10000 o
5000 \\\A 5000 ——
0 . . ' ' 0
0 0001 001 01 05 1 0 0001 001 01 05 1
—e—Quantized —#@—Non Q. I | —e—Quantized —#— Non Q. |
() (b)

Figure 44. Number of messages involved.

quantum, the worse the error. The use of a higher quantum reduces the number of steps, but each of
them has a higher error. The experimental results validate this behavior.

The error grows as f(x) = ax® and can be linear when there is no influence between cells. We can
see that, in the (a) case, the error hardly increases while the messages go down by approximately 1/10.
Considering these factors, the tool has included quantization facilities. The simulators are able to run
quantized models in a more efficient fashion.

SIMULATING MODELS
Once a model has been generated and its description is included in the modeling hierarchy, it can

be simulated. As explained earlier, the model interaction is carried out through message passing.
The ultimate goal of each model is to receive inputs through the input ports and generate outputs

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au: line 4
Please clarify `in the (a) case'?

10

15

20

25

30

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 39

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 39

: 1

: 3 . =)

A v
e 4

0.05 0.2

S / ————a

0 0.001 0.01 0.1 1 10 0 0.001 0.01 01 0.5 1

Figure 45. Accumulated error behavior.

in the output ports according to the definitions of the transition functions. The tool provides a way
of registering every input and output of individual models. Nevertheless, fully detailed interaction
between the models can be registered by analyzing a log output file. Figure 46 shows a printout of the
log file generated by the tool when the Life game is simulated.

It can be seen that the simulation process begins by sending an initialization (/) message to the
external model (top), which is in charge of distributing them through the cell space (see Figure 46(a)).
Each of the cells replies with a done (D) message (see Figure 46(b)), telling the time for the next
internal event (in this case, 100 ms; that is, the delay defined in the specification).

When the top-level coordinator receives all the done-messages (Figure 46(c)), it transmits the time
of the imminent child to the root coordinator. In this way, the global time of the simulation is updated.
The root coordinator replies using a *-message (see Figure 46(d)), that is sent to the imminent children.
They execute and their simulators generate Y- and done-messages (see Figure 46(e)).

Finally, the coordinator analyzes which output of a model should be sent to others (see Figure 46(f)),
generating new X-messages. The cycle is repeated up to the moment where all the external events
are consumed, or when the simulation time is consumed (in this case, 500 ms, as can be seen in
Figure 46(g)).

Based on the log file, a simple text output interface was defined. It allows the user to see the execution
of Cell-DEVS models in a fast way, allowing them to debug executable models. For instance, Figure 47
shows the results obtained when executing the 3D Life game defined earlier (showing the 3D space as
three independent planes).

These values can be used to visualize the results using 3D tools. Figure 48 shows the outputs of the
3D Life game in one of our current 3D visualization engines.

The values in the log file can be used to provide a generic graphical output. Figure 49 shows its
use when executing the control tower model presented earlier (at present, a prototype—all the state
variable values have been added by hand to make the description of the model execution clearer).

In this case, we show the execution of the control tower when three different requests are demanded.
The model is initially in a passive state (with no scheduled internal events; that is, sigma = infinite).
In simulated time 3, an input request arrives through the port in_d. Checking the model specification,
we see that the flight information is stored and an internal event is scheduled. In this case, we need a
preparation time of 7 time units. During this time, the model remains in the prep_rnwy-use phase. When
the time is consumed (sigma = 0), an internal function is executed. The output function executes first,

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au: line 6
Please clarify `them'?

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 40

40 G. WAINER

Message I / 00:00:00:000 / Root (00) for top(01) (a)
Message I / 00:00:00:000 / top(01) for 1life(02)

Message I / 00:00:00:000 / life(02) for 1life(0,0) (03)

Message I / 00:00:00:000 / life(02) for 1life(0,1) (04)

Message I / 00:00:00:000 / life(02) for 1life(19,19) (402)

Message D / 00:00:00:000 / life(0,0) (03) / ... for 1life(02)

Message D / 00:00:00:000 / life(0,1) (04) / 00:00:00:100 for life(02) (b)
Message D / 00:00:00:000 / life(0,2) (05) / 00:00:00:100 for life(02)

Message D / 00:00:00:000 / life(19,19) (402) / ... for life(02)

Message D / 00:00:00:000 / life(02) / 00:00:00:100 for top(01) (c)
Message D / 00:00:00:000 / top(01) / 00:00:00:100 for Root (00)

Message * / 00:00:00:100 / Root (00) for top(01) (d)
Message * / 00:00:00:100 / top(01) for 1life(02)

Message * / 00:00:00:100 / life(02) for 1life(0,1) (04)

Message * / 00:00:00:100 / life(02) for 1life(19,17) (400)

Message Y / 00:00:00:100 / life(0,1) (04) / out / 0.000 for life(02) (e)
Message D / 00:00:00:100 / life(0,1) (04) / ... for 1life(02)

Message Y / 00:00:00:100 / life(0,2) (05) / out / 0.000 for life(02)

Message D / 00:00:00:100 / life(19,16) (399) / ... for life(02)

Message Y / 00:00:00:100 / life(19,17) (400) / out / 1.000 for life(02)

Message D / 00:00:00:100 / life(19,17) (400) / ... for life(02)

Message X / 00:00:00:100 / life(02) / neighborchange / 0.000 for life(19,0) (383 (f)
Message X / 00:00:00:100 / life(02) / neighborchange / 0.000 for life(19,1) (384)

Message X / 00:00:00:100 / life(02) / neighborchange / 1.000 for 1ife(18,18) (381
Message D / 00:00:00:100 / 1life(19,0) (383) / ... for life(02)

Message D / 00:00:00:100 / life(19,1) (384) / ... for life(02)

Message D / 00:00:00:100 / life(19,2) (385) / 00:00:00:100 for life(02)

Message D / 00:00:00:100 / life(18,18) (381) / ... for life(02)

Message D / 00:00:00:100 / life(02) / 00:00:00:100 for top (01

Message D / 00:00:00:100 / top(01) / 00:00:00:100 for Root (00)

Message * / 00:00:00:200 / Root (00) for top(01)

Message * / 00:00:00:200 / top(01) for 1life(02)

Message * / 00:00:00:200 / life(02) for 1life(19,2) (385)

[The simulation cycle is repeated]

Message D / 00:00:00:500 / life(12,8) (251) / ... for life(02)

Message D / 00:00:00:500 / life(12,9) (252) / ... for life(02)

Message D / 00:00:00:500 / life(02) / ... for top(01) (g9)
Message D / 00:00:00:500 / top(01) / ... for Root (00)

Figure 46. Message traffic during the execution of the hierarchical model.

sending the STOP signal to other models (represented by a short arrow in the figure). Then the internal
transition function is executed, queuing the plane, choosing it (as there is no other plane queued) and
putting the model in the rnwy-use state during 7 time units. When this time is consumed, the GO signal
is sent to the output ports and flight #1 is sent through the corresponding port (in this case, departing).
A second plane arrives and the procedure is repeated. When 3 time units have been consumed, a new
external event occurs, indicating an emergency plane (#4). Then, the emergency signal is sent to the
landing port, the previous plane is dequeued, letting flight #4 land. When it finishes landing, flight #2

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 41

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 41
Time: 00:00:00:000 Time: 00:00:00:100
0123456 0123456 0123456 0123456 0123456 0123456
+o------ + +------- + +------- + +------- + +------- + +------- +
ol1 | o] | o]z | o] 1 1] o1 1] o] 1 1]
1|11 11| 1|11 11| 1] 111 | 111 1] 1)1 1] 1]1 11 1]
21 1| 2| 11 1] 2| 1 11 | 2|11 11| 2]|1 1| 2|11 11|
3| | 3] 1 11| 3] 11| 3| 111 3| 11 1| 3] 11
4] 1 11| 4| 11 | 4|1 11 4| | 4] 11| 4]
5| 11 1| 5| 11| 5|11 1| 5/1 111 | 5|1 111 1| 5|1 11 1]
6|1 1 1| 6] 1 1] 6] 1 11 1] 6| | 6] 1 | el 1 1 |
+o----- - + +------ - + +------- + +------- + +-gF---- + +------ +
Time: 00:00:00:200 Time: 00:00:00:900
0123456 0123456 0123456 0123456 0123456 0123456
+o------ + +------- + +------- + +------- + +- - - TS + +------- +
0|1 1 o] 1] oj1 1| 0 | o] | o] |
1] 11 1| 1|1 1] 1] 11 1 | 1] | 1] | 1] |
2| 1| 21 1] 2 | 2 | 2] | 2] |
3] 1 | 3|1 11| 3|1 11 | 3| | 3] | 3 |
4| 1111 4| 11 | 4 1111 | 4|1 1| 4|1 11| 4|1 1
5|1 1 | s|1 1 1] 5|1 1 1| 5] | 5] | 5] |
6|11 11| 6|11 11| 6|11 111] 6| | 6] | 6] |
+o------ + +------- + +------- + e = + +---- + +------- +
Figure 47. Execution results for the 3D Life game.

Time 00:00:00:600 Time 00:00:00:800

0«
@
<>
D

W
" g%
W
.

Figure 48. Graphical display for the 3D Life game.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 42

42 G. WAINER SR E

£ Visual DEVS v1.1
| File| Edit View Model Window Help

£s Model 2.mdr =
B

3

L landimg | wpe, landing

g lg

prep-landing prep-land
s assi

prep-land

0O 2z 4 6 & 10 12 14 16 156 20 22 24 26 26 30 32 34 36 35 40

(departing, 1) (landing,Z) (landing, 4)
(leading, EM)
= 1 1 tanding
@ o 2 4 & & 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
= \[m-x) \[ma, 3 (in a4
I[III o 2 4 6 & 1012 14 16 18 20 22 24 26 25 30 32 34 36 38 40

T iaf I\I\HLI\I\\I\I\

o 2 4 6 & 10 12 14 16 18 20 22 24 26 23 30 32 34 36 3B 40

o |

[411272000 | 8:52 P

Figure 49. Execution results for the airport model.

is authorized to use the runway and lands (the values related to this flight are kept in the control tower
queue).

In addition to these standard graphical outputs, a SCADA tool built with industrial application
purposes was modified to receive inputs from the CD++ tool [30]. The SCADA receives inputs from
the simulator and reacts to them as if they were real-time data. In this way, complex man—machine
interaction can be provided. The user can define what values in a model they want to be analyzed and
how. Graphical mimics can be associated with different. It can also associate alarm conditions to the
central databases, combine the results, store them as historical data to be analyzed, etc.

Another graphical output included shows the execution results of Cell-DEVS models. For instance,
Figure 51 includes the execution results of the original Rothermel model presented earlier.

Each of these graphical tools is independent from the simulation engine. Therefore, different kinds
of visualization methods can be employed for the same simulation results. Some of these results can be
seen using a centralized tool using Windows. Others were developed in Java and can be embedded in

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au: line 7
Missing text?

August 8, 2002 Marked proof Ref: SPE482/24766ae Sheet number 43

SP E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 43
%

= SCADA Application.
Application Databases |mages Alarms Mimics Processes Commands Histary File Emulator About

ETAUTAE

HORNO DE SECADO

Mecheros Coordinates Info:
X Axis: 176
Y Axis: 002
Calentar Secar Enfriar

Alarms Counters:

> A
Total Alarms:
ACK Alarms:

Medicion de temperstura

[Monday, 13 de Movember de 2000. |06:1933 PM

Figure 50. Output visualization using IGNATIUS.

THE
sssmsssaanns |

Figure 51. Fire propagation results. The fire originated in cell (11, 11) with wind blowing NE.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

10

15

20

25

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 44

44 G. WAINER SR E

EMERE
ALl

Figure 52. Error behavior for the heat seekers: (a) non-quantized and ¢ = 0.001; (b) g = 0.1; (c) g = 1.

C

R

a Web front-end that can communicate with the simulation server, providing facilities for Web-based
simulation. Recently we have extended these results to provide 3D visualization using VRML.
Finally, Figure 52 shows the execution results of different quantized versions of a model. It shows
that the error introduced by the quantizers can lead to undesired behavior for the execution models.
We show the behavior of devices seeking heat sources in a diffusion model. This 3D model uses
one plane for the heat diffusion and a second one for the heat field. The seekers move in the plane
looking for the heat maxima in the second plane. In Figure 52, the left-hand side of each part shows
the behavior of the heat seekers and the right-hand side shows the heat surface for a given simulated
time (using a different quantum in each case). We can see that the use of a high quantum produces
much higher errors, producing a result completely different from that desired in both fields. The use of
a smaller quantum also introduces errors, but most seekers can reach the local maximum. Therefore,
several orders of improvement in execution times can be achieved using small quanta, preserving the
behavior of the model. In this case, a speedup of almost 40% was achieved with almost no error.

CONCLUSIONS

We have introduced several features of CD++, a toolkit for DEVS modeling and simulation. The tool
was built using the DEVS formal modeling technique, improving the safety and development times
of the simulations. The tool executes in a stand-alone mode or as a simulation server that can be
executed remotely. It executes on different platforms, from low-priced personal computers up to high-
performance multiprocessors or distributed systems. The separation of visualization tools from the
simulation engines makes the development of new improvements in visualization easier, improving its
use for Web-based simulation.

We have shown that the abstract simulation mechanism enables different simulation techniques to
be defined without the need to change the models developed, as they follow the formal specifications
of the DEVS formalism. The models are easily reusable thanks to their hierarchical construction.
Consequently, the costs of development are reduced, the quality of the models improves and non-

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au: line 2
Define VRML?

15

20

25

30

35

40

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 45

SR E CD++: A TOOLKIT TO DEVELOP DEVS MODELS 45

expert users are able to start developing new applications with a fast learning curve. Several types of
models can be integrated in an efficient fashion, allowing multiple points of view to be analyzed using
the same model. The formalism allows improvement in the security and cost in the development of the
simulations. Experimental results of applications have shown improvements for expert developers. The
main gains have been reported in the testing and maintenance phases, the more expensive phases for
these systems [14].

The tool was used to develop several kinds of application examples, which allowed us to show the
flexibility of the toolkit. Some of them include:

e Alfa-1—a complete simulated processor emulating the SPARC CPU (used for educational
purposes);

e ATLAS—a high-level specification language for traffic models (mapped in DEVS and Cell-

DEVS);

a watershed model;

Rothermel fire spread analysis;

a robot moving in a manufacturing plan;

diverse physical problems—heat diffusion, crystal growth, excitable media, particle collision,

heat seekers, surface tension, etc.;

an airport model (and a 3D model of planes coming to the airport);

a model of a manufacturing plant;

a library of network performance analysis (based on client/server applications for Web servers);

cryptokey generation;

ant foraging models and other ecological systems.

At present, some other applications are being developed, including analysis of PCS systems,
behavior of the heart tissue, a flow injection model and an extended library for modeling network
systems.

The tools are public domain and can be obtained at http://www.sce.carleton.ca/faculty/wainer/
celldevs. The developed models are publicly available and will be incorporated into a Web-based
environment that can be applied to the development of DEVS models.

REFERENCES

1. Ho Y. Special issue on discrete event dynamic systems. Proceedings of the IEEE 1989; 77(1).

2. Zeigler B. Theory of Modeling and Simulation. Wiley, 1976.

. Zeigler B, Kim T, Prachofer H. Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex

Dynamic Systems. Academic, 2000.

4. Zeigler B. DEVS theory of quantization. DARPA Contract N6133997K-0007, ECE Department, University of Arizona,
Tucson, AZ, 1998.

5. Zeigler B, Cho H, Lee J, Sarjoughian H. The DEVS/HLA distributed simulation environment and its support for predictive
filtering. DARPA Contract N6133997K-0007, ECE Department, University of Arizona, Tucson, AZ, 1998.

6. Giambiasi N, Escude B, Ghosh S. GDEVS: A generalized discrete event specification for accurate modeling of dynamic
systems. Transactions of the Society for Computer Simulation 2000; 17(3).

7. Wainer G, Giambiasi N. Timed Cell-DEVS: Modeling and simulation of cell spaces. Discrete Event Modeling and
Simulation: Enabling Future Technologies. Springer, 2001.

8. Wolfram S. Theory and Applications of Cellular Automata (Advances Series on Complex Systems, vol. 1). World Scientific:
Singapore, 1986.

(98]

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Query
Au:
Please supply page numbers for reference [1].
Please supply volume and page numbers for references [9,15].
Please supply publisher and town for all Proceedings.

10

15

20

25

30

35

40

August 8,2002 Marked proof Ref: SPE482/24766ae Sheet number 46

46

G. WAINER SI)&E

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

. Wainer G, Barylko A, Beyoglonian J. Experiences with DEVS modeling and simulation. JASTED Journal on Modeling

and Simulation 2001.

. Wainer G. Discrete-event cellular models with explicit delays. PhD Thesis, Université d’ Aix-Marseille III, 1998.
. Zeigler B. Multifaceted Modeling and Discrete Event Simulation. Academic, 1984.
. Wainer G, Christen G, Dobniewski A. Defining models with the CD++ toolkit. Proceedings of the European Simulation

Symposium, Marseille, France, 2001.

. Rodriguez D, Wainer G. New extensions to the CD++ tool. Proceedings of the Summer Computer Simulation Conference,

Chicago, IL, 1999.

. Muzy A, Innocenti E, Santucci JF, Wainer G. Comparing simulation methods for fire spreading across a fuel bed.

Proceedings of AIS 2002—Simulation and Planning in High Autonomy Systems, Lisbon, Portugal, 2002.

. Wainer G, Giambiasi N. Application of the Cell-DEVS formalism for cell spaces modeling and simulation. Simulation

2001.

. De Simoni F, Burotti M, Wainer G. Definition of an airport model using the CD++ tool. Report, Computer Science

Department, Universidad de Buenos Aires, 1999. http://www.dc.uba.ar/people/proyinv/celldevs.

. Morihama L, Pasuello V, Wainer G. Automatic verification of DEVS models. Proceedings of the 2002 Spring Simulation

Interoperability Workshop, Orlando, FL, 2002.

. Zeigler B, Song H, Kim T, Prachofer H. DEVS framework for modeling, simulation, analysis, and design of hybrid systems.

Proceedings of HSAC, 1996.

. Gardner M. The fantastic combinations of John Conway’s new solitaire game ‘Life’. Scientific American 1970; 23(4):120—

123.

Ameghino J, Troccoli A, Wainer G. Modeling and simulation of complex physical systems using Cell-DEVS. Proceedings
of the 33rd SCS Summer Computer Simulation Conference, Seattle, WA, 2001.

Ameghino J, Wainer G. Application of the Cell-DEVS formalism using N-CD++. Proceedings of the 32nd SCS Summer
Computer Simulation Conference, Vancouver, Canada, 2000.

Rothermel R. A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115, U.S. Department
of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT, 1972.

Weimar J. Simulation with Cell Spaces. Logos: Berlin, 1997.

Glinsky E, Wainer G. Definition of real-time simulation in the CD++ toolkit. Proceedings of the SCS Conference, San
Diego, CA, 2002. Accepted for publication.

Glinsky E, Wainer G. Performance analysis of DEVS environments. Proceedings of Al Simulation and Planning, Lisbon,
Portugal, 2002.

Troccoli A, Wainer G. Performance analysis of cellular models with parallel Cell-DEVS. Proceedings of the Summer
Computer Simulation Conference, Orlando, FL, 2001.

Kim K, Kang W, Sagong B, Seo H. Efficient distributed simulation of hierarchical DEVS models: Transforming model
structure into a non-hierarchical one. Proceedings of the 33rd Annual Simulation Symposium, 1998.

Zeigler B, Ball G, Cho H, Lee JS, Sarjoughian H. Bandwidth utilization/fidelity tradeoffs in predictive filtering. SISO SIW
’99, Orlando, FL, March 1999.

Wainer G, Zeigler B. Experimental results of timed Cell-DEVS quantization. Proceedings of AIS’2000, Tucson, AZ, 2000.
Benitez S, Seoane J, Wainer G, Bevilacqua R. Experiences with a tool to develop SCADA systems. Proceedings 1997
IEEE Conference on Systems, Man and Cybernetics, Orlando, FL, 1997.

Copyright © 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1-46

Annotations from spe482.pdf

Page 5

Annotation 1
Au: lines 1-7
Please check sense here.

Annotation 2
Au: line 21
“overloaded' OK?

Page 6

Annotation 1
Au:
Please cite all figures in text.

Page 27

Annotation 1
Au: Figure 29
Please clarify “the previous example'?

Page 37

Annotation 1
Au: line 1
Please clarify "it'?

Annotation 2
Au: line 11
Sense OK?

Annotation 3
Au: line 21
Do you mean "In all cases'?

Page 38

Annotation 1
Au: line 4
Please clarify “in the (a) case'?

Page 39

Annotation 1
Au: line 6
Please clarify “‘them'?

Page 42

Annotation 1
Au: line 7
Missing text?

Page 44

Annotation 1
Au: line 2

Define VRML?

Page 45

Annotation 1

Au:

Please supply page numbers for reference [1].

Please supply volume and page numbers for references [9,15].
Please supply publisher and town for all Proceedings.

