
Modeling of Maze-Solving Systems using Cell-DEVS

Kevin Lam Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

Keywords: discrete event simulation, DEVS, cellular
automata, maze solving, path planning

Abstract
The Cell-DEVS formalism was created as an extension of
cellular automata for modeling complex systems using a
discrete event formal approach. We examine the application
of the Cell-DEVS formalism to a maze-solving application.
The model uses the CD++ toolkit to model and simulate the
proposed maze applications, showing that this approach
permits solving complex applications by implementing them
in a simple fashion.

1. INTRODUCTION

In recent years, computer simulation has played a key role
in the study of artificial system. The cellular Automata (CA)
formalism has recently gained popularity to describe some
of these applications [1]. CA areare defined as infinite n-
dimensional lattices of cells whose values are updated
according to a local rule. This is done simultaneously and
synchronously using the current state of the cell and the
state of a finite set of nearby cells (known as the
neighborhood).

A popular application for cellular automata algorithms is
maze solving, whether it is optimal path planning or
obstacle avoidance. Nayfeh [2] describes a simple algorithm
for finding solution paths through a two-dimensional maze.
Tzionas, Thanailakis and Tsalides describe an algorithm
(and hardware implementation) for collision-free path
planning for a diamond-shaped robot [3]. Neither algorithm
requires very complex computation or backtracking.
Cellular automata lend themselves easily to fast, simple, and
scalable implementations. The mazes effectively “solve
themselves”, in a linear time and with multiple parts of the
maze solved simultaneously in parallel.

Typically, the maze, or space to be mapped, is described by
a two-dimensional bitmap. Cells are marked to represent
walls or free space. The cellular automata algorithm
processes the bitmap and transforms it into one containing
the solution set. Unfortunately, CA havehas showed to have
different problems to model physical systems: they usually
require large amounts of compute time, mainly due to their
synchronous nature.

The Cell-DEVS formalism [4] solve these problems by
using the DEVS (Discrete EVents Systems specifications)
formalism [5] to define a cell space where each cell is
defined as a DEVS model. This technique allows modeling
of discrete-event cell spaces, improving their definition by
making the timing specification more expressive. Besides
this, discretizing the model into a bidimensional grid poses
constraints on the precision that can be achieved by the
model. Finite element analysis, instead, is able to provide
higher precision due to the characteristics of the technique.

Here we present a definition of maze-solving algorithms
using Cell-DEVS and their implementation using the CD++
toolkit. We show that complex applications like these ones
can be easily implemented in our environment, permitting
the user to focus on the modeling activities and letting them
approach more complex applications using simple
specification techniques.

2. BACKGROUND

The Cell-DEVS formalism is based on the use of the DEVS
(Discrete EVents Systems specifications) formalism to
define a cell space where each cell is defined as a DEVS
model. The goal is to build discrete-event cell spaces,
improving their definition by making the timing
specification more expressive. DEVS formalism was
proposed to model discrete events systems. A DEVS model
is built using a set of behavioral models called atomic
models, which can be combined to form coupled ones. In
Cell-DEVS, each cell of a cellular model is defined as an

atomic DEVS using transport or inertial delays.

Each cell is seen as having a set of N inputs to compute its
future state. Each input (generally received from the
neighboring cells) is received through the model’s interface,
and is used to activate the local function. A delay can be
associated with each cell, allowing the deferred transmission
of the execution results. A transport delay allows us to
model a variable commuting time for each cell with
anticipatory semantics (every scheduled event is executed).
Using inertial delays, the semantics is preemptive: some
scheduled events are not executed due to a small interval
between two input events. Therefore, the outputs of a cell
are not transmitted instantaneously, but after the
consumption of the delay. The model advances through the
activation of the internal, external, output and state’s
duration functions, as in other DEVS models.

Cell-DEVS atomic models are specified as:

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >.

Each cell will use the N inputs to compute the future state S
using the function ττττ. The new value of the cell is transmitted
to the neighbors after the consumption of the delay function.
Delay defines the kind of delay for the cell, and d its
duration. This behavior is defined by the δδδδint, δδδδext, λλλλ and D
functions.

Once each cell is defined, they can be put together to form a
coupled model composed of an array of atomic cells. Each
of them is connected to its neighborhood. As the cell space
is finite, the borders should be provided with a different
behavior than the rest of the space. Otherwise, the space can
be defined as wrapped, meaning that cells in a border are
connected with those in the opposite one.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >.

A cell space C defined by this specification is a coupled
model composed by an array of atomic cells with size {t1

x...x tn}. Each cell in the space is connected to the cells
defined by the neighborhood N. The cell space can be
“wrapped”, meaning that cells in a border are connected
with those in the opposite one. Otherwise, the borders B
should have a different behavior than the remaining cells.
The Z function allows one to define the internal and
external coupling of cells in the model. This function
translates the outputs of output port m in cell Cij into values
for the m input port of cell Ckl. The input/output coupling
lists can be used to interchange data with other models.

The CD++ tool [9] was developed following the definitions
of the Cell-DEVS formalism CD++ is a tool to simulate both
DEVS and Cell-DEVS models. Cell-DEVS models are
described using a built-in specification language. The
language provides a set of primitives to define the size of the
cell-space, the type of borders, a cell’s interface with other
DEVS models and a cell’s behavior. The behavior of a cell
(the τ function of the formal specification) is defined using a
set of rules of the form:

VALUE DELAY CONDITION

When an external event is received, the rule evaluation
process is triggered to calculate the new cell value. Starting
with the first listed rule, the CONDITION is evaluated. If it
is satisfied, the new cell state is obtained by evaluating the
VALUE expression. The cell will change to this new state
after a DELAY time, and when it changes, it sends output
messages to all its neighbors. If the condition is not valid, the
next rule is evaluated repeating this process until a rule is
satisfied. If no rule CONDITION statement is satisfied, the
simulation is aborted.

3. A MAZE SOLVING ALGORITHM IN CELL-
DEVS

In this section, we present a model simulating the algorithm
proposed by Nayfeh [2]. The maze is represented as a two-
dimensional cell array, with values of “1” and “0”
representing walls and hallways (free cells). Each cell’s
neighbors consist of cells in the four cardinal directions
North, East, South and West. Figure 1 represents a simple
maze in a 10x10 cellular array, and an illustration of the
cell’s neighbors.

The maze is solved using cellular automata with the
following rules for updating the cell's states:

� Wall cells always remains unchanged
� Free cells becomes a wall cell if its neighborhood

1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 1
1 0 1 0 1 1 1 1 0 1
1 0 1 0 0 0 0 1 0 1
1 0 1 0 1 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 1 1 1 1 0 1 1 1
1 0 1 0 0 0 0 0 0 1
1 0 1 0 1 0 1 1 0 1
1 1 1 0 1 1 1 1 1 1

Figure 1: A 10x10 maze. A cell’s neighbors
consist of cells to the North, South, East and West.

 N

W E

 S

includes three or more wall cells
� Free cells remains a free cell if its neighborhood

includes less than three wall cells.

When this set of rules is processed, the algorithm effectively
blocks off every dead-end path in the maze. Every free cell
that is accessible from only one direction (i.e. three wall
cells around it) must be a dead end and therefore cannot be
part of the solution. These cells become new wall cells, and
this procedures is repeated until the system remains in a
steady state. In this state the only remaining free cells
represent the solution(s) to the maze. If there is no solution,
the entire array of cells will be wall cells.

The following is the specification for the maze-solving
model in Cell-DEVS:

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >
X = Ø
Y = Ø
S = { 0, 1 }
N = neighborhood = { (-1, 0), (0, -1), (0, 1), (1, 0), (0,0) }
d = 100 ms
τ: N�S is defined by the rules described in the previous
section, i.e.:

S = 1 if cell(0,0) = 1
S = 1 if cell(0,0) = 0 and # of "wall"neighbors ≥ 3
S = 0 if cell(0,0) = 0 and # of "wall"neighbors <3

The formal specification translates into the following .ma
(model definition) in Cell-DEVS:

[maze]
type : cell
dim : (20, 20)
delay : transport
border : nowrapped
neighbors : maze(-1,0)
neighbors : maze(0,-1) maze(0,0) maze(0,1)
neighbors : maze(1,0)
localtransition : maze-rule

[maze-rule]
rule : 1 100 { (0,0) = 0 and (truecount = 3 or
truecount = 4) }
rule : 0 100 { (0,0) = 0 and truecount < 3 }
rule : 1 100 { t }

Figure 2: Defining the Cell-DEVS specification in
CD++.

This model was executed using the CD++ simulation
toolkit, and the results were visualized using the tool's visual
output facilities. The results are showed in figure 3, which
include the graphical displays of a maze with a given initial
state (a) and the results of solving the maze (b).

If a maze has no solution, or many solutions, the cell space
will generate a result without any cell in the final path, that
is, a solid block of wall cells (see Figure 4a). Likewise, if
the maze has different solutions, the cell space will stop
evolving when all the solution paths are revealed in mazes
where more than one path belongs to the solution (see
Figure 4b). Further processing would be required for a
complete solution to be made available.

4. COLLISION-FREE PATH PLANNING IN
CELL-DEVS

This section describes a Cell-DEVS model to simulate a
path-planning algorithm described in [3]. The paper
proposes the use of cellular automata to process a “top
down” bitmap of an area to be traveled by a robot, assuming
that a robot is defined as a diamond that can enclose a robot
of arbitrary shape. The algorithm produces a Voronoi
diagram, which can be used to determine a path equidistant
from any obstacles in the space. The paths are calculated by
marking the intersections of expanding “wavefronts”
propagated by cellular expansion from given starting points.

a)

b)
Figure 3: (a) the original maze and (b) the maze
after processing in Cell-DEVS.

As with Nayfeh’s algorithm, cells have a value of “1” or “0”
for wall and free cells, and neighbors consist of the cardinal
directions North, East, South and West (i.e. the von-
Neumann neighborhood). The rules defining the model's
behavior can be characterized by a two-stage procedure:

• In the first stage, cells and their neighborhoods are
examined and compared to a set of 12 “edge code”
templates. For each cell that matches a
configuration in the template, a corresponding edge
code from 1-12 is used in the second stage. This is
an “object boundary detection” stage.

• In the second stage, cells containing edge codes
(derived from object boundary detection) are
expanded in free space. Where expansions
intersect, the cell of intersection is given a
timestamp and considered part of the final Voronoi
diagram.

This is a closed cellular model with no external inputs or
outputs. The final state of the cellular array contains the
Voronoi diagram describing a collision-free path.

The authors presented their original path-finding algorithm
as C-like pseudocode, broken into two distinct stages
(Object Boundary Detection followed by Voronoi Diagram
Construction). The second stage is further divided into sub-

stages. In addition, the algorithm references not only the
actual cell value at any given cell (i, j), but also defines
additional variables corresponding to each cell. The
algorithm requires the following set of data for every cell:

z(i, j) – the original encoding of detected obstacles (0 or 1)
edge_code(i, j) – calculated edge code for the cell (1-12)
Flag(i, j) – value used during “wavefront expansion”
Vor(i, j) – the point on the Voronoi diagram representing
this cell’s position

Because a Cell-DEVS model only supports one value for
any given cell, and the algorithm requires four, a single two-
dimensional model does not suffice. Thus, the algorithm is
implemented using a 3D Cell-DEVS model, in which each
plane represents a set of state variables. The x and y
dimensions are dependent on the input values and represent
the two-dimensional space being considered. The model
consists of four such planes of size x·y, i.e. the dimension of
the z-axis is 4. Each plane contains the data represented in
each of the four variables discussed previously:

plane 0 (x, y, 0) original bitmap representing the space
plane 1 (x, y, 1) edge codes
plane 2 (x, y, 2) propagation of edge codes over time
plane 3 (x, y, 3) final Voronoi diagram

In the original specification, the cellular automata make use
of a Von-Neumann neighborhood that includes each cell as
well as its neighbors in the four cardinal directions North,
East, South and West. However, because the Cell-DEVS
implementation includes a third dimension, the
neighborhood must be expanded to allow each plane access
to values in the plane immediately below it. The expanded
neighborhood includes each cell, its four cardinal neighbors,
and the five corresponding cells in the plane below. Figure
5 below illustrates the neighborhood for any given cell (the
shaded cell in the figure).

Plane Below (z-1) Current Plane (z)

Figure 5: The neighborhood for cells in the path-
planning model

The following is the formal specification for the Cell-DEVS
path-finding model:

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

 (-1,0,0)

 (-1,0,-1) (0,-1,0) (0,0,0) (0,1,0)

(0,-1,-1) (0,0,-1) (0,1,-1) (1,0,0)

 (1,0,-1)

a)

b)
Figure 4: (a) results from a maze with no solution
and (b) a maze with multiple solution paths.

X = Ø
Y = Ø
S = ∈ R (real numbers)
N = neighborhood = { (-1, 0, 0), (0, -1, 0), (0, 1, 0), (1, 0, 0),
(0, 0, 0), (-1, 0, -1), (0, -1, -1), (0, 1, -1), (1, 0, -1), (0, 0, -1)
}
d = 10 ms
τ: N�S is defined by the rules below. Each z-plane has its
own set of rules.

This Cell-DEVS model has dimension 10x10x4,
representing a 10x10 maze and the four data planes used to
model it. The initial cell values are loaded from an external
file. The model defines four sets of rules (nothing-rule,
bound-rule, plane2-rule, and plane3-rule) which are used by
each of the cell planes (0, 1, 2, 3 respectively). The three-
dimensional cell model is effectively divided into four
linked two-dimensional models by using separate zones
consisting of plane regions (i.e. each zone Z consists of cells
{(0,0,z)..(9,9,z)}.

The rule sets are as follows:

nothing-rule
This rule essentially does nothing. Cell values are not
changed. This rule is used by the original data plane to keep
the values from being changed.

bound-rule
This rule performs the coding of edge directions as
described in [3]. Patterns of cell values in each cell and its
neighborhood are classified as one of 12 “edge codes”. The
rules in this section perform the classification, causing cells
in this plane to take on integer values between 1-12 if the
cells in the data plane correspond to one of the 12 templates.

plane2-rule
The paper indicates that cells with edge codes from 1-4 are
discarded. Cells with edge codes 5-12 are copied into a new
CA grid and given a flag value for propagation in the third
stage. The rules in this section carry over the values from
the second plane which satisfy the criteria (4 < edge_code <
13). In this Cell-DEVS implementation, cells are flagged by
adding a fractional value 0.1 to their value. They can then be
tested for the presence of this “flag” by checking for a
fractional part, and the flag can be removed by using the
trunc() function [3]. The cell values propagate across to
neighboring cells if the flag is set.

The authors of the algorithm suggests that the flag value of a
cell is not copied when a neighboring cell receives its new
value. This appears to be an error, as this algorithm was
observed to work well only when flags are copied when
cells change value.

plane3-rule
The final plane represents the Voronoi diagram produced by
the CA algorithm. In the previous plane, cells receive data
values from their immediate neighbors and in doing so they
effectively propagate the data out from any given starting
point. The theory behind this path finding algorithm is that
points where these data wavefronts collide are points
farthest away and equidistant from the starting points
(obstacles). As such, these are the points of interest when
plotting a path for a robot.

The rules in this plane examine the cell values (and their
flags) in the neighborhood of the plane below. According to
the algorithm, if a cell’s neighborhood consists of more than
one cell whose flag is set, and those cells with flags do not
contain the same values, then the cell belongs on the
Voronoi diagram. The cell on the Voronoi diagram is given
a time stamp – the CA iteration number at which the cell
was added to the diagram.

The Cell-DEVS model was simulated using the CD++ tool.
Figure 7 shows a sample maze and the state of each of the
four dimensions of the cellular model when the algorithm
completes.

To interpret the Voronoi diagram, “for a diamond shape of
diagonal size d, the path planning process selects those
Voronoi edges that consist of points with labels of value l ≥
d + ½” [3]. In this case since the first values that appear on
the diagram are 2’s, one should add that offset to find the
desired values. In this case, for a robot of diagonal size 2,
the points on the graph of value 4 or 5 represent viable
travel paths.

5. CONCLUSION

We have presented the application of the Cell-DEVS
formalism in maze solving problems. We used the CD++
toolkit to model and simulate the proposed maze
applications, showing that this approach permits easy
solving of these applications. We were able to describe Cell-
DEVS models described that correctly simulate the
behaviour of the path-finding algorithms presented in [2, 3].

The use of Cell-DEVS to solve the path-finding (or large
scale maze solving) problem is very efficient, as it can
operate extremely quickly (in just a few cycles of CA
evolution) and every cell is being solved in parallel. This is
a stark contrast to more traditional, mathematical
approaches to path-finding which can require many
mathematical calculations of distances and angles, and
backtracking to recover from dead-ends.

The logic behind the algorithms is very simple and can be
scaled to larger spaces without difficulty. It would be
interesting, in further studies, to determine if this algorithm
would scale to 3-dimensional spaces (or even n-dimensional
ones) or whether the algorithm would still be valid for

different neighbor sets (i.e. a hexagonal or triangular
neighborhood).

The downside to these algorithms is that they require a full
knowledge of the obstacle space prior to solving it (since
they cannot operate on cells of unknown value). In a real-
world implementation, this could be provided from an
overhead camera that generates a bitmapped image
representing the space. In addition, neither model provides a
complete solution in the case where there is not one distinct
solution path. If there exist several paths, the algorithms
provide a partial solution. The authors of [3] are evidently
aware of this limitation, indicating that the Voronoi diagram
produced “is suitable for post-processing in a variety of
external tasks.”

ACKNOWLEDGMENTS

This work was partially funded by the Natural Sciences and
Engineering Research CouncIl of Canada (NSERC) and the
Institute of Robotics and Intelligent Systems (IRIS,
Canada).

REFERENCES

[1] TALIA, D. "Cellular processing tools for high-performance
simulation". IEEE Computer. September 2000. Pp. 44 –52.

[2] NAYFEH, B. “Cellular Automata For Solving Mazes”.
Doctor Dobb’s Journal, February 1993.

[3] TZIONAS, P., THANAILAKIS, A., TSALIDES, P.
“ Collision-Free Path Planning For a Diamond-Shaped
Robot Using Two-Dimensional Cellular Automata” . In
IEEE Transactions on Robotics and Automation, Vol 13, No
2, April 1997.

[4] WAINER, G.; GIAMBIASI, N. "Application of the
Cell-DEVS paradigm for cell spaces modeling and
simulation". G. Wainer, N. Giambiasi. Simulation, Vol. 71,
No. 1. January 2001. pp. 22-39.

[5] WAINER, G. "CD++: a toolkit to define discrete-event
models". 2002. In Software, Practice and Experience.
Wiley. Vol. 32, No.3. pp. 1261-1306.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
 +--------------------+ +--------------------+
 0| 1 1 1 1 1 1 1 1 1 1| 0| |
 1| 1 1 1 | 1| 5 7 |
 2| | 2| 2 2 2 2 2 2 |
 3| | 3| 2 2 2 2 2 2 2 2 |
 4| | 4| 2 2 2 2 2 |
 5| 1 1 1 | 5| 2 2 11 912 2 |
 6| 1 1 1 | 6| 2 2 8 5 7 2 |
 7| | 7| 2 2 2 2 2 |
 8| | 8| |
 9| 1 1 1 1 1 1 1 1 1 1| 9| |
 +--------------------+ +--------------------+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
 +--------------------+ +--------------------+
 0| | 0| |
 1| 5 7 7 7 7 | 1| 3 3 5 5 |
 2| 5 7 912 | 2| 3 3 4 5 5 |
 3| 5 7 11 91212 | 3| 4 4 4 4 4 4 |
 4| 5 11 912 12 | 4| 5 4 3 3 3 |
 5| 11111111 9121212 | 5| 5 4 3 2 2 2 3 4 |
 6| 8 8 8 8 5 7 7 7 | 6| 5 4 3 2 2 2 3 4 |
 7| 8 8 5 7 7 | 7| 3 3 3 |
 8| 8 8 5 7 7 | 8| 4 4 4 |
 9| | 9| |
 +--------------------+ +--------------------+

Figure 7: The four planes as modeled by Cell-DEVS:
the original maze on the upper left, and the Voronoi
diagram on the bottom right.

