
Applying Cell-DEVS in Models of Complex Systems

Javier Ameghino

Departamento de Computación
FCEN – Universidad de Buenos Aires

Planta Baja, Pabellón I
Ciudad Universitaria, 1428

Buenos Aires, Argentina
jameghin@dc.uba.ar

Gabriel Wainer
Ezequiel Glinsky

Dept. of Systems and Computing Engineering

Carleton University
1125 Colonel By Drive

K1S 5BE. Ottawa, ON. Canada
{gwainer,eglinsky}@sce.carleton.ca

Keywords : Modeling methodology; DEVS models, cellular
automata, Cell-DEVS models; simulation tools.

Abstract
Cell-DEVS is an extension to the DEVS formalism that
allows the definition of cellular models. CD++ is a model-
ing and simulation tool that implements DEVS and Cell-
DEVS formalisms . We show the application of the para-
digm through different examples developed in CD++.
Complex applications can be implemented in a simple
fashion, and they can be executed effectively.

1. INTRODUCTION

Simulation is a tool that enables a better understanding
of complex physical and natural systems. Difference equa-
tions have been used to develop simulation models of these
systems (see, for instance, [1, 2]). In the last years, several
simulation models of real systems have been represented as
cell spaces [3, 4]. Cellular automata [5] are dynamical sys-
tems in which time and space are discrete. A cellular auto-
maton is defined as an infinite n-dimensional lattice of cells
whose values are updated according to a local rule. Updates
are done simultaneously and synchronously using the state
values of the current cell and its neighborhood, which is a
finite set of nearby cells.

The use of a discrete time base may constrain the preci-
sion of the model. In addition, the execution of cellular
automata usually requires a large amount of computation
time, primarily due to its synchronous nature. Timed Cell-
DEVS solves these problems using the DEVS (Discrete
EVents systems Specification) formalism [6] to define a
cell space where each cell is defined as a DEVS model [7].
Thus, it is possible to build discrete-event cell spaces, im-
proving their definition by making the timing specification
more expressive.

The DEVS formalism was proposed to model discrete
events systems. Basic DEVS models (called atomic) are

specified as black boxes, and several DEVS models can be
integrated together forming a structural model (called cou-
pled).

A DEVS atomic model can be defined as:

M = < X, S, Y, δint, δext, λ, ta >

where X represents a set of input events, S a set of states,
and Y is the set of output events . Four functions manage the
model behavior: δint the internal transitions, δext the external
transitions, λ the outputs, and D ?the duration of a state.
Each model uses its input and output ports to communicate
with other models. External events are received via the
input ports, and the model defines its behavior upon the
reception of such inputs. The internal events produce state
changes, and results are communicated to its influencees
using the output ports.

A DEVS coupled model can be defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >.

where X is the set of input events, Y is the set of output
events, D is an index for the components of the coupled
model, and for every i in D, Mi is a basic DEVS component
(i.e., an atomic or coupled model). The list of influencees Ii
of a given model is used to determine the models to which
outputs must be sent. The function Zij translates outputs of
a model into inputs for the other models . An index of influ-
encees is created for each model (Ii). For every j in the
index, outputs of model Mi are connected to inputs in
model Mj.

In the Cell-DEVS formalism, a cell has a set of N inputs
to compute its future state. Each input (generally received
from the neighboring cells) is received through the model’s
interface, and is used to activate the local function. It is
possible to associate either a transport or an inertial delay
with each cell, allowing deferring the transmission of the
execution results. A transport delay allows us to model a

variable commuting time for each cell with anticipatory
semantics. Thus, every scheduled event is actually exe-
cuted. Using inertial delays, the semantics are preemptive:
some scheduled events may not be executed due to a small
interval between two input events. Therefore, the outputs of
a cell are not transmitted instantaneously, but after the
consumption of the delay.

A Cell-DEVS model advances through the activation of
the internal, external, output and state’s duration functions,
as in other DEVS models .

A Cell-DEVS atomic model can be defined as:

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >.

where each cell uses the N inputs to compute its future state
S using the function τ. The new state of the cell is transmit-
ted to its neighbors after the consumption of the delay func-
tion. Delay defines the kind of delay for the cell, and d its
duration. This behavior is defined by the δint, δext, λ and D
functions.

After each cell has been defined, they can be combined
to form a coupled model, which is composed of an array of
atomic cells.

A Cell-DEVS coupled model can be defined as:

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >.

where the cell space C is defined by this specification as a
coupled model composed by an array of atomic cells with
size {t1 x ... x tn}. Each cell in the space is connected to the
cells defined by the neighborhood N. If the cell space is
“wrapped”, the cells in a border are connected with those in
the opposite end. Otherwise, the borders B must have a
different behavior from the remaining cells . The Z function
allows the definition of internal and external coupling of
cells in the model. This function translates the outputs of
output port m in cell Cij into values for the m input port of
cell Ckl. The input/output coupling lists can be used to
interchange data with other models .

The CD++ tool [8] was built following the definitions of
DEVS and Cell-DEVS formalisms , and is used in this paper
to model and simulate a number of real systems . Previous
experiences on simulation of complex physical systems
using Cell-DEVS and CD++ were described in [9,10].

In CD++, Cell-DEVS models are described using a built -
in specification language, which provides a set of primitives
to define the size of the cell space, type of borders, cell’s
interface with other DEVS models and the cell’s behavior.
The behavior of a cell (the τ function of the formal specifi-
cation) is defined using a set of rules of the form:

VALUE DELAY CONDITION

Rules are evaluated to compute the new value of the cell
upon the reception of an external event. Starting with the
first listed rule, the CONDITION is evaluated. If the condi-
tion is satisfied, the new cell state is obtained by evaluating
the VALUE expression. The cell will change to this new
state after the specified DELAY time, and when it changes, it
also sends output messages to all its neighbors. If the condi-
tion does not hold, the next rule is evaluated repeating this
process until a rule is satisfied. If no CONDITION statement
is satisfied, the simulation is aborted.

The CD++ specification language offers a vast collection
of functions and operators, including: boolean (AND, OR,
NOT, XOR, IMP and EQV), comparison (=, !=, <, >, <= and
>=), and arithmetic (+, -, * and /). Different types of func-
tions are also available: trigonometric, roots, power, round-
ing and truncation, module, logarithm, absolute value,
minimum, maximum, G.C.D. and L.C.M. Other available
functions allow checking if a number is integer, even, odd or
prime. In addition, some common constants are defined.

In this paper, we show how to apply the Cell-DEVS
formalism to simulate real phenomena. We describe differ-
ent models that are implemented and executed using the
CD++ tool, focusing on particular characteristics of each
phenomenon. Previous experiences in the simulation of
complex physical systems using Cell-DEVS and CD++
were presented in [9, 10], serving as a starting point for our
study. We provide the results of our experiments in a
graphical fashion enabling further analysis about the execu-
tion of such models.

2. APPLICATION EXAMPLES

Our first example shows the reproduction of Vibrio
Parahaemolyticus bacterium, which is a marine germ. It
lives in coast and estuary, sediment, plankton and its repro-
duction takes place at 15ºC either in the scams or the intes-
tine of a fish. To survive, the bacteria need a minimal per-
cent of salt and a pH between 7.5 and 8.5. They grow in an
environment with temperatures ranging from 15ºC to 43ºC,
being 37ºC the optimal value.

They need between 20 and 30 minutes to reproduce,
however they cannot reproduce at temperatures below 8ºC.
If the temperature is close to 8ºC, the reproduction requires
more time. The bacteria are destroyed when exposed to
temperatures higher than 60ºC for a period of 10 minutes or
to high acid (pH) environments.

We focus on modeling the bacterium concentration
while the temperature varies. The rest of the variables that
may affect the experiment are assumed to be appropriate
for the normal growth of the bacteria.

The evolution of the bacteria over the surface of a fish is
modeled using a Cell-DEVS component. We couple a
DEVS component to introduce temperature changes be-
tween -10ºC and 0ºC. The temperature in a cell is calcu-
lated as the average of its neighbors, and the diffusion time

is 1000ms. We have two surfaces, the first representing the
concentration of bacteria, and the second showing the
variation of temperature.

The rules that govern the reproduction of bacteria are
the following:

1. If the cell temperature is lower than 8ºC for a period
of 10000ms then the bacterium does not grow.

2. If the cell temperature is within 8ºC and 60ºC for a
period of 30000ms then the bacterium grows.

3. If the cell temperature is above 60ºC for a period of
10000ms then the bacterium dies.

We use inertial cell delay and define that a cell reaching
the concentration of 100 germs begins infecting the
neighboring cells.

[top]
components : contamination Coldgenerator@Generator
link : out@Coldgenerator inputCold@contamination

[Coldgenerator]
distribution : exponential mean : 3
initial : 1 increment : 0

[contamination]
type : cell dim : (10, 10, 2)
delay : inertial border : nowrapped
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0) (0,-1,0)
(0,0,0) (0,1,0) (1,-1,0) (1,0,0) (1,1,0) (0,1,1)
(-1,-1,1) (-1,0,1) (-1,1,1) (0,-1,1) (0,0,1)
(1,-1,1) (1,0,1) (1,1,1)
link : inputCold in@contamination(0,0,1)
localtransition : Evolution
portInTransition : in@contamination(0,0,1) setCold
zone : Temperatures { (0,0,1)..(9,9,1) }

[Temperatures]
rule: { (if((-1,-1,0)!= ?,(-1,-1,0),0) + if((-
1,0,0)!=?,(-1,0,0),0) + if((-1,1,0)!= ?,(-
1,1,0),0) + … } 1000 { t }

[Evolution]
rule: 0 10000 { cellpos(2) = 0 and (0,0,1) > 60 }
rule: {round(if((0,0,0)*2 > 99,0.7,1)*(0,0,0)*2) +
if((-1,-1,1)!=? and … } 30000 { cellpos(2)=0 and
(0,0,1) > 8 and statecount(?) = 5 * 2 }
…
rule: {(0,0,0)} 10000 { cellpos(2) = 0 }

[setCold]
rule: { uniform(-10,0)} 500 { t }

Figure 1. Specification of the bacteria mode

Figure 1 shows the specification of such a model using
the CD++ tool. Firstly, we declare the top model’s comp o-
nents , Coldgenerator and contamination , and its links.
Secondly, we define Coldgenerator, a DEVS model that
generates cold temperatures using an exponential distribu-
tion function with the specified parameters. Thirdly, the
Cell-DEVS model contamination is defined. We specify
several parameters to describe this model, such as its size,
neighborhood shape, type of delay, borders, input ports and
connections with Coldgenerator. Finally, we describe the

rules for the Cell-DEVS component. For each rule, the
value, the delay and the condition are specified. The Tem-
perature section represents the local computing function for
the behavioral temperature model. A single rule defines the
temperature as the average of the temperature of the
neighboring cells. The Evolution rules describe the bacte-
rium behavior. The setCold section states the range of tem-
peratures generated by the DEVS component.

(a)

 (b)

(c)

Figure 2. Results of bacteria propagation: (a) initial con-
centration; (b) after 1.5 hour; (c) after 4 hours

Figure 2 illustrates the results obtained when this model
is executed, showing the evolution of the bacteria over the
surface of a fish in a freezer for 4 hours. The left side repre-
sents the bacteria concentration, depicted in grayscale. The
white areas represent regions where bacteria are not pre-

sent, as a result of the extremely low temperature. Darker
shades represent higher concentrations of bacteria. The
right side represents the different temperatures of the sur-
face, where darker shades represent colder temperatures.

The next example is an ecological model of ants follow-
ing a specific path from an anthill to a source of food.
When an ant finds food, it returns to the anthill leaving a
hormone called pheromone on its path. The other ants use
this hormone as a signal that leads to the source of food.

The model assumes that there are only 4 ants seeking
food. Each cell in the Cell-DEVS space represents the
ground (some vegetation) where there might be food.
Hence, the cell state can be one of the following: vegetation
that may contain pheromone; an ant seeking food; an ant
following pheromone; food in the ground; or an ant follow-
ing pheromone and returning to the anthill with food.

To avoid the collision of ants, when two or more ants
want to move to the same place, they all stay in their posi-
tions and change the direction using a random variable until
one ant can actually move. When an ant takes food from the
ground, it changes its course to the opposite direction and
follows the pheromone path to return to the anthill. In the
case that there is no pheromone, the ant moves in a random
way seeking the anthill or another pheromone path but
leaving its pheromone to build the path for other ants.

Table 1 describes the cell state codification using a 5-
digit natural number.

Table 1. Cell state codification of the ants model

Ten of
thoudsands

Thoudsands
unit

Hundred Ten Unit

0 0 F F D
1 0 0 C C
2 Q 0 0 D
3 0 0 0 0

Where:

F Pheromone concentration. It can vary from 1 to 99.
D Ant direction

0: North, 1: East, 2: South, or 3: West
C Quantity of food. It can vary from 1 to 99.
Q Flag used to indicate if an ant is carrying or not

food. Value 1 means carrying food, and 0 means ant
seeking food

Figure 3 shows the execution of the model using CD++.

The black cells represent two ants seeking food and the
gray cells leading the paths in the upper left area of the
graph represent two ants carrying food. The source of food
is located in the lower right section of the graph, and differ-
ent gray colors represent the concentration of pheromone
showing the way to the food.

(a) (b)

(c) (d)

Figure 3. Ants moving on the ground: (a) two ants return-
ing to the anthill and two ants seeking food; (b) two ants
found pheromone; (c) both ants found the source of food
using the pheromone path; (d) ants returning to the anthill
following the pheromone path.

Figure 4 describes the model specification. We define

the dimensions of the cell space, neighborhood, initial val-
ues and, finally, the rules that define the behavior of an ant.
[ant]
type : cell dim : (20,20)
delay : transport border : nonwrapped
neighbors : (0,-2) (-1,-1) (0,-1) (1,-1) (-2,0)
neighbors : (-1,0) (0,0) (1,0) (2,0) (-1,1)
neighbors : (0,1) (1,1) (0,2)
…
[rules]
rule : { (0,0) + 2 } 1000 { #Macro(isAnt00) and
#Macro(dir00) = 0 and ((#Macro(isAnt19) and
#Macro(dir19) = 3) or (#Macro(isAnt99) and
#Macro(dir99) = 1) or (#Macro(isAnt08) and
#Macro(dir08) = 2))}
rule : { (0,0) + 2 } 1000 { #Macro(isAnt00) and
#Macro(dir00) = 1 and ((#Macro(isAnt19) and
#Macro(dir19) = 2) or (#Macro(isAnt20) and
#Macro(dir20) = 3) or (#Macro(isAnt11) and
#Macro(dir11) = 0)) }
…
rule : { 21003 } 1000 { #Macro(isAntB00) and
#Macro(dir00) = 2 and #Macro(isAntB91) and
#Macro(dir91) = 1 }
rule : { 0 } 1000 { #Macro(isAntB00) and
#Macro(dir00) = 2 and #Macro(isNothingAnt01) }
…
rule : {(0,0)} 10 {t}

Figure 4. Specification of the ants model

We use different macro definitions to avoid large state-
ments in the specification of rules, reducing development
time. In this case, macros provide an easy mechanism for
frequent statements such as checking the existence of an
ant, food or pheromone in the neighboring cells. Hence, the
rules specify the behavior of an ant based on its direction,
current location, and the value of the adjacent cells.

The following example represents people in a metro sta-
tion waiting for the train. We restrict the model to only two
groups of people and only one railroad car with two doors.
People can either get in or get out from the train. We use a
Cell-DEVS model to represent the metro station and the
people moving on the platform, and a simple DEVS genera-
tor to model people arriving to the metro station. When a
train arrives to the metro station, it is often the case that a
person in the railroad car wants to get out but finds people
trying to get in it on the platform. In this example we focus
on the problems derived from this situation.

We define three classes of people: those who want to get
out from the train and go to the platform exit; those who
want to get in the train using the door A, and those who
want to get in the train using the door B.

Figure 5 shows seven slides that resemble people arriv-
ing to the train station. Two light gray cells located on the
right side of each slide represent the platform entrance. The
gray cells represent people who want to get in the train
using the door A, placed in the upper part of the Cell-DEVS
grid. The dark gray cells represent people who want to get
in the train using the door B, placed in the lower part of the
grid. The rightmost slide in the figure shows two groups of
people standing in the border of the platform waiting for the
doors to open.

Figure 5. Execution results of metro station model

Figure 6 shows in detail the conflict of people trying to
get in the railroad, represented by gray cells, that find peo-
ple trying to get out from it using the same door, repre-
sented by dark gray cells. The light gray cell located in the
left side of each slide denotes door A.

Figure 6. Execution results of people getting in and out
using door A

Figure 7 shows the implementation of such a model us-
ing CD++. The components of the model are declared, the
cell space is specified as arriving , and the DEVS comp o-
nent that generates people, called PeopleGenerator, is de-
fined using an exponential distribution function. The rules
represent the movement of the people using a combination
of the direction (1: S; 2: E; 3: N; 4: W) and the door to be
reached (1: A; 2: B). The rules determine the behavior of
each person considering not only these two values, but also
the existence of individuals in the neighboring cells. Hence,
a person moves towards an adjacent cell based on the group
she belongs to, its current location, direction, and state of
the nearby cells.

[top]
components : arriving PeopleGenerator@Generator
in : doorA doorB
link : out@PeopleGenerator inputPeople@arriving
link : doorA inputDoorA@arriving
link : doorB inputDoorB@arriving

[arriving]
type : cell dim : (30,10) delay : inertial
defaultDelayTime : 500 border : nowrapped
neighbors : (0,-2) (-1,-1) (0,-1) (1,-1) (-2,0)
neighbors : (-1,0) (0,0) (1,0) (2,0) (-1,1)
neighbors : (0,1) (1,1) (0,2)
in : inputPeople inputDoorA inputDoorB
link : inputPeople in@arriving(15,9)
link : inputDoorA in@arriving(9,0)
link : inputDoorB in@arriving(19,0)
…
[rules]
rule : 0 500 { (0,0)=24 and (0,1)=0 }
rule : 0 500 { (0,0)=23 and (-1,0)=0
 and (-1,-1)!=24 }
rule : 0 500 { (0,0)=22 and (1,0)=0
 and (1,-1)!=24 and (2,0)!=23 }
…
rule : 6 700 { ((0,0)=1) }
rule : 7 700 { ((0,0)=2) }
rule : 8 700 { ((0,0)=3) }
…
rule : 19 500 { ((0,0)=0) and ((0,-1)=14)
 and (1,0)!=23 and (-1,0)!=22 }

[createPeople]
rule : { (randint(1)*10) + 1 } 10 { (0,0)=0 }
rule : {(0,0)} 10 {t}

[PeopleGenerator]
distribution : exponential
mean : 4 initial : 1 increment : 0

[doorHandler]
rule : 77 1 { (0,0)!=77 and (0,0)!=99 }
rule : 99 1 { (0,0)=77 }
rule : 0 1 { t }

Figure 7. Specification of the metro station

3. CONCLUSION
Cell–DEVS allows describing physical and natural sys-

tems using an n-dimensional cell-based formalism. In-
put/output port definitions allow the definition of multiple
interconnections between Cell-DEVS and DEVS models.
Complex timing behavior for the cells in the space can be
defined using very simple constructions. The CD++ tool
implements the Cell-DEVS formalism and entitles the
definition of complex cell-shaped models. We showed how
to develop several Cell-DEVS models using the CD++
toolkit, which provides a general framework to define and
simulate complex generic models.

4. ACKNOWLEDGMENT

This work was partially funded by the Natural Sciences and
Engineering Research Councel of Canada (NSERC), the
High Performance Virtual Computing Lab (HPVcl), and the
Institute of Robotics and Intelligent Systems (IRIS, Can-
ada).

REFERENCES
[1] Lapidus, L.; Pinder, G.F. Numerical Solution of Partial
Differential Equations in Science and Engineering, Wiley,
New York, 1982.

[2] Weisbuch, G. Complex Systems Dynamics, Addison-
Wesley, 1991.

[3] Sipper, M. “The emergence of cellular computing”.
IEEE Computer. July 1999. Pp. 18-26.

[4] Talia , D. “Cellular processing tools for high-
performance simulation”. IEEE Computer. September
2000. Pp. 44 –52.

[5] Wolfram, S. “Theory and applications of cellular auto-
mata”. Vol. 1, Advances Series on Complex Systems. World
Scientific, Singapore, 1986.

[6] Zeigler, B.; Praehofer, H.; Kim, T. Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. 2000. Academic Press.

[7] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: model-
ling and simulation of cell spaces”. In Discrete Event Mod-
eling & Simulation: Enabling Future Technologies. 2000.
Springer-Verlag

[8] Wainer, G. “CD++: a toolkit to develop DEVS models”.
Software - Practice and Experience. Vol. 32, pp. 1261-
1306. 2002.

[9] Ameghino, J.; Wainer, G. “Application of the Cell-
DEVS formalism using N-CD++.” In Proceedings of the
Summer Computer Simulation Conference. July 2000.

[10] Ameghino, J.; Troccoli, A.; Wainer, G. “Modelling
and simulation of complex physical systems using Cell-
DEVS”. In Proceedings of the 33rd SCS Summer Multicon-
ference on Computer Simulation. Seattle, WA. USA. 2001.

JAVIER AMEGHINO has received a B. Sc. (1997) and
M. Sc. in Co mputer Sciences (2000) from the Universidad
de Buenos Aires, Argentina. At present he works at HP
(Buenos Aires), and he is an Adjunct Research Assistant at
the Computer Science Department of the Universidad de
Buenos Aires, where he is currently a first year Ph.D. stu-
dent. He is the coordinator of the ParDEVS lab in the same
Deparatment.

EZEQUIEL GLINSKY has received a B. Sc. (2000) and
M. Sc. in Computer Sciences (2002) from the Universidad
de Buenos Aires, Argentina. He is currently a first year
Master in Electrical Engineering student at the Department
of Systems and Computer Engineering in Carleton Univer-
sity, Ottawa, Canada.

GABRIEL WAINER received the M.Sc. (1993) and the
Ph.D. degrees (1998, with highest honours) at the Universi-
dad de Buenos Aires, Argentina, and Université d'Aix-
Marseille III, France. He is Assistant Professor at the Sys-
tems and Computer Engineering, Carleton University (Ot-
tawa, Canada). He was Assistant Professor at the Computer
Sciences Dept. of the Universidad de Buenos Aires, Argen-
tina, and a visiting research scholar at the Arizona Center of
Integrated Modelling and Simulation (ACIMS, University
of Arizona). He has published more than 70 articles in the
field of operating systems, real-time systems and Discrete-
Event simulation. He is author of a book on real-time sys-
tems and another on Discrete-Event simulation. He has
been the PI of several research projects, and participated in
different international research programs. Prof. Wainer was
a member of the Board of Directors of The Society for
Computer Simulation International (SCS). He is the coordi-
nator of a group on DEVS standardization. He is Associate
Editor of the Transactions of the SCS. He is also a Co-
associate Director of the Ottawa Center of The McLeod
Institute of Simulation Sciences.

