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Abstract 
Finite element analysis has been used successfully since the advent 
of computers to analyze complex engineering and physical 
systems. FEM modeling lacks a well-defined formal definition for 
composing new models from pre-defined simpler models. Building 
hierarchical models of engineering and physical systems out of 
simpler components provides advantages in terms of testing, 
maintenance and reuse. In order to achieve these goals, we 
explored the use of Cell-DEVS as an alternative to model and 
solve problems that are usually tackled using the Finite Elements 
Method (FEM). We focus on an example about how to approach 
the problem definition using Cell-DEVS, which provides a base to 
extend this to more complex problems. We discuss the advantages 
of this approach to solving complex physical and engineering 
problems against the of finite elements or finite differences 
methods. 
 

INTRODUCTION 
 
The advance in science and technology has usually relied in the 
definition of models representing properties of systems under 
study. Complex problems in the domain of physics, chemistry and 
biology were usually modeled with differential equations, and by 
traditional analysis, these equations were solved analytically for 
the desired system. This approach only works for very simple 
systems with simple geometries and property distributions. For any 
real life problem, obtaining an analytical solution is almost 
impossible unless many approximations are done. The advent of 
digital computers permitted the definition of advanced numerical 
methods, which enabled the analysis of very complex differential 
equations. One of such methods, the finite element analysis [1] 
has been used successfully to analyze complex engineering and 
physical systems. Typical areas of applications include structural 
analysis, thermal analysis for heat transfer, electromagnetic 
analysis, fluid analysis, etc. The Finite Elements Method (FEM) 
consists of defining a solution that satisfies the partial differential 
equation on average over a finite element. Every element is 
connected to a neighboring elements, and the field under study is 
analyzed by propagating the current values from one element to 
another through connection points. 
 

In recent years, there has been a tendency to analyze complex 
natural and artificial systems like the ones traditionally modeled 
with FEM as cell spaces [2, 3] and cellular Automata (CA) [4]. CA 
are defined as infinite n-dimensional lattices of cells whose values 
are updated according to a local rule. This is done simultaneous 
and synchronously using the current state of the cell and the state 
of a finite set of nearby cells (known as the neighborhood). CA 
have several problems when used in modeling complex systems: 
they usually require large amounts of compute time due to its 
synchronous nature, which constrain the precision of the model. 
The Cell-DEVS formalism solved [5] these problems by using the 
DEVS (Discrete EVents Systems specifications) formalism [6] to 
define a discrete event cell space with explicit timing delays.  
 
The discretization of model into a grid poses constraints on the 
precision that can be achieved by the model. Finite element 
analysis, instead, is able to provide higher precision. We explored 
the use of Cell-DEVS to model and solve problems usually tackled 
by FEM. We intend to use FEM as a very precise technique for 
defining the problem, while having the simplicity of a cellular 
approach to facilitate model definition. Likewise, we base the 
development in the use of Cell-DEVS, which enable immediate 
integration with other existing DEVS and Cell-DEVS models. A 
simple example shows how to approach the problem definition 
using Cell-DEVS, and try to predict how to extend this to more 
complex problems. It also compares results obtained by Cell-
DEVS approach to those by FEM to highlight the advantages and 
disadvantages of Cell-DEVS.  
 
The advantage of modeling FEM with Cell-DEVS is that in real 
life, continuous and discrete systems often interact together. This 
dictates that we need a way to integrate both models and simulate 
their global behavior. DEVS provides means for modeling discrete 
event systems, and enables the construction of hierarchical models. 
This would enable modelers to build hybrid hierarchical systems 
from continuous and discrete components using the same base 
formalism, improving interaction and facilitate implementation in 
existing tools. 
 
We describe a method of mapping a physical problem that is 
usually modeled by a partial differential equation and solved 
numerically either by finite differences or finite elements methods, 
into a formal Cell-DEVS specification. This model is then defined 
using the CD++ tool [7], an environment that enables the creation 
of Cell-DEVS models. We also discuss the advantages of our 



approach to solving complex physical and engineering problems 
against the use of finite elements or finite differences methods. 
 

BACKGROUND 
 
FEM was originally created to solve problems of structural 
mechanics, and it was later applied to many other problems in 
Physics. FEM provides piecewise approximation of a partial 
differential equation over a continuum. A partial differential 
equation is presumed over that continuum. A finite element is a 
discrete piece of that continuum. We usually find two major 
components that can be identified within each element: field, and 
potential. The field is a quantity that varies with position within 
structure analyzed. The fields are related to the potentials as their 
derivatives with respect to position. The potential can be thought 
as the driving force for the spread of the field in the material. For 
example, temperature difference in a material would cause a heat 
flux to be transferred from one point to another in that material. 
The heat flux direction and quantity is related with the difference 
in temperature in that material (temperature gradient).  
 
The finite element method is a mathematical procedure for 
satisfying partial differential equation over the element. By 
assuming the field variable is following a simple function over the 
finite element, we can approximate the solution of the partial 
differential equation over that element. Elements in the structure 
are considered to be connected together through, the vertices on 
boundaries of each element, which are called nodes. In order to 
solve the problem, we must: 
1. Divide the structure under study into a large number of 

elements, each of them with a simple geometry 
2. A simple interpolation function is assumed over the element, 

representing the shape of the spatial solution in that element.  
3. The differential equations can be solved for that particular 

element by assuming the shape of the change of potential 
function in that element. This gives an approximate solution 
for a single element: simple algebraic equations are obtained 
for the element, represented in a matrix.  

4. As all the elements in the structure are connected together 
through nodes located at their edges, we obtain a system of 
equations represented in N x N matrices. We only know the 
values at certain points in the structure (usually at its 
boundaries). These values are used to get the unknown 
potential inside the structure.  

5. The global equations are solved, and the final solution would 
give the distribution of the potential over the structure, 
represented by the values obtained at the nodes of each 
element. The precision can be enhanced by dividing the 
structure into more elements, or by assuming a more precise 
distribution of the potential inside the element itself. 

 
Most systems modeled by FEM can be represented by a matrix of 
the form:     [S] [T] = [P] 

 
The matrix form results from combining the equations for all 
elements defined in a structure. Thus, [S] is an N x N “stiffness” 
matrix and represents elements properties (material constants, 
dimensions, etc.), [T] is an N column vector representing the 
unknown potential values at each element node. [P] is an N 
column vector representing the forcing function, for example in 
heat transfer problems this would be the power input per unit 
volume. 

Cell-DEVS defines cell spaces in which each cell is defined as a 
DEVS model. The DEVS formalism was originally proposed to 
model discrete events systems. In Cell-DEVS, each cell of a 
cellular model is defined as an atomic DEVS model. Cell-DEVS 
atomic models are specified as: 
 

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >. 
 
Each cell will use the N inputs to compute the future state S using 
the function ττττ. The new value of the cell is transmitted to the 
neighbors after the consumption of the delay function. A transport 
delay allows us to model a variable commuting time for each cell 
with anticipatory semantics. Using inertial delays, the semantics is 
preemptive: some scheduled events are not executed due to a small 
interval between two input events. Delay defines the kind of delay 
for the cell, and d its duration. This behavior is defined by the δδδδint, 
δδδδext, λλλλ and D functions, as in other DEVS models. 
 
Once the atomic cell model is defined, a number of cells they can 
be put together to form a coupled model, built as an array of 
atomic cells. A Cell-DEVS coupled model is defined by: 

 
GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. 

 
The cell space C is a coupled model composed by an array of 
atomic cells with size {t1 x...x tn}. Each cell in the space is 
connected to the cells defined by the neighborhood N. The cell 
space can be “wrapped”, meaning that cells in a border are 
connected with those in the opposite one. Otherwise, the borders B 
should have a different behavior than the remaining cells. The Z 
function allows one to define the internal and external coupling of 
cells in the model. The CD++ tool [7] was developed following the 
formal definitions of the Cell-DEVS formalism. CD++ is a tool to 
simulate both DEVS and Cell-DEVS models. DEVS models can be 
written in C++, and Cell-DEVS models are described using a built-
in specification language. The language provides a set of primitives 
to define the size of the cell-space, the type of borders, a cell’s 
interface with other DEVS models and a cell’s behavior.  
 
FEM models resembles to a large extent Cell-DEVS models, in 
which changes of a cell value would trigger its neighboring cells to 
change themselves, as though a field is propagating through all of 
them. The following sections will be devoted to show how Cell-
DEVS can be used to describe FEM models. The idea is to describe 
the model behavior in terms of cell behavior, discrete event 
interaction and timing delays.  
 

MAPPING FEM INTO CELL-DEVS 
 
In this section we will show how FEM models can be mapped into 
Cell-DEVS using a traditional example found in [1]. This model 
epresents steady-state heat transfer with convection from a fluid 
into a composite wall of different materials. This resembles the 
heat flow through a wall of a heated furnace to ambient air. This 
example involves heat transferred by convection from hot air to the 
inside wall and by conduction through wall material (in this 
particular example, heat transferred by radiation is neglected). 
Steady-state heat flow is defined as a heat flux fixed with regard to 
time. In non steady-state heat transfer, the heat flux value and thus 
temperature distributions in a material change over time.  
 



Heat transfer occurs when there is a temperature difference within 
a body or between a body and its surrounding medium. This 
temperature difference constitutes the potential driving the heat 
flux through the material. The temperature difference over a 
infinitely small piece of material would give us the temperature 
gradient over this element. Heat flows from hot spots towards 
cooler ones. Heat conduction in a two-dimensional steady state 
isotropic medium is given by Fourier’s law as: 
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Where q is the heat flux (W/m2 ), qx  is the heat flux component in 
x direction, qy  is the heat flux component in y direction, k is the 
thermal conductivity of the material (W/m. oC), T = T(x,y) is the 
Temperature field in the medium and is a function in x and y, 

xT ∂∂ /  and yT ∂∂ / are the temperature gradients over x and y 

respectively. The minus sign is to indicate that the direction of heat 
flux is opposite to direction of increasing temperature.  
 
In convection heat transfer, the heat flux is given by: 

)( sTTAhq −= ∞    (2) 

where h (W/m2.oC) is the film (a property of the fluid around the 

surface), ∞T  and sT  are fluid and surface temperature 
respectively, A is the surface area exposed to the flow. For a small 
element assuming a linear temperature distribution along its unit 
length, and a unit area perpendicular to heat flow direction, the 
heat flux conduction would be: 
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Where, Th, Tl are the high and low temperatures of its ends 
respectively. 

 
Figure 1. (a) Two elements physically connected. (b) Elements 

represented as finite elements/nodes. 
 
In order to get the updating rules for any cell in our Cell-DEVS 
model, we first study a subset of the complete problem to solve, in 
which we consider only two elements connected together through 
their nodes. By solving this sub-problem, we would then 
generalize our findings to the complete problem model that we 
would describe later. In figure 2 (a), we show two layers of the 
wall. These two layers are connected together through the surface 
in the middle. Each Layer i has different physical properties: K1 is 
the thermal conductivity, Li the length, and Qi the heat flux 
through that wall. Temperature distribution on each surface on the 
walls is denote as T2 , T1, and T0 as shown in Figure 1 (a). 
 
Each layer can be represented by one finite element, as showed in 
Figure 1 (b). Elements 1 and 2 in that figure contain two nodes, 

one at each end. These two elements are connected together 
through their nodes, making the middle node shared between both 
of them as in Figure 2 (b). Every node would then represent a 
surface of a wall and the corresponding node value represents this 
surface temperature. In a Cell-DEVS model, every node would be 
represented by a cell. 
 
From (3) by assuming a linear temperature distribution along the 
elements, we get: 

Q1  = K1 / L1. (T2 – T1) 
Q2  = K2 / L2. (T1 – To) 

Having the conservation of energy equation over a control volume 
containing both elements 1 and 2 (input heat flux equals output 
heat flux), we have:    

Q1 = Q2                          (3a) 
and we get: 
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Similarly, when we study two elements in which one is a 
convective and the other is conductive, we get: 
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   (5) for heat convection. 

Equations (4) and (5) above can be used as the updating rules for 
our cell-DEVS model. Equation (4) describes the heat conduction 
rule inside the material. It specifies the middle node T1 temperature 
as a function of its two adjacent nodes and constant material 
properties. Equation (5) describes the middle node temperature as 

a function of adjacent nodes of fluid temperature ∞T and inner 

node temperature oT  inside the material. This represents the case 

as at a convective boundary, and 1T  is the surface temperature.  
  

 
Figure 2. (a) Steady-state heat transfer through a composite wall. 

(b) The problem as a Cell-DEVS space. 
 
Every cell value would thus be a function of its right cell value, its 
stored physical properties, left cell value, and its left cell physical 
properties. Note that in case of having identical elements (same K 
and L), the updating rule for a cell’s temperature would be a 
simple arithmetic mean of its two neighboring cell temperatures. 
Figure 2 shows an extended version of the example presented in 



[1]. Figure 2(a) represents a composite wall of three materials with 
layers numbered 1, 2 and 3. The outer temperature is To = 20 oC. 
Convection heat transfer takes place on the inner surface of the 
wall with fluid temperature T4 =  800 oC and film coefficient h = 
25 W/m2.oC. We need to determine the temperature distribution in 
the wall (i.e. on surfaces of each layer). Composite layers lengths 
are L1 = 0.3 m, L2 = L3 = 0.15 m. Conductivities are K1 = 50 W/m. 
oC, k2 = 25 W/m. oC, K3 =  20W/m.oC, for layers numbered 1, 2, 
and 3 respectively. 

 
In figure 2(b), we show an equivalent Cell-DEVS model for the 
problem defined in (a). In this Cell-DEVS model, we represent 
each point with temperature measure in Figure 2(a), with a cell in 
the bottom row. Thus, cell (0,0), which is cell in Row 0 and 
Column 0, represents fluid temperature T4. Cell (0,1) represents T3. 
Cell (0,2) represents T2. Cell (0,3) represents T1. Cell (0,4) 
represents T0. Cells in Row 1 store the physical properties 
corresponding to wall layers as shown in Figure 2(b). Cell (1,0) 
contains value of h, cell (1,1) contains the value of (K3/L3), cell 
(1,2) contains the value K2/L2, cell (1,3) contains the value k1/l1, 
and cell (1,4) contains unity value, as it is not used in calculations.  
 
[conduction-rule] 
rule : { ((-1,0)*(0,1)+(-1,-1)*(0,-1)) / ( (-
1,0)+(-1,-1) ) } 1 { t } 
; Implements equations (3) and (4). Physical 
properties K/L are stored in (-1,0) and (-1,-1). 
 
[Constants] 
rule : {(0,0)} 1 {t} 
; Constant physical properties stored in row 0 as 
defined in a “zone” in the model. 
 
[Boundary] 
rule : {(0,0)} 1 {t} 
; boundary conditions. 

Figure 3. CD++ rules for the heat transfer model. 
 
Cells in Row 1 are constant as the physical properties are 
independent of temperature distribution. Cells (0,0) and (0,4) 
contain constant temperature which constitute the boundary 
conditions, and fixed. Each element properties are stored in the 
cell above it (for example, physical properties of element (0,0) 
would be in (-1,0), as in figure 4). Only cells in Row 0, which 
corresponds to T3, T2, and T1, are updated. The model is initially 
loaded with values representing material properties on row 0, 
boundary values on cells (1,0) and (1,4), and arbitrary values in 
other cells. The following is the specification for cell updating 
rules in CD++. [conduction-rule] implements the equations (4) 
and (5). It also works for convection as it uses film coefficient 
value instead of thermal conductivity at cells adjacent to fluid 
cells. [Constants] defines the updating rule for cells in row zero. 
[Boundary] defines the updating rule for boundary cells, which 
also keep a fixed value.  
 
The complete specification of the Cell-DEVS coupled model is 
shown in Figure 4. The heatcond model is a Cell-DEVS 
component, built as a bidimensional grid (2 rows and 5 columns). 
Its delay type is a transport delay. Its border is non-wrapped (we 
run specific rules for the boundary conditions). The neighbors 
define the cell space neighborhood, and Localtransition the rules 
used for local transition function (defined previously in Figure 3), 
and Zone defines group of cells that constitute a zone with its own 
updating rule that differs from the general updating rule.  

[heatcond] 
type : cell   dim : (2,5)  delay : transport 
border : nowrapped  
neighbors : (-1,0) (0,0) (0,1) (-1,-1) (0,-1)    
localtransition : conduction-rule 
zone : Constants { (0,0)..(0,4) } 
zone : Boundary { (1,0) (1,4) }  

Figure 4. Cell-DEVS coupled model definition. 
 

MODEL EXECUTION RESULTS. 
 
After defining the CD++ specification, we executed this model 
with multiple test cases. The models were executed until cell 
values become stable, converging to a solution for our problem 
that satisfies equilibrium equations of steady-state heat transfer as 
defined in equation (3a) in section 3. The resultant values would 
represent temperature distribution over the structure. In our first 
test case, the cells between the hot and cold boundaries were 
initialized with a temperature of 20 oC inside the wall. Figure 7 in 
the Appendix shows the results for this model. The final step 
shows T3=304.75oC, T2=119.03 oC, T1 = 57.14 oC, corresponding 
to nodes temperatures as in figure 3. This same example were 
solved in [1] using Finite Elements Analysis and gave the 
following values: T3 = 304.6 oC, T2 = 119.0 oC, and T1 = 57.1 oC.  
 
This shows that the solution converges to the correct answer after 
23 steps. The above results show the solution converges to the 
right value with each successive iteration. This process is in fact 
equivalent to solving a system of linear equations using Jacobi 
iterative method. In this method, we solve one equation for one 
variable, with all other variables fixed. In the Jacobi method [9], if 
we have a system of n linear equations on the form Ax = b, and if 
the ith equation in the form 
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where k is the iteration number. The method begins by assigning 
arbitrary values to all variables, and a new value is computed for 
each variable. During each iteration k, variable values from 
previous iteration (k-1) are used to calculate the new value of xi. 
Only after iterating with all variables, the variables are updated to 
their new values. The order in which the equations are examined is 
irrelevant, since the Jacobi method treats them independently. The 
CD++ execution of our Cell-DEVS model resembles Jacobi 
method. We have a system of linear equations defined in our Cell-
DEVS model, from applying equations (4) and (5) for every 
adjacent two elements, thus producing n-1 equations (n = number 
of elements). From each equation, we update the cell values as a 
function of the neighboring cells, and we keep all the cell values 
from one time step fixed to for use in next time step to calculate 
new cell values. The order of evaluation of cell values is irrelevant 
to the result, which enables parallel execution of our model. 
During each time step, cell updates can be done simultaneously as 
they are independent of each other. This exploits the nature of 
asynchronous updates of Cell-DEVS.  



In a second test case, we considered, the nodes T3, T2, and T1 were 
initialized with temperatures of 3000 °C, in order to measure speed 
of convergence to that solution. The results are shown at Figure 6, 
as we converge into the final correct answer after 30 steps. This is 
a 36% more steps than the first test case. This shows the impact of 
choosing cells initial values on the number of steps to converge to 
the final solution.  Solving the same problem with FEM, we would 
get a system of linear equations that models the problem. Then, 
using a suitable method for solving this system we get the 
temperature distribution. Usually the method of Gaussian 
elimination is used [10]. This does not prevent using an iterative 
method like Jacobi, which is equivalent to the way CD++ solves 
this problem. However, CD++ implementation of Cell-DEVS 
models can enhance the Jacobi method performance: if a cell’s 
neighborhood is unchanged during a simulation time step, the 
cell’s external transition function is not executed at next time step. 
This means that the cell would not re-calculate. 
 
The last two cases presented are defined to stress on the previous 
finding that initializing the model cells with proper values can save 
valuable simulation time. Assume, for instance, that the hot fluid 
temperature T4 is now 850 oC. We need now to solve the new 
problem, which resembles the old one in every aspect, but in fluid 
temperature. This new problem would be modeled the same as the 
previous model, except that we use a high temperature equals to 
850 degrees in the boundary element [cell (1,0)] instead of old 
value of 800. The model cells for T3, T2, and T1 are initialized with 
values that resulted from solving the previous problem. As we may 
expect, the iterative solution in this case starts with cell values near 
the correct solution, thus saving some iteration cycles and 
converging in 20 time (Figure 7). Finally, we initialized the cells 
with arbitrary values (–3000 oC). The model execution took 35 
time steps to converge. This shows that for complex and large 
models, we can enhance performance of subsequent model 
executions if we initialize all unknown cell values with results 
coming from the previous simulation for an almost similar model, 
as we did in the example presented in Figure 8.  

 
CONCLUSION 
 
We showed how to use the Cell-DEVS formalism to model 
problems that have been usually tackled with other methods as 
FEM and Finite differences. Although the example used here is 
simple compared with real-life problems, this technique can be 
extended to model more complex problems. Modeling physical 
and engineering problems with Cell-DEVS can have its own 
advantages over traditional methods. Cell-DEVS is a well-defined 
formalism for model specification including its interfaces with 
other models. This property enables the construction of atomic and 
coupled models that can be composed together to form a more 
complex model. As engineering systems are typically constructed 
from several and possibly thousands of components, modeling and 
simulating these systems need a well-defined method to build and 
integrate those models. A method that is capable of building more 
complex models from simpler ones, and allow for re-use of such 
models can be very useful when using simulation to design and 
optimize systems. Cell-DEVS enables building coupled systems 
that are composed of many atomic or coupled components. This 
property can be very useful when simulating engineering systems 
as they often compose of many continuous and discrete 
components. Simulation of complex models can use the ability of 
Cell-DEVS models to execute in parallel.  

 
Initializing the model cells with a previous solution of similar 
model can cut simulation time, because solving the problem in 
Cell-DEVS resembles the Jacobi method for solving system of 
linear equations. As in Jacobi method, starting the iteration with 
variables initialized near to their correct values, would accelerate 
the convergence to the final solution. Definition of complex 
equations can be easily done using the rule specification 
techniques of CD++, as it could be seen with this particular 
example. This highly reduces the effort spent by the users in 
developing the applications. Automated verification facilities in 
the toolkit improve testing and reduce delivery time. Likewise, 
applying changes to the model only results in slight changes in the 
model specifications, without any need for code rewriting, which 
enables easy analysis of more complex system conditions. 
 
In contrary to this, unless some intelligence is in its matrix-solving 
algorithm is used; FEM would solve the N x N matrix all over 
again even if a small change were done to a boundary condition. 
This small change may only affect several cells around that 
boundary condition, in which case a Cell-DEVS model simulation 
can be more efficient than FEM. Cell-DEVS asynchronous nature 
makes possible to have independent components working at their 
own rate of execution, and each element can be associated with 
different level of activity. This can be easily modeled thanks to the 
explicit timing delay constructions available in each cell in a Cell-
DEVS model.  
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APPENDIX 
 
Line : 29 - Time: 00:00:00:000 

0             1             2             3             4 
 +------------------------------------------------- ---------------------+ 
0|   25.00000000   66.66666412  200.00000000  333.3 3334351    1.00000000| 
1|  800.00000000   20.00000000   20.00000000   20.0 0000000   20.00000000| 
 +------------------------------------------------- ---------------------+ 
 
Line : 44 - Time: 00:00:00:001 

0             1             2             3             4 
 +------------------------------------------------- ---------------------+ 
0|   25.00000000   66.66666412  200.00000000  333.3 3334351    1.00000000| 
1|  800.00000000  232.72727966   20.00000000   20.0 0000000   20.00000000| 
 +------------------------------------------------- ---------------------+ 
... 
Line : 473 - Time: 00:00:00:023 
0             1             2             3             4 
+-------------------------------------------------- --------------------+ 
0|   25.00000000   66.66666412  200.00000000  333.3 3334351    1.00000000| 
1|  800.00000000  304.74679565  119.02681732   57.1 3505936   20.00000000| 
+-------------------------------------------------- --------------------+  

Figure 5. Simulation results for initial temperature = 20 oC. 
 
Line : 30 - Time: 00:00:00:000 
                  0             1             2             3             4  
    +---------------------------------------------- ------------------------+ 
   0|   25.00000000   66.66666412  200.00000000  33 3.33334351    1.00000000| 
   1|  800.00000000 3000.00000000 3000.00000000 300 0.00000000   20.00000000| 
    +---------------------------------------------- ------------------------+ 

. . ...  
Line : 638 - Time: 00:00:00:031 
                  0             1             2             3             4  
    +---------------------------------------------- ------------------------+ 
   0|   25.00000000   66.66666412  200.00000000  33 3.33334351    1.00000000| 
   1|  800.00000000  304.78213501  119.07543182   5 7.15327835   20.00000000| 
    +---------------------------------------------- ------------------------+ 

Figure 6. Simulation results for initial temperature =  3000 oC. 
 
Line : 31 - Time: 00:00:00:000 
             0             1             2             3             4 
    +---------------------------------------------- ------------------------+ 
   0|   25.00000000   66.66666412  200.00000000  33 3.33334351    1.00000000| 
   1|  850.00000000  304.76190186  119.04762268   5 7.14286041   20.00000000| 
    +---------------------------------------------- ------------------------+ 

. . . . . . 
Line : 459 - Time: 00:00:00:020 
              0             1             2             3             4 
    +---------------------------------------------- ------------------------+ 
   0|   25.00000000   66.66666412  200.00000000  33 3.33334351    1.00000000| 
   1|  850.00000000  323.01135254  125.39394379   5 9.52148056   20.00000000| 
    +---------------------------------------------- ------------------------+ 

Figure 7. Changing boundary conditions and initial temperature = 20 oC. 
 
Line : 30 - Time: 00:00:00:000 
             0             1             2             3             4 
    +---------------------------------------------- ------------------------+ 
   0|   25.00000000   66.66666412  200.00000000  33 3.33334351    1.00000000| 
   1|  850.00000000-3000.00000000-3000.00000000-300 0.00000000   20.00000000| 
    +---------------------------------------------- ------------------------+ 

. . . . . . 
Line : 610 - Time: 00:00:00:035 
              0             1             2             3             4      
    +---------------------------------------------- ------------------------+ 
   0|   25.00000000   66.66666412  200.00000000  33 3.33334351    1.00000000| 
   1|  850.00000000  323.01116943  125.39035034   5 9.52138138   20.00000000| 
    +---------------------------------------------- ------------------------+  

Figure 8. Changing boundary conditions and arbitrary initial temperature. 
 
 


