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automata, maze solving, path planning a two-dimensional bitmap. Cells are marked to regme
walls or free space. The cellular automata algorith
Abstract processes the bitmap and transforms it into onéagtng

The Cell-DEVS formalism was created as an extenefon the solution set. Unfortunately, Chevéhasshowed to have
cellular automata for modeling complex systems qusin different problems to model physical systems: theyally
discrete event formal approach. We examine theiegtjyn ~ require large amounts of compute time, mainly duéheir
of the Cell-DEVS formalism to a maze-solving aggion. ~ Synchronous nature.

The model uses the CD++ toolkit to model and sineuthe

proposed maze applications, showing that this aggito Th.e Cell-DEVS formalism [4] solve these probl_e.ms. by
permits solving complex applications by implementiem ~ YS!N9 j[he DEVS (Dls_,crete EVents Systems specmngm
in a simple fashion. formalism [5] to define a cell space where eacH =l

defined as a DEVS model. This technique allows rioge
of discrete-event cell spaces, improving their dgén by
1 INTRODUCTION making the timing specification more expressivesiBes

this, discretizing the model into a bidimensionatigposes
In recent years, computer simulation has playeéarkle  constraints on the precision that can be achiewedhb
in the study of artificial system. The cellular Aotata (CA)  model. Finite element analysis, instead, is abl@rtavide
formalism has recently gained popularity to deser$iome  higher precision due to the characteristics oftéoanique.
of these applications [1]. CAreare defined as infinite n-
dimensional lattices of cells whose values are tgula Here we present a definition of maze-solving akions
according to a local rule. This is done simultarsdp@nd using Cell-DEVS and their implementation using @@++
synchronously using the current state of the cetl the toolkit. We show that complex applications like sheones
state of a finite set of nearby cells (known as thecan be easily implemented in our environment, piimgi
neighborhood). the user to focus on the modeling activities atiihig them
approach more complex applications using simple
A popular application for cellular automata algonits is  specification techniques.
maze solving, whether it is optimal path planning o
obstacle avoidance. Nayfeh [2] describes a simiglerithm 2. BACKGROUND
for finding solution paths through a two-dimensibnmeaze.
Tzionas, Thanailakis and Tsalides describe an ifhgor The Cell-DEVS formalism is based on the use ofDE&/S
(and hardware implementation) for collision-freethpa (Discrete EVents Systems specifications) formalism
planning for a diamond-shaped robot [3]. Neithgoagthm  define a cell space where each cell is defined 8£¥S
requires very complex computation or backtrackingmodel. The goal is to build discrete-event cell cgsa
Cellular automata lend themselves easily to fasiple, and  improving their definition by making the timing
scalable implementations. The mazes effectivelylvéso specification more expressive. DEVS formalism was
themselves”, in a linear time and with multiple fgsaof the  proposed to model discrete events systems. A DEW&en
maze solved simultaneously in parallel. is built using a set of behavioral models callg@mic
models, which can be combined to foomupled ones. In
Cell-DEVS, each cell of a cellular model is definasl an



atomic DEVS using transport or inertial delays.

Each cell is seen as having a set of N inputs toptde its
future state. Each input (generally received frohe t
neighboring cells) is received through the modiiterface,
and is used to activate the local function. A detay be
associated with each cell, allowing the deferredgmission
of the execution results. Aransport delay allows us to

The CD++ tool [9] was developed following the definitions
of the Cell-DEVS formalism CD++ is a tool to simtdaoth
DEVS and Cell-DEVS models. Cell-DEVS models are
described using a built-in specification languagehe
language provides a set of primitives to definedize of the
cell-space, the type of borders, a cell's interfadt other
DEVS models and a cell's behavior. The behavioa @kl
(thet function of the formal specification) is definednga

model a variable commuting time for each cell withset of rules of the form:

anticipatory semantics (every scheduled event eécued).

Using inertial delays, the semantics is preemptive: some

scheduled events are not executed due to a snteilvah
between two input events. Therefore, the outputa ofll
are not transmitted instantaneously, but after
consumption of the delay. The model advances thrabg
activation of the internal, external, output andtes
duration functions, as in other DEVS models.

Cell-DEVS atomic models are specified as:
TDC =< Xa Yy Sv Na delayv (ﬁimy 6exlv Tv )\! D >'

Each cell will use th&l inputs to compute the future st&e

VALUE DELAY CONDITION

When an external event is received, the rule etalua

therocess is triggered to calculate the new cell eafitarting

with the first listed rule, the CONDITION is evated. If it
is satisfied, the new cell state is obtained byliating the
VALUE expression. The cell will change to this netate
after a DELAY time, and when it changes, it sendfot
messages to all its neighbors. If the conditionasvalid, the
next rule is evaluated repeating this process antille is
satisfied. If no rule CONDITION statement is saédf the
simulation is aborted.

using the functiort. The new value of the cell is transmitted 3. A MAZE SOLVING ALGORITHM IN CELL-

to the neighbors after the consumption of the dilagtion.
Delay defines the kind of delay for the cell, amdits
duration. This behavior is defined by tBg, deq, A andD
functions.

Once each cell is defined, they can be put togethfarm a
coupled model composed of an array of atomic c&léeh

of them is connected to its neighborhood. As tHesmace
is finite, the borders should be provided with &edent

behavior than the rest of the space. Otherwisesphee can
be defined as wrapped, meaning that cells in advoade
connected with those in the opposite one.

A Cell-DEVS coupled model is defined by:

GCC =< Xt Yist, X, Y, n, {t,....t}, N, C, B, Z >.

A cell spaceC defined by this specification is a coupled

model composed by an array of atomic cells witle iz

x..X tp}. Each cell in the space is connected to the cells
defined by the neighborhooll. The cell space can be

“wrapped”, meaning that cells in a border are cateck
with those in the opposite one. Otherwise, the &wré
should have a different behavior than the remairdalis.

The Z function allows one to define the internal and

external coupling of cells in the model. This fuant
translates the outputs of output port m in celli@ip values
for the m input port of cell Ckl. The input/outpedupling
lists can be used to interchange data with othatetso

DEVS

In this section, we present a model simulatingatgerithm
proposed by Nayfeh [2]. The maze is representeal tas-
dimensional cell array, with values of “1” and “0”
representing walls and hallways (free cells). Eaeli’'s
neighbors consist of cells in the four cardinalediions
North, East, South and West. Figure 1 represersisnple
maze in a 10x10 cellular array, and an illustratanthe
cell’'s neighbors.

The maze is solved using cellular automata with the
following rules for updating the cell's states:

= Wall cells always remains unchanged
= Free cells becomes a wall cell if its neighborhood
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Figure 1: A 10x10 maze. A cell’'s neighbors
consist of cells to the North, South, East and West.



includes three or more wall cells

= Free cells remains a free cell if its neighborhood

includes less than three wall cells.

When this set of rules is processed, the algoriffectively
blocks off every dead-end path in the maze. Evesg tell
that is accessible from only one direction (i.ere¢hwall
cells around it) must be a dead end and therefameat be
part of the solution. These cells become new wellscand
this procedures is repeated until the system resmaina
steady state. In this state the only remaining fcetls
represent the solution(s) to the maze. If themoisolution,
the entire array of cells will be wall cells.

The following is the specification for the mazevsog
model in Cell-DEVS:

CD=<XY,1,50,N, d,dint, Oexs T, A, D >

X=0
Y=0
s={0,1}

N = neighborhood ={ (-1, 0), (O, -1), (0, 1), @), (0,0) }
d =100 ms

1. NS is defined by the rules described in the previou:

section, i.e.:
S=1ifcell(0,0) =1
S = 1if cell(0,0) = 0 and # of "wall"neighbors3
S =0 if cell(0,0) = 0 and # of "wall"neighbors <3

The formal specification translates into the follogv .ma
(model definition) in Cell-DEVS:

[ maze]

type : cell

dim: (20, 20)

delay : transport

border : now apped

nei ghbors : maze(-1, 0)

nei ghbors : nmaze(0,-1) naze(0,0) naze(O,1)
nei ghbors : maze( 1, 0)

localtransition : naze-rule

[ maze-rul e]

rule : 1 100 { (0,0) =
truecount = 4) }

rule : 0100 { (0,0) = 0 and truecount < 3}
rule : 1100 { t }

0 and (truecount = 3 or

Figure 2: Defining the Cell-DEVS specification in
CD++.

This model was executed using the CD++ simulation[hata

toolkit, and the results were visualized usingtth@'s visual
output facilities. The results are showed in fig8rewhich
include the graphical displays of a maze with aegiinitial
state (a) and the results of solving the maze (b).
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Figure 3: (a) the original maze and (b) the maze
after processing in Cell-DEVS.

If a maze has no solution, or many solutions, e space
will generate a result without any cell in the fipath, that
is, a solid block of wall cells (see Figure 4a)kawise, if
the maze has different solutions, the cell spadé stop
evolving when all the solution paths are revealednazes
where more than one path belongs to the solutie® (s
Figure 4b). Further processing would be required do
complete solution to be made available.

4. COLLISION-FREE PATH PLANNING IN
CELL-DEVS

This section describes a Cell-DEVS model to sinaulat
path-planning algorithm described in [3]. The paper
proposes the use of cellular automata to proces®m
down” bitmap of an area to be traveled by a rohssuming
robot is defined as a diamond that can sackorobot

of arbitrary shape. The algorithm produces a Vorono
diagram, which can be used to determine a pathdistaint
from any obstacles in the space. The paths arelatéd by
marking the intersections of expanding “wavefronts”
propagated by cellular expansion from given stgrgnoints.



Frame # 61 -EOF found!  Elapsed time: Mot available.

Doels  Cemdn PR T stages. In addition, the algorithm references miy ¢he
actual cell value at any given cell (i, j), but aldefines
additional variables corresponding to each cell.e Th
algorithm requires the following set of data foegycell:

z(i, j) — the original encoding of detected obstadl0 or 1)
edge_code(i, j) — calculated edge code for thig(tel2)
Flag(i, j) — value used during “wavefront expansion
Vor(i, j) — the point on the Voronoi diagram regpeeting
this cell's position

, : Because a Cell-DEVS model only supports one vatue f
Fam® 16 EOFlomd Ebpedine | Nolmalibe any given cell, and the algorithm requires fousjregle two-

e = dimensional model does not suffice. Thus, the #lgor is
implemented using a 3D Cell-DEVS model, in whicltlea
plane represents a set of state variables. The dk yan
dimensions are dependent on the input values gdgent
the two-dimensional space being considered. Theemod
consists of four such planes of size x-y, i.e.dineension of
the z-axis is 4. Each plane contains the data septed in
each of the four variables discussed previously:

------=
R plane 0 (x, y, 0) original bitmap representing $pace
.

S plane 1 (x,y, 1) edge codes
b) plane 2 (x,y, 2) propagation of edge codes ovee ti
Figure 4: (a) results from a maze with no solution plane 3 (x, y, 3) final Voronoi diagram

and (b) a maze with multiple solution paths. o o
In the original specification, the cellular automatake use

As with Nayfeh’s algorithm, cells have a value &f ‘or “0” of a Von-Neumann neighborhood that includes eadhase
for wall and free cells, and neighbors consisthef tardinal well as its neighbors in the four cardinal direstidNorth,
directions North, East, South and West (i.e. then-vo East, South and West. However, because the CellDEV
Neumann neighborhood). The rules defining the misdelimplementation includes a third dimension, the
behavior can be characterized by a two-stage puveed neighborhood must be expanded to allow each pleocesa
* In the first stage, cells and their neighborhoods a to values in the plane immediately below it. Thpanded
examined and compared to a set of 12 “edge codeieighborhood includes each cell, its four cardire@ghbors,
templates. For each cell that matches aand the five corresponding cells in the plane beldvigure
configuration in the template, a corresponding edgé below illustrates the neighborhood for any gieetl (the
code from 1-12 is used in the second stage. This ishaded cell in the figure).
an “object boundary detection” stage.

« In the second stage, cells containing edge codes PlaneBelow (z-1) Current Plane (2)
(derived from object boundary detection) are (-1,0,0)
expanded in free space. Where expansions
intersect, the cell of intersection is given a (-1,0,-1) (0-1,0) | (0,000 | (0,1,0)
timestamp and considered part of the final Vorono
diagram. 0,-1,-1) | (0,0-1) | (0,1,-1) (1,0,0)

This is a closed cellular model with no externgduts or (1,0,-1)

outputs. The final state of the cellular array eamt the

- - e Fi 5: Th ighborhood f lIs in th th-
Voronoi diagram describing a collision-free path. igure © neighborhood for celis In the. pa

planning model

The authors presented their original path-finditgpethm
as C-like pseudocode, broken into two distinct esag
(Object Boundary Detection followed by Voronoi Diam
Construction). The second stage is further diviaéd sub- CD=<X, Y. 1,50, N, d,5, 5o 7, A, D >

The following is the formal specification for thelGCDEVS
path-finding model:



R (real numbers)
eighborhood = { (-1, 0, 0), (O, -1, 0), (0,, (1, 0, 0),
0, 0, 0), (-1, 0, -1), (0, -1, -1), (O, 1, -1), @, -1), (O, O, -1)

s O

—

d=10ms
1. N=>S is defined by the rules below. Each z-plane twas i
own set of rules.

This Cell-DEVS model has dimension 10x10x4,
representing a 10x10 maze and the four data plaseds to
model it. The initial cell values are loaded from external
file. The model defines four sets of rules (nothiotg,
bound-rule, plane2-rule, and plane3-rule) whichumed by
each of the cell planes (0, 1, 2, 3 respectivelyie three-
dimensional cell model is effectively divided infour
linked two-dimensional models by using separateegon
consisting of plane regions (i.e. each zone Z stssif cells
{(0,0,2)..(9,9,2)}.

The rule sets are as follows:

nothing-rule

This rule essentially does nothing. Cell values ao#
changed. This rule is used by the original datagla keep
the values from being changed.

bound-rule

plane3-rule

The final plane represents the Voronoi diagram pced by
the CA algorithm. In the previous plane, cells reeedata
values from their immediate neighbors and in da@nghey
effectively propagate the data out from any givéartsg
point. The theory behind this path finding algamitls that
points where these data wavefronts collide are tpoin
farthest away and equidistant from the startingnisoi
(obstacles). As such, these are the points ofdstewhen
plotting a path for a robot.

The rules in this plane examine the cell valued (dreir
flags) in the neighborhood of the plane below. Adatg to
the algorithm, if a cell's neighborhood consistsradre than
one cell whose flag is set, and those cells wilgsldo not
contain the same values, then the cell belongs hen t
Voronoi diagram. The cell on the Voronoi diagrangigen

a time stamp — the CA iteration number at which ¢e#
was added to the diagram.

The Cell-DEVS model was simulated using the CD+al.to
Figure 7 shows a sample maze and the state ofadable
four dimensions of the cellular model when the &thm
completes.

To interpret the Voronoi diagram, “for a diamondpé of
diagonal size d, the path planning process seldwrise
Voronoi edges that consist of points with labelvalue />

d + %" [3]. In this case since the first valuesttappear on

This rule performs the coding of edge directions ashe diagram are 2’s, one should add that offsdtn the

described in [3]. Patterns of cell values in eael and its
neighborhood are classified as one of 12 “edge £odde
rules in this section perform the classificatioausing cells
in this plane to take on integer values betweer? 1f the
cells in the data plane correspond to one of thiedtlates.

plane2-rule

The paper indicates that cells with edge codes ftefnare
discarded. Cells with edge codes 5-12 are copidamew
CA grid and given a flag value for propagation fe third

stage. The rules in this section carry over theieslfrom
the second plane which satisfy the criteria (4 geedode <
13). In this Cell-DEVS implementation, cells aragded by
adding a fractional value 0.1 to their value. Thay then be
tested for the presence of this “flag” by checkiing a

fractional part, and the flag can be removed bygghe

desired values. In this case, for a robot of diafjsize 2,
the points on the graph of value 4 or 5 represésible
travel paths.

5. CONCLUSION

We have presented the application of the Cell-DEVS
formalism in maze solving problems. We used the €D+
toolkit to model and simulate the proposed maze
applications, showing that this approach permitsyea
solving of these applications. We were able to diescCell-

DEVS models described that correctly simulate the
behaviour of the path-finding algorithms preserntef®, 3].

The use of Cell-DEVS to solve the path-finding (arge
scale maze solving) problem is very efficient, ascan

trunc() function [3]. The cell values propagate across twperate extremely quickly (in just a few cycles ©A

neighboring cells if the flag is set.

The authors of the algorithm suggests that thevitdge of a
cell is not copied when a neighboring cell receitesew
value. This appears to be an error, as this alguritvas
observed to work well only when flagse copied when
cells change value.

evolution) and every cell is being solved in paallhis is

a stark contrast to more traditional, mathematical
approaches to path-finding which can require many
mathematical calculations of distances and anghes]
backtracking to recover from dead-ends.



The logic behind the algorithms is very simple aath be
scaled to larger spaces without difficulty. It wdube
interesting, in further studies, to determine i§thlgorithm
would scale to 3-dimensional spaces (or even n-uioeal
ones) or whether the algorithm would still be vafit
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Figure 7: The four planes as modeled by Cell-DEVS:
the original maze on the upper left, and the Voronoi
diagram on the bottom right.

different neighbor sets (i.e. a hexagonal or tridag
neighborhood).

The downside to these algorithms is that they reqaifull
knowledge of the obstacle space prior to solvingsihce
they cannot operate on cells of unknown value)a Ireal-

world implementation, this could be provided from a
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overhead camera that generates a bitmapped image

representing the space. In addition, neither mpdzlides a
complete solution in the case where there is netastinct
solution path. If there exist several paths, thgodihms
provide a partial solution. The authors of [3] axdédently
aware of this limitation, indicating that the Vomriagram
produced “is suitable for post-processing in a etgriof
external tasks.”
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