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Abstract 
Cell-DEVS is an extension to the DEVS formalism that 
allows the definition of cellular models. CD++ is a model-
ing and simulation tool that implements DEVS and Cell-
DEVS formalisms . We show the application of the para-
digm through different examples developed in CD++. 
Complex applications can be implemented in a simple 
fashion, and they can be executed effectively. 
 
1. INTRODUCTION 

Simulation is a tool that enables a better understanding 
of complex physical and natural systems. Difference equa-
tions have been used to develop simulation models of these 
systems  (see, for instance, [1, 2]). In the last years, several 
simulation models of real systems have been represented as 
cell spaces [3, 4]. Cellular automata [5] are dynamical sys-
tems in which time and space are discrete. A cellular auto-
maton is defined as an infinite n-dimensional lattice of cells 
whose values are updated according to a local rule. Updates 
are done simultaneously and synchronously using the state 
values of the current cell and its neighborhood, which is a 
finite set of nearby cells. 

The use of a discrete time base may constrain the preci-
sion of the model. In addition, the execution of cellular 
automata usually requires a large amount of computation 
time, primarily due to its synchronous nature. Timed Cell-
DEVS solves these problems using the DEVS (Discrete 
EVents systems Specification) formalism [6] to define a 
cell space where each cell is defined as a DEVS model [7]. 
Thus, it is possible to build discrete-event cell spaces, im-
proving their definition by making the timing specification 
more expressive.  

The DEVS formalism was proposed to model discrete 
events systems. Basic DEVS models (called atomic) are 

specified as black boxes, and several DEVS models can be 
integrated together forming a structural model (called cou-
pled).  

A DEVS atomic model can be defined as: 
 

M = < X, S, Y, δint, δext, λ, ta > 
 
where X represents a set of input events, S a set of states, 
and Y is the set of output events . Four functions manage the 
model behavior: δint the internal transitions, δext the external 
transitions, λ the outputs, and D ?the duration of a state. 
Each model uses its input and output ports to communicate 
with other models. External events are received via the 
input ports, and the model defines its behavior upon the 
reception of such inputs. The internal events produce state 
changes, and results are communicated to its influencees 
using the output ports.  

A DEVS coupled model can be defined as: 
 

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >. 
 
where X is the set of input events, Y is the set of output 
events, D is an index for the components of the coupled 
model, and for every i in D, Mi is a basic DEVS component 
(i.e., an atomic or coupled model). The list of influencees Ii 
of a given model is used to determine the models to which 
outputs must be sent. The function Zij translates outputs of 
a model into inputs for the other models . An index of influ-
encees is created for each model (Ii). For every j in the 
index, outputs of model Mi are connected to inputs in 
model Mj. 

In the Cell-DEVS formalism, a cell has a set of N inputs 
to compute its future state. Each input (generally received 
from the neighboring cells) is received through the model’s 
interface, and is used to activate the local function. It is 
possible to associate either a transport or an inertial delay 
with each cell, allowing deferring the transmission of the 
execution results. A transport delay allows us to model a 



variable commuting time for each cell with anticipatory 
semantics. Thus, every scheduled event is actually exe-
cuted. Using inertial delays, the semantics are preemptive: 
some scheduled events may not be executed due to a small 
interval between two input events. Therefore, the outputs of 
a cell are not transmitted instantaneously, but after the 
consumption of the delay.  

A Cell-DEVS model advances through the activation of 
the internal, external, output and state’s duration functions, 
as in other DEVS models .  

A Cell-DEVS atomic model can be defined as: 
 

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >. 
 

where each cell uses the N inputs to compute its future state 
S using the function τ. The new state of the cell is transmit-
ted to its neighbors after the consumption of the delay func-
tion. Delay defines the kind of delay for the cell, and d its 
duration. This behavior is defined by the δint, δext, λ and D 
functions. 

After each cell has been defined, they can be combined 
to form a coupled model, which is  composed of an array of 
atomic cells.  

A Cell-DEVS coupled model can be defined as: 
 

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. 
 

where the cell space C is defined by this specification as a 
coupled model composed by an array of atomic cells with 
size {t1 x ... x tn}. Each cell in the space is connected to the 
cells defined by the neighborhood N. If the cell space is 
“wrapped”, the cells in a border are connected with those in 
the opposite end. Otherwise, the borders B must have a 
different behavior from the remaining cells . The Z function 
allows the definition of internal and external coupling of 
cells in the model. This function translates the outputs of 
output port m in cell Cij into values for the m input port of 
cell Ckl. The input/output coupling lists can be used to 
interchange data with other models . 

The CD++ tool [8] was built following the definitions of 
DEVS and Cell-DEVS formalisms , and is used in this paper 
to model and simulate a number of real systems . Previous 
experiences on simulation of complex physical systems 
using Cell-DEVS and CD++ were described in [9,10]. 

In CD++, Cell-DEVS models are described using a built -
in specification language, which provides a set of primitives 
to define the size of the cell space, type of borders, cell’s 
interface with other DEVS models and the cell’s behavior. 
The behavior of a cell (the τ function of the formal specifi-
cation) is defined using a set of rules of the form: 

 
VALUE     DELAY    CONDITION 

 

Rules are evaluated to compute the new value of the cell 
upon the reception of an external event. Starting with the 
first listed rule, the CONDITION  is evaluated. If the condi-
tion is satisfied, the new cell state is obtained by evaluating 
the VALUE expression. The cell will change to this new 
state after the specified DELAY time, and when it changes, it 
also sends output messages to all its neighbors. If the condi-
tion does not hold, the next rule is evaluated repeating this 
process until a rule is satisfied. If no CONDITION statement 
is satisfied, the simulation is aborted. 

The CD++ specification language offers a vast collection 
of functions and operators, including: boolean (AND, OR, 
NOT, XOR, IMP and EQV), comparison (=, !=, <, >, <= and 
>=), and arithmetic (+, -, * and /). Different types of func-
tions are also available: trigonometric, roots, power, round-
ing and truncation, module, logarithm, absolute value, 
minimum, maximum, G.C.D. and L.C.M. Other available 
functions allow checking if a number is integer, even, odd or 
prime. In addition, some common constants are defined. 

In this paper, we show how to apply the Cell-DEVS 
formalism to simulate real phenomena. We describe differ-
ent models  that are implemented and executed using the 
CD++ tool, focusing on particular characteristics of each 
phenomenon. Previous experiences in the simulation of 
complex physical systems using Cell-DEVS and CD++ 
were presented in [9, 10], serving as a starting point for our 
study. We provide the results of our experiments in a 
graphical fashion enabling further analysis about the execu-
tion of such models. 
 
2. APPLICATION EXAMPLES 

Our first example shows the reproduction of Vibrio 
Parahaemolyticus bacterium, which is a marine germ. It 
lives in coast and estuary, sediment, plankton and its repro-
duction takes place at 15ºC either in the scams or the intes-
tine of a fish. To survive, the bacteria need a minimal per-
cent of salt and a pH between 7.5 and 8.5. They grow in an 
environment with temperatures ranging from 15ºC to 43ºC, 
being 37ºC the optimal value. 

They need between 20 and 30 minutes to reproduce, 
however they cannot reproduce at temperatures below 8ºC. 
If the temperature is close to 8ºC, the reproduction requires 
more time. The bacteria are destroyed when exposed to 
temperatures higher than 60ºC for a period of 10 minutes or 
to high acid (pH) environments. 

We focus on modeling the bacterium concentration 
while the temperature varies. The rest of the variables that 
may affect the experiment are assumed to be appropriate 
for the normal growth of the bacteria. 

The evolution of the bacteria over the surface of a fish is 
modeled using a Cell-DEVS component. We couple a 
DEVS component to introduce temperature changes be-
tween -10ºC and 0ºC. The temperature in a cell is calcu-
lated as the average of its neighbors, and the diffusion time 



is 1000ms. We have two surfaces, the first representing the 
concentration of bacteria, and the second showing the 
variation of temperature. 

The rules that govern the reproduction of bacteria are 
the following:  

1. If the cell temperature is lower than 8ºC for a period 
of 10000ms then the bacterium does not grow. 

2. If the cell temperature is within 8ºC and 60ºC for a 
period of 30000ms then the bacterium grows. 

3. If the cell temperature is above 60ºC for a period of 
10000ms then the bacterium dies. 

We use inertial cell delay and define that a cell reaching 
the concentration of 100 germs begins infecting the 
neighboring cells. 
 
[top] 
components : contamination Coldgenerator@Generator 
link : out@Coldgenerator  inputCold@contamination 
 
[Coldgenerator] 
distribution : exponential         mean : 3       
initial : 1   increment : 0 
 
[contamination] 
type : cell  dim : (10, 10, 2)     
delay : inertial    border : nowrapped   
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0) (0,-1,0)  
(0,0,0) (0,1,0) (1,-1,0) (1,0,0) (1,1,0) (0,1,1) 
(-1,-1,1) (-1,0,1) (-1,1,1) (0,-1,1) (0,0,1)   
(1,-1,1)  (1,0,1)  (1,1,1) 
link : inputCold  in@contamination(0,0,1) 
localtransition  : Evolution 
portInTransition : in@contamination(0,0,1) setCold 
zone : Temperatures { (0,0,1)..(9,9,1) } 
 
[Temperatures] 
rule: { ( if((-1,-1,0)!= ?,(-1,-1,0),0) + if((-
1,0,0)!=?,(-1,0,0),0) + if((-1,1,0)!= ?,(-
1,1,0),0) + … }                1000     { t } 
 
[Evolution] 
rule: 0  10000 { cellpos(2) = 0 and (0,0,1) > 60 } 
rule: {round(if((0,0,0)*2 > 99,0.7,1)*(0,0,0)*2) + 
if((-1,-1,1)!=? and … } 30000 { cellpos(2)=0 and 
(0,0,1) > 8 and statecount(?) = 5 * 2 } 
… 
rule: {(0,0,0)} 10000    { cellpos(2) = 0 } 
 
[setCold] 
rule:     { uniform(-10,0)}  500      { t } 

Figure 1. Specification of the bacteria mode 

Figure 1 shows the specification of such a model using 
the CD++ tool. Firstly, we declare the top model’s comp o-
nents , Coldgenerator and contamination , and its links. 
Secondly, we define Coldgenerator, a DEVS model that 
generates cold temperatures using an exponential distribu-
tion function with the specified parameters. Thirdly, the 
Cell-DEVS model contamination is defined. We specify 
several parameters to describe this model, such as its size, 
neighborhood shape, type of delay, borders, input ports  and 
connections with Coldgenerator. Finally, we describe the 

rules for the Cell-DEVS component. For each rule, the 
value, the delay and the condition are specified. The Tem-
perature section represents the local computing function for 
the behavioral temperature model. A single rule defines the 
temperature as the average of the temperature of the 
neighboring cells. The Evolution rules describe the bacte-
rium behavior. The setCold section states the range of tem-
peratures generated by the DEVS component. 

 

  
(a) 

  
 (b) 

  
(c) 

Figure 2. Results of bacteria propagation: (a) initial con-
centration; (b) after 1.5 hour; (c) after 4 hours 

Figure 2 illustrates the results obtained when this model 
is executed, showing the evolution of the bacteria over the 
surface of a fish in a freezer for 4 hours. The left side repre-
sents the bacteria concentration, depicted in grayscale. The 
white areas represent regions where bacteria are not pre-



sent, as a result of the extremely low temperature. Darker 
shades represent higher concentrations of bacteria. The 
right side represents the different temperatures of the sur-
face, where darker shades represent colder temperatures. 

The next example is an ecological model of ants follow-
ing a specific path from an anthill to a source of food. 
When an ant finds food, it returns to the anthill leaving a 
hormone called pheromone on its path. The other ants use 
this hormone as a signal that leads to the source of food. 

The model assumes that there are only 4 ants seeking 
food. Each cell in the Cell-DEVS space represents the 
ground (some vegetation) where there might be food. 
Hence, the cell state can be one of the following: vegetation 
that may contain pheromone; an ant seeking food; an ant 
following pheromone; food in the ground; or an ant follow-
ing pheromone and returning to the anthill with food. 

To avoid the collision of ants, when two or more ants 
want to move to the same place, they all stay in their posi-
tions and change the direction using a random variable until 
one ant can actually move. When an ant takes food from the 
ground, it changes its course to the opposite direction and 
follows the pheromone path to return to the anthill. In the 
case that there is no pheromone, the ant moves in a random 
way seeking the anthill or another pheromone path but 
leaving its pheromone to build the path for other ants. 

Table 1 describes the cell state codification using a 5-
digit natural number. 
 
Table 1. Cell state codification of the ants model 

Ten of  
thoudsands 

Thoudsands 
unit 

Hundred Ten Unit 

0 0 F F D 
1 0 0 C C 
2 Q 0 0 D 
3 0 0 0 0 

 
Where: 

 
F Pheromone concentration. It can vary from 1 to 99. 
D Ant direction 

0: North, 1: East, 2: South, or 3: West 
C Quantity of food. It can vary from 1 to 99.  
Q Flag used to indicate if an ant is carrying or not 

food. Value 1 means carrying food, and 0 means ant 
seeking food 

 
 
Figure 3 shows the execution of the model using CD++. 

The black cells represent two ants seeking food and the 
gray cells leading the paths in the upper left area of the 
graph represent two ants carrying food. The source of food 
is located in the lower right section of the graph, and differ-
ent gray colors represent the concentration of pheromone 
showing the way to the food. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Ants moving on the ground: (a) two ants return-
ing to the anthill and two ants seeking food; (b) two ants 
found pheromone; (c) both ants found the source of food 
using the pheromone path; (d) ants returning to the anthill 
following the pheromone path. 

 
Figure 4 describes the model specification. We define 

the dimensions of the cell space, neighborhood, initial val-
ues and, finally, the rules that define the behavior of an ant.  
[ant] 
type : cell     dim : (20,20)  
delay  : transport      border : nonwrapped 
neighbors : (0,-2) (-1,-1) (0,-1) (1,-1) (-2,0)  
neighbors : (-1,0) (0,0)   (1,0)  (2,0)  (-1,1) 
neighbors : (0,1)  (1,1)   (0,2) 
… 
[rules] 
rule : { (0,0) + 2 } 1000 { #Macro(isAnt00) and 
#Macro(dir00) = 0 and ((#Macro(isAnt19) and 
#Macro(dir19) = 3) or (#Macro(isAnt99) and 
#Macro(dir99) = 1) or (#Macro(isAnt08) and 
#Macro(dir08) = 2))} 
rule : { (0,0) + 2 } 1000 { #Macro(isAnt00) and 
#Macro(dir00) = 1 and ((#Macro(isAnt19) and 
#Macro(dir19) = 2) or (#Macro(isAnt20) and 
#Macro(dir20) = 3) or (#Macro(isAnt11) and 
#Macro(dir11) = 0)) } 
… 
rule : { 21003 } 1000 { #Macro(isAntB00) and 
#Macro(dir00) = 2 and #Macro(isAntB91) and 
#Macro(dir91) = 1 } 
rule : { 0 }     1000 { #Macro(isAntB00) and 
#Macro(dir00) = 2 and #Macro(isNothingAnt01) } 
… 
rule : {(0,0)} 10 {t} 

Figure 4. Specification of the ants model 



We use different macro definitions to avoid large state-
ments in the specification of rules, reducing development 
time. In this case, macros provide an easy mechanism for 
frequent statements such as checking the existence of an 
ant, food or pheromone in the neighboring cells. Hence, the 
rules specify the behavior of an ant based on its direction, 
current location, and the value of the adjacent cells. 

The following example represents people in a metro sta-
tion waiting for the train. We restrict the model to only two 
groups of people and only one railroad car with two doors. 
People can either get in or get out from the train. We use a 
Cell-DEVS model to represent the metro station and the 
people moving on the platform, and a simple DEVS genera-
tor to model people arriving to the metro station. When a 
train arrives to the metro station, it is often the case that a 
person in the railroad car wants to get out but finds people 
trying to get in it on the platform. In this example we focus 
on the problems derived from this situation. 

We define three classes of people: those who want to get 
out from the train and go to the platform exit; those who 
want to get in the train using the door A, and those who 
want to get in the train using the door B. 

Figure 5 shows seven slides that resemble people arriv-
ing to the train station. Two light gray cells located on the 
right side of each slide represent the platform entrance. The 
gray cells represent people who want to get in the train 
using the door A, placed in the upper part of the Cell-DEVS 
grid. The dark gray cells represent people who want to get 
in the train using the door B, placed in the lower part of the 
grid. The rightmost slide in the figure shows two groups of 
people standing in the border of the platform waiting for the 
doors to open. 

 

 
Figure 5. Execution results of metro station model 

Figure 6 shows in detail the conflict of people trying to 
get in the railroad, represented by gray cells, that find peo-
ple trying to get out from it using the same door, repre-
sented by dark gray cells. The light gray cell located in the 
left side of each slide denotes door A.  

 

 
Figure 6.  Execution results of people getting in and out 
using door A 

Figure 7 shows the implementation of such a model us-
ing CD++. The components of the model are declared, the 
cell space is specified as arriving , and the DEVS comp o-
nent that generates people, called PeopleGenerator, is de-
fined using an exponential distribution function. The rules 
represent the movement of the people using a combination 
of the direction (1: S; 2: E; 3: N; 4: W) and the door to be 
reached (1: A; 2: B). The rules determine the behavior of 
each person considering not only these two values, but also 
the existence of individuals in the neighboring cells. Hence, 
a person moves towards an adjacent cell based on the group 
she belongs to, its current location, direction, and state of 
the nearby cells. 
 

[top] 
components : arriving PeopleGenerator@Generator 
in :   doorA    doorB 
link : out@PeopleGenerator inputPeople@arriving 
link : doorA    inputDoorA@arriving 
link : doorB    inputDoorB@arriving 
 
[arriving] 
type : cell    dim : (30,10)   delay : inertial 
defaultDelayTime : 500         border : nowrapped 
neighbors : (0,-2) (-1,-1) (0,-1) (1,-1) (-2,0)   
neighbors : (-1,0) (0,0)   (1,0)  (2,0)  (-1,1) 
neighbors : (0,1)  (1,1)   (0,2) 
in : inputPeople  inputDoorA   inputDoorB 
link : inputPeople in@arriving(15,9) 
link : inputDoorA  in@arriving(9,0) 
link : inputDoorB  in@arriving(19,0) 
… 
[rules] 
rule : 0  500 { (0,0)=24 and (0,1)=0 } 
rule : 0  500 { (0,0)=23 and (-1,0)=0  
              and (-1,-1)!=24 } 
rule : 0  500 { (0,0)=22 and (1,0)=0  
              and (1,-1)!=24 and (2,0)!=23 } 
… 
rule : 6  700 { ( (0,0)=1 ) } 
rule : 7  700 { ( (0,0)=2 ) } 
rule : 8  700 { ( (0,0)=3 ) } 
… 
rule : 19 500 { ( (0,0)=0 ) and ( (0,-1)=14 )  
              and (1,0)!=23 and (-1,0)!=22 } 
 
[createPeople] 
rule : { ( randint(1)*10 ) + 1 } 10 { (0,0)=0 } 
rule : {(0,0)} 10 {t} 
 
[PeopleGenerator] 
distribution : exponential 
mean : 4       initial : 1      increment : 0 
 
[doorHandler] 
rule : 77 1 { (0,0)!=77 and (0,0)!=99 } 
rule : 99 1 { (0,0)=77 } 
rule : 0  1 { t } 

Figure 7.  Specification of the metro station 



3. CONCLUSION 
Cell–DEVS allows describing physical and natural sys-

tems using an n-dimensional cell-based formalism. In-
put/output port definitions allow the definition of multiple 
interconnections between Cell-DEVS and DEVS models. 
Complex timing behavior for the cells in the space can be 
defined using very simple constructions. The CD++ tool 
implements the Cell-DEVS formalism and entitles the 
definition of complex cell-shaped models. We showed how 
to develop several Cell-DEVS models  using the CD++ 
toolkit, which provides a general framework to define and 
simulate complex generic models. 
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