
Improving the Finite Element Method using Cell-DEVS

Hesham Saadawi Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building. 1125 Colonel By Drive
Ottawa, ON. K1S 5B6. Canada.

gwainer@sce.carleton.ca

Keywords: Cell-DEVS models, Finite Elements analysis, DEVS
formalism.

Abstract
Finite element analysis has been used successfully since the advent
of computers to analyze complex engineering and physical
systems. FEM modeling lacks a well-defined formal definition for
composing new models from pre-defined simpler models. Building
hierarchical models of engineering and physical systems out of
simpler components provides advantages in terms of testing,
maintenance and reuse. In order to achieve these goals, we
explored the use of Cell-DEVS as an alternative to model and
solve problems that are usually tackled using the Finite Elements
Method (FEM). We focus on an example about how to approach
the problem definition using Cell-DEVS, which provides a base to
extend this to more complex problems. We discuss the advantages
of this approach to solving complex physical and engineering
problems against the of finite elements or finite differences
methods.

INTRODUCTION

The advance in science and technology has usually relied in the
definition of models representing properties of systems under
study. Complex problems in the domain of physics, chemistry and
biology were usually modeled with differential equations, and by
traditional analysis, these equations were solved analytically for
the desired system. This approach only works for very simple
systems with simple geometries and property distributions. For any
real life problem, obtaining an analytical solution is almost
impossible unless many approximations are done. The advent of
digital computers permitted the definition of advanced numerical
methods, which enabled the analysis of very complex differential
equations. One of such methods, the finite element analysis [1]
has been used successfully to analyze complex engineering and
physical systems. Typical areas of applications include structural
analysis, thermal analysis for heat transfer, electromagnetic
analysis, fluid analysis, etc. The Finite Elements Method (FEM)
consists of defining a solution that satisfies the partial differential
equation on average over a finite element. Every element is
connected to a neighboring elements, and the field under study is
analyzed by propagating the current values from one element to
another through connection points.

In recent years, there has been a tendency to analyze complex
natural and artificial systems like the ones traditionally modeled
with FEM as cell spaces [2, 3] and cellular Automata (CA) [4]. CA
are defined as infinite n-dimensional lattices of cells whose values
are updated according to a local rule. This is done simultaneous
and synchronously using the current state of the cell and the state
of a finite set of nearby cells (known as the neighborhood). CA
have several problems when used in modeling complex systems:
they usually require large amounts of compute time due to its
synchronous nature, which constrain the precision of the model.
The Cell-DEVS formalism solved [5] these problems by using the
DEVS (Discrete EVents Systems specifications) formalism [6] to
define a discrete event cell space with explicit timing delays.

The discretization of model into a grid poses constraints on the
precision that can be achieved by the model. Finite element
analysis, instead, is able to provide higher precision. We explored
the use of Cell-DEVS to model and solve problems usually tackled
by FEM. We intend to use FEM as a very precise technique for
defining the problem, while having the simplicity of a cellular
approach to facilitate model definition. Likewise, we base the
development in the use of Cell-DEVS, which enable immediate
integration with other existing DEVS and Cell-DEVS models. A
simple example shows how to approach the problem definition
using Cell-DEVS, and try to predict how to extend this to more
complex problems. It also compares results obtained by Cell-
DEVS approach to those by FEM to highlight the advantages and
disadvantages of Cell-DEVS.

The advantage of modeling FEM with Cell-DEVS is that in real
life, continuous and discrete systems often interact together. This
dictates that we need a way to integrate both models and simulate
their global behavior. DEVS provides means for modeling discrete
event systems, and enables the construction of hierarchical models.
This would enable modelers to build hybrid hierarchical systems
from continuous and discrete components using the same base
formalism, improving interaction and facilitate implementation in
existing tools.

We describe a method of mapping a physical problem that is
usually modeled by a partial differential equation and solved
numerically either by finite differences or finite elements methods,
into a formal Cell-DEVS specification. This model is then defined
using the CD++ tool [7], an environment that enables the creation
of Cell-DEVS models. We also discuss the advantages of our

approach to solving complex physical and engineering problems
against the use of finite elements or finite differences methods.

BACKGROUND

FEM was originally created to solve problems of structural
mechanics, and it was later applied to many other problems in
Physics. FEM provides piecewise approximation of a partial
differential equation over a continuum. A partial differential
equation is presumed over that continuum. A finite element is a
discrete piece of that continuum. We usually find two major
components that can be identified within each element: field, and
potential. The field is a quantity that varies with position within
structure analyzed. The fields are related to the potentials as their
derivatives with respect to position. The potential can be thought
as the driving force for the spread of the field in the material. For
example, temperature difference in a material would cause a heat
flux to be transferred from one point to another in that material.
The heat flux direction and quantity is related with the difference
in temperature in that material (temperature gradient).

The finite element method is a mathematical procedure for
satisfying partial differential equation over the element. By
assuming the field variable is following a simple function over the
finite element, we can approximate the solution of the partial
differential equation over that element. Elements in the structure
are considered to be connected together through, the vertices on
boundaries of each element, which are called nodes. In order to
solve the problem, we must:
1. Divide the structure under study into a large number of

elements, each of them with a simple geometry
2. A simple interpolation function is assumed over the element,

representing the shape of the spatial solution in that element.
3. The differential equations can be solved for that particular

element by assuming the shape of the change of potential
function in that element. This gives an approximate solution
for a single element: simple algebraic equations are obtained
for the element, represented in a matrix.

4. As all the elements in the structure are connected together
through nodes located at their edges, we obtain a system of
equations represented in N x N matrices. We only know the
values at certain points in the structure (usually at its
boundaries). These values are used to get the unknown
potential inside the structure.

5. The global equations are solved, and the final solution would
give the distribution of the potential over the structure,
represented by the values obtained at the nodes of each
element. The precision can be enhanced by dividing the
structure into more elements, or by assuming a more precise
distribution of the potential inside the element itself.

Most systems modeled by FEM can be represented by a matrix of
the form: [S] [T] = [P]

The matrix form results from combining the equations for all
elements defined in a structure. Thus, [S] is an N x N “stiffness”
matrix and represents elements properties (material constants,
dimensions, etc.), [T] is an N column vector representing the
unknown potential values at each element node. [P] is an N
column vector representing the forcing function, for example in
heat transfer problems this would be the power input per unit
volume.

Cell-DEVS defines cell spaces in which each cell is defined as a
DEVS model. The DEVS formalism was originally proposed to
model discrete events systems. In Cell-DEVS, each cell of a
cellular model is defined as an atomic DEVS model. Cell-DEVS
atomic models are specified as:

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >.

Each cell will use the N inputs to compute the future state S using
the function ττττ. The new value of the cell is transmitted to the
neighbors after the consumption of the delay function. A transport
delay allows us to model a variable commuting time for each cell
with anticipatory semantics. Using inertial delays, the semantics is
preemptive: some scheduled events are not executed due to a small
interval between two input events. Delay defines the kind of delay
for the cell, and d its duration. This behavior is defined by the δδδδint,
δδδδext, λλλλ and D functions, as in other DEVS models.

Once the atomic cell model is defined, a number of cells they can
be put together to form a coupled model, built as an array of
atomic cells. A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >.

The cell space C is a coupled model composed by an array of
atomic cells with size {t1 x...x tn}. Each cell in the space is
connected to the cells defined by the neighborhood N. The cell
space can be “wrapped”, meaning that cells in a border are
connected with those in the opposite one. Otherwise, the borders B
should have a different behavior than the remaining cells. The Z
function allows one to define the internal and external coupling of
cells in the model. The CD++ tool [7] was developed following the
formal definitions of the Cell-DEVS formalism. CD++ is a tool to
simulate both DEVS and Cell-DEVS models. DEVS models can be
written in C++, and Cell-DEVS models are described using a built-
in specification language. The language provides a set of primitives
to define the size of the cell-space, the type of borders, a cell’s
interface with other DEVS models and a cell’s behavior.

FEM models resembles to a large extent Cell-DEVS models, in
which changes of a cell value would trigger its neighboring cells to
change themselves, as though a field is propagating through all of
them. The following sections will be devoted to show how Cell-
DEVS can be used to describe FEM models. The idea is to describe
the model behavior in terms of cell behavior, discrete event
interaction and timing delays.

MAPPING FEM INTO CELL-DEVS

In this section we will show how FEM models can be mapped into
Cell-DEVS using a traditional example found in [1]. This model
epresents steady-state heat transfer with convection from a fluid
into a composite wall of different materials. This resembles the
heat flow through a wall of a heated furnace to ambient air. This
example involves heat transferred by convection from hot air to the
inside wall and by conduction through wall material (in this
particular example, heat transferred by radiation is neglected).
Steady-state heat flow is defined as a heat flux fixed with regard to
time. In non steady-state heat transfer, the heat flux value and thus
temperature distributions in a material change over time.

Heat transfer occurs when there is a temperature difference within
a body or between a body and its surrounding medium. This
temperature difference constitutes the potential driving the heat
flux through the material. The temperature difference over a
infinitely small piece of material would give us the temperature
gradient over this element. Heat flows from hot spots towards
cooler ones. Heat conduction in a two-dimensional steady state
isotropic medium is given by Fourier’s law as:

x

T
kqx

∂
∂−= ,

y

T
kqy

∂
∂−= (1)

Where q is the heat flux (W/m2), qx is the heat flux component in
x direction, qy is the heat flux component in y direction, k is the
thermal conductivity of the material (W/m. oC), T = T(x,y) is the
Temperature field in the medium and is a function in x and y,

xT ∂∂ / and yT ∂∂ / are the temperature gradients over x and y

respectively. The minus sign is to indicate that the direction of heat
flux is opposite to direction of increasing temperature.

In convection heat transfer, the heat flux is given by:

)(sTTAhq −= ∞ (2)

where h (W/m2.oC) is the film (a property of the fluid around the

surface), ∞T and sT are fluid and surface temperature
respectively, A is the surface area exposed to the flow. For a small
element assuming a linear temperature distribution along its unit
length, and a unit area perpendicular to heat flow direction, the
heat flux conduction would be:

)(
1

)(
lh

lh
TTk

TT
k

dx

dT
kq −=−== (3)

Where, Th, Tl are the high and low temperatures of its ends
respectively.

Figure 1. (a) Two elements physically connected. (b) Elements

represented as finite elements/nodes.

In order to get the updating rules for any cell in our Cell-DEVS
model, we first study a subset of the complete problem to solve, in
which we consider only two elements connected together through
their nodes. By solving this sub-problem, we would then
generalize our findings to the complete problem model that we
would describe later. In figure 2 (a), we show two layers of the
wall. These two layers are connected together through the surface
in the middle. Each Layer i has different physical properties: K1 is
the thermal conductivity, Li the length, and Qi the heat flux
through that wall. Temperature distribution on each surface on the
walls is denote as T2 , T1, and T0 as shown in Figure 1 (a).

Each layer can be represented by one finite element, as showed in
Figure 1 (b). Elements 1 and 2 in that figure contain two nodes,

one at each end. These two elements are connected together
through their nodes, making the middle node shared between both
of them as in Figure 2 (b). Every node would then represent a
surface of a wall and the corresponding node value represents this
surface temperature. In a Cell-DEVS model, every node would be
represented by a cell.

From (3) by assuming a linear temperature distribution along the
elements, we get:

Q1 = K1 / L1. (T2 – T1)
Q2 = K2 / L2. (T1 – To)

Having the conservation of energy equation over a control volume
containing both elements 1 and 2 (input heat flux equals output
heat flux), we have:

Q1 = Q2 (3a)
and we get:

2

2

1

1

2
2

2

1

1

1

L

K

L

K

T
L

K
T

L

K

T
o

+

+
= (4) for heat conduction.

Similarly, when we study two elements in which one is a
convective and the other is conductive, we get:

1

1

1

1

1

L

K
h

T
L

K
hT

T
o

+

+
=

∞
 (5) for heat convection.

Equations (4) and (5) above can be used as the updating rules for
our cell-DEVS model. Equation (4) describes the heat conduction
rule inside the material. It specifies the middle node T1 temperature
as a function of its two adjacent nodes and constant material
properties. Equation (5) describes the middle node temperature as

a function of adjacent nodes of fluid temperature ∞T and inner

node temperature oT inside the material. This represents the case

as at a convective boundary, and 1T is the surface temperature.

Figure 2. (a) Steady-state heat transfer through a composite wall.

(b) The problem as a Cell-DEVS space.

Every cell value would thus be a function of its right cell value, its
stored physical properties, left cell value, and its left cell physical
properties. Note that in case of having identical elements (same K
and L), the updating rule for a cell’s temperature would be a
simple arithmetic mean of its two neighboring cell temperatures.
Figure 2 shows an extended version of the example presented in

[1]. Figure 2(a) represents a composite wall of three materials with
layers numbered 1, 2 and 3. The outer temperature is To = 20 oC.
Convection heat transfer takes place on the inner surface of the
wall with fluid temperature T4 = 800 oC and film coefficient h =
25 W/m2.oC. We need to determine the temperature distribution in
the wall (i.e. on surfaces of each layer). Composite layers lengths
are L1 = 0.3 m, L2 = L3 = 0.15 m. Conductivities are K1 = 50 W/m.
oC, k2 = 25 W/m. oC, K3 = 20W/m.oC, for layers numbered 1, 2,
and 3 respectively.

In figure 2(b), we show an equivalent Cell-DEVS model for the
problem defined in (a). In this Cell-DEVS model, we represent
each point with temperature measure in Figure 2(a), with a cell in
the bottom row. Thus, cell (0,0), which is cell in Row 0 and
Column 0, represents fluid temperature T4. Cell (0,1) represents T3.
Cell (0,2) represents T2. Cell (0,3) represents T1. Cell (0,4)
represents T0. Cells in Row 1 store the physical properties
corresponding to wall layers as shown in Figure 2(b). Cell (1,0)
contains value of h, cell (1,1) contains the value of (K3/L3), cell
(1,2) contains the value K2/L2, cell (1,3) contains the value k1/l1,
and cell (1,4) contains unity value, as it is not used in calculations.

[conduction-rule]
rule : { ((-1,0)*(0,1)+(-1,-1)*(0,-1)) / ((-
1,0)+(-1,-1)) } 1 { t }
; Implements equations (3) and (4). Physical
properties K/L are stored in (-1,0) and (-1,-1).

[Constants]
rule : {(0,0)} 1 {t}
; Constant physical properties stored in row 0 as
defined in a “zone” in the model.

[Boundary]
rule : {(0,0)} 1 {t}
; boundary conditions.

Figure 3. CD++ rules for the heat transfer model.

Cells in Row 1 are constant as the physical properties are
independent of temperature distribution. Cells (0,0) and (0,4)
contain constant temperature which constitute the boundary
conditions, and fixed. Each element properties are stored in the
cell above it (for example, physical properties of element (0,0)
would be in (-1,0), as in figure 4). Only cells in Row 0, which
corresponds to T3, T2, and T1, are updated. The model is initially
loaded with values representing material properties on row 0,
boundary values on cells (1,0) and (1,4), and arbitrary values in
other cells. The following is the specification for cell updating
rules in CD++. [conduction-rule] implements the equations (4)
and (5). It also works for convection as it uses film coefficient
value instead of thermal conductivity at cells adjacent to fluid
cells. [Constants] defines the updating rule for cells in row zero.
[Boundary] defines the updating rule for boundary cells, which
also keep a fixed value.

The complete specification of the Cell-DEVS coupled model is
shown in Figure 4. The heatcond model is a Cell-DEVS
component, built as a bidimensional grid (2 rows and 5 columns).
Its delay type is a transport delay. Its border is non-wrapped (we
run specific rules for the boundary conditions). The neighbors
define the cell space neighborhood, and Localtransition the rules
used for local transition function (defined previously in Figure 3),
and Zone defines group of cells that constitute a zone with its own
updating rule that differs from the general updating rule.

[heatcond]
type : cell dim : (2,5) delay : transport
border : nowrapped
neighbors : (-1,0) (0,0) (0,1) (-1,-1) (0,-1)
localtransition : conduction-rule
zone : Constants { (0,0)..(0,4) }
zone : Boundary { (1,0) (1,4) }

Figure 4. Cell-DEVS coupled model definition.

MODEL EXECUTION RESULTS.

After defining the CD++ specification, we executed this model
with multiple test cases. The models were executed until cell
values become stable, converging to a solution for our problem
that satisfies equilibrium equations of steady-state heat transfer as
defined in equation (3a) in section 3. The resultant values would
represent temperature distribution over the structure. In our first
test case, the cells between the hot and cold boundaries were
initialized with a temperature of 20 oC inside the wall. Figure 7 in
the Appendix shows the results for this model. The final step
shows T3=304.75oC, T2=119.03 oC, T1 = 57.14 oC, corresponding
to nodes temperatures as in figure 3. This same example were
solved in [1] using Finite Elements Analysis and gave the
following values: T3 = 304.6 oC, T2 = 119.0 oC, and T1 = 57.1 oC.

This shows that the solution converges to the correct answer after
23 steps. The above results show the solution converges to the
right value with each successive iteration. This process is in fact
equivalent to solving a system of linear equations using Jacobi
iterative method. In this method, we solve one equation for one
variable, with all other variables fixed. In the Jacobi method [9], if
we have a system of n linear equations on the form Ax = b, and if
the ith equation in the form

∑
=

=
n

ijji

j
bxa

1

,

We can solve for value of xi while assuming the all other variables
are fixed as

iijjii a
ij

xabix ,, /)(∑
≠

−=

And iteratively would be

ii
k

jjii
k

i a
ij

xabx ,
)1(

,
)(/)(∑

≠
−= −

where k is the iteration number. The method begins by assigning
arbitrary values to all variables, and a new value is computed for
each variable. During each iteration k, variable values from
previous iteration (k-1) are used to calculate the new value of xi.
Only after iterating with all variables, the variables are updated to
their new values. The order in which the equations are examined is
irrelevant, since the Jacobi method treats them independently. The
CD++ execution of our Cell-DEVS model resembles Jacobi
method. We have a system of linear equations defined in our Cell-
DEVS model, from applying equations (4) and (5) for every
adjacent two elements, thus producing n-1 equations (n = number
of elements). From each equation, we update the cell values as a
function of the neighboring cells, and we keep all the cell values
from one time step fixed to for use in next time step to calculate
new cell values. The order of evaluation of cell values is irrelevant
to the result, which enables parallel execution of our model.
During each time step, cell updates can be done simultaneously as
they are independent of each other. This exploits the nature of
asynchronous updates of Cell-DEVS.

In a second test case, we considered, the nodes T3, T2, and T1 were
initialized with temperatures of 3000 °C, in order to measure speed
of convergence to that solution. The results are shown at Figure 6,
as we converge into the final correct answer after 30 steps. This is
a 36% more steps than the first test case. This shows the impact of
choosing cells initial values on the number of steps to converge to
the final solution. Solving the same problem with FEM, we would
get a system of linear equations that models the problem. Then,
using a suitable method for solving this system we get the
temperature distribution. Usually the method of Gaussian
elimination is used [10]. This does not prevent using an iterative
method like Jacobi, which is equivalent to the way CD++ solves
this problem. However, CD++ implementation of Cell-DEVS
models can enhance the Jacobi method performance: if a cell’s
neighborhood is unchanged during a simulation time step, the
cell’s external transition function is not executed at next time step.
This means that the cell would not re-calculate.

The last two cases presented are defined to stress on the previous
finding that initializing the model cells with proper values can save
valuable simulation time. Assume, for instance, that the hot fluid
temperature T4 is now 850 oC. We need now to solve the new
problem, which resembles the old one in every aspect, but in fluid
temperature. This new problem would be modeled the same as the
previous model, except that we use a high temperature equals to
850 degrees in the boundary element [cell (1,0)] instead of old
value of 800. The model cells for T3, T2, and T1 are initialized with
values that resulted from solving the previous problem. As we may
expect, the iterative solution in this case starts with cell values near
the correct solution, thus saving some iteration cycles and
converging in 20 time (Figure 7). Finally, we initialized the cells
with arbitrary values (–3000 oC). The model execution took 35
time steps to converge. This shows that for complex and large
models, we can enhance performance of subsequent model
executions if we initialize all unknown cell values with results
coming from the previous simulation for an almost similar model,
as we did in the example presented in Figure 8.

CONCLUSION

We showed how to use the Cell-DEVS formalism to model
problems that have been usually tackled with other methods as
FEM and Finite differences. Although the example used here is
simple compared with real-life problems, this technique can be
extended to model more complex problems. Modeling physical
and engineering problems with Cell-DEVS can have its own
advantages over traditional methods. Cell-DEVS is a well-defined
formalism for model specification including its interfaces with
other models. This property enables the construction of atomic and
coupled models that can be composed together to form a more
complex model. As engineering systems are typically constructed
from several and possibly thousands of components, modeling and
simulating these systems need a well-defined method to build and
integrate those models. A method that is capable of building more
complex models from simpler ones, and allow for re-use of such
models can be very useful when using simulation to design and
optimize systems. Cell-DEVS enables building coupled systems
that are composed of many atomic or coupled components. This
property can be very useful when simulating engineering systems
as they often compose of many continuous and discrete
components. Simulation of complex models can use the ability of
Cell-DEVS models to execute in parallel.

Initializing the model cells with a previous solution of similar
model can cut simulation time, because solving the problem in
Cell-DEVS resembles the Jacobi method for solving system of
linear equations. As in Jacobi method, starting the iteration with
variables initialized near to their correct values, would accelerate
the convergence to the final solution. Definition of complex
equations can be easily done using the rule specification
techniques of CD++, as it could be seen with this particular
example. This highly reduces the effort spent by the users in
developing the applications. Automated verification facilities in
the toolkit improve testing and reduce delivery time. Likewise,
applying changes to the model only results in slight changes in the
model specifications, without any need for code rewriting, which
enables easy analysis of more complex system conditions.

In contrary to this, unless some intelligence is in its matrix-solving
algorithm is used; FEM would solve the N x N matrix all over
again even if a small change were done to a boundary condition.
This small change may only affect several cells around that
boundary condition, in which case a Cell-DEVS model simulation
can be more efficient than FEM. Cell-DEVS asynchronous nature
makes possible to have independent components working at their
own rate of execution, and each element can be associated with
different level of activity. This can be easily modeled thanks to the
explicit timing delay constructions available in each cell in a Cell-
DEVS model.

REFERENCES

[1] CHANDRUPATLA, T. ; BELEGUNDU; A. “Introduction to
finite elements in engineering”, Prentice Hall, 1997.

[2] TALIA, D. "Cellular processing tools for high-performance
simulation". IEEE Computer. September 2000. Pp. 44 –52.

[3] SIPPER, M. "The emergence of cellular computing". IEEE
Computer. July 1999. Pp. 18-26.

[4] WOLFRAM, S. "A new kind of science". Wolfram Media, Inc.
2002.

[5] WAINER, G.; GIAMBIASI, N. "N-Dimensional Cell-DEVS".
In Discrete Events Systems: Theory and Applications, Kluwer.
Vol. 12, No. 1. January 2002. pp. 135-157.

[6] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems". Academic Press. 2000.

[7] WAINER, G. "CD++: a toolkit to define discrete-event
models". G. Wainer. Software, Practice and Experience. Wiley.
Vol. 32, No.3. pp. 1261-1306. November 2002.

[8] BRAUER, J. “What Every Engineer Should know About Finite
Element Analysis”, Marcel Dekker, Inc. 1988.

[9] BARRETT, R.; BERRY, M.; CHAN, T.F.; DEMMEL, J.;
DONATO, J.; DONGARRA, J.; EIJKHOUT, V.; POZO, R.;
ROMINE, C.; VAN DER VORST, H. “Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition”, SIAM. 1994.

[10] BRANDAL, W. “Numerical Linear Algebra”, BCS
Associates. 1991.

APPENDIX

Line : 29 - Time: 00:00:00:000

0 1 2 3 4
 +--- ---------------------+
0| 25.00000000 66.66666412 200.00000000 333.3 3334351 1.00000000|
1| 800.00000000 20.00000000 20.00000000 20.0 0000000 20.00000000|
 +--- ---------------------+

Line : 44 - Time: 00:00:00:001

0 1 2 3 4
 +--- ---------------------+
0| 25.00000000 66.66666412 200.00000000 333.3 3334351 1.00000000|
1| 800.00000000 232.72727966 20.00000000 20.0 0000000 20.00000000|
 +--- ---------------------+
...
Line : 473 - Time: 00:00:00:023
0 1 2 3 4
+-- --------------------+
0| 25.00000000 66.66666412 200.00000000 333.3 3334351 1.00000000|
1| 800.00000000 304.74679565 119.02681732 57.1 3505936 20.00000000|
+-- --------------------+

Figure 5. Simulation results for initial temperature = 20 oC.

Line : 30 - Time: 00:00:00:000
 0 1 2 3 4
 +-- ------------------------+
 0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000|
 1| 800.00000000 3000.00000000 3000.00000000 300 0.00000000 20.00000000|
 +-- ------------------------+

.
Line : 638 - Time: 00:00:00:031
 0 1 2 3 4
 +-- ------------------------+
 0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000|
 1| 800.00000000 304.78213501 119.07543182 5 7.15327835 20.00000000|
 +-- ------------------------+

Figure 6. Simulation results for initial temperature = 3000 oC.

Line : 31 - Time: 00:00:00:000
 0 1 2 3 4
 +-- ------------------------+
 0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000|
 1| 850.00000000 304.76190186 119.04762268 5 7.14286041 20.00000000|
 +-- ------------------------+

.
Line : 459 - Time: 00:00:00:020
 0 1 2 3 4
 +-- ------------------------+
 0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000|
 1| 850.00000000 323.01135254 125.39394379 5 9.52148056 20.00000000|
 +-- ------------------------+

Figure 7. Changing boundary conditions and initial temperature = 20 oC.

Line : 30 - Time: 00:00:00:000
 0 1 2 3 4
 +-- ------------------------+
 0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000|
 1| 850.00000000-3000.00000000-3000.00000000-300 0.00000000 20.00000000|
 +-- ------------------------+

.
Line : 610 - Time: 00:00:00:035
 0 1 2 3 4
 +-- ------------------------+
 0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000|
 1| 850.00000000 323.01116943 125.39035034 5 9.52138138 20.00000000|
 +-- ------------------------+

Figure 8. Changing boundary conditions and arbitrary initial temperature.

