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Abstract 
The Cell-DEVS formalism was created as an extension of 
cellular automata for modeling complex systems using a 
discrete event formal approach. We examine the application 
of the Cell-DEVS formalism to a maze-solving application. 
The model uses the CD++ toolkit to model and simulate the 
proposed maze applications, showing that this approach 
permits solving complex applications by implementing them 
in a simple fashion.  
 
1. INTRODUCTION 
 
In recent years, computer simulation has played a key role 
in the study of artificial system. The cellular Automata (CA) 
formalism has recently gained popularity to describe some 
of these applications [1]. CA areare defined as infinite n-
dimensional lattices of cells whose values are updated 
according to a local rule. This is done simultaneously and 
synchronously using the current state of the cell and the 
state of a finite set of nearby cells (known as the 
neighborhood).  
 
A popular application for cellular automata algorithms is 
maze solving, whether it is optimal path planning or 
obstacle avoidance. Nayfeh [2] describes a simple algorithm 
for finding solution paths through a two-dimensional maze. 
Tzionas, Thanailakis and Tsalides describe an algorithm 
(and hardware implementation) for collision-free path 
planning for a diamond-shaped robot [3]. Neither algorithm 
requires very complex computation or backtracking. 
Cellular automata lend themselves easily to fast, simple, and 
scalable implementations. The mazes effectively “solve 
themselves”, in a linear time and with multiple parts of the 
maze solved simultaneously in parallel. 
 

Typically, the maze, or space to be mapped, is described by 
a two-dimensional bitmap. Cells are marked to represent 
walls or free space. The cellular automata algorithm 
processes the bitmap and transforms it into one containing 
the solution set. Unfortunately, CA havehas showed to have 
different problems to model physical systems: they usually 
require large amounts of compute time, mainly due to their 
synchronous nature.  
 
The Cell-DEVS formalism [4] solve these problems by 
using the DEVS (Discrete EVents Systems specifications) 
formalism [5] to define a cell space where each cell is 
defined as a DEVS model. This technique allows modeling 
of discrete-event cell spaces, improving their definition by 
making the timing specification more expressive. Besides 
this, discretizing the model into a bidimensional grid poses 
constraints on the precision that can be achieved by the 
model. Finite element analysis, instead, is able to provide 
higher precision due to the characteristics of the technique. 
 
Here we present a definition of maze-solving algorithms 
using Cell-DEVS and their implementation using the CD++ 
toolkit. We show that complex applications like these ones 
can be easily implemented in our environment, permitting 
the user to focus on the modeling activities and letting them 
approach more complex applications using simple 
specification techniques. 
 
2. BACKGROUND 
 
The Cell-DEVS formalism is based on the use of the DEVS 
(Discrete EVents Systems specifications) formalism to 
define a cell space where each cell is defined as a DEVS 
model. The goal is to build discrete-event cell spaces, 
improving their definition by making the timing 
specification more expressive. DEVS formalism was 
proposed to model discrete events systems. A DEVS model 
is built using a set of behavioral models called atomic 
models, which can be combined to form coupled ones. In 
Cell-DEVS, each cell of a cellular model is defined as an 



atomic DEVS using transport or inertial delays. 
  

Each cell is seen as having a set of N inputs to compute its 
future state. Each input (generally received from the 
neighboring cells) is received through the model’s interface, 
and is used to activate the local function. A delay can be 
associated with each cell, allowing the deferred transmission 
of the execution results. A transport delay allows us to 
model a variable commuting time for each cell with 
anticipatory semantics (every scheduled event is executed). 
Using inertial delays, the semantics is preemptive: some 
scheduled events are not executed due to a small interval 
between two input events. Therefore, the outputs of a cell 
are not transmitted instantaneously, but after the 
consumption of the delay. The model advances through the 
activation of the internal, external, output and state’s 
duration functions, as in other DEVS models. 

 
Cell-DEVS atomic models are specified as: 
 

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >. 
 
Each cell will use the N inputs to compute the future state S 
using the function ττττ. The new value of the cell is transmitted 
to the neighbors after the consumption of the delay function. 
Delay defines the kind of delay for the cell, and d its 
duration. This behavior is defined by the δδδδint, δδδδext, λλλλ and D 
functions. 

 
Once each cell is defined, they can be put together to form a 
coupled model composed of an array of atomic cells. Each 
of them is connected to its neighborhood. As the cell space 
is finite, the borders should be provided with a different 
behavior than the rest of the space. Otherwise, the space can 
be defined as wrapped, meaning that cells in a border are 
connected with those in the opposite one.  

 
A Cell-DEVS coupled model is defined by: 

 
GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. 

 
A cell space C defined by this specification is a coupled 
model composed by an array of atomic cells with size {t1 

x...x tn}. Each cell in the space is connected to the cells 
defined by the neighborhood N. The cell space can be 
“wrapped”, meaning that cells in a border are connected 
with those in the opposite one. Otherwise, the borders B 
should have a different behavior than the remaining cells. 
The Z function allows one to define the internal and 
external coupling of cells in the model. This function 
translates the outputs of output port m in cell Cij into values 
for the m input port of cell Ckl. The input/output coupling 
lists can be used to interchange data with other models. 

 

The CD++ tool [9] was developed following the definitions 
of the Cell-DEVS formalism CD++ is a tool to simulate both 
DEVS and Cell-DEVS models. Cell-DEVS models are 
described using a built-in specification language. The 
language provides a set of primitives to define the size of the 
cell-space, the type of borders, a cell’s interface with other 
DEVS models and a cell’s behavior. The behavior of a cell 
(the τ function of the formal specification) is defined using a 
set of rules of the form: 

 
VALUE    DELAY   CONDITION  

 
When an external event is received, the rule evaluation 
process is triggered to calculate the new cell value. Starting 
with the first listed rule, the CONDITION is evaluated. If it 
is satisfied, the new cell state is obtained by evaluating the 
VALUE expression. The cell will change to this new state 
after a DELAY time, and when it changes, it sends output 
messages to all its neighbors. If the condition is not valid, the 
next rule is evaluated repeating this process until a rule is 
satisfied. If no rule CONDITION statement is satisfied, the 
simulation is aborted. 
 
3. A MAZE SOLVING ALGORITHM IN CELL-
DEVS 
 
In this section, we present a model simulating the algorithm 
proposed by Nayfeh [2]. The maze is represented as a two-
dimensional cell array, with values of “1” and “0” 
representing walls and hallways (free cells). Each cell’s 
neighbors consist of cells in the four cardinal directions 
North, East, South and West. Figure 1 represents a simple 
maze in a 10x10 cellular array, and an illustration of the 
cell’s neighbors. 
 
The maze is solved using cellular automata with the 
following rules for updating the cell's states: 
  

� Wall cells always remains unchanged 
� Free cells becomes a wall cell if its neighborhood 

 
1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 1 
1 0 1 0 1 1 1 1 0 1 
1 0 1 0 0 0 0 1 0 1 
1 0 1 0 1 1 0 1 0 1 
1 0 0 0 1 0 0 1 0 1 
1 0 1 1 1 1 0 1 1 1 
1 0 1 0 0 0 0 0 0 1 
1 0 1 0 1 0 1 1 0 1 
1 1 1 0 1 1 1 1 1 1 
 

Figure 1: A 10x10 maze. A cell’s neighbors 
consist of cells to the North, South, East and West. 
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includes three or more wall cells 
� Free cells remains a free cell if its neighborhood 

includes less than three wall cells. 
 
When this set of rules is processed, the algorithm effectively 
blocks off every dead-end path in the maze. Every free cell 
that is accessible from only one direction (i.e. three wall 
cells around it) must be a dead end and therefore cannot be 
part of the solution. These cells become new wall cells, and 
this procedures is repeated until the system remains in a 
steady state. In this state the only remaining free cells 
represent the solution(s) to the maze. If there is no solution, 
the entire array of cells will be wall cells. 
 
The following is the specification for the maze-solving 
model in Cell-DEVS: 
 
CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
X = Ø 
Y = Ø 
S = { 0, 1 } 
N = neighborhood = { (-1, 0), (0, -1), (0, 1), (1, 0), (0,0) } 
d = 100 ms 
τ: N�S is defined by the rules described in the previous 
section, i.e.: 

S = 1 if cell(0,0) = 1 
S = 1 if cell(0,0) = 0 and # of "wall"neighbors ≥ 3 
S = 0 if cell(0,0) = 0 and # of "wall"neighbors <3 

 
The formal specification translates into the following .ma 
(model definition) in Cell-DEVS: 
 
[maze] 
type : cell 
dim : (20, 20) 
delay : transport 
border : nowrapped  
neighbors :    maze(-1,0) 
neighbors : maze(0,-1)  maze(0,0)  maze(0,1) 
neighbors :     maze(1,0) 
localtransition : maze-rule 
 
[maze-rule] 
rule : 1 100 { (0,0) = 0 and (truecount = 3 or 
truecount = 4) }  
rule : 0 100 { (0,0) = 0 and truecount < 3 }  
rule : 1 100 { t }  

Figure 2: Defining the Cell-DEVS specification in 
CD++. 
 
This model was executed using the CD++ simulation 
toolkit, and the results were visualized using the tool's visual 
output facilities. The results are showed in figure 3, which 
include the graphical displays of a maze with a given initial 
state (a) and the results of solving the maze (b). 
 
 

If a maze has no solution, or many solutions, the cell space 
will generate a result without any cell in the final path, that 
is, a solid block of wall cells (see Figure 4a). Likewise, if 
the maze has different solutions, the cell space will stop 
evolving when all the solution paths are revealed in mazes 
where more than one path belongs to the solution (see 
Figure 4b). Further processing would be required for a 
complete solution to be made available. 
 
4. COLLISION-FREE PATH PLANNING IN 
CELL-DEVS 
 
This section describes a Cell-DEVS model to simulate a 
path-planning algorithm described in [3]. The paper 
proposes the use of cellular automata to process a “top 
down” bitmap of an area to be traveled by a robot, assuming 
that a robot is defined as a diamond that can enclose a robot 
of arbitrary shape. The algorithm produces a Voronoi 
diagram, which can be used to determine a path equidistant 
from any obstacles in the space. The paths are calculated by 
marking the intersections of expanding “wavefronts” 
propagated by cellular expansion from given starting points. 
 

a)    

b)    
Figure 3: (a) the original maze and (b) the maze 
after processing in Cell-DEVS. 



As with Nayfeh’s algorithm, cells have a value of “1” or “0” 
for wall and free cells, and neighbors consist of the cardinal 
directions North, East, South and West (i.e. the von-
Neumann neighborhood). The rules defining the model's 
behavior can be characterized by a two-stage procedure: 

• In the first stage, cells and their neighborhoods are 
examined and compared to a set of 12 “edge code” 
templates. For each cell that matches a 
configuration in the template, a corresponding edge 
code from 1-12 is used in the second stage. This is 
an “object boundary detection” stage. 

• In the second stage, cells containing edge codes 
(derived from object boundary detection) are 
expanded in free space. Where expansions 
intersect, the cell of intersection is given a 
timestamp and considered part of the final Voronoi 
diagram. 

 
This is a closed cellular model with no external inputs or 
outputs. The final state of the cellular array contains the 
Voronoi diagram describing a collision-free path. 
 
The authors presented their original path-finding algorithm 
as C-like pseudocode, broken into two distinct stages 
(Object Boundary Detection followed by Voronoi Diagram 
Construction). The second stage is further divided into sub-

stages. In addition, the algorithm references not only the 
actual cell value at any given cell (i, j), but also defines 
additional variables corresponding to each cell. The 
algorithm requires the following set of data for every cell: 
 
z(i, j) – the original encoding of detected obstacles (0 or 1) 
edge_code(i, j)  – calculated edge code for the cell (1-12) 
Flag(i, j) – value used during “wavefront expansion” 
Vor(i, j)  – the point on the Voronoi diagram representing 
this cell’s position 
 
Because a Cell-DEVS model only supports one value for 
any given cell, and the algorithm requires four, a single two-
dimensional model does not suffice. Thus, the algorithm is 
implemented using a 3D Cell-DEVS model, in which each 
plane represents a set of state variables. The x and y 
dimensions are dependent on the input values and represent 
the two-dimensional space being considered. The model 
consists of four such planes of size x·y, i.e. the dimension of 
the z-axis is 4. Each plane contains the data represented in 
each of the four variables discussed previously: 
 
plane 0 (x, y, 0) original bitmap representing the space 
plane 1 (x, y, 1) edge codes 
plane 2 (x, y, 2) propagation of edge codes over time 
plane 3 (x, y, 3) final Voronoi diagram 
 
In the original specification, the cellular automata make use 
of a Von-Neumann neighborhood that includes each cell as 
well as its neighbors in the four cardinal directions North, 
East, South and West. However, because the Cell-DEVS 
implementation includes a third dimension, the 
neighborhood must be expanded to allow each plane access 
to values in the plane immediately below it. The expanded 
neighborhood includes each cell, its four cardinal neighbors, 
and the five corresponding cells in the plane below.  Figure 
5 below illustrates the neighborhood for any given cell (the 
shaded cell in the figure). 
 

Plane Below (z-1)   Current Plane (z) 

Figure 5: The neighborhood for cells in the path-
planning model 
 
The following is the formal specification for the Cell-DEVS 
path-finding model: 
 
CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

     (-1,0,0)  

 (-1,0,-1)   (0,-1,0) (0,0,0) (0,1,0) 

(0,-1,-1) (0,0,-1) (0,1,-1)   (1,0,0)  

 (1,0,-1)      

a)    

b)    
Figure 4: (a) results from a maze with no solution 
and (b) a maze with multiple solution paths. 



X = Ø 
Y = Ø 
S = ∈ R (real numbers) 
N = neighborhood = { (-1, 0, 0), (0, -1, 0), (0, 1, 0), (1, 0, 0), 
(0, 0, 0), (-1, 0, -1), (0, -1, -1), (0, 1, -1), (1, 0, -1), (0, 0, -1) 
} 
d = 10 ms 
τ: N�S is defined by the rules below. Each z-plane has its 
own set of rules. 
 
This Cell-DEVS model has dimension 10x10x4, 
representing a 10x10 maze and the four data planes used to 
model it. The initial cell values are loaded from an external 
file. The model defines four sets of rules (nothing-rule, 
bound-rule, plane2-rule, and plane3-rule) which are used by 
each of the cell planes (0, 1, 2, 3 respectively). The three-
dimensional cell model is effectively divided into four 
linked two-dimensional models by using separate zones 
consisting of plane regions (i.e. each zone Z consists of cells 
{(0,0,z)..(9,9,z)}. 
 
The rule sets are as follows: 
 
nothing-rule 
This rule essentially does nothing. Cell values are not 
changed. This rule is used by the original data plane to keep 
the values from being changed. 
 
bound-rule 
This rule performs the coding of edge directions as 
described in [3]. Patterns of cell values in each cell and its 
neighborhood are classified as one of 12 “edge codes”. The 
rules in this section perform the classification, causing cells 
in this plane to take on integer values between 1-12 if the 
cells in the data plane correspond to one of the 12 templates. 
 
plane2-rule 
The paper indicates that cells with edge codes from 1-4 are 
discarded. Cells with edge codes 5-12 are copied into a new 
CA grid and given a flag value for propagation in the third 
stage. The rules in this section carry over the values from 
the second plane which satisfy the criteria (4 < edge_code < 
13). In this Cell-DEVS implementation, cells are flagged by 
adding a fractional value 0.1 to their value. They can then be 
tested for the presence of this “flag” by checking for a 
fractional part, and the flag can be removed by using the 
trunc() function [3]. The cell values propagate across to 
neighboring cells if the flag is set.  
 
The authors of the algorithm suggests that the flag value of a 
cell is not copied when a neighboring cell receives its new 
value. This appears to be an error, as this algorithm was 
observed to work well only when flags are copied when 
cells change value.  

plane3-rule 
The final plane represents the Voronoi diagram produced by 
the CA algorithm. In the previous plane, cells receive data 
values from their immediate neighbors and in doing so they 
effectively propagate the data out from any given starting 
point. The theory behind this path finding algorithm is that 
points where these data wavefronts collide are points 
farthest away and equidistant from the starting points 
(obstacles). As such, these are the points of interest when 
plotting a path for a robot. 
 
The rules in this plane examine the cell values (and their 
flags) in the neighborhood of the plane below. According to 
the algorithm, if a cell’s neighborhood consists of more than 
one cell whose flag is set, and those cells with flags do not 
contain the same values, then the cell belongs on the 
Voronoi diagram. The cell on the Voronoi diagram is given 
a time stamp – the CA iteration number at which the cell 
was added to the diagram. 
 
The Cell-DEVS model was simulated using the CD++ tool. 
Figure 7 shows a sample maze and the state of each of the 
four dimensions of the cellular model when the algorithm 
completes. 

 
To interpret the Voronoi diagram, “for a diamond shape of 
diagonal size d, the path planning process selects those 
Voronoi edges that consist of points with labels of value l ≥ 
d + ½” [3]. In this case since the first values that appear on 
the diagram are 2’s, one should add that offset to find the 
desired values. In this case, for a robot of diagonal size 2, 
the points on the graph of value 4 or 5 represent viable 
travel paths. 
 
5. CONCLUSION 
 
We have presented the application of the Cell-DEVS 
formalism in maze solving problems. We used the CD++ 
toolkit to model and simulate the proposed maze 
applications, showing that this approach permits easy 
solving of these applications. We were able to describe Cell-
DEVS models described that correctly simulate the 
behaviour of the path-finding algorithms presented in [2, 3].  
 
The use of Cell-DEVS to solve the path-finding (or large 
scale maze solving) problem is very efficient, as it can 
operate extremely quickly (in just a few cycles of CA 
evolution) and every cell is being solved in parallel. This is 
a stark contrast to more traditional, mathematical 
approaches to path-finding which can require many 
mathematical calculations of distances and angles, and 
backtracking to recover from dead-ends. 
 



The logic behind the algorithms is very simple and can be 
scaled to larger spaces without difficulty. It would be 
interesting, in further studies, to determine if this algorithm 
would scale to 3-dimensional spaces (or even n-dimensional 
ones) or whether the algorithm would still be valid for 

different neighbor sets (i.e. a hexagonal or triangular 
neighborhood). 
 
The downside to these algorithms is that they require a full 
knowledge of the obstacle space prior to solving it (since 
they cannot operate on cells of unknown value). In a real-
world implementation, this could be provided from an 
overhead camera that generates a bitmapped image 
representing the space. In addition, neither model provides a 
complete solution in the case where there is not one distinct 
solution path. If there exist several paths, the algorithms 
provide a partial solution. The authors of [3] are evidently 
aware of this limitation, indicating that the Voronoi diagram 
produced “is suitable for post-processing in a variety of 
external tasks.” 
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     0 1 2 3 4 5 6 7 8 9       0 1 2 3 4 5 6 7 8 9    
   +--------------------+    +--------------------+   
  0| 1 1 1 1 1 1 1 1 1 1|   0|                    |   
  1| 1 1 1              |   1|   5 7              |   
  2|                    |   2|       2 2 2 2 2 2  |   
  3|                    |   3|   2 2 2 2 2 2 2 2  |   
  4|                    |   4|   2 2 2       2 2  |   
  5|         1 1 1      |   5|   2 2  11 912   2  |   
  6|         1 1 1      |   6|   2 2   8 5 7   2  |   
  7|                    |   7|   2 2 2       2 2  |   
  8|                    |   8|                    |   
  9| 1 1 1 1 1 1 1 1 1 1|   9|                    |   
   +--------------------+    +--------------------+ 
 
    0 1 2 3 4 5 6 7 8 9       0 1 2 3 4 5 6 7 8 9  
   +--------------------+    +--------------------+ 
  0|                    |   0|                    | 
  1|   5 7 7 7 7        |   1|   3 3     5 5      | 
  2|   5 7     912      |   2|   3 3   4 5 5      | 
  3|   5 7  11 91212    |   3|   4 4 4 4 4 4      | 
  4|   5    11 912  12  |   4|   5 4   3 3 3      | 
  5|  11111111 9121212  |   5|   5 4 3 2 2 2 3 4  | 
  6|   8 8 8 8 5 7 7 7  |   6|   5 4 3 2 2 2 3 4  | 
  7|     8   8 5 7   7  |   7|         3 3 3      | 
  8|       8 8 5 7 7    |   8|         4 4 4      | 
  9|                    |   9|                    | 
   +--------------------+    +--------------------+   

Figure 7: The four planes as modeled by Cell-DEVS: 
the original maze on the upper left, and the Voronoi 
diagram on the bottom right. 
 


