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Abstract 
 
This work describes two new improvements made to CD++, a tool used to study, model 
and simulate cellular models. The tool is an incomplete implementation of the Timed Cell-
DEVS formalism. The modifications described in this work remove some limitation 
introduced in the previous implementation. These modifications allow the cells to use 
multiple state variables and to use multiple ports for inter-cell communications. The 
cellular model specification language has been extended to cover these cases. Thus, CD++ 
becomes a more powerful tool while getting closer to the implementation of the whole 
Timed Cell-DEVS formalism. 
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Abstracto 
 
Este trabajo describe dos nuevas mejoras realizadas a CD++, una herramienta utilizada 
para estudiar, modelar y simular modelos celulares. La herramienta es una implementación 
incompleta del formalismo Timed Cell-DEVS. Las modificaciones descriptas en este 
trabajo eliminan algunas de las limitaciones de la implementación anterior. Estas 
modificaciones permiten a las celdas utilizar múltiples variables de estado y múltiples 
puertos para la comunicación con otras celdas.  El lenguaje de especificación de modelos 
celulares fue extendido para cubrir estos casos. Así, CD++ deviene una herramienta más 
poderosa mientras se acerca a una implementación completa de formalismo Timed Cell-
DEVS. 
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1 Introduction 
 
Simulation is a powerful tool for studying complex systems, with quite a range of uses, 
from new system testing to physical phenomena understanding. The simulation process 
starts with a problem to solve or understand. It might be the case of a train company trying 
to develop a new strategy for cargo storage and railway tracks usage or a chemist trying to 
understand a complex process of physical diffusion taking place inside a narrow tube 
[Tro01]. The simulation process starts from the observation of a real system. Entities are 
identified, and an abstract representation, a model, is constructed. Once the model is 
constructed, it needs to be executed. This is done by a simulator, which consists of a 
computer system that executes the model’s instructions to generate its behavior. To 
complete the cycle, the results obtained are compared to those of the real system for model 
validation. It is often the case that a modeler is only interested in a few aspects of the real 
system. In such a case, an experimental frame captures the modeler’s objectives and 
defines the scope of the model. 
 

 
Figure 1: The basic entities and their relationships [Zei00] 

 
 
The basic entities are linked by two relations [Zei00]: 
 
❑ modeling relation. Links  the real system and model, defining how well the model 
represents the system or entity being modeled. In general terms a model can be considered 
valid if the data generated by the model agrees with the data produced by the real system in 
an experimental frame of interest. 
 
❑ simulation relation. Links the model and simulator. It represents how faithfully the 
simulator is able to carry out the instructions of the model. 
 
There exist at present quite a number of simulation techniques and paradigms. Among 
these, the DEVS formalism provides a framework for the construction of hierarchical 
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models in a modular manner, allowing for model reuse and reducing development time and 
testing. In DEVS a model is specified as a black box with a state and a duration for that 
state. When the duration time for the state expires, an output event is sent, an internal 
transition takes place and the model changes its current state. A change of state can also 
occur when an external event is received. Then, a complete model is defined by describing 
the set of states a model goes through, the internal and external transition functions, the 
output function and the state duration function. DEVS models can be put together by 
linking the outputs of a model to inputs of other models to form coupled models. Models 
made out of only one component are called atomic.  
 
DEVS not only proposes a framework for model construction, but also defines an 
abstract simulation mechanism that is independent of the model itself. This mechanism is 
high level description of how the simulation of DEVS models should be executed by a 
simulator. Two kinds of simulators are defined, one for atomic and another one for 
coupled models, this latter known as a coordinator. These simulators progress through the 
simulation by exchanging messages as described by the abstract simulation mechanism. 
 
Timed Cell-DEVS [Wai01] is a formalism based on DEVS for the simulation of cellular 
models. A cellular automaton is a lattice of cells, each of which has a value and a local rule 
that defines how to obtain a new value based on the current state of the cell and the values 
of neighboring cells. Cells are updated synchronously all at the same time. Timed Cell-
DEVS defines a cell as a DEVS model and a cellular automaton as a coupled model, and 
introduces a new way of defining the timing of each cell which is more flexible than the 
existing synchronous approach. In Timed Cell-DEVS each cell defines its own update 
delay.  
 
CD++ is a tool for the simulation of DEVS and Cell-DEVS models which has been used 
to simulate a variety of models including: traffic, forest fires, ants and watershed simulation. 
Simple models were easily handled by the tool, but lack of state variables and the inability 
to create a number of neighbor ports showed up to be a problem when writing complex 
models. As the workarounds used by the modelers required extra work from their side and 
were time-consuming during the simulation, it was proposed to add these two capabilities 
to CD++. 
 
The aim of this work is to extend CD++ to allow the modeler to declare and use state 
variables to store values inside the cell, and to declare and use multiple neighbor (inter-cell) 
ports to communicate extra values to the neighbor cells. This modification will permit the 
modelers to remove the workarounds, reducing the simulation times, and to reduce the 
writing time for new complex models.   
 
This work is organized as follows. Chapter 2 presents the DEVS and Timed Cell-DEVS 
formalisms. In chapter 3, the previous implementation of CD++ is introduced. Chapter 4 
presents the new structure of CD++ produced by the extension, and chapter 5 shows 
some examples of the utilization of the new features. Finally the conclusions and future 
work. 
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2 The formalisms 

2.1 The DEVS formalisms 

 
Systems whose variables are discrete and the time advance is continuous are known as 
DEDS – Discrete Events Dynamic Systems, as opposed to CVDS – Continuous 
Variable Dynamic Systems [Wai96]. A simulation mechanism for DEDS systems 
assumes that the system will only change its state at discrete time points upon the 
occurrence of an event. An event is formally defined as a change of state that takes place at 

a specific point ti in time, ti  R.  
 
DEVS is a formalism for modeling and simulation of DEDS systems. It defines a way of 
specifying systems whose states change upon the reception of an input event or the 
expiration of a time delay. It also allows for hierarchical decomposition of the model by 
defining a way to couple existing DEVS models. 
 
The original DEVS model is a structure: 
 

DEVS = < X , Y , S,  ext ,  int,  , ta> 
where 
 

X    is the set of external events 
 
Y     is the set of output events 
 
S     is the set of sequential states; 
 

 ext: Q x X → S   is the external state transition function; 
    

  where Q := { (s, e) | s  S , 0  e  ta(s) } and e is the elapsed time since the last 
state transition. 

 

 int: S →  S    is the internal state transition function; 

 

 : S → Y    is the output function; 
 

ta : S → R0 
+     is the time advance function; 

 
The semantics for this definition are as follows. At any given time, a DEVS model is in a 

state s  S and in the absence of external events, it will remain in that state for a period of 

time as defined by ta(s). The ta(s) function can take any real value between 0 and . A state 

for which ta(s) = 0 is called a transient state. On the other hand, if ta(s) = , the system 
will stay in that state forever unless an external event is received. In such a case, s is called a 
passive state. Transitions that occur due to the expiration of ta(s) are called internal 

transitions. When an internal transition takes place, the system outputs the value (s), and 

changes to state int(s).  A state transition can also happen when an external event occurs. In 

this case, the new state is given by  ext based on the input value, the current state and the 
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elapsed time. Figure 2 illustrates this definition by specifying a model of a computer 
processor using DEVS. 
 

A computer processor can be specified as a DEVS model. A processor would have two 
states: busy and available. So 
 
 S = { busy, available } 
 
Jobs will constitute the set of input events and output events. A job arriving on an input 
port will change the processor state to busy. Once the job has been processed it will be 
sent as an output event.  Jobs will be identified with natural numbers, hence 
 
 X = N 
 
 Y = N 
 
Assuming no job arrives while the processor is busy and that the model keeps an internal 
variable with the id of the job it is processing, then the external transition function is 
defined as follows: 
 

 ext (x, e) 
{ 
  s = busy 
  jobId = x 
}  
  
A job will occupy the processor during a random time with a given Poisson distribution, so 
the time advance function is 
 
ta ( busy ) = Poisson() 

ta (available ) =  
 
If the processor is available, then it will remain in that state until an external event arrives. 
 
When the processing time has expired, a state transition will take place. At this time, the 
output function is called followed by the internal transition function. Continuing with our 
description, 
 

( busy ) = jobId 
 

 ext (busy) = available 
 
An internal transition from the available to busy state will never happen because available is 
a passive state. 

(a) 
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(b) 

Figure 2: (a) Specification of a computer processor using DEVS  

(b) DEVS semantics 

 
A coupled model is a structure: 

 
DN = < Xself , Yself , D, {Mi}, {Ii}, {Zi,j}, select) 
 

where 
 

D is a set of components. 
  

for each i  D, 
  
 Mi is a component with the constraint that 

Mi = < Xi , Yi , Si,  ext ,  int,  i, tai) is a DEVS model 
 

for each i  D  { self }, 
 
 Ii is the set of influences of i. 
 

for each j  Ii 

 
 Zi , j is a function, the i - to -j output-input translation  
 
select is a tie-breaker function. 
 

Ii is a subset of D  { self }, i is not in Ii , 
 

Zself,j : Xself → Xj 

 

Zi, self : Yi → Yself 
 

Zi,j : Yi → Xj 

 

select : subset of D → D 
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 such that for any non-empty subset E,  
  

 select ( E )   E 
 
A coupled model groups several DEVS models together into a compound model that can 
be regarded, due to the closure property, as another DEVS model. This allows for 
hierarchical model construction. A DEVS model that is not constructed as a coupled 
model is known as an atomic model.  
 
A coupled model can have its own input and output events, as defined by the Xself and  Yself 
sets. Upon receiving an external event, the coupled model has to redirect the input to one 
or more of its components. In addition, when a component produces an output, it has to 
be mapped as another component’s input or as an output of the coupled model itself. All 
these input-output mappings are defined by the Z function. 
 
When models are coupled together, ambiguity arises when there are more than one 
component scheduled for an internal transition at the same time. The first model to make 
its internal transition will produce an output that may be translated to an external event 
being received by another component model that is already scheduled for an internal 
transition at that time. But then, should this second model process the external transition 
first with e = ta(s)? or is it the internal transition that should be executed first and then the 
external transition with e = 0? The way the DEVS formalism solves this problem is by the 
use of the select function. Only one model of the group of imminent models will be allowed 
to have e = 0. The other imminent models will be divided into two groups: those that do 
receive the external output from this model, and those that do not. The first group will 
execute their external transitions functions with e = ta(s) and the second group will be 
among the group of imminent models for the next simulation cycle, which may require 
again the use of the select function to decide which model will execute first. 
 
This tie-breaking approach is a potential source of errors since the serialization may not 
reflect the correct system’s behavior upon the occurrence of simultaneous events. In 
addition, the serialization reduces the possibility of a speed up in a parallel environment. 
For these reasons, the parallel DEVS formalism was revised giving place to the Parallel 
DEVS formalism [Wai00] [Tro01]. 

2.2 Cellular Automata 

 
Cellular Automata are used to describe real systems that can be represented as a cell space. 
A cellular automaton is an infinite regular n-dimensional lattice whose cells can take one 
finite value. The states in the lattice are updated according to a local rule in a simultaneous 
and synchronous way. The cell states change in discrete time steps as dictated by a local 
transition function using the present cell state and a finite set of nearby cells (called the 
neighborhood of the cell). 
 



 

Extending CD++ Specification Language for Cell-DEVS Model Definition 9 

 
 

 
Figure 3: Sketch of a Cellular Automaton [Wai96] 

 
 

When cellular automata are used to simulate complex systems, large amounts of 
computation time are required, and the use of a fixed interval discrete time base poses 
restrictions in the precision of the model. The Timed Cell-DEVS formalism [Wai01] tries 
to solve these problems by using the DEVS paradigm to define a cell space where each cell 
is defined as a DEVS atomic model. The goal is to build discrete event cell spaces, 
improving their definition by making the timing specification more expressive.  

 

2.3 The Timed Cell-DEVS formalism 

 
Cell-DEVS defines a cells as DEVS atomic models. A Cell-DEVS atomic model is defined 
by [Wai01]: 

 

TDC = < X, Y, I, S, , E, delay, d, int, ext, , , D > 
 
where 

 
X     is a set of external input events; 

 
Y    is a set of external output events; 

 
I    represents the model's modular interface; 

 
S     is the set of sequential states for the cell; 

 

    is the set of the cell’s state variables; 
 

E     is the set of states for the input events; 
 
delay     is the type of delay: transport or inertial; 
 
d     is the transport delay for the cell; 

 

int     is the internal transition function; 
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ext     is the external transition function; 

 

     is the local computation function; 

 

     is the output function; and 
 

D     is the state's duration function. 
 
A cell uses a set of input values E to compute its future state, which is obtained by applying 

the local computation function . A delay function is associated with each cell, deferring 
the output of the new state to the neighbor cells.  There are two types of delays: inertial 
and transport delays. When a transport delay is used, the future value will be added to a 
queue sorted by output time. Therefore, all previous values that were scheduled for output 
but that have not yet been sent, will be kept. On the contrary, inertial delays use a 
preemptive policy: any previous scheduled output value, unless the same as the new 
computed one, will be deleted and the new one will be scheduled. This activation of the 

local computation is carried by the ext  function.  
 

 is defined [Wai02] as s, phase, queue 
 
where: 

Ss  , 

phase {active, passive}, 

queue = }]),,1[,(,/),(),...,,{( 011  +RSvmiNimNmvv iimm  , 

 +

0R  

 
After the basic behavior for a cell is defined, the complete cell space will be constructed by 
building a coupled Cell-DEVS model: 
 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 
 

where 
 

Xlist    is the input coupling list; 
 

Ylist     is the output coupling list; 
 

I=< η, μx, μy, px, py > represents the definition of the interface for the 
modular model whose size is   ,N ; px is the 

set of all input ports (η neighbor ports + μx external 
ports) and py  is the set of all output ports (η 
neighbor ports + μy external ports); 

 
X    is the set of external input events; 

 
Y    is the set of external output events; 

 
n    is the dimension of the cell space; 
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{t1,...,tn}   is the number of cells in each of the dimensions; 
 

N     is the neighborhood set; 
 

C     is the cell space; 
 

B     is the set of border cells; 
 

Z    is the translation function; and 
 

select     is the tie-breaking function for simultaneous events. 
 
 
 
This specification defines a coupled model composed of an array of atomic cells. Each cell 
is connected to the cells defined in the neighborhood, but as the cell space is finite, either 
the borders are provided with a different neighborhood than the rest of the space, or they 
are "wrapped", meaning that cells in one border are connected with those in the opposite 
one. Finally, the Z function defines the internal and external coupling of cells in the model. 
This function translates the outputs of m-th output port in cell Cij into values for the m-th 
input port of cell Ckl. Each output port will correspond to one neighbor and each input 
port will be associated with one cell in the inverse neighborhood.  
 
 

 
Figure 4: Informal definition of a Cell-DEVS model [Wai98] 

 
 
The select function serves the same purpose as in the original DEVS models: to tie-break 
between imminent components.  
 
The use of the select function introduces similar problems to those described for coupled 
DEVS models: lack of parallelism exploitation and a probable inconsistency with the real 
system. In addition, the timed Cell-DEVS was restricted to one input from each input port. 
Such restriction do not allow [Wai00]: 
 

• zero-delay transitions 

• external DEVS models sending two simultaneous events to the same cell. 
 
Forbidding zero-delay transitions is too restrictive, and so is allowing only one event per 
external model, specially after the Parallel DEVS formalism allowed a basic model to send 
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more than one event at a time. These were enough reasons to revise Cell-DEVS and the 
Parallel Cell-DEVS formalism was proposed. This latter formalism will not be described 
here because it does not directly affect this work. Please refer to [Wai00] and [Tro01] for 
further information. 
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3 Previous CD++ Architecture 
 
The CD++ architecture is based on the proposition made on [Wai97]. Even if the first 
versions were somehow limited [Bar98], it continued evolving [Rod99c] [Tro01]. 
 
The architecture is briefly described in this section. However, not all the components are 
described. The description will be provided only for the most important components or 
those affected by this work. For more detailed information refer to [Rod99c]. 

3.1 Model hierarchy 

 
Models describe the wanted behavior in a simulation. Atomic models are the basis for coupled 
models which interconnect atomic models creating a larger model. All these models have 
common characteristics. 
A few classes are used to create all these objects during a simulation [Rod99c]. The abstract 
class Model is the root of this tree. Being an abstract class, it cannot be used to instantiate 
objects. 
 

 

Model 

Atomic Coupled 

CoupledCell AtomicCell 

Transport 

DelayCell 

Inertial 
DelayCell 

 
 

Figure 5: Model hierarchy [Rod99c] 

 
 

Note: This version of CD++ does not support flat coupled cell models. This fact made 
this type of models become uninteresting for this work, and thus all reference to 
them has been skipped. 

 

3.1.1 Model 

This is the basic abstract class, from which all the models are subclasses. It is responsible 
for: 

• managing all the input and output ports, 

• knowing when the next event is scheduled, 

• knowing its identifier and its parent model. 
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3.1.2 Atomic 

This abstract specialization of the model class represents the interface of an atomic model. 
In addition to all the responsibilities inherited from model, it also provides the interfaces for: 

• the initialization function, 

• the internal and external transition functions, 

• the output function, 

• changing the model’s state. 

3.1.3 AtomicCell 

A new abstract class is a specialization of the Atomic class. It provides the interfaces for the 
cells of a cellular model. Its responsibilities are: 

• knowing the local computation function, 

• the cell’s neighborhood, 

• the available ports, 

• the cell’s value. 
 
When an instance of a non-abstract subclass is created, this class will take care of notifying 
the neighbor cells the cell’s initial value. The neighborChange input port and out output port 
are created. The rest of the input and output ports are created dynamically as needed. 
These dynamic ports are stored in two lists named in and output. A local computation 
function is associated to each input port, in order to allow the cell to have a different 
behavior when a value arrives through a port. 

3.1.4 TransportDelayCell 

This is a non-abstract subclass of AtomicCell. It represents the cells that use a transport 
delay, by redefining the behavior internal transition, external transition and output 
functions. The transport delay applies a FIFO policy to the events. Any new event will be 
queued waiting to be executed latter. 

3.1.5 InertialDelayCell 

Another non-abstract subclass of AtomicCell. It represents the cells that use an inertial delay, 
by redefining the behavior internal transition, external transition and output functions. 
When an event arrives, the cell evaluates its local computation function, getting a value and 
a delay. If the remaining time for the next scheduled event is greater than 0, the value is 
removed and the next event is re-scheduled with the new delay. 

3.1.6 Coupled 

This specialization of model represents a coupled model. It groups other models, which in 
turn can be atomic or coupled, and creates a larger model by assembling the basic models. 
Its is responsible for: 

• having a list of basic models, 

• providing the means to manage that list. 

3.1.7 CoupledCell 

This class is a specialization of the Coupled class, and represents a particular type of coupled 
model: cellular coupled models. Its responsibilities are to know: 

• the cell lattice, its dimension and size, 

• the type of delay and the default delay, 
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• the type of border, 

• the initial value for each cell, 

• the default local computation function, and 

• the zones with alternate behavior. 
 
It is also responsible for the creation of the cell lattice and linking the cells with each other. 

3.2 Processor hierarchy 

 
Processors’ main responsibility is to provide the needed simulation mechanisms for models 
to execute their behavior. The abstract root class Processor receives messages and 
executes the corresponding actions. 
 
 

 

Processor 

Simulator Coordinator Root 

Coordinator 

CellCoordinator 
 

 
Figure 6: Processor hierarchy [Rod99c] 

 

Note: As already stated, this version of CD++ does not support flat coupled cell models. 
This fact made this type of models become uninteresting for this work, and thus all 
reference to them has been skipped. 

 
The class RootCoordinator is the root of the component tree in a simulation. Simulator 
and Coordinator are the processors responsible for executing atomic and coupled models 
respectively. CellCoordinator is a special coordinator dedicated to cell coupled models. 
 
During the simulation, there is a relation 1–to–1 between models and processors: each 
model has a unique processor exclusively dedicated. The relation between models and 
processors is given by the pairs Atomic-Simulator, Coupled-Coordinator and CellCoupled-
CellCoordinator. 

3.2.1 Processor 

This class is the basic abstract class for processors and represents the simulation 
mechanism used. It is responsible for: 

• receiving messages of any type,  

• knowing the associated model, 

• knowing its parent processor, and 

• sending the output messages to its parent processor. 
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3.2.2 Simulator 

This subclass is a specialization of the Processor class. It is capable of executing only atomic 
models.  It is charged of: 

• forwarding the input messages to the atomic model, and 

• sending to its parent processor the scheduled time for its associated atomic model’s 
next event. 

3.2.3 Coordinator 

Another specialization of Processor, this subclass is represents the simulation mechanism for 
coupled models. It is responsible for: 

• forwarding the initialization messages to all its children processors, 

• forwarding the external and output messages to the corresponding influenced 
processor, and 

• forwarding the internal messages to the imminent processor. 

3.2.4 RootCoordinator 

This subclass is another specialization of Processor. It represents the root of the processor 
tree from which the simulation starts. Only one instance can exist. It is the only processor 
which has no associated model, and it has special responsibilities: 

• starting and stopping the simulation, 

• managing the external events, 

• output the received output messages, and 

• increment the time during the simulation. 

3.2.5 CellCoordinator 

As a specialization of the Coordinator class, this class coordinates cellular models. It is 
charged of: 

• selecting the imminent model, 

• the management of the output messages to avoid duplicated messages being send 
to the cells (because they only indicate the need of state recalculation), but 

• not filtering an external value, as in any other model. 

3.3 Model and Processor Administration 

 
Models and processors used during the simulation are created when the model description 
file is read, and destroyed when the simulation finishes. For models and processor to be 
able to reference other models and processors, there must exist a mechanism capable of 
getting a reference out of their name. This is the function of the administrators. 

3.3.1 ProcessorAdmin 

This class administers all the processors participating to the simulation. Because only one 
instance of this class must exist, it must be know of all the components of the simulation. 
This only instance is named SingleProcessorAdmin and it is responsible for: 

• The creation of all the processors (root coordinator, simulators, coordinators and 
cell coordinators), and 

• It is capable of retrieving a processor from its identification. 
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3.3.2 ModelAdmin 

Similar to ProcessorAdmin, this class administers the models used in the simulation. Because 
all the models have an associated processor, their creation happens simultaneously.  Only 
one instance of this class must exist. It is publicly known and is named SingleModelAdm. 

3.4 Message Passing 

 
Message passing between processors is the basis for the simulation mechanism. There must 
be as many different massage types as event types in the formalism. Also, each message 
could carry information specific to the type of event it represents.  
 
As the message passing mechanism is encapsulated, the message distribution policy can be 
changed without impacting the rest of the modules. The currently chosen policy is FIFO, 
as the sending of a message will happen only when the model finished processing the 
previous one. This policy produces a sequential simulation. 
 

 
Figure 7: Message hierarchy [Rod99c] 

3.4.1 Message 

This is the root abstract class for all messages. It is responsible for knowing the time of the 
message and its sender. 

3.4.2 InitMessage 

This subclass of Message represents the message that the processors receive when the 
simulation begins. It has no extra information. 

3.4.3 InternalMessage 

As a specialization of Message, this class indicates to the destination processor that the time 
for an internal event has arrived. It corresponds to the * message in the DEVS formalism. 

3.4.4 ExternalMessage 

A subclass of Message that represents the arrival of an external event. It corresponds to the 
X message in the DEVS formalism. In addition to the information provided by Message, 
this class includes: 

• the port of arrival, and 

• the value. 

Message 

Model sender 
Time msgTime  

InternalMessage 

 

ExternalMessage 

Port dest 
Value value 

DoneMessage 

Time
 nextChange 

OutputMessage 

Port dest 
Value value 

InitMessage 
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3.4.5 DoneMessage 

This specialization of Message represents the message that a processor receives from one of 
its child processors indicating the time for the child’s next state change. It corresponds to 
the Done message in the DEVS formalism. 

3.4.6 OutputMessage 

Another subclass of Message. This one represents the output messages. It corresponds to 
the Y messages in the DEVS formalism. In addition to the information provided by its 
superclass, it includes: 

• the output port, and 

• the value. 

3.4.7 MessageAdm 

This class does not represent a message, but the encapsulation of the message passing 
mechanism. It manages the requests for sending messages between processors. Only one 
instance exists, which is publicly known, and is named SingleMessageAdm. It works by 
queuing the messages that processors want to send to other processors, until it is said to 
send the messages. 

3.5 Rule Evaluation Hierarchy 

3.5.1 SyntaxNode 

This abstract class describes a node of a rule’s evaluation tree. Type checking is done in 
tree itself because each construction knows the required type of its parameters. The tree is 
constructed by the function yyparse, which is generated by yacc from the grammar 
specification. 
 
 

 

SyntaxNode 

ConstantNode 

CountNode 

VarNode 

OpNode 

AbsCellPosNode TimeNode 

StringNode PortRefNode 

BinaryOpNode ThreeOpNode UnaryOpNode FourOpNode 

SendPortNode 

RuleNode SpecNode 

 
 

Figure 8: Class hierarchy for the tree nodes representing the rules 

 
This class includes the methods: 

• evaluate: returns the result of the evaluation of the node, 

• checkType:  checks the types of the node, 

• name:  returns the name of the node, 

• print:  show information about the node in the specified stream. 
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3.5.2 SpecNode 

This class is a specialization of SyntaxNode and represents a list of rules and includes 
methods to add new rules and to look for a valid rule. A node of this class implements the 
local computation function and the method evaluate executes it. 

3.5.3 RuleNode 

This subclass of SyntaxNode represents a rule. It includes the expressions for the three parts 
of the rule: value, delay and condition. The method evaluate evaluates the expression which is 
the condition of the function; the method value returns the result of the evaluation of the 
expression in the value part of the rule; and the method delay evaluates the subtree for the 
delay part. 

3.5.4 VarNode 

This class a specialization of SyntaxNode is represents a reference to a neighbor cell, defined 
as an offset from the center of the neighborhood (the cell whose local transition function is 
being computed). 
 

Note: The name of this class is out-dated. In the beginning the only available variables 
in a rule’s specification were the references to other cells. With N-CD++ 
[Rod99a] and this work, other variables were introduced. Those new variables 
are not represented by this class, making its name incorrect, but it was decided 
to keep the original name. 

3.5.5 ConstantNode 

This subclass of SyntaxNode represents a constant value in a rule. The accepted types are 
real, integer and three-state Booleans, although all of them are mapped to the class Real. 
When a reference to a symbolic constant (t, f, ?, pi, light, etc) is found in a rule, it will be 
converted to its numeric value before creating the ConstantNode object. 

3.5.6 PortRefNode 

This specialization of SyntaxNode represents a reference to an input port. When evaluated it 
returns the last value arrived through that port. The port must be one of the dynamic ports 
introduced by [Rod99c], those linked to the coupled model’s input ports. 

3.5.7 StringNode 

This class is a specialization of SyntaxNode that stores a character string and represents a 
port name. 

3.5.8 SendPortNode 

This subclass of SyntaxNode is used to send a value through an output port. The port must 
be one of the dynamic ports introduced by [Rod99c], those linked to the coupled model’s 
output ports. 

3.5.9 TimeNode 

This is a specialization of SyntaxNode that represents the function time. Its evaluation 
provides the simulation time. 
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3.5.10 AbsCellPosNode 

A subclass of SyntaxNode that represents the function cellpos which returns the part of the 
position of the cell evaluating its local computation function. 

3.5.11 CountNode 

Another specialization of SyntaxNode, this one permits to count the number of neighbor 
cells that have a particular value. It is used by TrueCount, FalseCount, UndefCount and 
StateCount. 

3.5.12 OpNode 

This is a template of an abstract subclass of SyntaxNode. It represents the functions that 
take one or more arguments. 

3.5.13 UnaryOpNode 

This is a template abstract subclass of OpNode that represents a function with exactly one 
argument. Its template parameters are the operation, the type of the returned value and the 
type of the argument; and it has one member which is a pointer to the syntax node that 
represents the argument. 
 
This class is used to instantiate specialized subclasses by instantiating the template 
parameters, creating in this way the classes for each unary function available in the 
language, such as not, even, odd, etc. 

3.5.14 BinaryOpNode 

This is a template abstract subclass of OpNode that represents a function with exactly two 
arguments. Its template parameters are the operation, the type of the returned value and 
the type of the arguments (all of them of the same type); and it has two members which are 
pointers to the syntax node that represent each argument. 
 
This class is used to instantiate specialized subclasses by instantiating the template 
parameters, creating in this way the classes for each binary function available in the 
language, such as and, +, max, etc. 

3.5.15 ThreeOpNode 

This is a template abstract subclass of OpNode that represents a function with exactly three 
arguments. Its template parameters are the operation, the type of the returned value and 
the type of the arguments (all of them of the same type); and it has three members which 
are pointers to the syntax node that represent each argument. 
 
This class is used to instantiate specialized subclasses by instantiating the template 
parameters, creating in this way the class for the only function taking three arguments 
available in the language: if. 

3.5.16 FourOpNode 

This is a template abstract subclass of OpNode that represents a function with exactly four 
arguments. Its template parameters are the operation, the type of the returned value and 
the type of the arguments (all of them of the same type); and it has four members which 
are pointers to the syntax node that represent each argument. 
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This class is used to instantiate specialized subclasses by instantiating the template 
parameters, creating in this way the class for the only function taking four arguments 
available in the language: ifu. 

3.5.17 Classes For Operations And Functions 

These are the non-abstract classes derived from UnaryOpNode, BinaryOpNode, ThreeOpNode 
and FourOpNode. They are created by instantiating the template parameters of the 
mentioned super-classes, and represent each operation or function available in the 
language, such as not, and, if, ifu, etc. 

3.5.18 Parser 

This class is completely independent from the SyntaxNode hierarchy, but it is the class that 
implements the parser. This is the reasons for studying it in this section. 
 
To evaluate the rules their specification must be previously translated into an evaluation. 
This class encapsulates the creation of the evaluation tree for the rules. This tree is created 
by the code automatically generated by yacc and is composed syntax nodes (instances of 
subclasses of SyntaxNode). 
 
This class has only one instance named SingleParser. 

3.5.19 LocalTransAdmin 

Similarly to Parser, this class is not a subclass of SyntaxNode but is very closely related to the 
evaluation of the rules. That is the reason to study it here. 
 
To evaluate the rules their specification must be previously translated into an evaluation 
tree by the SingleParser object. As most of the cells have the same local computation 
function, the generated tree is associated an identifier, and each cells stores the 
corresponding identifier. This class provides the means of executing a function provided 
the identifier. 
 
There is only one instance of this class named SingleLocalTransAdmin. 

3.6 Starting the simulation 

3.6.1 ParallelMainSimulator 

This class is the one that manages the simulator initialization. It is responsible for: 

• creating the model tree (includes loading the cells), 

• creating the processor tree, 

• linking the models, 

• providing the external events to the RootCoordinator, 

• determination the finish simulation time, and 

• starting the simulation using RootCorrdinator’s run method. 
 
There is only one instance of this class. In this case the single instance is managed 
differently from the other cases. This class has a static method names Instance that returns 
a reference to the only object of the class. 
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4 New CD++ Architecture 

4.1 Overview  

 
The previous implementation of CD++ had two main limitations: it had no support for 
state variable, and the set of neighbor ports was fixed. 
 
CD++ had no support for multiple state variables. To work around this problem, 
modelers needed to use extra planes in their cell space, and create as many new layers as 
state variables they needed. For instance, when one state variable was needed in a planar 
cell space, the solution was to create a three-dimensional cell space with two planar layers. 
The layer 0 (x, y, 0) was used for the cell value, and the other layer (x, y, 1) to store in the 
upper cell’s value, the lower cell’s state variable’s value [Ame00]. An example of this 
technique can be seen in 5.2.1. One of the extensions presented in this work removes this 
restriction. The user can still define multidimensional models representing different 
phenomena, but each of the planes can include cells with multiple state variables, 
permitting to define more complex phenomena. 
 
The second limitation mentioned is the fixed set of neighbor ports. The neighbor ports 
are the ports (for input and output) used to send values from one cell to another, in a 
coupled cell model. The previous implementation of CD++ had only one port for input 
and one for output. Both were automatically created together with the cell. These ports 
were referenced as neighborChange and out, for input and output respectively. It is important 
to differentiate these ports from those used to receive from, or send to the exterior of the 
cell coupled model. These latter ports are created automatically in only those cells affected 
by the arrival of external messages or by those supposed to send output messages. 
 
Back to section 2.3, it can be said that the previous implementation had the following 
limitations: 
 

outp
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After this modification, the user can define which neighbor ports will be used in the model 
and is no longer limited to only one. 

4.2 Language Extensions 

 
The first step in the way to add state variables and ports to CD++ is to be able to declare 
them and later reference them in the rules. The specification language has been extended to 
support this. 

4.2.1 State Variables 

In this section are described the extensions to the language required to declare and use the 
state variables. 
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4.2.1.1 Declaring State Variables 

To be able to declare and initialize the state variables, three new keywords have been added 
to the language: StateVariables, StateValues and InitialVariablesValue. The first one 
declares the list of state variable existing in every cell. The second one is the set of default 
initial values for the states variables. And the last one, provides the name of a file where the 
initial values for some particular cells are stored.  
 
StateVariables: pend temp vol 

StateValues: 3.4 22 -5.2 

InitialVariablesValue: initial.var 

 
In this example three state variables are declared: pend, temp and vol. Except that in the file 
initial.var other values are specified for a subset of cells, the state variables of every cell will 
be initialized with the values 3.4, 22 y -5.2 respectively. 
 
The format for the initial values file is quite simple. Each line references a unique cell, 
followed by an “equal” sign (=) and the list of initial values for every state variable in the 
cell. The initial values must be separated by, at least, one space character. The values will be 
assigned to the state variables following the order in which they are listed in the sentence 
StateVariables. 
 
(0,0,1) = 2.8 21.5 -6.7 

(2,3,7) = 6 20.1 8 

 
The first line will assign to the variable pend of the cell (0,0,1) the value 2.8; to the variable 
temp of the same cell, the value 21.5; and the value -6.7 to the variable vol of the same cell. 
The second line will assign respectively the values 6, 20.1 and 8, to the variables pend, temp 
and vol in the cell (2,3,7). 

4.2.1.2 Referencing state variables 

The state variables can only be referenced from within the rules that define the cells’ 
behavior (local computation function). A variable is referenced by its name, as it was declared in 
the StateVariables sentence, preceded by a dollar sign ($), from any part of a rule. 
 

rule: { (0,0,0) + $pend }  10  { (0,0,0) > 4.5 and $vol < 22.3 } 

4.2.1.3 Assigning values to the state variables 

The identifier ‘:=’ is used to assign values to a state variable. Any expression returning a 
numeric value can be placed on the right side of the assignation, but on the left side, there 
can only be a reference to a state variable. 
 
Contrarily to what happens with the references, the assignations can only be placed in a 
new part of the rules specifically created for this purpose. 
 

<value> [ { <assignations> } ] <delay> <condition> 

 
The new part is optional, and if present, it must be enclosed between curly brackets. The 
contents is a list of assignations, each one followed by a semi-colon. 
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rule: { (0,0,0) + 1 } { $temp := $vol / 2; $pend := (0,1,0); } 

                      10 { (0,1,0) > 5.5 } 

 
In the example, if the condition happens to be true, the variable temp will be assigned half 
of vol´s value, pend will be assigned the value of the neighbor cell (0,1,0), and vol’s value will 
remain unmodified. This assignations are executed immediately, which means that they are 
not delayed, as happens to the output value. 
 
It is important to notice that the assignations are done from left to right. Because of this, 
the two following rules are not equivalent. 
 
rule: 5 { $vol := 1; $temp := $vol; } 10 { t } 

rule: 5 { $temp := $vol; $vol := 1; } 10 { t } 

 
After executing the first rule, both vol and temp will have the value 1. On the contrary, when 
the second rule is executed, vol will have the value 1, but temp will have vol´s previous value. 

4.2.2 Neighbor Ports 

This section describes the extensions done to the language in order to support the use of 
multiple neighbor ports. In addition to how to declare and reference them, this section 
include some extra modification needed to keep the language coherency. 

4.2.2.1 Port Declaration 

Only one keyword was added to the language: NeighborPorts. This keyword takes as its 
argument a list of neighbor port names.  Notice that only one keyword was added, but 
there are two lists of ports (px and py). The input and output neighbor ports share the 
names, making possible to calculate automatically the influences: an output port from a cell will 
influence exclusively the input port with the same name in every cell in its neighborhood. 
 

NeighborPorts: alarm weight number 

 
In this example three ports are declared and their names are alarm, weight and number. All the 
cells will have three input neighbor ports with these names and three more neighbor ports 
with the same names but dedicated to output values. When a cell outputs a value through 
one of these ports, it will be received by all its neighbor cells through their input ports with 
the same name. 
 
If this keyword is not present in the model description, then the simulator will work in 
compatibility mode, behaving as the previous implementation. 

4.2.2.2 Reading Values Arrived Through The Input Ports 

A cell can read the value sent by one of its neighbors. To do so, it will be necessary to 
specify which port the value must have arrived through. 
 
Before this modification was done, because the only available input neighbor port was 
neighborChange, there was no need to name it, it was enough to name the cell in which the 
modeler was interested. Currently the modeler must name both the cell and port through 
which the value must have arrived. The way to do it is to reference the cell in the same way 
as before, but now the input port reference must follow, separated by a tilde (~): 
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rule : 1 100 { (0,1)~alarm != 0 } 

 

4.2.2.3 Sending Values Through The Output Ports 

An important modification has been done here. So far, a rule looked like this: 
 

<value> [ <assignations> ] <delay> <condition> 

 
(Notice the assignations part introduced in 4.2.1.3). 
 
The <value> part used to be an expression that evaluated to a single value which was sent 
through the only output port. As there are currently many possible ports through which the 
value can go out, the desired port will have to be specified. The way to express this output 
functions is by “assigning” the values to the output neighbor ports. The new format for the 
rules is now: 
 

<port_assignations> [ <assignations> ] <delay> <condition> 

 
Similarly to the assignations part, the <port_assignations> part of the rule must be 
enclosed between curly brackets. In this case, the port is referenced preceded by the tilde 
(~), but the cell reference should no be included. 
 
As it can be necessary to output values through many ports at the same time, the 
“assignation” can be used as many times as needed. Each one must be followed by a semi-
colon. 
 
rule: { ~alarm := 1; ~weight := (0,-1)~weight; } 100 

                                           { (0,1)~number > 50 } 

 
Keep in mind that from now on, the <port_assignations> part no longer evaluates to a 
single value, but is a sequence of output operations. 
 
The preexisting function send() is still available. This function sends values out of the 
coupled model and not just out of the cell to its neighbors. Something similar happens with 
the function portref() which reads values from outside the coupled model. Both these 
functions can still be used and even mixed with the new ones. 
 
rule: { ~alarm := 0; send(alert, 1); } 100 

                          { portref(alert) = 0 and ~alarm != 0 } 

 

4.2.2.4 Collateral effects 

As a result of this modification, some extra changes to the language were needed to keep it 
coherent. 
 
The most important change happened to the StateCount function. This function used to 
take a value as its argument and returned the number of neighbor cells that had exported 
that value through their out port. In other words, it counted the number of times the 
argument arrived through the input neighbogChange from different neighbor cells. Because of 
the many possible ports that a cell can now have, the function will now take a second 
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argument which is the name of the port. If the second argument is not present, the function 
will execute in compatibility mode and will consider that the port is out. 
 

rule: { ~alarm := 1; } 100 { statecount(1, ~alarm) >= 4 } 

 
However, some functions kept their semantics intact. This is the case of the functions 
TrueCount, FalseCount and UndefCount. The rational for these functions not accepting 
a port name is that the changes needed implied a reorganization on the parser and the 
dictionary internally used to recognize them, and because their behavior can be simply 
emulated using the StateCount function. The following example show how to replace the 
function UndefCount. 
 

rule: { ~alarm := 1; } 100 { statecount(?, ~alarm) >= 7 } 

 
Another important change is that a cell’s initial value, however it is introduced in the 
model, will affect all the cell’s neighbor ports. 

4.3 Modifications to the Simulation Mechanism 

 
Even if both modification have a small common part, they are mainly separate. That is why 
they are analyzed separately in this work, except for the common part which is described 
first. 

4.3.1 Common Modifications 

A few modifications are used by both features. This sections describes these common 
modifications. Please notice that this section does not cover the case of classes that were 
affected by both improvements, but whose changes have nothing in common. These cases 
are treated separately. 

4.3.1.1 New Classes 

4.3.1.1.1 ListNode 

 
This class represents a node of the evaluation tree which is a list of syntax nodes. In 
particular this node represents the sequence of assignations that the modeler can now 
express. The syntax nodes in this list can be assignations to state variables or assignations 
to neighbor ports. Since the class has no restriction on the type of nodes it includes, as long 
as they are SyntaxNodes, it is up to the user to check the types and how they are used. 
 
class ListNode: public SyntaxNode 

{ 

public: 

   ListNode(); 

   ~ListNode();  

 

   const string name(); 

   Real evaluate(); 

   SyntaxNode *clone(); 

   const TypeValue &type() const; 

   ostream &print(ostream &os); 
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   bool checkType() const; 

 

   void add(SyntaxNode *sn); 

   list<PortValue> getPortValues(); 

 

private: 

   typedef list<SyntaxNode *> SynNodeList; 

  

   ListNode(SynNodeList &snl); 

  

   SynNodeList NodeList; 

}; 

 
In addition to all the methods required by the abstract class SyntaxNode, from which this is 
a subclass, two new methods are included. One of these methods is add, which is used to 
add a new node to the front of the list. Note that this method describes the policy deciding 
the order in which the assignation are done. If instead of adding the node in front of the 
list, it would add it at the back, the assignations would be done from right to left. 
 
The other new method is getPortValues, which is specially present for the port 
assignations. Its functions is to provide the caller with a list of pairs port-value. PortValue 
is a type defined specially for the ports extension and is described in 4.3.3.2.1. Briefly, it 
includes a value and the name of the port through which it must be exported. The reason 
for this method to exist is that the method evaluate is designed to return one value, and 
not a list of assignations. In other classes, when there was need to execute some action, the 
action was executed inside this method and simply returned 0. This trick could not be used 
here because the actions were executed immediately, but the port assignations (output of 
the values) must be delayed. This new method provides the means for getting the results 
early enough to use them internally for checking, but using them after the delay. 

4.3.1.2 Modified Classes 

4.3.1.2.1 Parser 

 
#define VAR_PREFIX     '$' 

#define PORT_PREFIX    '~' 

 

class Parser 

{ 

private: 

   int analizeToken(string &token, bool &consumed, 

                    string &text); 

   int nextToken(); 

}; 

 

void printToken(string &t, int tipo); 

 

 
This class is responsible for the lexical analysis of the model description file. The method 
analizeToken is responsible for identifying tokens from a lexeme. It has been modified to 
recognize, is addition to all the already recognized token, four new tokens: 
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• a state variable, 

• a port name, 

• the assignation operation, and 

• the end of an operation on a sequence. 
 

The lexeme for the state variable token (STVAR_NAME) is a text string prefixed by the 
character specified by the macro VAR_PREFIX. Similarly, the PORT_NAME is a string 
prefixed by the PORT_PREFIX. However, there is a remark to make at this point: port 
names were already identified, but in very particular situations. For instances, in the 
previous implementation, a text string was considered to be a port name only if it was the 
first parameter of one of the two functions that used ports: send and portref. Currently, 
both cases are identified and recognized as the same token. Finally, the lexeme “:=” is 
recognized as the OP_ASSIGN token and the lexeme “;” is recognized as the token ;. 
 
Other methods and functions needed to be updated to deal with the new tokens. They are 
the method nextToken, charged of reading the next lexeme; and the function 
printToken, charged of printing the debug information about the recognized tokens. 

4.3.1.2.2 RuleNode 

 
class RuleNode: public SyntaxNode 

{ 

public: 

   RuleNode(ListNode *v = NULL, ListNode *a = NULL, 

            SyntaxNode *d = NULL, SyntaxNode *be = NULL); 

   ~RuleNode(); 

 

   Real assign(); 

   list<PortValue> value(); 

 

private: 

   ListNode *val, *asgn; 

   SyntaxNode *dly, *boolExp; 

}; 

 
This class represents a rule in the description language. One member was added and one 
member was modified. The val member, which represents the part value of the rule, was 
modified to be a pointer to a list of nodes NodeList, instead of a pointer to a SyntaxNode as 
it used to be. Even if there was no real need to change the type (because NodeList is a 
subclass of SyntaxNode), it was done to help the compiler detect possible errors. 
 
The new member in the class is named asgn, and represents the assignation part of the 
rule. It is also a NodeList. 
 
The constructor and destructor have been modified to cope with these two changes. The 
method value was adapted to return the list of portname-value, instead of just a Real, and 
the new method assign executes the assignations. 

4.3.1.2.3 SpecNode 

 
class SpecNode: public SyntaxNode 
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{ 

public: 

   list<PortValue> value() const; 

   Real evaluate(); 

 

private: 

   list<PortValue> lastValue; 

}; 

 
The modified method value and member lastValue existed already in this class. They used 
to deal with Real values, but now they return a list of portname-value. 
 
The most important change happened to the evaluate method. This method is the one 
that executes the rules. It now executes the assignations just before evaluating the 
<port_assignations> part of the executed rule, but after having calculated the delay. The 
only modification related with the ports management is that now the lastValue member is 
emptied instead of being reset to 0. The rest of the work is done by the supporting classes. 

4.3.1.3 Modifications to the grammar 

After having modified the lexical analyzer, it was the turn for the grammar.  The changes 
are described using top-down approach. The whole grammar can be found in the 
Appendix A. 

4.3.1.3.1 Rule 

 
Rule :  

   AssignResult Resultado '{' BoolExp '}'  

   | AssignResult '{' AssignSet '}' Resultado '{' BoolExp '}' ; 

 
The new language rule format is recognized, but in a way that also accepts rules in the old 
format, assuring the compatibility of the models. 
 
Two changes can be seen: 

• The <value> part is now an AssignResult and no longer a Resultado, and 

• the optional AssignSet is introduced. 
 
Two grammar rules were needed instead of just one to solve an ambiguity problem. 

4.3.1.3.2 AssignResult 

 
AssignResult : 

   Resultado 

   | '{' PortSendSet '}' ; 

 
This rule recognizes two sub-trees. The sub-tree PortSendSet is a list of output operations 
through output ports. The sub-tree Resultado is only recognized for compatibility reasons. 
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4.3.1.3.3 PortSendSet 

 
PortSendSet : 

   /* Empty */ 

   | PortSend PortSendSet; 

 
The list of outputs to neighbor ports can be empty or an output operation followed by a 
list of outputs. 

4.3.1.3.4 PortSend 

 
PortSend : 

   SEND '(' PORTNAME ',' RealExp ')' ';' 

   | PORTNAME OP_ASSIGN RealExp ';'      ; 

 
An output operation can be either a send function with a port name and a value as 
arguments, or a neighbor port assignation. Both cases must be finished by a semi-colon 
(;). 
 
Except for RealExp, all the components of the rule are basic token provided by the lexical 
analyzer. 

4.3.1.3.5 RealExp 

 
RealExp :  

   IdRef 

   … 

 
This rule was not affected itself, but it did one of its components: IdRef. 

4.3.1.3.6 IdRef 

 
IdRef :  

   CellRef OptPortName 

   … 

 
This rule recognizes the references to identifiers. In particular references to cells (CellRef). 
Now the cells can be followed by a reference to the port (OptPortName) whose value we 
are interested in. Because the compatibility must be assured, this second part of the rule is 
optional. 

4.3.1.3.7 OptPortName 

 
OptPortName : 

   /* Empty */ 

   | PORTNAME ; 

 
A reference to the port is just a token representing its name. However, as this rule is 
optional, also an empty value is accepted. 
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4.3.1.3.8 AssignSet 

 
AssignSet : 

   /* Empty */ 

   | Assign AssignSet  ; 

 
This rule is a component of the rule Rule (4.3.1.3.1). It represents a list of assignations to 
state variables. 
It can be empty or an assignation operation followed by a list of assignations to state 
variables. 

4.3.1.3.9 Assign 

 
Assign : 

   STVAR_NAME OP_ASSIGN RealExp ';' ; 

 
This rule recognizes the operation that assigns a value (RealExp, 4.3.1.3.5) to a state 
variable reference. Both STVAR_NAME and OP_ASSIGN are basic token recognized 
by the lexical analyzer. 

4.3.2 State Variables 

4.3.2.1 Overview 

From a high level point of view, the modifications done to the simulator for it to be 
capable of providing state variables are not really complex. A new class representing a set 
of state variables and their values was created. An instance of this class is a member of the 
state of each cell. The classes AtomicCellState and AtomicCell were modified to cope with this 
new object. The modifications include new methods to get and set the values of the 
variables, identified by their name. 
In addition, the parser was modified to recognize the state variable references, new syntax 
nodes were created to handle the assignations in the evaluation tree, and some existing 
syntax nodes were modified to deal with the new nodes. 

4.3.2.2 New Classes 

Some classes were created to add support for state variables to CD++. Those classes are 
described in detail hereafter: 

4.3.2.2.1 StateVars 

This class was created to store a set of state variables and their values. An object of this 
class is created empty, and the state variables are added to the set afterwards together with 
their initial values. The necessary methods to do this are part of the class. 
 
When the models are being loaded, an empty object of this class is created. Later on, the 
state variables declared by the modeler are added to the set. At the same moment, the 
default initial values are assigned to the variables if the modeler provided them. If the 
modeler did not provide the list of default initial values, the undefined value is used. 
 
Once the set is created and initialized, the object is given to the object of the class 
CoupledCell. Subsequently, it will clone the object getting copies that will assign to every cell. 
From this moment on, each cell will use its own independent object StateVars, even 
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thought that all of them are identical, containing the same state variables and initial values, 
but the values will evolve independently for each cell. 
 
Before starting the simulation, but still during the model loading, if the modeler defined an 
initial values file, these values will be assigned to the state variables in the corresponding 
cells. 
 
Once started the simulation, the state variables’ values will be read and modified in each 
cell according to the rules defining the local computation function. 
 
An object of this class is the set of state variables (and their values) of a cell. 
 
class StateVars : protected map<const string, Real> 

{ 

public: 

   inline bool exist(const string& name) const;    

   bool createVariable(const string& name, 

                       Real& value = Real::tundef); 

   Real &get(const string &name) const;            

   Real &set(const string &name, Real &newValue);  

   StateVars& operator=(const StateVars &src); 

   StateVars& setValues(const string &values); 

   string asString(void) const; 

   inline void print(ostream& os) const; 

   void clear(); 

         

protected: 

   inline bool exist(int index) const; 

   const string& operator[](int index) const; 

 

private: 

   map<int, string> order; 

}; 

 
Because it is a subclass of map<const string, Real>, the name of the state variable is used as 
the key to access the values. 
 
The default constructor will create an empty state variables set. The state variables will be 
created subsequently by calling the method createVariable. In the case that the variable 
already exists, this method returns False and the set is not modified. The method exist is 
used to know whether a state variable exists and the methods get and set are used to 
access the variables’ values. 
 
The private member order exists to keep a relation between the state variables and the order 
in which they were created. Even thought that the state variables are referenced by their 
name, there exists a case were they are accessed by the creation order: the method 
setValues assigns a list of values to all the state variables in the object. This method is 
called only during the simulator initialization when reading the values from the initial values 
file. 
 
For internal use of the method setValues, the method exist and the operator [ ] are 
available. Both take an integer representing the index (creation order) of a state variables. 
That is the reason why these functions are protected. 
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Finally, the method clear is in charge of emptying the state variables set, and the operator 
= copies in the self object (the object where the method is called), the object passed as 
argument. 

4.3.2.2.2 StateVarNode 

A subclass of SyntaxNode that represents the state variables references in the evaluation 
tree. This class identifies a state variable referenced from a rule, to be able to evaluate it. 
 
class StateVarNode: public SyntaxNode 

{ 

public: 

   StateVarNode(const string &VarName); 

   ~StateVarNode(); 

   const string name(); 

   Real evaluate(); 

   SyntaxNode *clone(); 

   const TypeValue &type() const; 

   ostream &print(ostream &os); 

   bool checkType() const; 

   const string &getVarName(); 

 

private: 

   string varName; 

}; 

 
The most interesting methods of this class is evaluate, which returns the value of the 
referenced state available; and getVarName, which return the name of the referenced state 
variable. The rest of the methods are present by requirement of the super-class and have 
the normal use. 

4.3.2.2.3 AssignNode 

Another subclass of SyntaxNode. This one represents an assignation of a numeric 
expression to a state variable. 
 
class AssignNode: public SyntaxNode 

{ 

public: 

   AssignNode(SyntaxNode *var = NULL, 

              SyntaxNode *val = NULL); 

   ~AssignNode(); 

   const string name(); 

   Real evaluate(); 

   SyntaxNode *clone(); 

   void var(SyntaxNode *v); 

   void val(SyntaxNode *v); 

   const TypeValue &type() const; 

   ostream &print( ostream &os ); 

   bool checkType() const; 

 

private: 

   SyntaxNode *variable; 

   SyntaxNode *value; 

}; 
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Both the state variable reference and the numeric value must be SyntaxNodes. They can be 
provided at creation time or later using the specific methods var and val. The method 
evaluate executes the assignation of the value resulting from the evaluation of the value 
syntax node member, to the state variable specified by the variable syntax node member. 
As this method returns the assigned value, this allows for chaining and nesting of the 
assignations. 

4.3.2.2.4  AssignSetNode 

This is not really a class but an instance of the ListNode class described in 4.3.1.1.1. This 
instance is a list of assignations to state variables (AssignNode). Is the equivalent, in the 
evaluation tree, to the assignations part of a rule. ListNode’s evaluate method evaluates, one 
by one, the SyntaxNodes it includes. Because the included syntax node are, in this case, 
assignations to state variables, evaluating this list will execute all the assignations. 

4.3.2.3 Modified existing classes 

This section describes the changes done to existing classes. In addition to the explanation 
of those changes, an incomplete description of the class is presented. This incomplete 
description includes only the methods and members affected by the changes. 

4.3.2.3.1 ParallelMainSimulator 

 
class ParallelMainSimulator  

{ 

protected: 

   ParallelMainSimulator &loadCells(CoupledCell &, bool); 

   ParallelMainSimulator &loadStateVariables(CoupledCell &); 

}; 

 
The method loadCells is responsible for loading the cells of a cellular coupled model. It 
has been modified to invoke, in addition to its other tasks, the new method 
loadStateVariables. 
 
This new method is charged of interpreting the state-variables-specific part of the model 
being loaded. It creates an empty set of state variables (StateVars object). If the model 
declares state variables, they will be added to this object, and if general initial values are 
provided for the state variables, those values will be assigned to the state variables added to 
the object. 
 
Once the object is initialized (state variables created and initial values set), the object is 
passed to the coupled model. It is responsible for initializing each cell with this object. 
Notice that if the model does not use state variables, this object will stay empty, but it will 
still exist. This is the way in which the backwards compatibility is guarantee without using 
code specific to that case. 
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4.3.2.3.2 CoupledCell 

 
class CoupledCell : public Coupled 

{ 

public: 

 

   CoupledCell &setVariablesValue(const CellPosition &, 

                                  const char *); 

   CoupledCell &setVariablesValue(const string &, 

                                  const char *); 

   const StateVars &initialStateVars() const; 

   CoupledCell &initialStateVars(const StateVars &); 

 

protected: 

   virtual void afterProcessorInitialize(); 

 

private: 

   Real      initialValue; 

   StateVars initialVars; 

}; 

 
This class has a member that specifies the initial value for each cell (initialValue). In a 
similar way, there is a member specifying the initial values for state variables named 
initialVars. This member is set by calling the new method initialStateVars, which is called 
from the ParallelMainSimulator’s loadCells method (see 4.3.2.3.1). There is second version 
of initialStateVars which is used to get the object. 
 
The method afterProcessorInitialize is called once the associated processor has been  
initialized. This method initializes every cell and was modified to also create the state 
variables by copying the initialStateVars member. To do so, it invokes AtomicCell’s 
method variables. In this way, each cell will have its own state variables set, containing the 
same variables with the same initial values, but now they become completely independent. 
 
This class also provides the methods to set the values for all the state variable of a 
particular cell. This is a set of method which accept different argument types, but they all 
do the same job. These methods are named setVariablesValue and are used when special 
initial values are provided for a particular cell (this are the values provided in the state-
variables initial-values file). As normal, they must be called once the state variables have 
been created and initialized with the default initial values. 

4.3.2.3.3 AtomicCell 

 
class AtomicCell: public Atomic 

{ 

public: 

   Real &variable(const string &name); 

   Real &variable(const string &name, Real &value) 

 

protected: 

   StateVars &variables(); 

   AtomicCell &variables(const StateVars &vars) 

}; 
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Two protected methods called variables were added to this class. They are used to set and 
get the cell’s StateVars object representing the set of state variables. As the object is really 
part of the cell’s state, and it is stored in another object of class AtomicCellState, the 
appropriated method is used to access the cell’s state. 
 
The public methods called variable are provided to set and get the value of one state 
variable. The variables is referenced by its name and the method internally used the services 
of the above-described method variables. 

4.3.2.3.4 AtomicCellState 

 
class AtomicCellState: public AtomicState 

{ 

public: 

   StateVars variables; 

}; 

 
As this class represent the cell’s state, it is logical that this is the object that really stores the 
StateVars object. A new member named variables was created for it. 

4.3.3 Multiple neighbor Ports 

4.3.3.1 Overview 

Adding multiple neighbor ports was more complex than adding state variables. This part of 
the modification can be divided into three subtasks. 

4.3.3.1.1 Addition of New Ports to the Cells 

Before this modification was implemented, each cell had only two neighbor ports. These 
ports were named neighborChange (for input) and out (for output). The latter port influencing 
the former port in all the neighbor cells. This modification replaced these two ports by two 
lists of ports and the list of influences were extended so that a port in a cell would 
influence the port with the same name in all the neighbor cells. 
 
Since the AtomicCell class in the previous implementation included two ports as members, 
one for input and one for output, there was no chance to use other ports for neighbor 
communications. Nowadays, the two ports in the AtomicCell class have been replaced by 
two list of ports. These list are instances of the class PortList (this class already existed and 
was used for the coupled model ports). 
 
Each cell receives from the coupled model (its creator) a list with the names of the ports to 
be created. From each name, two ports are created, one for input and one for output. As 
both input and output ports share the same name, the port names are internally prefixed 
in_ or out_ to differentiate them. In addition to these ports, the two default neighborChange 
and out ports are also created (which don’t need to be prefixed). These two ports are 
created for compatibility reasons, to support the old models, but nothing prevents the 
modeler from using them as any other neighbor port. 
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Figure 9: Structure of an atomic cell 

 
Similarly to the historic ports, the new ports will generate Y messages and receive X 
messages, and because the messages already included the port name, there is no need to 
modify the message format. 
 
The creation of the ports is done in AtomicCells’s method createNCPorts(). The coupled 
model receives the list of port names from the ParallelMainSimulator when the later calls 
CoupledCell::createCells() from its method loadCells(). 
 

4.3.3.1.2 Extended Neighborhood Values 

In the previous implementation, each cell had an object belonging to the class 
NeighborhoodValue, which was used to store the values arriving from the neighbor cells 
through the input port neighborChange (the only port available at that moment). This class 
used internally an object of type NeighborList, which was a map using a cell position as the 
key to the value. This defined a table of <cell position, value>. 
 
Now that the number of ports is no longer limited to one, only one value for each 
neighbor cell is not enough. The cell must be capable of storing, for each neighbor cell, as 
many values as neighbor ports the cells have. To achieve this, it is necessary to extend the 
table used in the previous implementation to keep, not just one value, but a value for each 
port. The extended table can now be seen as <cell position, <port name, value>>. 
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Figure 10: NeighborValues Structure: (a) In the previous implementation 

(b) after the modification 

 
Because of this, the class NeighborList was extended to store a map of port names and 
values, instead of a single value. It was also necessary to update all the methods of this class 
that accessed the values (either for reading or writing) so that they accept the port name as 
parameter. 
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4.3.3.1.3 Extra Messages 

The message format and type was not modified. However, it is worth noticing that when 
the new ports are used, the number of messages circulating between cells increases. 
 
The default ports (neighborChange and out) kept their historic function: they are still used for 
administrative communications with the coupled model, such as receiving and sending the 
I, @, * and D messages, exactly in the same way it was done before. 
 
When a cell’s init function is executed, it used to send the cell’s current value to the 
coupled model in a Y message, followed by a D message indicating the end of the 
operation. Now that many ports can be found in a cell, the init function will send a Y 
message for each port in the cell, carrying the corresponding value; and concluding with 
the D message to close the operation. 
 
In a similar way, when the local transition function is executed, a cell will send one Y 
message for each value being exported. The coupled model will convert those messages 
into X messages and will deliver them to the cell’s neighbors. 

4.3.3.2 New Classes 

Some classes were created to add support for multiple neighbor ports to CD++. Those 
classes are described in detail hereafter: 

4.3.3.2.1 PortValue 

 

typedef pair<string, Real> PortValue; 

 
This class is used to store a port’s name and a value, representing the value that must be 
sent through the port after the delay. A list of these structures is returned by the execution 
of a rule. When working in compatibility mode, the list will have only one structure 
containing the value to be sent through the port (which can be no other than out). 

4.3.3.2.2 SendNCPortNode 

 
class SendNCPortNode: public SyntaxNode 

{ 

public: 

   SendNCPortNode(SyntaxNode *x = NULL, SyntaxNode *y = NULL); 

   ~SendNCPortNode(); 

 

   SyntaxNode *clone(); 

   const string name(); 

   Real evaluate(); 

   const TypeValue &type() const; 

   bool checkType() const; 

   ostream &print(ostream &os); 

 

   PortValue getPortValue(); 

 

private: 

   string PortName(); 

 

   SyntaxNode *portName; 
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   SyntaxNode *portValue; 

}; 

 
This is a subclass of SyntaxNode representing a port assignation. When it is created, two 
syntax nodes must be provided: one for the port name and the other for the value. If the 
node for the port name is NULL, then the default value will be used. 
 
The method PortName returns a string with the name of the port. If at creation time no 
name was provided, the returned name is that of the default port: out. 
 
The method evaluate exists for compatibility reasons, because the abstract super-class 
requires its existence. It only shows debug information, checks that the port exists, and  
returns the value that will be sent through the port. The method that is interesting is 
getPortValue. This method returns a structure PortValue (see 4.3.3.2.1) with the port’s 
name and the value to be sent through it. 

4.3.3.3 Modified Existing Classes 

This section describes the changes done to existing classes. In addition to the explanation 
of those changes, an incomplete description of the class is presented. This incomplete 
description includes only the methods and members affected by the changes. 

4.3.3.3.1 ParallelMainSimulator 

 
class ParallelMainSimulator  

{ 

protected: 

   ParallelMainSimulator &loadCells(CoupledCell &, bool); 

}; 

 
The method loadCells is responsible for loading the cells of a cellular coupled model. It 
has been extended to read from the model description file the names of the neighbor ports.  
 
It starts by creating an empty list of names, and inserts in the list every port name in the 
model. If the model does not use extra ports, as is the case for all the models not using the 
new extensions, this list will be empty but it will exist. This is the way in which the 
backwards compatibility is guarantee without using code specific to that case. 
 
This list is then passed to the CoupledCell object when calling the method createCells. 

4.3.3.3.2 CoupledCell 

 
class CoupledCell : public Coupled 

{ 

public: 

   CoupledCell &createCells(const CellPositionList &neighbors, 

                            CellPartition *part, 

                            list<string> NCPorts); 

 

   CoupledCell &setCellValue(const CellPosition &, 

                             const string &, 

                             const Real &); 
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   CoupledCell &setCellValue(const ModelId &, 

                             const string &, 

                             Value); 

 

   CoupledCell &setCellValue(const string &sCellPos, 

                             const string &, 

                             const Real &); 

 

   CoupledCell &setCellAllValues(const ModelId &, Value); 

   CoupledCell &setCellAllValues(const CellPosition &, 

                                 const Real &); 

   CoupledCell &setCellAllValues(const string &sCellPos, 

                                 const Real &); 

}; 

 
The method createCells has been extended to take as parameter the list of the names of 
the neighbor ports. After creating each cell, it will invoke AtomicCell’s createNCPorts method 
for the cell to create the ports; and will provide the list of names. Notice that the same list 
is provided to each cell, this guarantees that every cell in the space will have the same ports. 
 
Once the cells and their neighbor ports are created, createCells will establish the influences 
for each cell: 

• the port out will influence all the neighbor’s neighborChange port, and 

• the other output neighbor ports will influence the port will the same name in all the 
neighbor cell. 

 
All the existing methods named setCellValue have been improved to receive the port 
name as a parameter. A new set of methods was created to be used during the initialization. 
They are named setCellAllValues and set the same initial value for all the cell’s ports. 

4.3.3.3.3 AtomicCell 

 
class AtomicCell: public Atomic 

{ 

public: 

   static const string NCInPrefix; 

   static const string NCOutPrefix; 

 

   void createNCPorts(list<string> &portNames); 

   const Real &value(const string &port) const; 

 

protected: 

   PortList &inNCPortList(); 

   PortList &outNCPortList(); 

   list<string> &NCPorts(); 

   bool isInNCPort(const string portName) const; 

   bool isOutNCPort(const string portName) const; 

   AtomicCell &setAllNCPortsValues(const Real &val); 

   string calculateInPort(string &portName); 

   string calculateOutPort(string &portName); 

 

private: 

   bool addInputNCPort(string portName); 



 

Extending CD++ Specification Language for Cell-DEVS Model Definition 41 

   bool addOutputNCPort(string portName); 

   const Port *getNCPortByName(const PortList &pl, 

                               const string portName) const; 

 

   PortList     Xports; 

   PortList     Yports; 

   list<string> NCPortNames; 

}; 

 
In this class, the ancient members neighborChange and out, which used to store the only 
available neighbor ports, were replaced by two list of ports. Xports stores the input 
neighbor ports and Yports the output neighbor ports. A third member was added. It is 
named NCPortsNames and keeps the list of names of the ports. This list is provided as 
an argument to the method createNCPorts. This method copies the list it received as 
argument to the NCPortsNames member, and creates two ports for each name in the list, 
one for input and one for output. To differentiate the input ports from the output ports, 
their names are internally prefixed with the constants NCInPrefix and NCOutPrefix. In 
addition to these ports, the default ports are also created: neighborChange and out. In this way, 
if an old model is being simulated, the list of names will be empty and the lists Xports and 
Yports will only have these two ports respectively, guaranteeing the compatibility. 
 
Two private methods have been added to create the neighbor ports. Their names are 
addInputNCPorts and addOutputNCPort. These are the methods used from 
createNCPorts to create the ports. As the PortList object identify the ports by their references 
and not by their names, another private helper method was created to get a pointer to the 
port reference from of a PortList, provided the port name. This method is named 
getNCPortByName. 
 
A few protected methods were created to manipulate the list of ports. The methods 
inNCPortList and outNCPortList provide a reference to the list of ports Xports and 
Yports, while a reference to the list of names is given by NCPorts. To check whether a port 
belong to the list of input ports is used the method isInNCPort, and isOutNCPort is 
used for the output ports. The function setAllNCPortsValues is used during the 
initialization to set the initial vale for all the ports of the cell. And finally the methods 
calculateInPort and calculateOutPort  get a port name as argument and provide the 
name of the port input or output port related to that name. 
 
One of the most important changes is that the method value was extended to accept the 
name of the port whose value is required. 

4.3.3.3.4 NeighborhoodValue 

 
class NeighborhoodValue 

{ 

public: 

   typedef map<string, Real> CellPorts; 

   typedef map<CellPosition, CellPorts, less < CellPosition > > 

           NeighborList; 

 

   NeighborhoodValue& create(const CoupledCell &coupled, 

                             const CellPositionList &neighbors, 

                             const CellPosition &center,  
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                             const list<string> &ports); 

   NeighborhoodValue &set(const string, const Real &); 

   NeighborhoodValue &set(const NeighborPosition &n, 

                          const string &port, 

                          const Real &v); 

 

   const Real &get(const NeighborPosition &n, 

                   const string &port) const; 

   const Real &get(const string &port) const; 

 

   void print(ostream &os); 

}; 

 
This is probably the most affected class. It used to store a value for each neighbor cell. It 
now stores n values for each neighbor cell, being n the number of neighbor ports that the 
cells have. For further information on the reasons that motivated this change, please see 
4.3.3.1.2. 
 
The type NeighborList has been redefined store, for each neighbor cell, not just one 
value, but the set of all their values. This type is a map that still uses the neighbor cell’s 
relative position as the key, but now the value is no longer a Real, but a CellPorts object. 
This new type, CellPorts, is defined to be a map using the port names as key and to store a 
Real value for each port. This means that from now, to get a value it will be necessary to 
specify the neighbor cell and the port. 
 
To deal with these changes, the constructor was extended to accept the list of port names. 
It will create an entry in each cell for the default port neighborChange as well as for any port 
in the list. All of them will se assigned the Undef Real value. 
 
In addition, the methods set and get have all been updated to accept the port name as 
argument, and the print method to show correctly all the new the information. 

4.3.3.3.5 TransportDelayCell 

 
class TransportDelayCell: public AtomicCell 

{ 

protected: 

   Model &initFunction(); 

   Model &externalFunction(const MessageBag &); 

   Model &outputFunction(const CollectMessage &); 

 

Private: 

   const Real &firstQueuedValue() const; 

   const string &firstQueuedPort() const; 

}; 

 
In this class some if the methods associated to the reception of messages needed to be 
modified. In general, these three methods were updated to no longer use just one value 
representing the cell’s state, but a list of pairs port-value. initFunction’s behavior was 
extended for it to queue a pair port-value containing every port in the cell and its value. 
Similarly, the outputFunction was updated to send a Y message for each pair port-value in 
the queue. And finally, the method externalFunction was adapted in the same way. It no 
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longer uses one value representing the cell’s state to determine whether it should be 
exported, but now it uses the list of pairs port-value queued by the preceding methods. 
 
The private methods firstQueuedValue was adapted to cope with TDCellState’s new 
structure, and the method firstQueuedPort was added to complete the set of methods to 
access the information of the first queued value.  

4.3.3.3.6 TDCellState 

 
class TDCellState : public AtomicCellState  

{ 

public: 

 typedef pair< string, Real >      QueueValue; 

 typedef pair< VTime, QueueValue > QueueElement; 

}; 

 
Few changes suffered this class representing the state of a TransportDelayCell. The type 
QueueElement used to be a pair including the value and its time to leave, representing an 
element of the queue of values to be sent out. The value was replaced by a pair specifying 
the value and its departure port. This latter pair is a new type named QueueValue. This 
means that now a QueueElement has three components: the time to leave, the departure port 
and the value. 

4.3.3.3.7 InertialDelayCell 

class InertialDelayCell: public AtomicCell 

{ 

protected: 

   Model &initFunction(); 

   Model &internalFunction(const InternalMessage &); 

   Model &externalFunction(const MessageBag &); 

   Model &outputFunction(const CollectMessage &); 

 

private: 

   Real futureValue(const string &) const; 

   void futureValue(const string &, const Real &); 

 

   Real actualValue(const string &) const; 

   void actualValue(const string &, const Real &); 

}; 

 
This class included the means to set and get the current and future values of the cell. These 
methods were respectively named actualValue and futureValue. These four functions 
were extended to accept the name of the port. 
 
This change induced changes in other methods of the class. initFunction will set the 
current and future value for every port in the cell, outputFunction will send the value 
through the corresponding port, and externalFunction was adapted to consider the port 
when setting the cell’s future values. 
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4.3.3.3.8 IDCellState 

 
class IDCellState : public AtomicCellState 

{ 

public: 

   map<string, Real> futureValue; 

   map<string, Real> actualValue; 

}; 

 
This cells represents the state of a InertialDelayCell. It had two values, the current and the 
future value, respectively named actualValue and futureValue, both of class Real. These 
members were modified to be each one a set of pairs port-value. 

4.3.3.3.9 LocalTransAdmin 

 
class LocalTransAdmin 

{ 

public: 

   list<PortValue> evaluate(const string &, 

                            const NeighborhoodValue &, 

                            PortValues *, 

                            VTime &delay, 

                            VTime &actualtime, 

                            VirtualPortList *, 

                            Model *actualCell, 

                            string portSource = ""); 

 

   const Real &cellValue(const NeighborPosition &, 

                         const string PortName); 

}; 

 
Two modification happened to this class. The method cellValue now take the port name 
as its second argument, and the method evaluate no longer returns a real but a list of  
PortValue, representing all the values to be exported and their respective departure ports. 
This list is obtained by the valuation of the local transition function (SpecNode). 
 

4.3.3.3.10 VarNode 

 
class VarNode: public SyntaxNode 

{ 

public: 

   VarNode( nTupla nt, string pName = "" ); 

 

   string &port(void); 

   VarNode &port(string pName); 

}; 

 
This class represents a node for a reference to a cell’s port. The constructor now accepts 
the name of the port as argument. If it is not provided, it will default to “” (the empty 
string). 
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Two methods were also added. Their name is port and they are used to set and get the port 
name after the creation of the node. When the store port name is “”, the port used will be 
out. This permits defining the default port in this class without having to care for that kind 
of details in the grammar description. 

4.3.3.3.11 CountNode 

 
class CountNode: public SyntaxNode 

{ 

public: 

   CountNode(const Real &v, StringNode *p = NULL); 

   CountNode(SyntaxNode *s, StringNode *p = NULL); 

 

   Real evaluate(); 

 

private: 

   StringNode *portName; 

}; 

 
This class represents a node for the function StateCount of the language. As it was already 
said in 4.2.2.4, this function was extended to accept a port name as a parameter; and so was 
this class. 
 
The constructors now accepts as argument a StringNode representing the name of the port. 
If it is not provided, it will default to the StringNode with the empty string as value (“”). The 
method evaluate has been modified to take into account the new argument. When the 
port name is “”, the port used will be neighborChange. This allows for defining the default 
port in this class without having to care for that kind of details in the grammar description. 

4.4 Modifications to drawlog 

 
drawlog is an external application used to generate a visual representation of the simulation. 
It takes as its input the log files generated by CD++. Because having multiple neighbor 
ports generates new output messages in the log files, it was necessary to update drawlog, to 
be able to deal with them. A new optional parameter was added to this tool: -n<port>. 
 
$ drawlog -h 

drawlog -[?hmtclwp0n] 

 

where: 

 ? Show this message 

 h Show this message 

 m Specify file containing the model (.ma) 

 t Initial time 

 i Time interval (After the initial time, draw after every time interval) 

 c Specify the coupled model to draw 

 l Log file containing the output generated by SIMU 

 w Width (in characters) used to represent numeric values 

 p Precision used to represent numeric values (in characters) 

 0 Don't print the zero value 

 f Only cell values on a specified slice in 3D models 

 n Specify the neighbor port to show (default: out) 

 
If it is not present, drawlog will behave in compatibility mode, drawing the changes 
exported by the port out of the cells. When it is present, it takes as argument the name of 
the port to draw. 
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5 Application Examples 
 
This section shows some examples of models that where adapted to use the new 
capabilities of CD++. The full code of those examples can be found in the appendixes, 
while in this section there are only the code extracts necessary to understand how those 
conversion were achieved. 

5.1 Generic Comparison – Life Game 

 
For a generic comparison it was decided to use the Life Game, a model that needed very 
few modifications to use CD++ new capabilities.  
 
Five examples were tested: 
 

1. Original: the unmodified model using the unmodified simulator, 
2. Compatible: the unmodified model using the new simulator, 
3. State Variables: the model modified to use state variables using the new simulator, 
4. Default ports: the model modified to use explicitly the default neighbor ports, and 
5. Non-default ports: the model modified to use non-default neighbor ports. 

 
All the test cases had cell spaces of 21 x 21 cells and started with the same initial state. All 
these simulations were executed three times on the same computer with no external load. 
The model descriptions can be found in Appendix C – Life Game. 
 
What was observed in these tests was the results of the simulation, which were requested to 
be equivalents; the duration of the simulations; and the percentage of CPU usage. To 
normalize the results and verify their equivalence, the log files were processed by drawlog: 
equivalent result should produce the same “visualization.” As expected, all the test produced the 
same “visualization.” 
 
The following table show the results from the test runs. Each cell shows the simulation 
duration expressed in seconds, and the CPU load expressed as a percentage. 
 

 1st Run 2nd Run 3rd Run Average 

Duration Load Duration Load Duration Load Duration Load 

Original 6.70 87 6.73 87 6.68 88 6.70 87.33 

Compatible 9.95 86 9.62 89 9.78 87 9.78 87.33 

State Vars 9.22 91 9.77 86 9.24 90 9.41 89.00 

Def. Ports 9.61 89 9.60 89 9.65 89 9.62 89.00 

Non-def Ports 10.00 90 10.08 89 10.35 87 10.14 88.66 

 
 
A comparison of these values can be seen in the following graphs. The first one shows the 
simulation durations and the second one shows the percentage of CPU load. 
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Figure 11: Comparison of the duration times for life game 
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Figure 12: Comparison of the CPU loads for the life game 

 
From these results, it can be concluded that the original simulator performs better than the 
new one. As strange as it can seem, it is natural: with the new capabilities came an increased 
overhead. Between the Original test and the Compatible test, the overhead increased about 
45%, but also it must be noticed that the Life Game simulation did not need the new 
capabilities and their usage was force in an unnatural way. 

5.2 State variables – Fire Spread 

 
The current version of the Fire Spread model [Aie01] does not use state variables because 
they were not available at the moment of its writing. Instead it uses a three-dimensional cell 
space. Two dimensions are used to represent the field where the fire spreads, whilst the 
third one is used for technical reasons: the need to keep two values in each cell. As it was 
impossible to have more than one value in a cell, the modelers stacked cells to store one 
value in each one, and adapted the model to treat them as if they were just one cell. As of 
today, the cell space used is of n x m x 2, where n x m is the dimension of the simulated 
field. The lower layer of cells is used to store the temperature and the higher layer to store the 
ignition time. The models can be seen in Appendix B – Fire Spread. 

5.2.1 Model Conversion 

Using the new simulator, which supports multiple state variables, this trick is not longer 
needed. The temperature is stored as the cell’s value and the ignition time in a state variable. In 
the new model this variable is named ti because it is the name that the original modelers 
used to reference this value in the higher layer of cells. The temperature is stored in the cell’s 
value because it must be passed to the neighbor cells, while the ti value is only used 
internally to the cell. In this way, now the model has only two dimensions. 



 

48 Alejandro López 

 
The first step was to add the state variable ti, to remove the higher layer of cells and to 
replace all the references to this layer by references to the state variable. In a simpler model 
this could have been enough, but it was not the case here. A problem appeared when 
converting the rules “Burning” and “ti”. These are the original rules: 
 
%Burning 

rule : { #macro(burning) } 1 { cellpos(2) = 0 AND ( ( (0,0,0) > 

#macro(burning) AND (0,0,0) > 333 ) OR ( #macro(burning) > 

(0,0,0) AND (0,0,0) >= 573 ) ) AND (0,0,0) != 209 } 

 

%ti 

rule : { time / 100 } 1 { cellpos(2) = 1 AND (0,0,-1) >= 573 AND 

(0,0,0) = 1.0 } 

 
The “ti” rule is applied only to the higher layer, while the “burning” rule is applied to the 
lower layer. To make this happen the conditions include a clause specifying to which layer 
they apply. This clause is cellpos(2)=x, which disappeared when the references to the 
higher layer were removed: 
 
%Burning 

rule : { #macro(burning) } 1 { ( ( (0,0) > #macro(burning) AND 

(0,0) > 333 ) OR ( #macro(burning) > (0,0) AND (0,0) >= 573 ) ) 

AND (0,0) != 209 } 

 

%ti 

rule : { (0,0) } { $ti := time / 100; } 1 { (0,0) >= 573 AND $ti 

= 1.0 } 

 
The problem now is that in some cases, both conditions can be true at the same time. For 
instance, when $ti = 1.0, (0,0) >=573 and #macro(burning) > (0,0). 
 
To solve this problem, the rule “burning” was factorized into two simpler rules, eliminating 
the OR operation: 
 
%Burning 

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND  

                               (0,0) >  333 AND (0,0) != 209 } 

rule : { #macro(burning) } 1 { #macro(burning) > (0,0) AND 

                               (0,0) >= 573 AND (0,0) != 209 } 

 
Now, it is possible to see that in both rules it is requested that (0,0) != 209. But it is also 
requested that (0,0) is higher than a value which is higher than 209. Then: 
 

209)0,0(573)0,0(

209)0,0(333)0,0(




 

 
From this can be concluded that (0,0) != 209 is a redundant request, and so it was 
removed. 
 
%Burning 

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND  
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                               (0,0) > 333 } 

rule : { #macro(burning) } 1 { #macro(burning) > (0,0) AND 

                               (0,0) >= 573 } 

 
This removal is not mandatory. The model will behave the same if keep this condition is 
kept, but removing it will simplify the following operations. 
 
Now, the rule “ti” only overlaps with the second part of the rule “burning”, so they were 
merged. This generated three rules that replace the previous two: 
 
%Burning and ti 

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND 

                               (0,0) > 333 } 

rule : { #macro(burning) }                        1  

       { #macro(burning) > (0,0) AND (0,0) >= 573 AND 

         $ti != 1.0 } 

rule : { #macro(burning) } { $ti := time / 100; } 1 

       { #macro(burning) > (0,0) AND (0,0) >= 573 AND 

         $ti = 1.0 } 

rule : { #macro(burning) } { $ti := time / 100; } 1 

       { #macro(burning) < (0,0) AND (0,0) >= 573 AND 

         $ti = 1.0 } 

 
The third and fourth part of the rule modify ti’s value when(0,0) >= 573 and $ti = 1.0, as 
requested by the original rule ti, regardless of the value of #macro(burning). 
 
The second and third part set #macro(burning) as the cell’s new value when (0,0) >= 573 
and #macro(burning) > (0,0), as requested by the original rule “burning”. 
 
However, after these modifications, the first and fourth part overlap when $ti = 1.0 

because 333)0,0(573)0,0(  . This means that the first part’s condition must be 

restricted to prevent this collision to happen: 
 
%Burning 

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND 

                               (0,0) > 333 AND  

                               ((0,0) < 573 OR $ti != 1.0) } 

rule : { #macro(burning) }                        1  

       { #macro(burning) > (0,0) AND (0,0) >= 573 AND 

         $ti != 1.0 } 

rule : { #macro(burning) } { $ti := time / 100; } 1 

       { #macro(burning) > (0,0) AND (0,0) >= 573 AND 

         $ti = 1.0 } 

rule : { #macro(burning) } { $ti := time / 100; } 1 

       { #macro(burning) < (0,0) AND (0,0) >= 573 AND 

         $ti = 1.0 } 

 
Now the first rule’s condition is true only when (0,0) < 573 or $ti != 1.0, which makes the 
fourth rule’s condition false.  
 
However, this new model is far from being “optimal” in its execution. To shorten the 
execution time, the number of rules can be reduced and the clauses in the rules’ condition 
can be reordered. 
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To reduce the number of rules, some of them can be merged. For instance the following 
rules are very similar: 
 
rule : { #macro(burning) }                        1  

       { #macro(burning) > (0,0) AND (0,0) >= 573 AND 

         $ti != 1.0 } 

rule : { #macro(burning) } { $ti := time / 100; } 1 

       { #macro(burning) > (0,0) AND (0,0) >= 573 AND 

         $ti = 1.0 } 

 
It can be seen that they only differ in the required value for $ti, and in the assignation (or 
not) of a new value to $ti. These two rules can be merged in just one rule that will assign 
the new value to $ti depending on $ti’s original value: 
 
rule : { #macro(burning) } 

                   { $ti := if($ti = 1.0, time / 100, $ti); } 1 

                   { (0,0) >= 573 AND #macro(burning) >= (0,0) } 

 
For the second step it will be used the fact that CD++ is capable of using short-cut 
evaluation (in the same style as the C programming language). When the left expression of 
an and operation evaluates to false, the whole operation will evaluate to false, so it is useless 
to evaluate the right expression. Similarly, when the left expression of an or operation 
evaluates to true, the whole operation will evaluate to true, and so there is no need to 
evaluate the right expression of the operation. 
 
By simply reordering the operations and their parameter in the rules’ condition, a lot of 
execution time can be saved. The trick is to make execute first the simplest conditions, 
while leaving to the end the more complex ones. Moving to the left the simplest operation 
will make the deal. 
 
%Unburned 

rule : { #macro(unburned) } 1 { (0,0) != 209 AND (0,0) < 573 AND 

                                ( time <= 20 OR  

                                  #macro(unburned) > (0,0) ) } 

%Burning and ti 

rule : { #macro(burning) } 1 { (0,0) > 333 AND  

                               ( (0,0) < 573 OR $ti != 1.0 ) AND 

                               (0,0) > #macro(burning) } 

rule : { #macro(burning) } 

                   { $ti := if($ti = 1.0, time / 100, $ti); } 1 

                   { (0,0) >= 573 AND #macro(burning) >= (0,0) } 

rule : { #macro(burning) } { $ti := time / 100; } 1 

                              { $ti = 1.0 AND (0,0) >= 573 AND  

                                #macro(burning) < (0,0) } 

%Burned 

rule : { 209 } 100 { (0,0) != 209 AND (0,0) <= 333 AND 

                     (0,0) > #macro(burning) } 
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5.2.2 Comparison 

This section compares the three models’ performance. All of them were executed with the 
same initial values and until the simulation finished by itself. 
 
The first great difference is the visualization of the results using the tool drawlog. The 
original model shows the information for both layers: 
 
Line : 1 - Time: 00:00:00.000 

        0   1   2   3   4   5         0   1   2   3   4   5 

    +------------------------+    +------------------------+ 

   0| 300 300 300 300 300 300|   0|   0   0   0   0   0   0| 

   1| 300 600 600 300 300 300|   1|   0   1   1   0   0   0| 

   2| 300 600 600 300 300 300|   2|   0   1   1   0   0   0| 

   3| 300 300 300 300 300 300|   3|   0   0   0   0   0   0| 

   4| 300 300 300 300 300 300|   4|   0   0   0   0   0   0| 

   5| 300 300 300 300 300 300|   5|   0   0   0   0   0   0| 

    +------------------------+    +------------------------+ 

 
While the new models using state variables only show one layer, the only one existing: 
 
Line : 1 - Time: 00:00:00.000 

        0   1   2   3   4   5 

    +------------------------+ 

   0| 300 300 300 300 300 300| 

   1| 300 600 600 300 300 300| 

   2| 300 600 600 300 300 300| 

   3| 300 300 300 300 300 300| 

   4| 300 300 300 300 300 300| 

   5| 300 300 300 300 300 300| 

    +------------------------+ 

 
For this comparison, four examples were tested: 
 

1. Original: the unmodified model using the unmodified simulator, 
2. Compatible: the unmodified model using the new simulator, 
3. State Variables: the model modified to use state variables, and 
4. Optimized: the optimized model modified to use state variables. 

 
All the test cases had cell spaces of 6 x 6 cells and started with the same initial state. All 
these simulations were executed three times on the same computer with no external load. 
What was observed in these tests was the duration of the simulations and the percentage of 
CPU usage. 
 
The following table shows the results from the test runs. Each cell shows the simulation 
duration expressed in seconds, and the CPU load expressed as a percentage. 
 

 1st Run 2nd Run 3rd Run Average 

Duration Load Duration Load Duration Load Duration Load 

Original 66.42 74 67.94 72 66.13 75 66.83 73.67 

Compatible 86.53 80 86.69 80 87.19 80 86.80 80.00 

State Vars 84.03 81 84.78 80 84.88 80 84.56 80.33 

Optimized 63.80 75 64.60 74 64.07 75 64.16 74.67 
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A comparison of these values can be seen in the following graphs. The first one shows the 
simulation durations and the second one shows the percentage of CPU load. 
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Figure 13: Comparison of the durations for Fire Spread using State Variables 
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Figure 14: Comparison of the CPU loads for Fire Spread using State Variables 

 
It can be concluded from these results that the original simulator performed better that the 
new simulator for the compatible model and the un-optimized model using state variables, 
but in comparison with the Life Games results (see 5.1), this time the increase was just 9%. 
 
On the contrary, the optimized model performed slightly better than the original simulator. 
The reason for this is that, this model has half of the cells than the original model (one 
layer was removed by using state variables), and because of the optimizations. 
 
In conclusion, models using multiple state variables take as much time to simulate as the 
previous simulator; but now models are more natural because there is no need for an 
inexplicable second layer of cells, which increases the ease of writing, reading and 
maintaining; and use less resources (such as memory and file descriptors), because there are 
half of the cells to manage. 

5.3 Multiple neighbor Ports – Fire Spread 

 
As explained in 5.2, the Fire Spread model stacked cell layers to simulate the storage of 
multiple values in one cell. This problem can also be solved by using multiple neighbor 
ports. 
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5.3.1 Model Conversion 

The conversion from the original Fire Spread model to the one using neighbor ports is very 
similar to the conversion to use state variables exposed in 5.2.1. Because of this, the 
conversion will not be explained step by step, but only the specific differences. 
 
In this case, two ports are declared: temp and ti. 

neighborports: temp ti 

 
The port temp exports the cell’s temperature (the old lower layer), while the port ti exports 
the ignition time (the higher layer). 
 
The rules generated are equivalent to those used in the state variables model, but instead 
they use ports: 
 
%Unburned 

rule : { ~temp := #macro(unburned); } 1 

       { ((#macro(unburned)) > (0,0)~temp OR time <= 20 ) AND 

         (0,0)~temp < 573 AND (0,0)~temp != 209 AND 

         (0,0)~temp > 0 } 

 

%Burning and ti 

rule : { ~temp := #macro(burning); }                    1 

       { (0,0)~temp > #macro(burning) AND 

         (0,0)~temp > 333 AND 

         ((0,0)~temp < 573 OR (0,0)~ti != 1.0) } 

rule : { ~temp := #macro(burning); }                    1 

       { #macro(burning) >= (0,0)~temp AND 

         (0,0)~temp >= 573 AND (0,0)~ti != 1.0 } 

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1 

       { #macro(burning) >= (0,0)~temp AND 

         (0,0)~temp >= 573 AND (0,0)~ti = 1.0 } 

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1 

       { #macro(burning) < (0,0)~temp AND 

         (0,0)~temp >= 573 AND (0,0)~ti = 1.0 } 

 

%Burned 

rule : { ~temp := 209; } 100 { (0,0)~temp > #macro(burning) AND 

                               (0,0)~temp <= 333 AND 

                               (0,0)~temp != 209 AND 

                               (0,0)~temp > 0 } 

%Stay Burned or constant 

rule : {  } 1 { t } 

 
As the initial value for both ports is the same and this model needs different values, it was 
solved by assigning initial value that will never appear during the simulation and adding two 
rules that generate the real initial state when the cell has this special values. 
 
The special values are –1 and –2. Thus the initial value for the ports is -1and the cells that 
start with a different initial value will have -2. 
 
initialValue : -1 

initialCellsValue : init.val 
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The contents of the file init.val are: 
 
(1,1) = -2 

(2,1) = -2 

(1,2) = -2 

(2,2) = -2 

 
And the rules to generate the real initial state from this values are: 
 
%initialization 

rule : { ~temp := 300; ~ti := 0; } 1 

       { (0,0)~temp = -1 and (0,0)~ti = -1 } 

rule : { ~temp := 600; ~ti := 1; } 1 

       { (0,0)~temp = -2 and (0,0)~ti = -2 } 

 
These rules are placed in the last places to minimize their interference counting on the fact 
that CD++ evaluates the rules in order. 
 
This model can be optimized in a way similar to that used for the state variables model. 
These are the rules after the optimization. 
 
%Unburned 

rule : { ~temp := #macro(unburned); } 1 

       { (0,0)~temp > 0 AND (0,0)~temp != 209 AND 

         (0,0)~temp < 573 AND 

         (time <= 20 OR (#macro(unburned)) > (0,0)~temp ) } 

 

%Burning and ti 

rule : { ~temp := #macro(burning); }                         1 

       { (0,0)~temp > 333 AND 

         ( (0,0)~temp < 573 OR (0,0)~ti != 1.0 ) AND 

         (0,0)~temp > #macro(burning) } 

rule : { ~temp := #macro(burning); 

         ~ti := if( (0,0)~ti = 1.0, time / 100, (0,0)~ti); } 1 

       { (0,0)~temp >= 573 AND #macro(burning) >= (0,0)~temp } 

rule : { ~temp := #macro(burning); ~ti := time / 100; }      1 

       { (0,0)~ti = 1.0 AND (0,0)~temp >= 573 AND 

         #macro(burning) < (0,0)~temp } 

%Burned 

rule : { ~temp := 209; } 100 { (0,0)~temp != 209 AND 

                               (0,0)~temp > 0 AND 

                               (0,0)~temp <= 333 AND 

                               (0,0)~temp > #macro(burning) } 

5.3.2 Comparison 

This section compares the three models’ performance. All of them were executed with the 
same initial values and until the simulation finished by itself. 
 
For this comparison, four examples were tested: 
 

5. Original: the unmodified model using the unmodified simulator, 
6. Compatible: the unmodified model using the new simulator, 
7. Ports: the model modified to use neighbor ports, and 
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8. Optimized: the optimized model modified to use neighbor ports. 
 
All the test cases had cell spaces of 6 x 6 cells and started with the same initial state. All 
these simulations were executed three times on the same computer with no external load. 
What was observed in these tests was the duration of the simulations and the percentage of 
CPU usage. The Compatible model is the same as for the state variables example. It was re-
used here to easy the comparison. 
 
The following table shows the results from the test runs. Each cell shows the simulation 
duration expressed in seconds, and the CPU load expressed as a percentage. 
 

 1st Run 2nd Run 3rd Run Average 

Duration Load Duration Load Duration Load Duration Load 

Original 66.42 74 67.94 72 66.13 75 66.83 73.67 

Compatible 86.53 80 86.69 80 87.19 80 86.80 80.00 

Ports 81.30 79 81.11 80 80.90 80 80.10 79.67 

Optimized 65.41 73 63.04 76 64.92 73 64.46 74.00 

 
A comparison of these values can be seen in the following graphs. The first one shows the 
simulation durations and the second one shows the percentage of CPU load. 
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Figure 15: Comparison of the durations for Fire Spread using Neighbor Ports 
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Figure 16: Comparison of the CPU loads for Fire Spread using Neighbor Ports 

 
It can be concluded from these results that, in a similar way to what happened with the 
state variables, the original simulator performed better that the new simulator for the 
compatible model and the un-optimized model using neighbor ports. In this case the 
increase in duration was about 9%. 
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Again, the optimized model performed slightly better than the original simulator. The 
reason for this is that, this model has half of the cells than the original model (one layer was 
removed by using state variables), and because of the optimizations.  
 
As with the state variables, models using multiple neighbor ports take as much time to 
simulate as the previous simulator; but now models are more natural because there is no 
need for an inexplicable second layer of cells, which increases the ease of writing, reading 
and maintaining; and use less resources (such as memory and file descriptors), because 
there are half of the cells to manage. 
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6 Conclusions And Future Work 
 
The new implementation of CD++ was presented. This implementation includes two new 
features that were missing so far. These features are state variables and multiple neighbor ports. 
To achieve this, the state of the cells was extended to include a set of state variables and 
their values, and the only value arriving from neighbor cells was replaced by a set of values 
arriving through different ports. 
 
These new features add great power to the specification language, and thus to the 
simulator; simplifying the modeling task. But with every improvement there is always a 
price to be paid. The price is an increased overhead required for the management of these 
features, making the simulations longer. It was also shown that when the model is 
optimized, this overhead can be nullified and even inversed, but this means that modelers 
will have to pay more attention to model optimization. 
 
Nevertheless, the models can now be written more clearly, without the need of tricks like 
extra layers of cells; and their simulation consume less memory and file descriptors (than 
those models with extra cell layers), which allow for larger cell spaces to be simulated. 
 
There are a few topics were CD++ can be improved: 
 

• Allow all the neighbor ports to be initialized with different values. Nowadays, all 
the neighbor ports of a cell are initialized with the same value. Removing this 
limitation will simplify the modeler’s work. 

• After its first version, CD++ suffered many modifications and improvements, 
most of which the developers could not even dream of. Some of these 
improvement made obsolete some parts of the code that were good enough for the 
old versions. For instance, the lexical analyzer (which was designed to recognize a 
very reduced and strict language) is today imposing too many restrictions to the 
extensions of the language. 

• Go on improving CD++ getting every day closer to the whole formalism. 
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7 Appendix A - Grammar 
 
RuleList = Rule | Rule RuleList 

 

Rule = AssignResult Result { BoolExp } 

     | AssignResult { AssignSet } Result { BoolExp } 

 

AssignResult = Result | { PortSendSet } 

 

Result = Constant | UNDEF | { RealExp } 

 

BoolExp = BOOL | ( BoolExp ) | RealRelExp | NOT BoolExp 

        | BoolExp BOOL_OP 

 

RealRelExp = RealExp REL_OP RealExp 

           | COND_REAL_FUNC ( RealExp ) 

 

RealExp = IdRef | ( RealExp ) | RealExp OPER RealExp 

 

IdRef = CellRef OptPortName | Constant | Function 

      | UNDEF | PORTREF ( PORTNAME ) 

      | SEND ( PORTNAME , RealExp ) 

      | CELLPOS ( RealExp ) | STVAR_NAME 

 

OptPortName = /* Empty */ | ~ PORTNAME  

 

AssignSet = /* Empty */ | Assign AssignSet 

 

Assign = STVAR_NAME ASSIGN_OP RealExp  ; 

 

PortSendSet = /* Empty */ | PortSend PortSendSet 

 

PortSend = SEND ( PORTNAME , RealExp ) ; 

         | ~ PORTNAME ASSIGN_OP RealExp ; 

 

Constant = INT | REAL | CONSTFUNC 

 

Function = COUNT  

         | STATECOUNT ( RealExp OptParamPort ) 

         | UNARY_FUNC ( RealExp ) 

         | BINARY_FUNC ( RealExp , RealExp ) 

         | WITHOUT_PARAM_FUNC_TIME 

         | WITHOUT_PARAM_FUNC_RANDOM 

         | UNARY_FUNC_RANDOM ( RealExp ) 

         | BINARY_FUNC_RANDOM ( RealExp , RealExp ) 

         | COND3_FUNC ( BoolExp , RealExp , RealExp ) 

         | COND4_FUNC ( BoolExp , RealExp , RealExp , RealExp ) 

 

OptParamPort = /* Empty */ | , ~ PORTNAME 

 

CellRef = ( Tuple 

 

Tuple = INT , INT Rest_nTuple 
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Rest_nTuple = , INT Rest_nTuple | ) 

 

BOOL =  t  |  f  |  ? 

 

REL_OP = !=  |  =  |  >  |  <  |  >=  |  <= 

 

BOOL_OP = and | or | xor | imp | eqv 

 

ASSIGN_OP = := 

 

OPER = +  |  -  |  *  |  / 

 

INT = [SIGN] DIGIT {DIGIT} 

 

REAL = INT  |  [SIGN] {DIGIT} . DIGIT {DIGIT} 

 

SIGN = +  |  - 

 

DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 

PORTNAME = thisPort  |  STRING 

 

STVAR_NAME = $ STRING 

 

STRING = LETTER {LETTER} 

 

LETTER = a | b | c |...| z | A | B | C |...| Z  

 

CONSTFUNC = pi | e | inf | grav | accel | light | planck 

          | avogadro | faraday | rydberg | euler_gamma 

          | bohr_radius | boltzmann | bohr_magneton | golden 

          | catalan | amu | electron_charge | ideal_gas 

          | stefan_boltzmann | proton_mass | electron_mass 

          | neutron_mass | pem 

 

WITHOUT_PARAM_FUNC = truecount | falsecount | undefcount 

                   | time | random | randomSign 

 

UNARY_FUNC = abs | acos | acosh | asin | asinh | atan | atanh 

           | cos | sec | sech | exp | cosh | fact | fractional 

           | ln | log | round | cotan | cosec | cosech | sign 

           | sin | sinh | statecount | sqrt | tan | tanh 

           | trunc | truncUpper | poisson | exponential 

           | randInt | chi | asec | acotan | asech | acosech 

           | nextPrime | radToDeg | degToRad | nth_prime 

           | acotanh | CtoF | CtoK | KtoC | KtoF | FtoC | FtoK 

 

BINARY_FUNC = comb | logn | max | min | power | remainder 

            | root | beta | gamma | lcm | gcd | normal | f 

            | uniform | binomial | rectToPolar_r | hip | 

            | rectToPolar_angle | polarToRect_x | polarToRect_y 

 

COND_REAL_FUNC = even | odd | isInt | isPrime | isUndefined 
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8 Appendix B – Fire Spread 

8.1 Original 

 
#include(rules.inc) 

 

[top] 

components : ForestFire 

 

[ForestFire] 

type : cell 

dim : (6,6,2) 

delay : transport 

defaultDelayTime : 1000 

border : nowrapped 

neighbors : ForestFire(-1,0,0) ForestFire(0,-1,0) 

neighbors : ForestFire(1,0,0)  ForestFire(0,1,0) 

neighbors : ForestFire(0,0,0) 

neighbors : ForestFire(0,0,-1) ForestFire(0,0,1)  

initialValue : 300.0 

initialCellsValue : init.val 

localTransition : FireBehavior 

 

[FireBehavior] 

%Unburned 

rule : { #macro(unburned) } 1 

       { cellpos(2) = 0 and 

         ( #macro(unburned) > (0,0,0) OR time <= 20 ) AND 

        (0,0,0) < 573 AND (0,0,0) != 209 } 

 

%ti 

rule : { time / 100 } 1 { cellpos(2) = 1 AND 

                         (0,0,-1) >= 573 AND (0,0,0) = 1.0 } 

 

%Burning 

rule : { #macro(burning) } 1 

       { cellpos(2) = 0 AND 

         ( ( (0,0,0) > #macro(burning) AND(0,0,0) > 333 ) OR 

           ( #macro(burning) > (0,0,0) AND (0,0,0) >= 573 )) AND 

         (0,0,0) != 209 } 

 

%Burned 

rule : { 209 } 100 { cellpos(2) = 0 AND 

                     (0,0,0) > #macro(burning) AND 

                     (0,0,0) <= 333 AND (0,0,0) != 209 } 

 

%Stay Burned or constant 

rule : { (0,0,0) } 1 { t } 
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And these are the macros used in this model, which are declared in the file rules.inc. 
 
#BeginMacro(unburned) 

( 0.98689 * (0,0,0)  

+ 0.0031 * (0,-1,0)  

+ 0.0031 * (0,1,0)  

+ 0.0031 * (1,0,0)  

+ 0.0031 * (-1,0,0)  

+ 0.213 ) 

#EndMacro 

 

#BeginMacro(burning) 

( 0.98689 * (0,0,0) 

+ 0.0031 * (0,-1,0)  

+ 0.0031 * (0,1,0)  

+ 0.0031 * (1,0,0)  

+ 0.0031 * (-1,0,0)  

+ 2.74 * exp ( -0.19 * ( ( time + 1 ) / 100 - (0,0,1) ) )  

+ 0.213 ) 

#EndMacro 
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8.2 State Variables 

 
#include(rules.inc) 

 

[top] 

components : ForestFire 

 

[ForestFire] 

type : cell 

dim : (6,6) 

delay : transport 

defaultDelayTime : 1000 

border : nowrapped 

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)  

neighbors : ForestFire(0,1)  ForestFire(0,0) 

initialValue : 300 

initialCellsValue : init.val 

stateVariables: ti  

stateValues: 0 

initialVariablesValue: var.val 

localTransition : FireBehavior 

 

 [FireBehavior] 

%Unburned 

rule : { #macro(unburned) } 1 { ( #macro(unburned) > (0,0) OR  

                                  time <= 20 ) AND  

                                (0,0) < 573 AND  

                                (0,0) != 209 } 

 

%Burning and ti 

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND  

                               (0,0) > 333 AND  

                               ( (0,0) < 573 OR $ti != 1.0 ) } 

rule : { #macro(burning) } 1 { #macro(burning) >= (0,0) AND  

                              (0,0) >= 573 AND $ti != 1.0 } 

rule : { #macro(burning) } { $ti := time / 100; } 1  

       { #macro(burning) >= (0,0) AND (0,0) >= 573 AND  

         $ti = 1.0 } 

rule : { #macro(burning) } { $ti := time / 100; } 1  

       { #macro(burning) <  (0,0) AND (0,0) >= 573 AND  

         $ti = 1.0 } 

 

 

%Burned 

rule : { 209 } 100 { (0,0) > #macro(burning) AND  

                     (0,0) <= 333 AND (0,0) != 209 } 

 

%Stay Burned or constant 

rule : { (0,0) } 1 { t } 
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The macros have also been modified. 
 
#BeginMacro(unburned) 

( 0.98689 * (0,0)  

+ 0.0031 * (0,-1)  

+ 0.0031 * (0,1)  

+ 0.0031 * (1,0)  

+ 0.0031 * (-1,0)  

+ 0.213 ) 

#EndMacro 

 

#BeginMacro(burning) 

( 0.98689 * (0,0) 

+ 0.0031 * (0,-1)  

+ 0.0031 * (0,1)  

+ 0.0031 * (1,0)  

+ 0.0031 * (-1,0)  

+ 2.74 * exp ( -0.19 * ( ( time + 1 ) / 100 - $ti ) )  

+ 0.213 ) 

#EndMacro 
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8.3 State Variables Optimized 

 
#include(rules.inc) 

 

[top] 

components : ForestFire 

 

[ForestFire] 

type : cell 

dim : (6,6) 

delay : transport 

defaultDelayTime : 1000 

border : nowrapped 

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)  

neighbors : ForestFire(0,1)  ForestFire(0,0) 

initialValue : 300 

initialCellsValue : init.val 

localTransition : FireBehavior 

stateVariables: ti  

stateValues: 0 

initialVariablesValue: var.val 

 

[FireBehavior] 

%Unburned 

rule : { #macro(unburned) } 1 { (0,0) != 209 AND (0,0) < 573 AND 

                                ( time <= 20 OR  

                                  #macro(unburned) > (0,0) ) } 

%Burning and ti 

rule : { #macro(burning) } 1 { (0,0) > 333 AND  

                               ( (0,0) < 573 OR $ti != 1.0 ) AND 

                               (0,0) > #macro(burning) } 

rule : { #macro(burning) } 

                   { $ti := if($ti = 1.0, time / 100, $ti); } 1 

                   { (0,0) >= 573 AND #macro(burning) >= (0,0) } 

rule : { #macro(burning) } { $ti := time / 100; } 1 

                              { $ti = 1.0 AND (0,0) >= 573 AND  

                                #macro(burning) < (0,0) } 

 

%Burned 

rule : { 209 } 100 { (0,0) != 209 AND (0,0) <= 333 AND 

                     (0,0) > #macro(burning) } 

 

%Stay Burned or constant 

rule : { (0,0) } 1 { t } 

 
The macros have not been affected by this optimization. This means that they are the same 
macros exposed in 8.2. 
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8.4 Neighbor Ports 

 
#include(rules.inc) 

 

[top] 

components : ForestFire 

 

[ForestFire] 

type : cell 

dim : (6,6) 

delay : transport 

defaultDelayTime : 1000 

border : nowrapped 

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)  

neighbors : ForestFire(0,1)  ForestFire(0,0) 

initialValue : -1 

initialCellsValue : init.val 

neighborports: temp ti  

localTransition : FireBehavior 

 

[FireBehavior] 

%Unburned 

rule : { ~temp := #macro(unburned); } 1 

       { ((#macro(unburned)) > (0,0)~temp OR time <= 20 ) AND 

         (0,0)~temp < 573 AND (0,0)~temp != 209 AND 

         (0,0)~temp > 0 } 

 

%Burning and ti 

rule : { ~temp := #macro(burning); }                    1 

       { (0,0)~temp > #macro(burning) AND 

         (0,0)~temp > 333 AND 

         ((0,0)~temp < 573 OR (0,0)~ti != 1.0) } 

rule : { ~temp := #macro(burning); }                    1 

       { #macro(burning) >= (0,0)~temp AND 

         (0,0)~temp >= 573 AND (0,0)~ti != 1.0 } 

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1 

       { #macro(burning) >= (0,0)~temp AND 

         (0,0)~temp >= 573 AND (0,0)~ti = 1.0 } 

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1 

       { #macro(burning) < (0,0)~temp AND 

         (0,0)~temp >= 573 AND (0,0)~ti = 1.0 } 

 

%Burned 

rule : { ~temp := 209; } 100 { (0,0)~temp > #macro(burning) AND 

                               (0,0)~temp <= 333 AND 

                               (0,0)~temp != 209 AND 

                               (0,0)~temp > 0 } 

%initialization 

rule : { ~temp := 300; ~ti := 0; } 1 

       { (0,0)~temp = -1 and (0,0)~ti = -1 } 

rule : { ~temp := 600; ~ti := 1; } 1 

       { (0,0)~temp = -2 and (0,0)~ti = -2 } 

 

%Stay Burned or constant 

rule : {  } 1 { t } 
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The macros have also been modified 
 
#BeginMacro(unburned) 

( 0.98689 * (0,0)~temp  

+ 0.0031 * (0,-1)~temp  

+ 0.0031 * (0,1)~temp  

+ 0.0031 * (1,0)~temp  

+ 0.0031 * (-1,0)~temp  

+ 0.213 )  

#EndMacro 

 

#BeginMacro(burning) 

( 0.98689 * (0,0)~temp  

+ 0.0031 * (0,-1)~temp  

+ 0.0031 * (0,1)~temp  

+ 0.0031 * (1,0)~temp  

+ 0.0031 * (-1,0)~temp  

+ 2.74 * exp ( -0.19 * ( ( time + 1 ) / 100 - (0,0)~ti ) )  

+ 0.213 )  

#EndMacro 
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8.5 Neighbor Ports Optimized 

 
#include(rules.inc) 

 

[top] 

components : ForestFire 

 

[ForestFire] 

type : cell 

dim : (6,6) 

delay : transport 

defaultDelayTime : 1000 

border : nowrapped 

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)  

neighbors : ForestFire(0,1)  ForestFire(0,0) 

initialValue : -1 

initialCellsValue : init.val 

neighborports: temp ti  

localTransition : FireBehavior 

 

[FireBehavior] 

%Unburned 

rule : { ~temp := #macro(unburned); } 1 

       { (0,0)~temp > 0 AND (0,0)~temp != 209 AND 

         (0,0)~temp < 573 AND 

         (time <= 20 OR (#macro(unburned)) > (0,0)~temp ) } 

 

%Burning and ti 

rule : { ~temp := #macro(burning); }                         1 

       { (0,0)~temp > 333 AND 

         ( (0,0)~temp < 573 OR (0,0)~ti != 1.0 ) AND 

         (0,0)~temp > #macro(burning) } 

rule : { ~temp := #macro(burning); 

         ~ti := if( (0,0)~ti = 1.0, time / 100, (0,0)~ti); } 1 

       { (0,0)~temp >= 573 AND #macro(burning) >= (0,0)~temp } 

rule : { ~temp := #macro(burning); ~ti := time / 100; }      1 

       { (0,0)~ti = 1.0 AND (0,0)~temp >= 573 AND 

         #macro(burning) < (0,0)~temp } 

%Burned 

rule : { ~temp := 209; } 100 { (0,0)~temp != 209 AND 

                               (0,0)~temp > 0 AND 

                               (0,0)~temp <= 333 AND 

                               (0,0)~temp > #macro(burning) } 

%initialization 

rule : { ~temp := 300; ~ti := 0; } 1 

       { (0,0)~temp = -1 and (0,0)~ti = -1 } 

rule : { ~temp := 600; ~ti := 1; } 1 

       { (0,0)~temp = -2 and (0,0)~ti = -2 } 

 

%Stay Burned or constant 

rule : {  } 1 { t } 

 
The same macros exposed in 8.4 are used in the model. 
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9 Appendix C – Life Game 

9.1 Original And Compatibility 

 
[top] 

components : life 

 

[life] 

type : cell 

width : 21 

height : 21 

delay : transport 

defaultDelayTime : 100 

border : wrapped 

neighbors : life(-1,-1) life(-1,0) life(-1,1) 

neighbors : life(0,-1)  life(0,0)  life(0,1) 

neighbors : life(1,-1)  life(1,0)  life(1,1) 

initialvalue : 0 

initialrowvalue : 4  000011100000000000000 

initialrowvalue : 5  000011100010000000000 

initialrowvalue : 6  000011100110000000000 

initialrowvalue : 10 000000000111000000000 

initialrowvalue : 11 000000000111000100000 

initialrowvalue : 12 000000000111001100000 

initialrowvalue : 14 000000000000001110000 

initialrowvalue : 15 000000000000001110001 

initialrowvalue : 16 000000000000001110011 

localtransition : conrad-rule 

 

[conrad-rule] 

rule : 1 100 { (0,0) = 1 and (truecount = 3 or truecount = 4) } 

rule : 0 100 { (0,0) = 1 and (truecount < 3 or truecount > 4) } 

rule : 1 100 { (0,0) = 0 and truecount = 3 } 

rule : 0 100 { (0,0) = 0 and truecount != 3 } 
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9.2 State Variables 

 
[top] 

components : life 

 

[life] 

type : cell 

width : 21 

height : 21 

delay : transport 

defaultDelayTime : 100 

border : wrapped 

neighbors : life(-1,-1) life(-1,0) life(-1,1) 

neighbors : life(0,-1)  life(0,0)  life(0,1) 

neighbors : life(1,-1)  life(1,0)  life(1,1) 

initialvalue : 0 

initialrowvalue : 4  000011100000000000000 

initialrowvalue : 5  000011100010000000000 

initialrowvalue : 6  000011100110000000000 

initialrowvalue : 10 000000000111000000000 

initialrowvalue : 11 000000000111000100000 

initialrowvalue : 12 000000000111001100000 

initialrowvalue : 14 000000000000001110000 

initialrowvalue : 15 000000000000001110001 

initialrowvalue : 16 000000000000001110011 

localtransition : conrad-rule 

statevariables: value 

statevalues: 0 

initialvariablesvalue: life.stvalues 

 

[conrad-rule] 

rule : { $value } { $value := 1; } 100 

       { $value = 1 and (truecount = 3 or truecount = 4) } 

rule : { $value } { $value := 0; } 100 

       { $value = 1 and (truecount < 3 or truecount > 4) } 

rule : { $value } { $value := 1; } 100 

       { $value = 0 and truecount = 3 } 

rule : { $value } { $value := 0; } 100 

       { $value = 0 and truecount != 3 } 
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This model uses the following initial values (life.stvars file):  
 
(4,4)=1 

(4,5)=1 

(4,6)=1 

(5,4)=1 

(5,5)=1 

(5,6)=1 

(6,4)=1 

(6,5)=1 

(6,6)=1 

(5,10)=1 

(6,9)=1 

(6,10)=1 

(10,9)=1 

(10,10)=1 

(10,11)=1 

(11,9)=1 

(11,10)=1 

(11,11)=1 

(12,9)=1 

(12,10)=1 

(12,11)=1 

(10,15)=1 

(11,14)=1 

(11,15)=1 

(14,14)=1 

(14,15)=1 

(14,16)=1 

(15,14)=1 

(15,15)=1 

(15,16)=1 

(16,14)=1 

(16,15)=1 

(16,16)=1 

(15,20)=1 

(16,19)=1 

(16,20)=1 
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9.3 Default Ports 

 
[top] 

components : life 

 

[life] 

type : cell 

width : 21 

height : 21 

delay : transport 

defaultDelayTime : 100 

border : wrapped 

neighbors : life(-1,-1) life(-1,0) life(-1,1) 

neighbors : life(0,-1)  life(0,0)  life(0,1) 

neighbors : life(1,-1)  life(1,0)  life(1,1) 

initialvalue : 0 

initialrowvalue : 4  000011100000000000000 

initialrowvalue : 5  000011100010000000000 

initialrowvalue : 6  000011100110000000000 

initialrowvalue : 10 000000000111000000000 

initialrowvalue : 11 000000000111000100000 

initialrowvalue : 12 000000000111001100000 

initialrowvalue : 14 000000000000001110000 

initialrowvalue : 15 000000000000001110001 

initialrowvalue : 16 000000000000001110011 

localtransition : conrad-rule 

 

[conrad-rule] 

rule : { ~out := 1; } 100 { (0,0)~neighborChange = 1 and 

                            (truecount = 3 or truecount = 4) } 

rule : { ~out := 0; } 100 { (0,0)~neighborChange = 1 and 

                            (truecount < 3 or truecount > 4) } 

rule : { ~out := 1; } 100 { (0,0)~neighborChange = 0 and 

                            truecount = 3 } 

rule : { ~out := 0; } 100 { (0,0)~neighborChange = 0 and 

                            truecount != 3 } 
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9.4 Non-default Ports 

 
[top] 

components : life 

 

[life] 

type : cell 

width : 21 

height : 21 

delay : transport 

defaultDelayTime : 100 

border : wrapped 

neighbors : life(-1,-1) life(-1,0) life(-1,1) 

neighbors : life(0,-1)  life(0,0)  life(0,1) 

neighbors : life(1,-1)  life(1,0)  life(1,1) 

initialvalue : 0 

initialrowvalue : 4  000011100000000000000 

initialrowvalue : 5  000011100010000000000 

initialrowvalue : 6  000011100110000000000 

initialrowvalue : 10 000000000111000000000 

initialrowvalue : 11 000000000111000100000 

initialrowvalue : 12 000000000111001100000 

initialrowvalue : 14 000000000000001110000 

initialrowvalue : 15 000000000000001110001 

initialrowvalue : 16 000000000000001110011 

localtransition : conrad-rule 

neighborports : value 

 

[conrad-rule] 

rule : { ~value := 1; } 100 

       { (0,0)~value = 1 and (statecount(1, ~value) = 3 or 

                              statecount(1, ~value) = 4) } 

rule : { ~value := 0; } 100 

       { (0,0)~value = 1 and (statecount(1, ~value) < 3 or 

                              statecount(1, ~value) > 4) } 

rule : { ~value := 1; } 100 

       { (0,0)~value = 0 and statecount(1, ~value) = 3 } 

rule : { ~value := 0; } 100 

       { (0,0)~value = 0 and statecount(1, ~value) != 3 } 
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