Abstract

Simulation is becoming increasingly important ire thnalysis and design of complex
systems. CD++ is a modelling tool for simulationcaimplex physical systems, which

can be used to simulate a variety of models. Irotad enhance the usability of this tool,
this thesis introduces many facilities, which argamized as a simulation client. The
simulation client provides users with the ability dreate a simulation model, send the
simulation model to a remote CD++ server for executind visualize the results with

easy-to-use 2D and 3D interfaces locally. Thisntlisomponent also can support multi-
view visualization and run several different modgiswltaneously. The sophisticated
user graphical interfaces in these facilities inwerahe analysis of simulation models.
The simulation server can now be used by varioessuaround the world to perform

multi-observer simulation using remote executiothef models.
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Chapter 1: Introduction

Simulation is becoming increasingly important ire thnalysis and design of complex
systems. Scientists and engineers have long usddlsno better understand the systems
that they are studying: models have been usedrfalysis and quantification, design,
prediction and the understanding of different camppbhenomena. The simulation
process begins with a practical problem neededreplbr understanding. It might be the
case of a transportation company trying to develapew strategy for cargo and truck
usage before putting it into effect, or a chemiging to understand a complex chemical

reaction taking years to complete.

In most cases, these models can be defined as mmatibal representations, and can be
analyzed using mathematical techniques. Howevetinas these methods were also
proved infeasible in studying some recent compleKiaal systems, such as traffic
controllers, digital systems, automated factoniebpts, etc. Likewise, the complexity of
the natural systems under analysis is growing, ntaki impossible to use analytical

methods.

The appearance of digital computers provided sisisnand engineers with alternative
methods of analysis. Since the early days of comguthey have started to translate
their analytical models into computer simulatioAssimulation process starts with the

observation of a real systenkntities in the system are identified, and an ralst



representation (a model) is created with some nmogléechnique. Computer simulation
enables scientists and engineers to experiment“wiitinal” environments, elevating the

analysis of natural and artificial systems to a tevel of detail unknown in earlier stages
of scientific development, and providing great helphe design and analysis of complex
systems. Simulated models also can be used famirtgaiand many other purposes

because they provide cost-effective and risk-fadetons.

At present, there are a large number of modelirdysamulation techniques, and various
types of simulation tools have been developed @ dath complex systems and the
interactions among their constituent parts. A fdrena that is gaining popularity in
recent years is called DEVS (Discrete Event Syst&mpscification) [41, 42]DEVS
provides a framework for the construction of diserevent hierarchical models in a
modular manner, which allows pre-defined modelbdaeused in new models to reduce
development time. In DEVS, basic models (atommdels) are specified as black boxes
with a state and duration for that state. Whendietion time for the state expires, an
output event is sent, an internal transition tgikese and the model changes its current
state. A change of state also can occur when arrettevent is received. An atomic
model is defined by a set of states of the modw, ihternal and external transition
functions, the output function and the state darafunction. Several DEVS models can

be integrated together to form a hierarchical stma¢ model (coupledhodel).

Cell-DEVS [32] extends the DEVS formalism and akosimulating discrete-event cell
spaces. This approach extends traditional Cellalatomata (CA) [29], defined as a

lattice of cells updated synchronously and sim@tarsly. Each cell in a CA holds a state
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variable and can be in one of a finite number afsdde states. The new state of a cell is
computed based on the current state of the celltl@dstates of its neighboring cells.
Cell-DEVS extends these concepts by defining aaseh DEVS atomic model and a cell

space as a DEVS coupled model.

The CD++ tool [33] can be used to simulate DEVS @etl-DEVS models. It has been
used to create a variety of models in many differ@mas: biology (watersheds, fire
spread, ant colonies), physics (crystal growthjciatgases, heat diffusion), chemistry
(solution diffusion in moving fluids), and artifedi systems (autonomous robots, heat

seekers, urban traffic) [2, 3, 30].

While executing simulation models for these comm@eplications, it was found that the
computing power provided by personal computers medsenough when the model size
increased. Despite this fact, end users might raste haccess to high performance
computing resources, or they might prefer to usesqmal computers with standard
software packages for analysis and developmentolatisn to these problems is to
enable the users to execute the simulation modetsnote high-performance computers,
while using their personal computers for developmand analysis. In these cases,
client/serverarchitectures provide a very good solution for thmote execution of the
model The simulation software can be designed as aisanteexecute many simulation
models simultaneously, and the users can commeniaedth this server through a
network to request simulation services. The CD-+husator was recently modified
following these ideas and transformed into a sitdaserver. It can run on high

performance computers, accepting the requests ftenusers and executing many
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simulation models simultaneously. However, althotigh CD++ simulator can be used
as a server, until recently it has only been usedra application running on a local

machine because of the lack of a client application

Another problem of using CD++ for complex systenalgsis was the lack of adequate
visualization mechanisms, that is, any means byhvthie users use simulation results to
construct useful 2D or 3D images. Visualizationlg¢oare crucial in helping to better
understand the behavior of complex systems, ang theilitate thinking, problem
solving, and decision-making. Scientific visualieat tools create visual displays, in
which numeric values in data sets are represernsedly as color classifications, shapes,
or symbols [20, 22]. As illustrated in Figure 1.10], visualization has become an
integral part in modeling and simulation. Effectisienulation tools must include good
corresponding visualization tools. The user cathéoobservation and analysis of the real

system or just modify the model again if he finte result of the simulation is not

correct.
Model
Real Mathematics Simulator _ Graphic
System | = Representation =1 \Visualization of

of the Real Svste the Result

Model modification

User
Scientists,
Engineers

Observation and analysis of the real system

Figure 1.1 Flow-chart of a typical computer simulation
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The goal of visualization is to provide a deepederstanding of the real systems being
investigated, and to help in exploring the large afenumerical data produced in the
simulation execution, which is a concern for modalidation. Therefore, visualization

has been now considered as essential to theoryglmgdnd experimentation.

A useful visualization system should attempt to htiee following goals [36]:

1. Display as much information as possible on theestre

2. Show relationships among different components.

3. Show necessary parts of all the information ondtreen: sometimesaftempting to
display all the details to the users is not neagssadifficult, as there may be too
many details. Moreover, it is hard for the usekéep these details in mind at one
time. Visualization tools attempt to address thysallowing the user to only display
the important or necessary parts of the results.

4. Show the results with the same sequence as théasiomudoes: stop and resume the
display, or go to any point of the display: the sseseeking to better understand a
system, also want to visualize the simulation barayy animating the progress of
the simulation processes. The users may also watteck the simulation by moving
the logical processes in any direction, and begmrhe continuous display at any

logical point.

This thesis challenges the issues in CD++ simulatentioned above by providing the

users with a series of tools, including a CD++ ndeden interface to connect the CD++
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simulator on a remote server, and sophisticatedalimtion facilities. The following

visualization facilities are provided to reach #i®ve visualization goals [36]:

1. Display Methodsthey allow the users to visualize the resultarat simulation time
and in any direction of the simulation procesandty be forward or backward, and
they allow the users to visualize the results cuausly or step by step, or stop at a
special time for detailed examination of the result

2. Context and Detailthey allow the users to focus on the details padicular part of
the result because sometimes the users only wastteick an interesting part of the
whole result.

3. Navigation:when the model or result is too large for the saye¢hey allow the user to
check the results more efficiently by moving thrbuge scene. The display should
change continuously, so the user can move to asitigo and orientation of the
scene for detailed examination of the interestiad.p

4. Multi-View: they allow the users to visualize the resulthwitultiple views in several
different windows with different viewpoints at tsame time, in order for them to
investigate the simulation results from severdedént views.

5. Remote multi-observemany users can participate, and the simulatisolt® can be
distributed among many users as needed. Somettheesjsers in different places
with different technical backgrounds need to pgéte in the analysis of the
simulation result.

6. Access to a Remote Serviétre users can send model files to a remote saregive

and visualize the results locally. In this waythé simulation needs computing power
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that normal personal computers do not provide, sthiéware running on a remote

computer can be used.

The thesis work started by upgrading significamtty existing 2D GUI (Graphical User
Interface), the CD++ Modeler [38]. Various checkinges were introduced to validate
the new model design to ensure the design confdomitie DEVS formalism. New

features were added, and the 2D visualization Gli#lie expanded to different types of

result files (including 3D result files).

A sophisticated 3D GUI was developed using VRML r{ival Reality Makeup
Language) [4, 19] and Java. The users can selfetafit geometries to represent the
results, assign different color classifications aravigate in the field of visualization.
They also can edit all the nodes in the scene \whadde, or even individual layers and
nodes in the scene to better understand the rédsaiulti-view GUI is provided with the
goal of displaying multiple views of the result.flerent viewing areas can be selected,

so different areas of the same result file canigglalyed and visualized simultaneously.

Finally, the CD++ simulator was transformed intoli@nt/server engine, able to provide
visual simulation results and remote access toga performance DEVS simulation
server.The simulation server can receive model specificatifrom the clients, and send
back results to the local computers. In additiognyn users can run simulations
simultaneouslyUsing these facilities, the users can now devetaptast their models in

local workstations, and send the models to a rer@@e+ server executing in a high
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performance platform.

The client Interface enables the users to accessate simulation server. It can send
model files to the remote CD++ server, receivertisilt on the local machine, and then
change the result format of the result stream twibealized with the new visualization
facilities. The design of this interface enablesyeaxtension of this simulation system to
a multi-observer remote simulation system in vagi&inds of environments. Using one
client as the interface client to the server, mather clients can work together to act as
multi-observers. Other clients can send modelfiéoserver through this interface client,
which then sends models to the server, receivesabdts and distributes the results
among other clients as required. In addition, ladl joint clients can communicate with

each other through this interface client.

The provision of these tools enables to have & fulhctional modeling and simulation
environment for the CD++ simulator. It enables modefinition with graph-based
notations, 2D and 3D result visualization, and resr®mulation execution. In DEVS-
based environments, models are completely indep¢rfdem the simulation engines,
and the simulators can be exchanged without daamygweodifications to existing models.
This feature facilitates all these tools to be aigad together as a simulation client to be

applied in the CD++ simulation environment.
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The contributions of this thesis are summarizefbbews:

1. Contributions to the knowledge
This thesis developed methods to map visualizagiatities with the simulation
model. Different algorithms were developed to disecmanipulate the
visualization entities, update and navigate theuktion results. Algorithms to
transform the 2D models to 3D models were also Idpeel. The mechanisms for
remote execution of simulation models were defined

2. Practical contribution
This thesis introduced a variety of tools to woskafull-functional simulation
client. It extended the existing tool, CD++ Modeleith new methods to check
the model design to ensure that it conforms toDE&S formalism. 2D and 3D
visualization GUIs was developed for simulationufesvisualization. Client

Interface was developed for the access to a resioigation server.
The following sections will present the resultstbis effort. We first introduce basic
aspects related to the modeling techniques we uHeeh, we present the design and
implementation of this remote simulation environmefinally, we show several

examples presenting the visualization facilities.

The thesis is organized as follows.
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- Chapter 2 introduction to the DEVS formalisms #xisting facilities of the CD++ tool,
and a brief introduction to VRML. This chapter algiwes a short review of the related
research, and the main research contributions®thsis are illustrated.

- Chapter 3 describes the general design aspete cfient.

- Chapter 4 describes the features of the client.

- Chapter 5 describes the details of the designianpdementation of the client, and
explores the design goals.

- Chapter 6 presents several simulations for tecient.

- Chapter 7 presents conclusions, suggests dinsctay future work.
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Chapter 2: Background

The DEVS formalism provides a framework for the stoumction of hierarchical modular
models [41]. This chapter introduces the DEVS fdisna and we describe atomic
models, coupled models and Cell-DEVS models. Thenjntroduce the CD++ toolkit,
and how to define DEVS and Cell-DEVS models. Sdvexamples are introduced for
better understanding of the CD++ tool. This chaptiso briefly introduces the main
features of the Virtual Reality Modeling LanguagéRML), and the reasons why we
choose it as our development tool. This chapter gilses a review of related research on
DEVS tools, and visualization facilities for cebmlmodels. Finally, the main research

contributions of this thesis are presented.

2.1 The DEVS Formalism

The DEVS (Discrete Events Systems Specificatiomsinélism [41] was originally
defined in the ‘70s as a discrete-event modelingcifigation mechanism. It is a
theoretical approach that allows the definitionshrarchical modular models that can
be easily reused. A real system modeled with DE&/&mposed of a composite of sub-
models, each of them being a behavioral modelgdatomic) or a structural model
(called coupled). Each model is defined by a time base, statgajts outputs, and
functions to determine the next states and outgsted models can be integrated into a
modeling hierarchy, allowing model reuse, reducitegting time, and improving

productivity.
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Atomic Models
A DEVS atomic model is described formally as:

M:<X,SY,6int;69xt;/]’D>

Where

X the set of input events set;
Y the set of output events;

S the state set;

Oint internal transitions;
Oext  external transitions;
A the output function;

D the duration function.

The interface of the model consists of inpXit énd outputY) ports to interact with other
models. Each state in the model has a corresporidiatgne defined by the duration
function. The internal transition is activated t@guce an external state transition after
the model spends the corresponding lifetime orptiesent state. Before changing to the
new state, the model generates the outputs usegulrent state values through the
output ports. External input events from other mi®aerive through its input ports, and
trigger an external transition specified by theeexal transition function. This function
computes the new state of the model using the praesate, the input values, and the time
elapsed since the last event. The transition g internal state change after the
results are sent out through the output ports. \Etmere a transition function is activated,

a new lifetime is associated with the new state.
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Coupled Models
A DEVS coupled model is composed of several atamnicoupled sub-models, and can
be defined as:

CM =<X,Y, D, {Mi}, {li}, {Zij}, select >

Where

X the set of input events set;
Y the set of output events;

D an index of components;

Mi a basic DEVS model (atomic or coupled modél),[] D;

li the set of influences of model i (the models #at be influenced by outputs of
model i), jI li; and

Zij the model i to model j translation function;

select the tie-breaking selector.

Each coupled model consists of a set of basic coems (atomic or coupled model),
which interact with each other through the modeiterface. Each modelhas its own
set of influencees;, defined as the models to which its output valmesst be sent. For
each influencee j in model i, a translation funetis defined ag;. It defines how the
outputs of model Mwill be converted into inputs for model;MVhen two sub-models

have simultaneous events, Belectfunction defines which one should be activated.firs

Cell-DEVS
The Cell-DEVS formalism extends the basic behawbDEVS models to allow the

implementation of cellular models with timing detaj32]. A Cell-DEVS model can be
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defined as an infinite n-dimensional lattice ofleeThe state value of each cell in these

spacess updated according to a local rule, which considies own state and those of a

finite set of its nearby cells (called its neightmod). Each cell is defined as an atomic

model with timing delays, and can be integratec twoupled model to represent a cell

space.

Cell-DEVS defines cells as atomic models. A CellM#E=zatomic model is defined by:

where

6int

ext

TDC = <X, Y, I, S,G, d,6int, 6ext, T, )\, D>

a set of external input events;

a set of external output events;

the set of states for the input events;
the set of sequential states for the cell;
the cell state definition;

the delay for the cell;

the internal transition function;

the external transition function;

the local computation function;

the output function; and

the state's duration function.

A cell uses the input values | to obtain its ndates by executing the local computation

functiont. A delay function is associated with each cellagieg the computed result to

be sent to the neighbor cells. There are two tgbekelays: inertial and transport delay.
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For the transport delay, the next value will beextitb a queue sorted by output time,
therefore, the results can be stored until theyeH@en sent out. On the contrary, inertial
delay uses a preemptive policy, that is, if thd stte changes before the delay, the
previously computed result is not transmitted. Tdasic behavior is provided by tbg;,

dext, A, and D functions.

After the basic behavior of a cell is defined, tilgole cell space can be constructed by

building a coupled Cell-DEVS model, defined by:

GCC = <Xlist, Ylist, I, X, Y, {m, n}, N, C, B, Z, sefect

where

Xlist  the input coupling list;

Ylist the output coupling list;

I the definition of the interface for the modularaed

X the set of external input events;

Y the set of external output events;

{m, n} the dimension of the cell space;

N the neighborhood set;

C the cell space, where C ={Ci U [1,m], j O [1,n]}, Cjj is a Cell-DEVS
atomic model;

B the set of border cells;

Z the translation function; and

Coupled models are built as an array of atomicscKlls; and Ys; are the input/output

coupling lists, and define the model interfacX andY represent the input/output event
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sets. The space size is defined by {m, n}, Bindiefines the neighborhood scope. The cell
space C, the set of border cells B, and the traosléunction Z define the cell space.
Each cell is connected to the cells in its neighbod. Since a cell space is finite, the
cells on the borders should have a different neagindod than the rest of the space. They
can be “wrapped”, that is, cells on the border@menected to the cells in the opposite
one. Otherwise, the border cells need to be prawdéh a behavior different from those
of the rest of the moddFinally, the Z function defines the internal andegwal coupling

of the cells in the model. This function translates outputs of m-eth output port in cell
Cj into values for the m-eth input port of cell.&Each output port will correspond to one

neighbor and each input port will be associateth wite cell in the inverse neighborhood.

2.2 The CD++ Toolkit

The CD++ environment [33] was built to implement\ZEzand Cell-DEVS theories. The
toolkit includes a set of independent software @seounning in different platforms to

facilitate modeling and simulation.

The tool allows defining models according to thesafications introduced in the
previous section. The models are built as a clesmdchy, and each of them is related
with a specific simulation entity, which is actiedt whenever the model needs to be
executed. New atomic models can be incorporated tims class hierarchy by writing
DEVS models in C++. They can be defined by oveilogdthe basic methods

representing DEVS specifications: external traosgj internal transitions and output
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functions. After an atomic model is tested, it d@nstored in a model database and re-

used to build a multi-component model (coupled njode

In CD++, coupled models are defined using a spmtibhn language specially defined
with this purpose. The language was built by follogvthe formal definitions for DEVS

coupled models. The language is illustrated infdllewing sections.

2.2.1 Definition of Coupled models in CD++

Model files are used to define coupled and Cell-[3Eviodels within the CD++ tool. A

model file consists of a set of groups and debnitclauses within these groups [34]. A
group is identified by its name between two squan@ckets at the beginning of the
definition. Every model file must havet@p group, which identifies the top level coupled

model. Each coupled model, is defined using foffedint parameters:

Componentswith the following syntax

component : namel[@coupled_modell][name2[@atomic_cl ass2?] ...
This construction lists the component models ofdbepled model under consideration.
A coupled model can have atomic models or othepleamodel as its components. For
atomic components, an instance name and a class mast be specified. This allows a
coupled model to use more than one instance ofsémee atomic class. For coupled
models, only the model name must be specified. Toslel name must be defined as

another group within the same file.
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Out, with the following syntax
out : portnamel, portname?2 ...

This construction represents the model’s outputspdihis clause is optional

In, with the following syntax
in : portnamel, porthame?2 ...

This construction represents the model’s inputdrhis clause is also optional

Link , with the following syntax:
Link: source_portf@model] destination_portf@model]

This construction represents the links between coapts in the coupled model. If the
name of the model is omitted, it is assumed thatpbrt belongs to the coupled model

being defined.

A coupled model example is shown in the followirgufe 2.1.:

[top]

components : queue@Queue processor@CPU
transducer@Transducer generator@Generator
Out : throughput

Out : cpuusage

Link : out@generator arrived@transducer

Link : out@generator in@queue

Link : out@queue in@processor

Link : out@processor done@queue

Link : out@processor solved@transducer

Link : throughput@transducer throughput

Link : cpuusage@transducer cpuusage

Figure 2.1 A Coupled-DEVS specification in CD++

As we can see in Figure 2.1, there are four bastv® models:queue, processor,

generator and transducereach of which is an instance of an existing modkalr
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instancegueueis an instance of the existifgueueatomic modelLinks are established
to connect the components and their influenceesinstance, the output paout in the
generatormodel is connected to the port of thequeuemodel. Two output ports,

throughputandcpuusageare connected to the output port¢rahsducer

CD++ also can be used to define Cell-DEVS moddte ol includes an interpreter for
a specification language that allows describinghbkavior of each cell, including the
local computing function and timing delays. In dotd, it allows defining the size of the
cell space, the border and the initial state oheeall. This language was defined by

following the theoretical definitions for the C&IEVS formalism.

The behavior specification of a cell is definedngsa set of rules, each indicating the
future value for the cell's state if a preconditiersatisfied. A delay is associated with
each of these rules, and the state changes wdidtebuted to the neighbors only after
this delay. The local computing function evaludtss first rule, and if the precondition

does not hold, the following rules are evaluatetil ome of them is satisfied or there are

no more rules.

Each cell in the cell space is built following CBIEVS specifications for atomic models.
The X, Y, S, N8, &, Oexs A, @and D functions are built following Cell-DEVS dwfions
(see [35] for details). The user only needs torgethet function (defined by the local
transition) and the delay (defined lielay and the delay values in each rule). For

instance, Figure 2.2 shows an example for a CeN®Enodel developed using CD++.
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The specification follows Cell-DEVS coupled moddtsmal definitions. In this case,
Xlist = Ylist = { O }. The set {m, n} is defined bwidth-height and specify the size of
the cell space (in this example, m = 20, n = 4@ Meighborhood set N is defined by the
lines starting with th@eighborskeyword. The border (B) can be wrapped or no wedpp
Using this information, the tool builds a cell spaspecified by C in the formal
specification), 1/0 ports, and the Z translationndtion following Cell-DEVS

specifications.

[ex]

type : cell

width : 20

height : 40

delay : transport

border : wrapped

neighbors : (-1,-1) (-1,0) (-1,1)
neighbors : (0,-1) (0,0) (0,1)
neighbors : (1,-1) (1,0) (1,1)
localtransition : tau-function

[tau-function]

rule : 1100 { (0,0) = 1 and (truecount = 8 or true count =10) }
rule : 1 200 { (0,0) = 0 and truecount >= 10 }

rule : (0,0) 150 {t}

Figure 2.2 A Cell-DEVS specification in CD++

In this example, the first several lines define dimension parameters (2040) of the
cell space. Then the kind of the delay and the esltdghe neighborhood are included.
The border is defined as wrapped, so the cellshm border can use the same
neighborhood and computing function as the ottf@mally, the local computing function
is included. The local computing function executesy simple rules. The first one
indicates that, whenever a cell state is 1 andstime of the state values in N is 8 or 10,
the cell state remain in 1. This state change bélispread to the neighboring cells after
100 ms. The second rule states that, whenevet statd is O and the sum of the inputs is

larger or equal to 10, the cell value changes tim hny other casd € true), the result
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remains unchanged, and it will spread to the neghhfter 150 ms. As we can see, cells

evolve using a discrete-event approach.

The CD++ simulator is message-driven, and each agessepresents an event being
executed in a model with an associated timestani@ Jimulation outputs can be
recorded into a result file, which keeps a recofdalb the messages sent between
components. Each line of the file shows the namé&efcomponent that received the
message, the message type, the time of the ehensender and the receiver. Using this
file as input, we can reproduce the state of eaodem and we can use it to analyze
model outputs. For instance, figure 2.3 shows gnfient of a result file with different
messages evolving in the DEVS coupled model defindélgure 2.1 (&CPU connected

to aqueue and aransducerthat computes performance metrics).

Message * / 00:00:08:686 / Root(00) to top(01)

Message * / 00:00:08:686 / top(01) to processor(03)

Message Y / 00:00:08:686 / processor(03) / out / 10 .00000 to top(01)
Message D / 00:00:08:686 / processor(03) / ... to t op(01)

Message X / 00:00:08:686 / top(01) / done / 10.0000 0 to queue(02)
Message X / 00:00:08:686 / top(01) / solved / 10.00 000 to transducer(04)

Figure 2.3 A fragment of arexample result file

There are four kinds of messages: X (inputs), fdots), * (internal transitions) and D
(done messages). In the second message of Figyira 8ub-model callepgrocessoris
activated due to an internal transition. The modeherates an output (the value
10.00000 , which is sent through thaut port), and then executes the internal transition
function. After that, alone message is generated, including the scheduled fomtne

following internal event (in this case, infinitygpresented ds.." ). The Y message is
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translated into an input message (X) that is tratedito 2 different sub-modelsgeue

andtransducey.

In order to better visualize the execution of @#VS models, thelrawlog utility [34]
permits to view the state of the complete cellutawdel after each simulation cycle.
drawlog utility is an existing tool of the CD++ to pardeetmessages in the result file.
Using the result file as the inpulrawlog parses the Y messages to get the state of every
cell in the model, and stores all the cell stateariother output file with different format.
The output format ofirawlog depends on the number of the dimensions of tHalael
model, which can be two, three or more dimensidaglure 2.4 shows a fragment of the

output file generated bgrawlog utility for a two-dimensional model of size 10 x.10

Line : 1144 - Time: 00:00:03:050

0 1 2 3 4 5 6 7 8 9
. +
0] 23.6 24.4 24.5 24.4 24.2 24.0 23.4 22.8 22. 322.8|
1] 23.524.7 25.1 24.7 24.4 24.0 23.2 22.4 21. 522.4|
2| 23.325.129.1 25.1 24.5 24.0 22.8 21.5 20. 321.5|
3| 23.524.7 25.1 24.9 24.7 24.5 23.5 22.5 21. 522.4|
4| 23.8 24.4 24.5 24.7 24.9 25.0 24.3 23.5 22. 8 23.2|
5| 24.0 24.0 24.0 24.5 25.0 28.2 25.0 24.5 24. 0 24.0|
6] 23.8 24.0 24.0 24.3 24.7 25.0 24.5 24.0 23. 523.7|
7] 23.7 24.0 24.0 24.2 24.3 24.5 24.0 23.5 23. 0 23.3|
8| 23.5 24.0 24.0 24.0 24.0 24.0 23.5 23.0 22. 5 23.0|
9| 23.7 24.0 24.0 24.0 24.0 24.0 23.7 23.3 23. 0 23.3|
. +

Figure 2.4 A fragment of an output file generated drawlog utility

This fragment shows the results of a heat diffusradel in a surface. The cells at (2, 2)
and (5, 5) are connected to a heating generatav they are receiving a heat flow of

29.1°C and 28.2C). The cells (8, 8) and (2, 8) are connected sowce of cold. The
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initial temperature of all the cells is 24°C. A cell's temperature value is obtained by

computing the average of the temperature valuéiseofell's neighborhood.

For the models with three or more dimensions, #s&lts can be shown as matrixes, each
of them representing a 2-dimensional plane in tbeet) and looks like the one in Figure
2.4. For instance, in a 3D dimensional space, itseglane corresponds to (x, y, 0), the
second one to (x, y, 1), etc. Figure 2.5 shows dainfor the 3D simulation of the 'Life’
game [18] with the original rules proposed by Copwa this simple model, there are
cells, which can be alive (1) or dead (0). A neW i==born when it has exactly three
living neighbors. An existing cell survives if iaf two or three neighbors that are alive.

Otherwise, it dies.

Line : 247 - Time: 00:00:00:000

0123456 0123456 0123456
S — + S —— S S +
o1 | o | o1 |

111 11 121 11| 1] 111 |
211 1| 2/ 111 2/111 |

3l | 31111 3 11

40 111] 411 41 11
5|11 1) 5/ 11| 411 1]
6I1 1 1) 6|1 1| 4[1111]

Line : 247 - Time: 00:00:00:100
0123456 0123456 0123456

oj1 1| o111 1] 01 1]

111 1) 11 1] 1111 1
2111 11] 21 1] 211 11|
3] 111 3111 3 11

4 | 4 111 4] |
511 111  5/11111] 4]1 111
6] | 61 | 4111

R — + S — + S — +

Figure 2.5A fragment of a result file of a 3D model
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2.3 Virtual Reality Modeling Language (VRML)

VRML is a Web-based graphics language for build&iyy models. VRML allows the
users to interact with a scene through a varietymafthods, such as viewpoints,
movement, and rotation. It is an ISO standard aesidgor use on the World Wide Web.
VRML is a scene description language. Though VRBIA computer language, it is not a
programming language. VRML files are simple AS@Hitfiles, which are not compiled,
but parsed by a VRML interpreter. These interpgepnograms are often called VRML

browsers.

VRML worlds are created using a scene-graph stract8cene graphs are simply a
hierarchical decomposition of components that bélrendered in acene Scene graphs
are comprised of various groups rafdes which together form a virtual world. These
nodes are responsible for displaying shapes, kttiera and movement through the
world. VRML worlds can be viewed with any VRML-cdpa browser such as Cosmo
Player. Using Java and EAI [23], users can havecbritrol of VRML World to create a
dynamic 3D VRML World. Therefore, VRML is a file fimat for describing interactive

3D objects and worlds.

VRML has been successfully used in a variety ofliapfion areas, such as, engineering
and scientific visualization, multimedia, entertagnt, education, and shared virtual
worlds. We decided to use VRML as the developmeant, tbecause of the following

attributes:
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1. VRML is the ISO standard designed for use on thelth/ide Web, which makes it
easy to be used on the Internet or local clients.

2. It is platform independent, and it can be used a@mious operating systems and
hardware configurations.

3. It is scalable, enabling nodes to be dynamicallgeaidto or removed, thus building
arbitrarily large dynamic 3D worlds.

4. ltis extensible: a user can introduce new nodegyp

5. Itisreusable: a previously saved VRML world canused in a new VRML world.

6. Itis event enabled: the nodes can respond togbesuaction, and events on one node

can be spread to other nodes in the world.

These attributes make the VRML as a perfect toaldeelop simulation visualization
software to be used on the Internet, Intranet,laca clients. However, VRML has some

disadvantages, such as

1. Relatively slow rendering speed because the Jaxgram controls the VRML world
through EAL.
2. A VRML world is controlled with an applet, which hallowed accessing local file

and making connection to other computers.

Therefore, effective algorithms should be develogefhcilitate the scene rendering, and

a standalone application is needed to communiclketiae remote computers.
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For more information about VRML, how to create aMIRscene and interact with Java

programs, please refer to on-line report [6].

2.4 Related Work

At present, a number of efforts have been devaiaetbvelop DEVS models and cellular
models, but none of them meets our requirements.infémd to provide tools for the
users to build the models of complex physical systand visualize the results locally
with basic workstations, while executing the modelmotely in a high performance

platform anywhere in the world.

A number of efforts also have been devoted to biatdls for modeling CA. Some of
them provide good visualization facilities whilehets enable remote execution of the

models. Some of the existing tools are describédvimng.

* MJCell [40] is a Java applet to simulate CA. Its mainpmse is to explore existing
and creating new rules and patterns of 1-D and@ADIt can use rules from thirteen
different CA rules families, and allow experimeigtiwith new rules. The users can
select one of the eleven available families ofsuénd the desired rule. They also can
change the size of the model, initiate and runntioelel. It includes advanced editing
features and many analysis tools.

» Cellsprings [13] is a powerful 2D CA Java applet. It comes timo editions,

Cellsprings/Web, a Java applet, and CellspringsdbJava desktop application. More
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than seventy CA rules are predefined, and the usersdefine, run, and save their
own arbitrary rules. The applet version saves & rules in the server, so they can
be accessed by other users. The users also cagecttensize of the model and the
color palette map, specify some characters of tbeal then initiate and run the
model.

* Trend [9], is a general-purpose 1D or 2D CA simulatigstem. It is very flexible
about the space sizes, cell and neighborhood stegcaind cellular automata rules. It
also has a smart backtracking feature that simeglifule set development by allowing
users to return to previous stages of the simuiatio

» SpaSim [24] allows the user to build, simulate and pearfospatial and spatial-
temporal analysis on the same environment usingiemdly user interface. To
visualize the 3D model, it includes a dynamic wiwdtialog containing several tabs,
one for each of the automata layers. For each lfyeuuser selects the time and color
palette to be used, and the layers can be expongdrted or saved as independent

layers. Therefore, it actually is a 2D visualizatiool.

Some of the existing tools enable 3D visualizatbbrthe executing cells. Some of them

are described following:

» Capow [27], is a program for evolving 1D and 2D CA. Theer can control the

simulation with parameters, control the visuali@atwith color classifications, and

select the type of view and 3D view details. Howef@ 3D visualization, it needs to
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create a VRML output file used to visualize theutedn addition, it only displays the
surface of 3D images, so the user cannot see siaeistates.

PascGalois[17] can produce innovative 3D visualization of 2. It lays different
results over together, or changes the 2D rastegesi@ao 3D (rolling a 2D (graph)
raster images to implement the idea in 3D).

CASim [14] is an environment for simulating 1D, 2D ard 8ellular automata. The
user designs the model by giving the names and eumbstates, state transition
rules, color classifications and icons. After iaizing some selected cells, the user
can run the model.

Different 3D tools have been applied to simulatev@dsions of the 'Life' game. For
instance,3-D Life Visualization [31] simulates a 3D-life game developed with
OpenGL. A 3-D Life is played on a three-dimensiogatl of cubic cells. It tries to
visualize the development of the cells from genenato generation with appropriate
graphics technigue$he Game of Three Dimensional Lifd5], is also sophisticated
software to simulate the 3D-life game developedhwdD images. The user can
design the game, and change the color classifitatid the sides of the boxes. The
user also can rotate the image, and see the gandiffiérent viewpoints. In spite of
these, the images are actually 2D, so no navigatonbe made through the images.
In 3D Cellular Automata [1], the user can select the initial state, giiksdelay
between generations, and growing algorithm. Thegene actually 2D, and no

navigation can be made through the graphics.
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These tools do not meet our goals for visualizaind remote execution, and they have
problems related with the definition of the cellutaodels. In [35], it was demonstrated
that the use of a discrete time base poses réstisdn the precision and efficiency of the
simulated models. If complex CA are consideredhéigprecision can only be achieved
by reducing the activation period for each timgsfherefore, large amounts of compute
time will be wasted to obtain the desired resuitgthermore, in several cases most cells
of the automaton do not need to be updated in gaehstep. These "quiescent" states
allow defining modifications in which the automat@avances using instantaneous

events that can occur at unpredictable times.

As mentioned in section 1, using DEVS as a basmknéiism, we can improve
performance execution. As DEVS and Cell-DEVS arcmite event formalisms, they
provide higher precision and speedup in the sinanatthan the discrete time approaches
used by CA. In [43], the authors showed that DE@&ined with parallel simulation
techniques can produce speedups of up to 1000.timg35], the authors showed that
Cell-DEVS also provides these advantages. Besidss Cell-DEVS models enable
integration with other models defined with differetechniques, improving model

definition.

Therefore, we also investigated existing DEVS towlorder to see if any of the existing
tools completely satisfy our requirements. At présenany tools have implemented
DEVS formalism, but none of them is able to meet goals. Most of them do not

provide facilities for the execution of cellular deds. In addition, some of them do not
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provide visualization facilities and remote exegantiservice. Although they provide

much flexibility for the users to develop their owrodels, they are not easy to use:

ADEVS [25] provides a C++ class library based on the BEd@rmalisms. No
practical distributed environment, and visualizatiools have been implemented.
To use it, the users should have basic familiamtyh DEVS, and use the classes
in the library to construct their own model. Therssshould decide how to output
the result files, and design the correspondingalization tools.

Python DEVS[11] uses the ATOM3-DEVS tool to construct DEVSduats. The
models are represented as a graph that is useshtwage Pythonode. The users
can add nodes, ports and links, and edit them diapto the real system. The
model files are saved in a directory structure tmatg the hierarchical structure
of the model. For each atomic or coupled DEVS moad®ython file is created.
Python DEVS deals with the graph model, the codeiggion and execution, and
does not introduce remote execution environmentswalization tools.
Neuro-DEVS [15] is an Object Oriented Modeling and SimulateEmvironment
that can be used to model a system whose behawvianpredictable, and its
knowledge is collected in empirical data. It intnods some items in the model
description, such as, a learning function, but d@es not introduce remote
execution or advanced visualization tools.

DEVS/C++ [44] is a DEVS-based modeling and simulation emvwinent written
in C++, which supports parallel execution. It pams classes for the users to

implement their own DEVS models. No client/servemgation environment and
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no result visualization are considered.

 GALATEA [12]is also a DEVS-based simulation platform tb¢rs a language

to model multi-agent systems. It describes a ngstbsn as interacting agents. The
model program describes all the entities in theesysthe propagation of events
in the system and the relationship between agé@hts.simulator can trigger the
events, and coordinate the execution of the pie€esdes in the related agents.
The users analyze their systems and identify thiéiesnand their relations, then
use the provided specific language to build the ehad multi-agent systems. The

users should design their own visualization tools.

Other existing DEVS modeling tools provide somedaisualization tools:

SimBeams [26] is a component-based software architectureetbeon Java and
JavaBeans. The idea is to provide a set of compgeribat can be used in model
creation, result output, analysis and visualizatismg DEVS. For actual simulation
applications, the users need to select suitablepoaents and place them on a
worksheet to build models and connect them withermetl events. No remote
execution facility is introduced, and the users utthorealize their own special-
purpose simulation environments for particular aggpion domains. All the
components are displayed in 2D images.

JDEVS [16] is a DEVS simulation engine written in Jaua.enables general
purpose, component based, GIS connected, visuallaion model development

and execution. It was developed mainly to intemaith Geographic Information

39



Systems. It also provides easy-to-use 2D and 3alimtion tools. However, it has
no powerful navigation functions and visualizatiedition functions to better check

the visualization contents. In addition, no remmtecution is considered here.

Two of the existing DEVS environments are suitaioleneet our goals. Unfortunately,
none of these environments is able to run Cell-DENM&els in remote environments,
and visualize 3D models. Some of them were providigd extensions for visualization

of particular problems, but no generic visualizatiacilities are provided.

« DEVS/Java[28] is a DEVS-based modeling and simulation esrvinent written in
Java that supports parallel execution. It providasses for the users to implement
their own DEVS models. The users can use the atterfo visualize the state of the
components in the model, their ports and couplidgmodel can execute in a web
browser, but it does not provide client/serverliaes.

« DEVS/HLA [45] is based on the High Level Architecture (HL#&)d DEVS. It is
used to demonstrate how an HLA-compliant DEVS emrment can significantly
improve the performance of large-scale distributeddeling and simulation
environments. The HLA has been proposed and desdltp support the reuse and
inter-operation of simulations, and establish a w@mm technical framework
facilitating the inter-operability of all types ahodels and simulations. The user
should implementDEVS/HLA models using a standard programming language,
such as, C++. The tool does not provide visuabratfacilities, but it can be

integrated with powerful visual displays.
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2.5 Research description

As we indicated before, simulation is becoming éagingly important in the analysis
and design of natural and artificial systems. DEMSa formalism that is gaining
popularity in recent years, and it has found applbns in many areas. However, as we
can see from the related work, no practical tool3D visualization has been developed
in Cell-DEVS simulation. In addition, no practicahtegrated distributed DEVS

simulation environment has been developed in DEXiIation.

The contribution of this thesis is to introduce magbical integrated remote DEVS
simulation and visualization environment for thengswith functions in every aspect of

the modeling and simulation, which includes:

1. A DEVS Modeler [38] to build DEVS models using aagh-based notation. New
methods were added to this existing utility to ¢héee model design to ensure that it
conforms to the DEVS formalism.

2. 2D Cell-DEVS visualization tools

3. 3D Cell-DEVS visualization tools

4. An interface with the simulation server, enablirsgrs to remotely invoke the CD++

simulation engine in server mode

With sophisticated user graphical interfaces invabfour components, this simulation

environment can be used by various users with dagipertise around the world. In
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addition, with the design of this simulation envinoent, the users even can set up a

remote simulation environment in their own compgtmvironment, such as, the Intranet

within their company.

The users may not be familiar with the simulatiowl &isualization theory, but they can
rapidly obtain the results and visualizations tsigtsin analysis for scientific and
technical purposes. Nevertheless, with this sinanatnvironment, they can build
models locally, send the models to a remote CD+veseand receive the results locally.
Then the 2D and 3D visualization GUIs can be usedisualize the results. These
visualization tools enable the user to navigatdhévisualization with many ways, select

the shape and color palette of the cells, andtkditell matrix to check the results more

effectively.
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Chapter 3. Design of a Client/Server
Simulation Platform for CD++

According to the research description informatiorihie previous chapter, we decided to
develop a set of tools for the CD++ simulator tailftate the definition of DEVS
simulation models, visualization of the resultsd ahe access to a remote simulation
server for execution. These toolkits provide easyde graphical user interfaces that
insulate the users from the requirements of knowtmg simulation implementation
details and much programming knowledge. The godboislevelop a full-functional

client/server simulation environment for the useith all these toolkits.

As indicated before, the CD++ simulator was extenerun as a stand-alone application
or as a server. This chapter will describe the mamponents and their inter-relationship
in our simulation environment when CD++ simulatong as an application and a server
respectively. Finally, we will discuss the genetakign guidelines used in the design of

our client/server simulation environment and usé&zrfaces.

3.1 CD++ simulator works as a stand-alone applicain

When CD++ simulator works as an application (stalwhe mode), it runs on a local
machine. The users build the model first, and thetivate the CD++ simulator to
execute the model. After the execution, a resldtviill be generated, and then the users

launch thedrawlog facility to change the result stream to anoth@etpf result stream,
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which can be visualized with the visualization (D and 3D visualization GUIs).
According to above description, when CD++ simulatayrks as an application, the

simulation procedure involves following four steps:

1. The user builds model
2. The user activates CD++ simulator to executaribdel
3. The user changes the result format

4. The user visualizes the result with 2D and 3D GUI

The components in the CD++ simulation environmamd &heir relationships can be

illustrated with the following figure 3.1.

CD++ Simulator
(Run as an application

Model Stream Log Stream

| CD++ Modeler ” CD++ drawlog tool |

Drw Stream

Visualization GUIs

GUI GUI

2D Visualization | 3D Visualization

Figure 3.1CD++ running as stand-alone application

44



As we can see, there is a separation between ndefleltion, simulation execution, and
visualization tools, and the interaction is donetigh input/output streams. A user can
build a model with the CD++ Modeler according tce tibDEVS and Cell-DEVS
specifications, and execute the model with the CBimfulator running on the local
machine. After the simulation is over, a resuleaitn is generated. Using tdeawlog
facility, the result stream can be changed to eastrwith different format that can be

used to generate graphical outputs using diffeGauis.

3.2 CD++ simulator works as a server application

When CD++ works as a server, it runs on the rem@ehine, and can accept simulation
requests and provide simulation service for thentd. The client should semdodel

file(s) through the network. When a request is ikemk the CD++ server executes the
model and returns the result. The client will séwe results on the local disk as a result
file, and then activate the CD+drawlog facility to change its format into another text

stream that can be used with the visualization qeep.

According to above description, when the CD++ satmi works as a server, the

simulation procedure involves the following steps:

1. The user builds a model
2. The client sends the model to the remote CD++ sitnul and the model is

executed on the server
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3. The client receives the result stream from theeseland save it in a result file
on the local machine
4. The client changes the stream format

5. The user visualizes the results with 2D and 3D GUI

The components in the CD++ simulation environmemd #heir relationship can be

illustrated with the following figure 3.2.

CD++ Simulator
(server mode
A
Model Stream ‘ Log Stream Server
Client
| Client Interface to Server
Log Strear
Model Strear CD++ drawlog tool
| CD++ Modeler | Drw Stream

Visualization GUIs

3D Visualization
GUI

2D Visualization
GUI

Figure 3.2CD++ running as client/server application

According to the current design of the CD++ simaiatvhen it runs as a server, an
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interface should be added in the client side toronamicate with the server. A user can
send models to the remote server for execution,raceive a result stream on the local
machine. As illustrated in Figure 3.2, there il atseparation between model definition,
simulation execution, and result visualization, atihe interaction is done through

input/output streams.

When CD++ runs as a server, it expects to receive@el specification on a given TCP
port. Whenever it accepts a simulation requiremarahild process is created to serve
the specific requirement. When a new simulationuregnent arrives, the described

process is repeated.

3.3 Guidelines for GUI Design

From above, we can see that the simulation cliensists of the CD++ Modeler, the
drawlog utility, the result visualization GUIs and the drface with the remote server.
The CD++ Modeler is responsible for the model inpotd model file generation. The
visualization GUIs are responsible for the viswatian process, deal with presentation
issues and provide a visualization environment. Triterface is used to communicate
with server. They ensure that the users are pregentth a simulation system that
consists of familiar and easy-to-use interfacesl @guires little training overhead. In
this way, CD++ can be presented to a wider rangesefs around the world, and learning

times and training costs can be significantly redic

47



The user interface is extremely important in a $aton and visualization system for all
sorts of users. It has to be both simple and intiitThe user interfaces provides a
communication bridge between users and computéwad. User interface designers
should identify the types of the users of the ajgion under development, and fully
understand the purposes of the application, anigmabte interface with the user’s

attitudes in mind.

The whole aim of the GUI is to create user intexf@omponents that can be easily
manipulated by the user. By building the operatoocedures that take place in all the
elements of the underlining software into the Gttan make complex systems easier to

learn, and makes the users more productive.

We developed our simulation system to be used bpwsusers around the world. With

this idea in mind, the following provisions werensalered:

* The end users have much more varied expertiseltsaugh they may be familiar
with the particular technical area the simulatigrstem deals with, they are not
familiar with the simulation and visualization syt itself.

« The end users are interested in rapidly obtainiata dsisualizations to assist in
analysis for scientific and technical purposes.yTtde not want to spend time on

installing or learning special software.

The average end user usually conducts some resgaglscientific area and requires

simulation and visualization services to assishwite research and analysis of a real
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system. These users may be quite limited in so@waogramming, even in normal
computer graphical tools. Therefore, when we dgveboir simulation system, the

following criteria should be followed.

» Easy to use: The average users should not needblspaowledge to install the
software. They also need an appropriate visuatinatinvironment to promote rapid
learning. End users should see the environmentasxtension to the tools with
which they are already familiar, allowing them tcdis on the visualization task
rather than on learning how to use the system.

* Interactive: End users should be able to contrahesamportant visualization
parameters as well as directly manipulate and ad®ithe visualization.

* Multiple platforms: The average user can use amtiqodar platform, to provide a
public service. Therefore, the program is neceskaryn on most popular operating

systems and platforms.

Consequently, a visualization environment shoulgd as much as possible on standard
interface conventions, and where appropriate, allbev user to interact directly with
images that provide concrete representations dfwedd objects rather than text or

forms.

Besides above considerations, the following charestics also should be considered in

the visualization environment to facilitate themse
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» Interactive display: The visualization software wuldo provide a responsive
environment, and have functions for the navigationthe visualization, and the
edition capabilities.

» Appropriate tools: provide tools for input, such asslider for changing color
classifications, not just text fields for user ithpu

+ Message boxes: provide message boxes for commiamagith the user.

In our user interface design, all above rules Wellewed. The program, coded in Java,
can run in various environments. The user can Bpeuviany parameters for the

visualization, and even edit the graphical repregem of the results. The user also can
navigate in the visualization with many methodse Tise steps are built into the program,
so the user only needs to follow the sequence enirtterface to use the program. In
addition, various dialogs are included to commumeicaith the users and the slider

components are used as many as possible for the wadut in the interface.
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Chapter 4: A Simulation Client for CD++

In this chapter, we will give an overview of a siation client for the CD++ simulator.
This client provides a series of capabilities te tiree CD++ simulator as an application or

as a server. It provides users with the followimgeeé main capabilities:

1. Building DEVS models.
2. Submit a model to a remote CD++ simulation serveceive the execution results
locally, and change the result format with thawlog utility.

3. Visualize the results.

The above three capabilities also illustrate theénn@mponents in the client. As
illustrated in Chapter 3, the main components idelthe CD++ Modeler, thdrawlog
utility, the Interface between the client and tleever, and the result visualization GUIs.
Because therawlog utility is an existing tool of the CD++, we justtioduce the other

three main components below.

4.1 CD++ Modeler

The CD++ tool uses model files to represent couptedels and Cell-DEVS models. As
indicated before, the model file details the maxt@hponents and their relationships. To
improve model definition, the client includes a gmmnent for model input to create

atomic or coupled model3his basiccomponent is th€D++ Modeler, which consists
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of a set of facilities to enable the users to defdEVS models using graphical notations.
This application can be used to create atomic aplea models, which can be executed

by the CD++ simulator. The basic functions of tH2+3 Modeler include:

1. Building DEVS atomic models using DEVS graphs.

2. Building DEVS coupled models using directed graphs.
3. Saving the newly created models.
4. Loading previously saved models or integrating tleencomponents of a new model.

5. Validating the design and ensuring it conformdi® DEVS rules.

The CD++ Modeler also includes a text editor totevand modify Cell-DEVS models.
The application, coded in Java, looks like Figurg when it startsThere are four
components for model inputhe Design Spacethe Internal transition and external

transition selectarthelnformation Spaceand theDesign Space SelectofFhe most

| Internal transition and

[ DEVS Simulator 10l external transition selecto
File Edit Execute Help
2 | B |07 morar _ostia | |
=] :_\JCIasses Atamic CDupIed‘l\a@ngdm'
T
...... . Out
-4 Coupled Model .
Jo Unis Design space selectofr:
“-# Links Atomic or Coupled
model
Information
space Design space
Simulator Stars

Figure 4.1CD++ Modeler initial view
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important component of the application is the desspace where we can build our

models.

Before creating the model, the user should seleztproper design space according to
which type of model (atomic or coupled) is need&imic models can be defined using
DEVS graphs, which specify all the states the mgdek through, and the state transition
relations. Every state in a DEVS graph is specibigdhn identification and a lifetime as
shown in Figure 4.2. The user should assign the staname for its identification and a
value for its lifetime when adding it to the mod&t we can see, the states are defined as
circles with a name and a lifetime, and their cawate values in the design space are
shown just behind them in the Information space.iRstance, the state assigned a name
asend has a lifetime of 10 time units. Every state titmis can be associated with
input/output activities using specified ports tlt@n be associated to each state. For
instance, the state assigned a namstas is associated with the input pont and the

output portout

States are interconnected using different linksrépresent the transition relations.
Internal transitions are represented by full liaesl external transitions by dotted lines.
An external transition is activated when an inguteiceived, and it can be associated with
an input port, which represents an input eventttier model. For instance, figure 4.2
shows that whenever the model receives an inpaugfr thein port and the model is in
start state, the model will execute an external tramsitand change to thend state.

Internal transition is activated after the modelystin a state for its corresponding
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lifetime, and can be associated with an output portepresent the execution of the
output function. For instance, if the lifetime {fé units) of statenid is consumed, the
output function is executed and the current statbtame of the model are sent through

the outport. After the internal transition completes, thedel state changesé¢ad

[E3DEVS Simulator [_ O[]
File Edit Execute Help

= | B | B I internal external |

=4 Root Node atomic | Coupled | Show Model
-4 States
= start(111,70)
?mmﬁ-ln art ! end 10
=24 mid(107,213)
Lo Ot

=24 Lirks

------ # stari111,70) mid(107,213
------ # start(111,70) end(308,72)
------ ® mid(107,213) end(308,72)

4] | »

state ID: end
state TL: 10

Simulator Stars

Figure 4.2CD++ atomic model definition

The user also can refer to models previously cadédi+ after they have been added to
the CD++ model database. Once atomic models hage beeated using any of these
methods, the tool permits defining coupled modelshe workplace. Coupled models are
defined as directed graphs connecting internal corapt models and the input/output
ports of the new model. The first step to buildoaigled model is to select the atomic

and/or coupled sub-components for the coupled meiely built. These sub-component
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models can be chosen from the ones previously edtmd added to the model database.
As it can be seen in Figure 4.3, the component tsodihin the coupled model under
definition are represented as squares and the amqplibutput ports of the new model are
represented as circles, and their names are shatbgside their corresponding figures.
For instance, theueuemodel is an instance of tM@ueueatomic model previously
defined. The user can define different instancesthef same model. Once all the
component models have been created, we can ehkttibks to connect the input/output

ports of these component models to indicate thesagestransformation relations. For

L2 D QUS PG rocessor@ CPU

throughput

Ql |1i~r|nm=

aut-=in

aut-=sgiveqly roug hput-=throug hput

geferatori@ Generator

trangd ylerdd T ransd ucer

cpuusage

Figure 4.3 Graph representation of a coupled model

instance, Figure 4.3 shows that the output potin thegeneratormodel is connected to
thein port in thequeuemodel. Finally, we can establish links betweerpatports in a
component and the input/output ports of the coupieadel under definition. For
instance, theéhroughputport in thetransducermodel of figure 4.3 is connected to the

throughputport of the coupled model being defined (represeity a circle).
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After the graph representing the coupled modehistied, it can be exported as a model
file. To ensure that the design conforms to the BEdrmalism, we check the design

with the following rules:

1. There is no isolated nodes or links.
2. Every port is connected with at least one link.
3. Each end of a link should be connected with just port.

4. Alink should start from an output port to an inpaoit.

If there is any violation of these rules, a dialaig) prompt and show what and where the
violation is, so the user can correct the erroilyabhis checking is done only when the
file is exported to a model file to be run in CD+#ftthe design is just saved to a file, no

check is performed because the user may need tmgerdefining the model later.

4.2 Interfacing with CD++ Server

To execute a simulation model in a remote serherctient must send the model file, an
optional external event list and an optional stop time toemote server through the

network. When a request is received, the CD++ sarges a system call to produce a
child process before running the specific simulatibherefore, the server can execute
many models simultaneously. The server returnegfeeution results through the same

port. The client will save the results on a loadult file, and then activate the CD++
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drawlog facility to change its format into another thandae used with visualization

purposes.

We developed an Interface on the client side tdblengéhe users to specify the IP
addresses of the simulation providers, and sendelma them for execution. The
following Figure 4.4 shows th8tartDialog of this interface. We can see that the model
file calor.mais selected, the simulation end time is specifie00:01:2Q and the result

format to be used byrawlogis specified as 5-digit long with one decimal digi

To run a model using these facilities, the useukhtllow the following steps [7]:

a) Set a Configuration File: this file stores tledadilt server address, a port number to be

Eistart Dialog

Files Sentto Simulation Server

ciclientcalor.ma

A File | EY File | Remuove |

Sirnulation Tirme |'3'D |01| IZD

Width |5 Decimal  |! Shown [*]

Infarmation 7 Simulation Result

-l

-
4 k

Start |

Figure 4.4 StartDialog (select model file, simulation timedaesult format)
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used, and a file to save this default informatifhen the client starts, this file will be
read and a default server, port and directory vglset up.

b) Select the model stream(s) that will be serih¢oserver for simulation.

c) Change the Server and input socket: a user banse server and port addresses
different from those defined as default in the agunfation file.

d) Input the stop time and result format.

e) Connect to the server.

Using this interface, a client can communicate vaitty computer with an IP address on
the Internet/Intranet. The users even can exedigesame model or several different
models on different servers at the same time. thtiad, as illustrated in Figure 4.5, if

one of the clients is used as a hub client to comaoate with the server, a remote multi-

observer CD++ simulation environment can be eastyup.

Client 1

1:N
1:1

Simulation Server . .

Figure 4.5Remote multi-observer simulation environment digrap

The hub client can send model files to the semameive the results, and distribute the

results among the other clients as needed. Moretivercomments of the users can be
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distributed among other users through this humtli€herefore, many users in different

locations can observe in the same simulation result

4.3 Visualization GUIs

As we indicated earlier, the users can use the Cémtlator as a local application or as
a remote server. After the simulation finishes, iker can analyze the simulation results
using different visualization tools. A set of vi$imation tools was introduced and now it

is an integral part of the CD++ modeling and sirtiafatoolkit.

For the main part of this thesis work, sophistida2® and 3D visualization tools have
been developed for the CD++ simulator. With the \#8ualization tools, the users can
check the results with 2D s, navigating in the almation and selecting parameters to
specify the items to visualize. With the 3D vismation tools, the users can check the
results in a 3D scene. The users can navigatesinifwalization with many ways, select
the color palette and shape for the nodes, andtleglihode matrix or individual nodes.
The users also can filter the nodes with speciéfilti® ranges to check the results more

effectively.

4.3.1 2D Visualization GUI

The 2D visualization GUIs [39] are used to visualihe results of atomic models,

Coupled DEVS models, and Cell-DEVS models. In eaththese GUIs, navigation
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methods are provided for the users to understandegults better.

One of the visualization facilities introduced hezmpables the users to analyze the
input/output values transmitted from/into each loé input/output ports of an atomic
model by displaying these values on a graphicgblays The information transmitted
through each of them is collected in a result fileing the simulation. Therefore, the

result file stores all the messages sent betweeBDHYS components.

The visualization routines extract all the messagkded to the atomic models and their
results, so the user can select any of the atoraaeis for visualization. As illustrated in

Figure 4.6, all the atomic models are listed in@m®ice component and the name of the

i atonic Aninate

Zaro . Input ;
. Output

|
00:00:00:070  00:00:00:072  00:00:00:080  00:00:00:082  00:00:00:090  00:00:00:100 00:00:00:110  00:00:00:112  00:00:00:120 j

| | 3

Figure 4.6 An example for atomic model visualization
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currently visualized model is displayed below thdténs. The user can select any of
models for visualization. The timeline lists alketport on the left and the times on the
bottom. The value is shown as a piecewise constgnal, whose height is related to the

value displayed.

Each signal starts when the port receives (input) plois value, or sends out this value
(output value) and ends when the model generatesvaoutput. The character (*) just
above the time means that there was an internaitian at this time. With this graphical
display, the user can check all of the input/outm@alties of an atomic model through the

whole simulation process.

The execution of coupled models also can be vsedliby associating the graphs
representing coupled models with the result strganerated during the execution of the
coupled model. The user should specify a modekfigated with the CD++ Modeler and
the result file resulting from the execution of thedel. The graphical specification for a
coupled model defined using the CD++ Modeler, imbmed with the result file that

contains the information needed for displaying. ufég 4.7 shows an example of
execution of this facility. We can see that the sidde is displayed on screen, and the
values received or sent out by the ports are eelaitom the result file and displayed
near the corresponding ports. In addition, thertgrof the events is included. Therefore,
we are able to see the input/output values tratesthiduring the simulation within a

coupled model.
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Figure 4.7 CD++ coupled model definition and execution

Cell-DEVS spaces are defined as DEVS coupled modlel®etter understand the results
of Cell-DEVS models, we also added a new facilityisualize the outputs generated by
the drawlog tool with a graphical interface. Figure 4.8 isetample of 2D Cell-DEVS

model visualization. Simulation results for 2D GBEVS models are shown in one plane
by giving different color classifications to thdfdrent cell values. Simulation results for
3D models are shown by displaying the values ottadl planes comprising the model
simultaneously. In addition, different color cldesitions are given to different cell

values in order to improve model visualization.
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Figure 4.8Examples for 2D Cell-DEVS model visualization

4.3.2 3D Visualization of Cell-DEVS Model

The 2D Cell-DEVS model visualization tool can besdigo visualize 3D Cell-DEVS
models, but it has many limitations, which can Ibalgzed in the output example in
above figure 4.8. The result is displayed in sdvester images, and the users should
keep track of each of them. The users must undetstaellectually the relationships
between the raster images and compare several 28r ienages to figure out how the
real system looks like. In this section, we introgluta 3D GUI for the model result
visualization. In this GUI, the users can see #wsilt in a 3D environment. In addition,

the user can check the same result in severaleifferiewpoints at the same time.

The 3D visualization GUI is a sophisticated viseation GUI for Cell-DEVS model
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result visualization. The results are displayed a®de matrix with the same size as the

model. The functions introduced in this GUI aressléied into four categories:

1. Navigating the visualization.

2. 3D node matrix (scene) and individual node edition.

3. Shape selection, color palette selection, scaéeseh for all the nodes in the scene.

4. Filtering the nodes with specific value ranges.

The 3D visualization interface looks like followirigigure 4.9 when it starts.

Load | Deswgnl Entity I Result | Navigatl Ehnicel

Simulation Client

Load Draw File

Load Diaw File |
Select Colors |

Figure 4.93D visualization GUI execution

The left is the VRML scene where the result willdgplayed, and the right is the panels

to control the scene. There are four panbifpPane| EntityPane] ResultPaneland

NavigatePanelEach of them is explained in the following sections
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4.3.2.1 InfoPanel

TheInfoPanelis shown when the application starts. The textfezn be used to display
debugging information and a label is used to disptatus information, which will be
updated accordingly. It includes methods to sdleetresult file to be visualized. After a
result file is loaded, an associated color palafte will be loaded (if it exists). The color
palette specifies the color classifications chog$en different value ranges. If the
corresponding color palette does not exist, defaalthr classifications and default value
ranges will be used. In this panel, a color paldiééog also can be loaded to specify the

color classifications for different value ranges.

The color palette is selected with a color palsttection dialog. The user can select
default color classifications. The user also caec8p the value ranges by providing any

two of the following three parameters:

1. Maximum value
2. Minimum value

3. Interval

With these two parameters, the minimum value atehval can be obtained, and then the

values for all the value ranges can be calculdtedddition, the users can assign specific

color classifications to different value ranges.
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4.3.2.2 EntityPanel

This panel allows editing individual nodes in theerge. A list of currently displayed
nodes is populated by thdavigatePanekvery time it updates the nodes in the scene.
Before a node can be edited, it should becomedhabée node (i.e., the only node that
can be edited in the scene). A node can becomeditetle node when the user clicks it
in the scene, or selects its corresponding itethenlist. After being the editable node, it
can be edited with the related methods of the reodkthe methods in this class. The
methods included in the node permit to change hia@es, color palette, and size of the
selected node. The methods in this class pernadtbor remove the individual node in
the scene. All the editions on the nodes will bptldrring the later visualization process,
so the edited nodes can be used to highlight sgeeiad nodes. The users also can

remove some nodes for better investigation on soteeested nodes inside the model.

4.3.2.3 ResultPanel

The ResultPanels used to navigate in the VRML world. Figure 4ditbws this panel
when it is executed. Different methods are defite@ontrol the navigation: a) a start
method to start the execution; b) a resume methambmtinue if stopped; ¢) a go back
method to go to the previous timestamp; d) a gda method to go to the next time; e) a
stop method to stop the visualization at a giveretif) a continuous display method (this
iteration will end only at the end of file); g) aethod to go to any selected timestamp; h)
a method to remove layer(s); i) a method to disfit@yremoved layer(s). These methods

call the corresponding methods in tHeesultPanel Class, which activates the
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corresponding methods in thavigatePaneClass.

Load I Designl Entity | Fezult I Navigatl Choicel

Cutput Files:
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1| I 4
Time:
00:00:00:000 Skart Stop
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00:00:00: 200 Resume | Beagin
| Mewt | Back
Levels: 5
[allevel: Femove] [isplan
Lewvel O
Level 1 fiEset

Go Ta This Time | |DD:DD:DD:DDD

Figure 4.10ResultPanel execution

4.3.2.4 NavigatePanel

NavigatePanelis the main panel in the application. It stores tuwerently displayed
result, the currently displayed nodes, and the saofeevery displayed node. Their
contents change whenever a scene is updated wighvaesult or a new color palette. It
first initiates the scene as a matrix of transpanees with the same size as the model.
Therefore, the matrix can map with the model, ang aode in the matrix can be
associated with a value in the result stream. Tagsdncludes methods to add or remove
nodes in the scene, to change the shape, coldtgyaad size of the nodes, and to check

the results from a favorite viewpoint.
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Chapter 5: Implementation

From previous sections, we know that the clientniyaincludes three components:
CD++ Modeler, result visualization facilities anbet client Interface for the remote
simulation server. In this chapter, we will givgeneral overview of the implementation
of the 3D VRML visualization GUI and the client émface. In the end of this chapter, we

will introduce the algorithms to transform 2D motz3D VRML model.

5.1 3D VRML Visualization GUI

The 3D VRML visualization GUI is used to visualitee result in a 3D environment. As
illustrated in Chapter 4, we use visible nodeha YRML scene to represent the results.
A node is the basic standalone element in VRML.r&lee many kinds of nodes in the
VRML, some of them are used to define the enviramnoé the scene, and some of them
are used to describe a visible object in the sc€he.nodes in a VRML scene have a
hierarchical relationship (please refer to theline- report [6] for more detailed
explanation of VRML nodes). To display differensuds in the VRML scene, the visible
nodes should be added to the scene and removedttimstene dynamically according
to the results being visualized. In addition, tree=rushould be able to navigate in the

scene, and edit the nodes for convenient investigaf the result.

To implement this GUI, we need an empty VRML scemeich will be used to hold the
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nodes. The VRML scene is the whole VRML displayarga including its environment

and all the visible nodes in it. The nodes willdmled to or removed from it dynamically
to represent the current results. This empty VRIgEng is embedded in an HTML file as
a root file, and the HTML file should include anpégt to control the scene. The applet
must include all the functions to update the scerwejgate in the scene, and edit the

nodes in the scene. The applet we implementeddaslthe following functions:

1. Load the result file and its corresponding coldefia.

2. Add nodes into the scene or remove nodes fromadiiees

3. Change the shape and the size of the nodes, anut¢heal between them.

4. Select the color classifications for the value es)go nodes with different values can
be displayed with different color classificatiors, nodes with special values are
hidden.

5. Navigate in the visualization.

6. Edit the scene and the individual node.

These functions are organized into four groupsheafc which is implemented in a
different class. These classes mf@Pane] EntityPane] ResultPanehndNavigatePanel
They extend théanelclass in Java to be used as a panel in the 3@&lzation GUI.

The class diagram and their inheritance relatiqgrsshire:
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Figure 5.1 Class diagram of the entire VRML visualization apl
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Figure 5.2Class diagram of the class extending Applet
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Figure 5.3Class diagram of the class extending Object
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Panel

NavigatePanel ResultPanel

InfoPanel StatusPanel

EntityPanel SelectorPanel

Figure 5.4Class diagram of the classes extending Panel

From figure 5.1, we can see that the GUI consiEssWWRML scene and an applet called
SimuUserClientThe applet includes six paneldavigatePanelinfoPane] EntityPane]
SelectorPanelStatusPanelnd ResultPanel The StatusPanels used to display status
information of the programSelectorPanels used for the buttons to select the panels.
ColorDialog is used to specify color classifications for tteues, and can be brought up
in InfoPanel ReadDrwFile class is used to get the result at a time for layspthe
WarnDialog class is used to display various information te tisers. We will now
introduce the other four classedNaligatePanel InfoPane] EntityPane] and

ResultPangllater.

The inheritance relationships of most of the classee straightforward (such as,

InfoPanelclass extendBanelclass in Java) except by two classesnuUserClienand

VRMLNode The SimuUserClientclass extends th&pplet class in JavavRMLNodeis
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used to represent a visible object in the VRML scénextends th©bjectclass in Java,
and implements thEventOutObserveinterfacefor the callback method. It will be called

when the node in the VRML scene is clicked.

We will only introduce six important classdé4RMLNode ReadDrwFile NavigatePanel
InfoPane| EntityPane] and ResultPanel The main relationship of these six classes is

illustrated as follows.

VRMLNode EntityPane
ResultPant
T Manipulate, l Utilize
Hold Navigate, Inquiry / Utilize
VRML Scen < NavigatePan:
I Utilize
T Utilize ReadDrwFil¢
InfoPanel

Figure 5.5Class relationship diagram

The NavigatePanels the only class to control the VRML scene aridiad other classes
control the VRML scene through this class. Therfarshould have all the functions to
control the VRML scene. These functions includeiaglédr removing a node, updating

the scene, navigating in the scene, and editingddes in the scene.
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5.1.1 The VRML Root File

The VRML root file is embedded in the HTML file, dtoaded as an empty scene to hold
the nodes representing the result. The root fileukhhave a Group node to hold the
nodes in the scene. Since the scene is emptysgtdifferent node matrix should be built
dynamically for different models. Any node in thatnix should be authored as a child to
this Group node. This is because the nodes defindte VRML file cannot be removed
and we cannot add any node in the scene througlVRML file with the program
(applet). Adding nodes to a child field in a graugde is the only way to build the 3D
node matrix from an empty scene dynamically. Initiald only the nodes in the child
field can be removed dynamically from the scenee Tdot VRML file can be defined
simply as follows:

#VRML V2.0 utf8

DEF Root Group {}

Here a simple Group node, t&oup, is used, and it is defined aRdot for the access

to this node.

This file can contain an actual VRML world, but tbaly requirement is that a group
node, such aszroup, named Root must be present. To facilitate identifying thedes
in the scene and visualizing the results, the Yalg two nodes are also included in this

root file.

Background node: The backgroundnode allows defining the background of the VRML
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world. To identify the nodes in the scene easilg, w8ed white as the background color

palette for the result visualization.

Viewpoint node: A viewpoint describes a predefined viewing positand orientation in
the VRML world. It just acts as a camera in thd vearld. A VRML world can have any
number of viewpoints (or cameras), that is, thergsting positions from which the user
might wish to check the world. To facilitate thesu# visualization, we define a
Viewpoint namedJserEye and a group of Viewpoints namé&fiewpoints We will use

these viewpoints to switch to different viewingasef the scene.

5.1.2 VRMLNode Class

The VRMLNodeclass is used to create visible nodes in the stenepresent the
simulation result. Since the nodes should be agdras a 3D matrix (such as in Figure
5.3) in the scene to represent the results of BENMS models, the node should have a
translation function to be located in the sceneill@strated in on-line report [6], we can
use aTransformnode because it not only includes a translatiowtian, it also has all
the other necessary attributes to represent aindtie scene as well, such as, containing
a visible node displayed in the scene. In additibajso allows manipulating a node’s

size and orientation.

To construct a&ransformnode to represent a node in the scene, the hmgratoucture
should be built in thi¥ RMLNodeClass according to its definition as in the exasipé

in on-line report [6]. Fofransformnode, we can use tlet-valuefunction andget-value
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functions of its translation, rotation and scakdds. Theget-valuefunction can be used
to get the current value of the field. Thet-valuefunction can be used to change the
value of the field. If the value of a field changt®e corresponding attribute of the node
also will change. Such as, if the translation fiefch node changes, it will move to a new
location. Therefore, the position, orientation aize of the nodes can be modified as
needed with thesget-valuefunctions, and their recent values can be obtaiméd these
get-valuefunctions. In addition, to shown as a visible naé&eometrynode or arinline
node should be added to its children field becadlisse two nodes are the only nodes to
represent visible objects in the VRML scene. Weigies] two types of VRML Node
classes. One is for primitive shape nodes and ther @s for Inline nodes. Therefore, we
can use both primitive shape nodes and Inline ntaespresent visible objects in the
VRML scene. In addition, aallback method is implemented to respond to the clicking

on these two kinds of nodes.

5.1.2.1 Primitive VRML Node Class

The Primitive VRML Node can be used to display ianiive shape in the VRML scene.
For this kind of node, we can get thet-valueandget-valuefunctions for color palette,
texture and transparency fields. Therefore, we d@ange the color palette, texture and
transparency of the node with teet-valuefunctions. In addition, we can get the current
values of the color palette, texture and transparesf the node with theyet-value

functions.
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5.1.2.2 Inline VRML Node Class

To translate and rotate tih@ine node easily, thénline node can be used as a child node
in a Transformnode. Then if the translation and rotation ofpgégentTransformnode
change, the childhline node will be relocated and rotated accordinglye Trtiine node
includes all the nodes defined in another VRML,fiémd uses them as a single node.
Since thelnline node refers to the nodes that exist in another VRiM, the size and
appearance of these nodes cannot be changed. i@ngjation and rotation operations
can be applied to these nodes to locate them iWRML scene. The VRML file for the
Inline node is specified with amrl address, and this class has the function to cheege
url address of the VRML file to be used as thiene node. Therefore, the user can select
a different VRML file to describe this child nodealso includes functions to change the

position and orientation of the node.

5.1.3 ReadDrwkFile class

This class is in charge of reading the values tdibplayed from the result stream. It is
called by theNavigatePaneWwhen the user decides to view the new result.ridve result

can be one of the following cases:

1. The result at the next timestamp in the resulastre
2. The result at the previous timestamp.

3. The result at any user-selected timestamp.

76



For case 1, the read pointer is in the right placewe just need to read the result. For
case 2 and 3, we should re-locate the read pdmtée right place first, then we can read
the result. The general idea is that we resetehd pointer to the beginning of the result
file, and then check the timestamps from the beggriwhen we find the timestamp we

need, we read the result. In case 2, we have tad peinters, one pointing to the recent

timestamp, and the other pointing to the previangstamp.

Therefore, this class includes the following fuons:

1. Reset the read pointer to point to the beginnintpeffile.
2. Get the number of rows, columns and layers foirhmlization of the VRML scene.

3. Read the result and return as a string.

Some separators are inserted in the returned strifagilitate the separation of the whole
string into individual values. In this string, &le not displayed zero values are added.
This is very important because sometimes the valweero is not displayed in the result

file.

5.1.4 InfoPanel Class

InfoPanelis a subclass d?anel When the users specify a result file for visuatian, it
checks the result file and its corresponding cplalette. If their formats are correct and

the corresponding color palette exists, the coldette will be loaded. Then it will call
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the reset function to clear the VRML scene andhalinformation about current display.
Finally, it will call a function inNavigatePaneklass to initialize the VRML scene and

begin the visualization.

5.1.5 NavigatePanel Class

NavigatePanelis a subclass oPanel It stores the recently displayed result, recently
displayed nodes in the VRML scene, and the named| dfie recently displayed nodes.
This information changes whenever the scene istaddsith the new result or new color

palette selection. This class includes the follgxunctions:

1. Initiate the scene.

2. Add or remove the node in the scene.

3. Change the shape, color palette, and size of theso

4. Move to the next result, the previous result, aglgcded time, or any input time.
5. Begin the visualization from the beginning again.

6. Delete and re-display layers.

At first, it gets the number of rows, columns aagers of the model. It then initiates the
scene as a 3D matrix of transparent nodes withséinee size as the model. Therefore,
each node in the matrix can be associated withHweva the result stream, that is, each
value in the result can be represented by a notteimatrix. There are two main reasons

to define all the nodes as transparent nodesfta). auser selects a favorite view area,
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the view area is retained when the scene is updateduse VRML browsers can
remember the viewing point automatically. b). iemssier to add or remove nodes in the
scene. With this design, we just need to set #resprarency attribute of the nodes to add
or remove them. If a node is set as transpareist,rémoved from the scene. If a node is
set as non-transparent, it is added to the scdme.navigation is implemented with the
viewpoint in two methods. First, the viewpoint che a child ofTransformnode, its
position and orientation are changed with thosthis Transformnode. Second, a user
can select different viewpoints. A viewpoint is idefd as a type of bindable node. For
each type of bindable nodes the VRML browser entyanthe first one is bound (used)
at first. Moreover, among all the bindable nodeshefsame type only one can be bound
at any time, so if another one is bound, the régdrdund (used) one will be unbound
automatically. Therefore, though several viewpoitds exist in a VRML world, only
one viewpoint can be used at any time. As in tha fite mentioned befordJserEye
and a group of viewpoints nam&tewpointsare defined in the root file. Among these
viewpoints,UserEyewill be bound first, that is, the first used viespt. To bind another
viewpoint, we just need to get the interested viewpin the Group nod¥iewpoints and
set its bind attribute. If another viewpoint is bdy the recent active viewpoint will be
unbound automatically, and the scene will be ugbaecording to the newly bound

viewpoint.

To change the shape, color palette, and size afdbes, we call theet-valuemethods of

the node with new values. In this panel, the shepler palette, and size of all the nodes

in the scene will be changed. To move to the nex¢,tthe previous time, any selected
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time, or any input time, we search the time fisstd then read the result at that time and
display it. To delete a layer, we just need totlsetnodes in this layer as transparent, and
do not update them at following display. If we #et nodes as non-transparent, then the

nodes in this layer will be re-displayed.

5.1.6 EntityPanel Class

EntityPanelis a subclass d?anel It is used to edit individual node in the sceReere is
a list on this panel to display the names of al tisible nodes in the scene. Whenever
NavigatePanelclass updates the scene, it will call a methoEmtityPanel Class to
update the entity list. There are many slide coreptsifor the edition of the nodes. The

current node can be removed or re-displayed.

The functions included in this class are:

1. Change the shape, color palette, and size of teetsd node

2. Add or remove the individual node in the scene.

3. Set the slides according to the values of the tesdewode.

The set-value methods of the node are used to eh#sgcolor palette, size and

translation. When the users want to remove thesotimode or re-display it, the program

will call the corresponding methodsNavigatePaneClass.
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When a node becomes the current node, the valuess afolor palette, size and
translation can be obtained with thet-valuemethod, and then all the slides on this panel
can be seaccording to these values. Therefore, when thesiesdit the current node, its
color palette, size and translation will changetecmously, not abruptly. After a node is
edited, the VRML can remember the changes autoaigticTherefore, the node can
remain all the changes later, and the users catifg@®me interested nodes and check

them carefully.

5.1.7 ResultPanel Class

ResultPanels a subclass dPanel This class controls the result display. Thera text
field on this panel used to display the currenulte§ his text field is updated whenever
NavigatePanetlass readsew result for display. There are two lists, ontei=l list and
the other is time list. The level list is updatediest when the program gets the number
of levels of the model. A new time item will be a&didto the time list whenever the result
at this time has been displayed in the scene. f@iftemethods are defined to control the

navigation, including:

-

. Start, stop and resume the visualization.

2. Go to the next time, or go back to the previouststep by step.

3. Continuously display method.

4. Go to any time selected in the time list, or timeetinput in the text field.

5. Remove layers in the scene or re-display the rechtaxers.
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6. Rest the scene, display all the layers includirgrémoved layers.

To facilitate controlling the display, the displpyocess is implemented as a thread. We
can control the display through this thread, whicbludes start, stop, suspend and
resume functions. The continuous display is impletee by the run function of the
thread, this function is called when the threadtsta he run function is designed as an
endless iteration until the end of the file. Theeg function in this run function can be
used to control the display speed. In this threlelie are also other functions to start,
stop and resume the display, move to next timebagk to the previous time. These
functions will call the related ones in thesultPanelclass, which will then call the

related functions in thBavigatePanetlass.

5.2 Client Interface

As indicated in Chapter 3, running a model on aatenserver involves five steps: (1) the
user builds the model and sends it to the remotesg2) the server executes the model,
(3) sends back the simulation results, (4) thentlreceives the result stream and (5)
changes it to another format, which can be visedlwith the 2D and 3D GUIs. All the

necessary functions of this interface are listedséction 4.2, and this interface is
implemented according to these functions. Thisriate is designed as an application
because it uses a socket to communicate with the+Cigrver and saves the result file
locally. As an application, this interface can fianvarious environments without any

violation to the security requirements of the cotepusystems. It also should be
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remembered that the design of this interface iedam the recent CD++ simulator
design. To implement these functions, we designyntdasses. The entire class diagram

and their inheritance relationships are shown guié 5.7:

ConfigDialoc
Interface ‘ ServerPortDialo
StartDialo¢
Associatiol Associatiol
1 *
SendToServi SizedTextFiel
Association 1 1 Association
Queue Listen

1 Association

FileProducer

Figure 5.6 Class diagram of the client Interface

Dialog

| | Z% | |

ConfigDialoc ServerPortDialog StartDialo¢ WarnDialog

Figure 5.7 Class inheritance diagram of the classes exterigiialgpg
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Threac

JAN
| |

SendToServer Listen FileProducer

Figure 5.8Class inheritance diagram of the classes extenthngad

SizedTextFiel | [~ TextFielc

Figure 5.9Class inheritance diagram of the classes extentemxtf-ield

This interface includes three main dialogSonfigDialog ServerPortDialog and
StartDialog The warning dialogs appear accordingly when ngelies implemented as
a menu bar with three menus, each of which corregpto one of the three main dialogs.
The user only needs to follow the sequence of mémuse this interface. He can bring
up the dialogs by selecting the menu item undemntbau. Under the first menu, there is
another useful menu item, it is used to save tloécel of the users, which will be used as

the default choices next time.

The inheritance relationships of most of the clasaee straightforward, except three
classesSendToServellListen and FileProducer (which extend thelhread class). The
Queueis actually a vector, and we add many synchronipedtions to manipulate it.
The SizedTextFieldlass is sized text field. It is used to ensuredbrrect format of the

simulation time by controlling the number of theaddcters in this text field.
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The client sends model file(s), an evélg (optional) and a stop tim@ptional) with a

specific stream to the specified TCP port on theeseas follows:

1. Send the model text file, line by line.

2. Send a delimiter line using only a dot charactéj.(*

3. Send the event list file (send a blank line if thp model does not need external
events).

4. Send a delimiter line using only a dot charactéj.(*

5. Send a line specifying the stop time (format: O@0MO).

The CD++ Server returns the result thought the s3@@ port with the following

format:

1. The result (log) file (X, Y, * and done ssages among components).
2. A delimiter line using only a dot characte

3. The output file.

The main function of this interface is to provide tservice to connect with the server.
The application gets ready to receive the reswdfsrbe sending the model file(s) to the
server. The results will be saved to a queue. Aftery certain period, the results in the
gueuewill be taken out and saved to a file, and theuguwill be reset. After all the

results have been saved in the result file difasviog facility will be launched.

Several threads are started for listening on thiega saving the result.
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Listening thread: Always listening on the port, once a result asivit starts a read
thread.

Read thread Read the result, and save the result in a ve8tlart a saving thread if
there are a certain number of results in the veatwt reset the vector.

Saving thread Save the result in the behind of the result file

5.3 Algorithms to Transform 2D Model to 3D VRML
Model

As mentioned in Section 4, a DEVS model can betedeasing the CD++ Modeler tool
(as in Figure 4.2). The model created can be saweda graphical file, which is the
graphical representation of the model as in Figu@ The graphical file stores the
coordinates and all the other related informationdil the nodes, and the links between
these nodes of the model. We can use this grapiieahnd transform the 2D model into
a corresponding 3D VRML model. The algorithms idtrtoed here can be used to
transform a DEVS atomic or coupled model built witke CD++ Modeler into a 3D
definition of the same model in VRML. Thereforeethser can transform the 2D model
graphical file to a 3D VRML model or file, which mde used as an Inline component, or
as the start point in new model definition. Thisésy useful in the model definition with
a 3D VRML environment. The reason is that DEVS d¢edpmodels usually include
many other atomic models and coupled models asoitsponents. These component
atomic models and coupled models may exist, but thay have been designed in 2D

with 2D Modeler.
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The algorithms include three main parts:

(1) Coordinate Value Transformation: locate the tramstal 3D VRML model in the
center of the VRML scene.

(2) Node Transformation: how to transform the nodeaDmmodel.

(3) Link Transformation: how to transform the linksaB model.

Coordinate Value Transformation:

In the corresponding 3D VRML model file, we can ube same coordinate x and y
values as in 2D graphical file, and leave the zi@db be decided by the users when
needed. For our algorithms, we suppose the z Jalueero. However, to allocate the
center of the transformed VRML model to the certérthe 3D VRML scene, we

transform the 2D model graph first, as indicate&igure 5.11.

Where

Xo: the x coordinate value in 2D graphical file;
yo: the y coordinate value in 2D graphical file;
X3: the transformed x coordinate value in 2D graglfits
y3: the transformed y coordinate value in 2D gragtfits

min: the minimum value;

max: the maximum value;

From above figure 5.11, we can see that to lod&e€2D model graph to the origin (that

is, the transformed VRML model to the center of 8i2 VRML scene), the following

87



Central lines of the 2D graph

T~

| (max x2, max y)

Original graplear

Origin point (0, O 5 - (max yp + min y) / 2
5 (min x2, min y)

Transformed graph area__,

(max x + min x) / 2

Figure 5.10Coordinatdransformation digraph

transformation equations should be applied:

X3 = Xp- (Maxx, + minx,) / 2

Y3 =Y,- (Maxy, + miny,) / 2

After this transformation, the central point of @ model graph will be relocated to the
origin, and all the nodes and links in the modelpgr will be relocated with the same
transition accordingly. Therefore, we can use tlke rcoordinate values for our 3D

VRML model, and calculate the geometric paramesgtts the new coordinate values.

Node Transformation:
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For a node in a 2D graphical file, as we indicatetbre, we can use a primitive node or
an Inline node to represent it in 3D VRML scene.ldcate it in the VRML scene, we
can use it as a child node of a Transform node,veamgust need to set the translation

field of this Transform node with the results obab transformation equations.

Link Transformation:

The links in the model graph are used to repregenimessage transformation relations
between the nodes. For each link in 2D model, weuse a cylinder and a cone on the
cylinder to represent it in 3D VRML scene. The cimesed to indicate the direction of

message transformation. Since we use a cylinderaamahe to represent a link, we need
to know the default cylinder and cone in VRML besawll the cylinders and cones in
VRML scene are transformed from the default cylmaied cone. As illustrated in Figure

5.12, the default cylinder in VRML has one unitaudius, 2 units in length, and its center
at the origin and the default cone has one urioitom radius, 2 units in length, and its

center at the origin.

A

Figure 5.11Default Cylinder node and Cone node in VRML

In order to use them to represent links in VRMLrsxefirst we need to transform the

default cylinder to let it have the same lengthhescorresponding link, and then arrange
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it to the same position and orientation as theesmponding link. To implement these

transformations, we should calculate the lenigth and the orientationr |, of the
corresponding link. First, we should obtain thensfarmed coordinates {Xn Y3 star:
(X3 end Y3 end With above equations for the two ends of the liftken, calculate the
lengthl,, and the orientation (the angte|,x between the link and the x coordinate)

with the following equations:

LIink - \/ (X3_end_ XS_starr)2 + (YS_end - y3_star)2

Oink = tan _1((y3_end_ y3_star) / (XS_end_ XS_star))

With the lengthl;;, of the link, we can transform the default cylinderet it have the

same length as the corresponding link with the Htefgeld in the Cylinder node. Its
radius also can be specified with the radius fielthe Cylinder node as needed. With the
orientation of the link, we can calculate the nseaeg rotation angled |jnk of the
transformed cylinder, as illustrated in followirigdre 5.13. In VRML, counterclockwise
rotation angle is positive, and the clockwise rotatangle is negative. The calculation
has four conditions as in figure 5.13. We suppdsat the black cylinder is the
transformed cylinder with the same length as theesponding link. We rotate this
transformed cylinder witt# |jnk to let it have the same orientation as the coareding
link, and now the transformed cylinder, represerdgedhe gray cylinder, has the same
length and orientation as the corresponding linke Tarrow end (Xeng Y3 end JUSt

indicates the input port of the link, which is arfethe ends of the link.
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flink

link

o

Y Y
flink
flink
T | [
(2)

1)
X3_end_ X3_start >0 )g_end_ X3_start >0
y3_end_ y3_start> 0 %_end_ y3_start< 0
@ik > 0 A link < 0

Olink = - (M/ 2 - jink ) Olink =- (/2 - ajing )

flink

@link

v

| // @ link

3) (4)
X3_end_ X3_start <0 )g_end_ X3_start <0
y3_end_ y3_start< 0 %_end_ y3_start> 0
ik > 0 A link < 0

Olink =T/ 2 +ajnk Olink =T/ 2 +ajnk

Figure 5.12Calculate the rotation angle

X
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After these transformations, the cylinder has thmes length and orientation as the

corresponding link, and we just need to relocageciylinder to the same location {x.,
Yeented @S the corresponding link, as indicated in figbré4. The central point (X,

Yeented Of the link can be calculated with following etjoas:

Xcenter: (XS_start+ X3_en3 / 2

ycenter: (yS_start+ y3_en() / 2

(XCGI’IIE’ ycente)

v

Figure 5.13Link transformation

After the link transformation, we can add the cdoeindicate the direction of the

message transformation. The cone will have a raskweral times of the radius of the
cylinder, and a length comparable with its bottaantkter. It is at the central line of the
link and has the same orientation as the cylinberget all these transformations, we just
need to set the corresponding translation, rotadiwh scale attributes of the Transform

node for the link.
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Chapter 6: Execution Examples

In this chapter, we will show different functions tbe client with some examples. All
components in the client have been tested thorguglith various models. In this
chapter, we will focus on examples of our 3D resigualization facilities, presenting
different viewpoints, geometries, scales and colassifications. Finally, we will give an
example about access to a remote server. Forelbtstiéps about how to use these GUISs,

you can refer to [7].

6.1. 3D Result Visualization

As illustrated in Chapter 2, the result stream ioleh when executing a Cell-DEVS
model can be changed to another output format usiagirawlog facility. This new
output format is a series of two, three or moreatisional matrices depending on the
number of the dimensions of the cellular model3Ih result visualization facility, it is
shown as a three-dimensional matrix of colored sodih the same size. Each node
corresponds to a value in the result matrix atreetiand the color palette of the node is
specified by its value and can be set with a cphldette selection facility. If the model
has more than three dimensions, dnawlog facility can choose the 3D model to show
by ignoring one, two, three or more dimensionsluhg results becomes 3D matrices.

Therefore, it also can be visualized with these $SUI
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In the following examples, we will use a fragmehthee result file of a 3D version of the

heat diffusion model, as in following Figure 6.1.

Line : 166 - Time: 00:00:00:000

01 2 3 01 2 3 01 2 3 01 2 3
+ +  + +  + +  + -+
0/24.024.024.024.0] 0]24.024.024.024.0 | 0] 24.024.0 24.0 24.0| 0| 24.0 24.0 24.0 24. 0
1]24.024.0 24.0 24.0] 1] 24.0 24.0 24.0 24.0 | 1]24.024.024.0 24.0] 1] 24.0 24.0 24.0 24. o]}
2|24.024.024.0 24.0] 2|24.024.024.024.0 | 2]24.024.024.0 24.0] 2| 24.0 24.0 24.0 24. o]}
3|24.024.0 24.0 24.0] 3| 24.024.0 24.0 24.0 | 3]24.024.024.0 24.0] 3| 24.0 24.0 24.0 24. o]}
+ +  + +  + +  + -+
Line : 340 - Time: 00:00:01:000
01 2 3 01 2 3 01 2 3 01 2 3
+ +  + +  + +  + -+
0/24.024.024.024.0] 0]24.024.024.024.0 | 0] 24.024.0 24.0 24.0| 0| 24.0 24.0 24.0 24. 0
1]24.0 24.0 24.0 24.0] 1] 24.0 24.0 24.0 24.0 | 1]24.024.024.0 24.0] 1| 24.0 24.0 24.0-12. 5|
2|24.024.024.0 24.0] 2|24.024.0 71.4 24.0 | 2| 24.024.024.0 24.0| 2| 24.0 24.0 24.0 24. 0
3|24.024.0 24.053.5| 3| 24.0 24.0 24.0 24.0 | 3]24.024.024.0-1.6] 3| 24.024.0 24.0 24. o]}
+ +  + +  + +  + -+
Line : 644 - Time: 00:00:02:000
3 01 2 3 01 2 3 01 2 3
+ +  + +  + +  + -+
0] 25.224.025.223.7| 0]24.024.027.824.2 | 0]23.024.023.021.5| 0]|22.524.022.5 22. 7|
1/ 22.524.0 24.424.9| 1|24.025.9 25.9 23.0 | 1]22.524.024.420.5| 1|22.521.1225 22. 5]
2|25.225.927.125.6] 2|27.825.925.926.1 | 2]23.025.924.923.4| 2|22.524.026.3 22. 7|
3| 25.226.427.123.1] 3|24.225.926.126.1 | 3123.022.024.925.3| 3|24.224.024.221. 2|
+ +  + + o+ +  + -+
Line : 968 - Time: 00:00:03:000
3 01 2 3 01 2 3 01 2 3
+ +  + +  + +  + -+
0]24.124.524.724.0| 0]24.524.724.624.2 | 0]23.423.824.023.5 0]23.123.624.023. 3|
1]124.024.6 24.7 23.8] 1|24.224.524.624.4 | 1]23.323.524.023.6] 1]|23.223.823.822. 8|
2|24.725.125.124.6] 2|24.625.125.924.7 | 2/24.024.424.424.1] 2|24.024.224.223. 9|
3| 24.524.6 25.1 24.9| 3|24.7 25.325.224.6 | 3123.924.424523.4| 3|23.624.024.2 23. 9
+ +  + + o+ +  + -+
Line : 1292 - Time: 00:00:04:000
01 2 3 01 2 3 01 2 3 01 2 3
+ +  + +  + +  + -+
0]24.124.324.424.2| 0]24.224.424524.2 | 0]23.824.124.123.9| 0|23.824.024.0 23. 8|
1124.124.324.424.2] 1|24.224524524.2 | 1]23.924.124.123.8] 1]|23.823.924.023. 8|
2|24.424.6 24.6 24.4] 2|24.524.624.7245 | 2/24.124.324.324.1] 2|24.024.224.324. 0|
3|24.424.6 24.6 24.3] 3|24.424.624.7245 | 3124.124.224.324.1] 3|24.024.224.224. o]}
+ +  + +  + +  + -+

Figure 6.1 A fragment of an example result file

We also need to specify the color classificatiamglie values in the result file. The color
palette selection can be brought up in timfoPanel Whenever the new color
classifications have been selected, the nodesanrebult space will be updated and
displayed with the new color classifications cop@sding to their values. In our

examples, we will use the color palette selectilistrated in Figure 6.2.
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Colors & Interwals:

|zz. 0 j2=. 4

|z2. 4 |22, 79999

|z2. & j23. 2
L REREE |23. 59999

|23 8 jz4.0
B (c: c [24. 4
B c1 4 |24. Ta999

|z4. 8 j25. 2
L EE |25, 59999
L EEE [z6. 10

Figure 6.2 Color palette selection

6.1.1 Geometry Selection

We can use different geometries to represent tidesion the result space. The user can

select box, sphere, cone or cylinder as the gegroéthe nodes in the result space as in

following Figure 6.3. It uses the resultTime: 00:00:03:000 in above example file.
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(1) Box (2) Sphere

(3) Cone (4) Cylinder

Figure 6.3 Different geometries

As we can see, the original result matrix is nowvam as a 3D VRML model consisting
of colored nodes with the same size. Each nodeegpponds to a value in the result

matrix, and the color palette of the node is spettiby its value and set with a palette

selection facility.
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6.1.2 Different Viewpoints

Another facility available enables the users te&etlifferent viewpoints to visualize the

results. This can be seen in figure 6.4.

iy i

?l" 4 i

B | T n e

-

(1) User's Eye (2) Side view 1

B Bl
e

r- i
L=

(3) Side view 2 (4) Random viewpoint

Figure 6.4 Different viewpoints

The user can select any viewpoint defined in théW/Rile to visualize the result. Here,
we select viewpointslser's Eyeand theSide view JandSide view 2In addition, the user

can select any viewing area, that is, any viewpeistn (4).
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6.1.3 Continuous display

The navigation facilities enable displaying theutts following the sequence of the
original simulation. The user can see the resuwligicuously, advance step by step, move
backwards, or jump to any certain time. Figure $héws the execution results obtained

using these functions.

(D Time: 00:00:02:000 (2) Time: 00:00:03:000

(3 Time: 00:00:04:000 (4) Time: 00:00:05:000

Figure 6.5Continuous advance

If the result is displayed continuously with themneasequence as the simulation, the user

can check the simulation progress. (1), (2), () @) respectively display the results in
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time 00:00:02:000, 00:00:03:000, 00:00:04:000 and00:00:05:000.

6.1.4 Edit a Node in the Scene

The user also can edit a single node in the sadranging its shape, color palette or

position, deleting it or re-displaying it, as shoimrthe following figure.

1) 2)

Figure 6.6 Edit single node

The edited node will keep the modified attribut€serefore, the user can highlight the
special nodes he wants to check. A user can madifode with color palette, size,
translation and rotation, or delete the node. Iulitaah, the user can redisplay a

previously deleted node.
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6.1.5 Delete a Layer

The user can remove any layer in the display t@khiee result of certain phenomena
easily. In following figure 6.7, we show the prexsoexamples, but level 1 was removed,

which can be redisplayed later if needed.

Figure 6.7 Delete layers

6.1.6 Scale Nodes

The nodes in the scene can be scaled up or dowshaen in Figure 6.8, where the
nodes have been scaled to the minimum distanceamtbt be scaled further. The nodes

also can be scaled to smaller size.

Figure 6.8 Scale nodes
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6.1.7 Transparent Display

Sometimes, the users do not want to display thesedth special values. They can do
this by setting the color palette as white in tbéocpalette dialog as in figure 6.9. Then
the nodes with the values within those special &ahnges will not be displayed as in
figure

6.10.

Colors & Intervals:

|zz.0 |z2.4

| |z2. 7993

|zz.8 |z3.2

232 |23, 59999

N Figure 6.9 Color selection
I i |24.4

Jz4.4 |24. 79999

|z4.8 |zs.2

Jes. 2 |25. 59999

L EE |z6.0

Figure 6.10Transparent display

We can see the nodes whose values fall in the sa2$yd to 24.8 and 25.2 to 25.6 are not
displayed. This is very useful if the user just tgato monitor the nodes with some

special value ranges.
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6.2 Multi-View

Multiple instances of the GUI can be activated isualize the same result, using
different viewing areas, as shown in the followiingure 6.11. Different geometry or

Inline nodes can be used if needed, as shown ifollogving figure 6.12.

n

(1) Side View 1 (2) Entry View
Figure 6.11Use different viewpoints
In Figure 6.11, two GUIs are used to visualizeghme result with different viewpoints.
In addition, different GUIs can use different getrpeor Inline nodes, as in following

Figure 6.12

(1) Use Cone in Side View 1 (2) Use Inlimegle in Entry View

Figure 6.12Use different geometry
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6.3 Remote access

When the CD++ simulator works as a server, thentlisterface should send model files
to the server and the server will send back thalteall the results will be saved in a
local file, as the one in Figure 2.3. Then thentliwill launch thedrawlog facility to

change its format to be visualized by the 2D and=Ds.
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Figure 6.13 Remote access example

The above figure 6.13 shows the client is receivimgresults from the server. Each line
is one of the messages sent between compometiie modelwith a timestamp. At the
same time, the results will also be saved in adoufvhen the buffer is full, the results

are attached to the end of a local file and théchig reset.
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6.4 Transform 2D model to VRML 3D Model

A 2D DEVS model (saved as a graphical file) carirbasformed to a VRML 3D model
with a tool which implements the algorithms illeged in section 5.3. This tool is a
utility included in the VRML visualization GUI. Fanstance, the 2D model in Figure 4.3

is transformed into the 3D VRML model in followirkigure 6.14.

Figure 6.14Transformed/RML 3D model example with texture

The coupled models are represented with box nodesse box nodes can be textured
with images to represent the components in the sgstem, such as, one of them is
textured with a processor image to represent aggsmr in the real system. In addition,
the coupled models also can be represented byelnlades. The input/output ports are
represented with nodes with sphere shape, theycalsde represented as other suitable
shapes. There is a cone on each link to indicage dinection of the message
transformation between the components. This utddayp be used to transform a DEVS

atomic or coupled model built with 2D Modeler irg@@BD definition of the same model in
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VRML. Therefore, the users can transform the oldni2@lels directly, and need not input

them again, and use the transformed VRML 3D mosl@ start to build new models.

The other utility is to transform 2D model (savesdaagraphical file) to a VRML file. The
VRML file in Figure 6.15 is translated from the 2Bodel in Figure 4.3. Any object in

the scene is represented as a Transform node filethe

' H=] E3
File
[FYEML V2.0 utfd -
#VEML 3D Dodel for . gui file of a DEVS 20 Model
Viewpoint {
position 0.0 0.0 20.0
orientation 0.0 0.0 1.0 0.0
h
Group |
children [
# A1l the states
Transform {
translation —7.0199995 4. 04 0.0
rotation 0.0 0.0 1.0 0.0
children [
Inline {
url “box. wrl”
h
1,
L
Transform {
translation 0 3AOO001 4 2TIFFH9T 0 N ;I
B Applet BO

Figure 6.15 3D VRML model file (states/nodes)

In Figure 6.15, the VRML file head and a viewponude are added. The nodes in the

scene are shown as Inline nodes, and their positioa calculated with the algorithms

mentioned in section 5.3. The link transformatian shown in Figure 6.16. It is
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transformed as a long cylinder calculated with dlgorithms mentioned before, and for
each cylinder, a cone is added to indicate thectiine of the message transformation
between the components. Their positions and otient are also calculated with the
algorithms mentioned in section 5.3. This VRML filan be saved and used as an Inline

node in the new model input later.

I =] 3
File
# Al tho links :J
Transforn |
translation —3.08 —4.3599957 0.0
rotation 0.O 0.0 1O -1 5700
scele 1O 1.0 1.0
center 0.0 0.0 0.0
children [
Shapse |
appearance DEF White Appearance [
naterial Materiel { }
1
geanetry Cplinder |
rodius 0.1
height 7. 7199933
1
N
Transform {
translatien 0.0 1.5 0.0
children Shape {
appearance USE White
geomatry Cone |
bot tonBadiug 0.3
height 0.5
1
L
1
[BE pepler @

Figure 6.163D VRML model File (links)
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Chapter 7 Conclusion and Future Work

7.1 Conclusion

Simulation is becoming increasingly important ire thnalysis and design of complex
systems. DEVS is a formalism for modeling and satiah gaining popularity in recent
years and has found a variety of applications. Cimplements the DEVS formalism
and can be used to simulate DEVS and Cell-DEVS iBodD++ is a tool that can

simulate complex physical systems, and can be tasgichulate a variety of models.

Visualization is also very important in modelingdagimulation, it uses simulation results
to construct useful 2D or 3D images. Visualizationls are crucial in helping to better
understand the behavior of complex systems. Nowalimation has become an integral
part in modeling and simulation. Effective simubati tools must include good

corresponding visualization tools.

To facilitate the users to use the CD++ simulateg, extended its design to provide a
number of services using a client/server approabis client provides a series of tools,
including the CD++ Modeler, 2D and 3D result viseation tools, and an Interface for
remote simulation model execution. All these toplevide enough functions to be

organized as a remote simulation environment irCtbe+ simulation.

The client is implemented with Java and VRML. Jevthe most popular object-oriented
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programming language, and VRML is a Web-based graphnguage for building 3D

models. Therefore, the client can run on a vaétyperating systems and environments.

The CD++ Modeler can be used to build atomic andpte models, which can be
executed with the CD++ simulator. It uses graphetasotation to represent the entities
in the real system, and the relations between tleedies. This facility has highly
enhanced previously existing means for model demiin CD++ by defining the

models with graph units, not using text editionl$aas the previous ones.

A 2D visualization tool can be used to visualize thsults of executing atomic models,
Cell-DEVS models and Coupled DEVS models. The 28uaiization provides a very

simple method for understanding model executionwdwer the user must understand
intellectually the relationships between several raBter images and compare them to
figure out how the real system looks like. Therefa 3D visualization tool also has been

developed, it can display the simulation resulta BD format.

The 3D visualization GUI enables sophisticated afigation of Cell-DEVS models. To
better understand the results, the user can skfément shapes to represent a node in the
3D space, select different color classificationshiole some nodes with specific values,
edit individual node and remove layers. It alsmowl the users to navigate in the

visualization with many ways he likes.

The Interface in this client can send simulationdaise to a remote CD++ server, then
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receive, and visualize the results locally. Therusan access any remote CD++

simulation server in the Internet/Intranet aroumgl world for simulation services.

As indicated in Chapter 2, a number of recent &ffbave been devoted to build DEVS
models and cellular models. For CA tools, someamig for 1D or 2D models. They
were designed as an applet or application, in wthehusers can change the size of the
model and the color palette map, specify some chens of the model, select many
existing rules or try their own rules, then iniiaand run the model. Some enable 3D
visualization of the executing cells, but they dd have the 3D visualization abilities we
need. When we consider DEVS tools, we see that siinieem have not visualization
facilities, and the users have to develop themsel&ome provide some basic
visualization tools, such as, SimBeams and JDEWW&B8amsprovidesa set of visible
components, and the users should select these ocemgo to build their own
visualization tools for their specific models. JD&VYrovides sophisticated visualization
tool, but it is mainly for GIS, and only displaybet data with the outside entities.
DEVS/Java provides somiaterface to visualize the state of the componentshe
models although no powerful visualization methods iacluded, and can execute the
model in a web browser, but does not provide dieemver faciliies. DEVS/HLA
discusses therchitecture about how to build large-scale disteld modeling and

simulation environments, and it should be impleraénith a programming language.

As illustrated in this thesis, we attacked and sdlthese problems, and we developed

four main components for a remote simulation anslalization system. The CD++

109



Modeler provides an easy way to input model withpgrunits. The 2D visualization GUI

provides a very simple method for understanding BE¥odel execution with various

navigation methods, and the users can control nrapgrtant visualization parameters
for better understanding the results. The 3D vigaabn GUI enables sophisticated
visualization of 3D Cell-DEVS models with variouavigation methods. The users can
get into the inside of the model, edit the 3D VRBtene, even individual node for better
understanding the results. The Interface providesasy way to connect remote server,

and can connect different users in many placedhege

Users can easily build the models and visualizeréselts locally on basic workstations
with 3D visualization GUIs, while executing the net&l remotely in a high performance
platform anywhere in the world. With this client,ramote simulation system can be
easily established in various environments (su¢chWaadows, Unix, etc). In addition,
this client also can run several different modétsutaneously and easy to be extended
to support multi-observer simulation. A series x&mples were executed to demonstrate
the feasibility of this approach. All of the resgaigoals stated in section 2.5 have been

reached.

7.2 Future Work

The facilities introduced in this thesis have digantly improved the user interaction in
comparison to the previously existing tools, thasilitating the users to build model and

analyze the simulation results. There are still ynays to improve this client. The
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following is a proposed list of improvement andemdions.

* Model Consistency Checking
It is very important to ensure that the model designforms to the DEVS formalism.
Although the CD++ Modeler can check the model cstegicy with the rules in
section 4.1 when the design graph is exportedrasdel file, it is more convenient to
check the model consistency during the model inpbere are two methods to do
this: a) check model consistency once a new lirkklde®en added to the new model, b)
provide port choices for the users when a new isnkdded to ensure that it starts
from an output port and ends at an input port.

* Model Execution Exception Handling
When CD++ works as a server, the model is exeaunetie remote server. However,
when an error occurs and the simulation executiopss the exception messages are
only displayed on the server and no any reply arg back to the user. It would be
more convenient that the server checks the motelfdr consistency first before
execution, and if there is any error in the modk, fthe server can send back a
message and indicate the error. The server alsoldslsend back the exception
messages to the clients and indicate the erraroutel execution.

* Visualizing Model Identification
After the viewing area has been changed, or sordesbave been deleted in the 3D
VRML scene. The user may be confused by the neplajisand finds it difficult to
identify the nodes, that is, the node-value mapgggin. Therefore, new methods

should be developed, and the user can choose huisualize the result to facilitate
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the model identification.

Expanding the VRML Library

More Inline files and images for texture featurewdd be found or designed to
represent the objects in the real system. Withetldss and images, two libraries
should be built and organized as databases totéaeithe management and selection
of the Inline nodes and images.

Networking improvement

Recent networking is point-to-point communicatiatvieen the user and the server,
that is, just the user who sends model to serverreeeive the result. In the multi-
observer simulation situation, many users shoutdive the same results at the same
time. Instead of being implemented in client side ia this these, it is more
convenient to be implemented in server side andrtbdel sender just specifies all
the receivers of the results when he sends thelmode

Optimization Method for the Modeler

If the model is complex, there will be many nodesl éinks in the design area. It
would be very hard to identify the nodes and linkshe model graph because these
nodes, links and their names overlap each otheereftre, it is necessary to use
optimization algorithms, such as, Simulated Anmegpl{SA) [21], to optimize the
arrangement of all these noses and links. The caerselect several goals for the
optimization, such as, minimizing the number of lihk-link crossings.

Use new technologies, such as, XML (eXtensible Mprkanguage) [8] and X3D

(Extensible 3D) [37]
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XML: over the last few years the Web has evolvemnfrHTML quite dramatically
with revolutionary techniques for content and dwel modeling, such as, XML.
Compared to HTML, the content of XML documents giehed with semantic and
structural features, and is completely separated fits visual appearance. This
allows a Web document to be displayed in any dési@m. With such an
unrestricted choice, many companies and end usexterpa graphically rich
document appearance with effective visual accessseémantic and structural
information.

X3D: a next-generation, extensible, 3D graphicsc#igation that extends the
capabilities of VRML97. X3D is building upon thecaess of the VRML 97 I1SO
standard with clearly defined backward compatypilitith existing VRML content.
Now X3D is a next-generation 3D standard that idekiintegration with XML, and
defined as an interoperable set of lightweight, posable 3D standards that flexibly
address the needs of a wide range of markets, dimgulnternet and road cast

applications.
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