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Abstract

Finite element analysis has been used successfully since the advent
of computers to analyze complex engineering and physical
systems. FEM modeling lacks a well-defined formal definition for
composing new models from pre-defined simpler models. Building
hierarchical models of engineering and physical systems out of
simpler components provides advantages in terms of testing,
maintenance and reuse. In order to achieve these goals, we
explored the use of Cell-DEVS as an alternative to model and
solve problems that are usually tackled using the Finite Elements
Method (FEM). We focus on an example about how to approach
the problem definition using Cell-DEVS, which provides a base to
extend this to more complex problems. We discuss the advantages
of this approach to solving complex physical and engineering
problems against the of finite elements or finite differences
methods.

INTRODUCTION

The advance in science and technology has usugllbdrin the
definition of models representing properties ofteys under
study. Complex problems in the domain of physit®ngistry and
biology were usually modeled with differential etjoas, and by
traditional analysis, these equations were solvealytically for
the desired system. This approach only works fawy &mple
systems with simple geometries and property distidins. For any
real life problem, obtaining an analytical solutias almost
impossible unless many approximations are done. aihvent of
digital computers permitted the definition of adeed numerical
methods, which enabled the analysis of very comgiéerential
equations. One of such methods, fhete element analysis [1]

has been used successfully to analyze complex emgiy and
physical systems. Typical areas of applicationsuhe structural
analysis, thermal analysis for heat transfer, sdetagnetic
analysis, fluid analysis, etc. The Finite Elemeksthod (FEM)
consists of defining a solution that satisfies plagtial differential
equation on average over a finite element. Evesmeht is
connected to a neighboring elements, and the fialter study is
analyzed by propagating the current values from eleenent to
another through connection points.

In recent years, there has been a tendency to znalymplex
natural and artificial systems like the ones tiadilly modeled
with FEM as cell spaces [2, 3] and cellular Autom@@A) [4]. CA
are defined as infinite n-dimensional lattices ellsswhose values
are updated according to a local rule. This is dsineultaneous
and synchronously using the current state of thieacel the state
of a finite set of nearby cells (known as the nbmood). CA
have several problems when used in modeling comgystems:
they usually require large amounts of compute tole to its
synchronous nature, which constrain the precisibthe model.
The Cell-DEVS formalism solved [5] these problengsulsing the
DEVS (Discrete EVents Systems specifications) fdisrma[6] to
define a discrete event cell space with expliaitiig delays.

The discretization of model into a grid poses caists on the
precision that can be achieved by the model. Fielement
analysis, instead, is able to provide higher pregiswWe explored
the use of Cell-DEVS to model and solve problemsalig tackled
by FEM. We intend to use FEM as a very precisertiegte for
defining the problem, while having the simplicity a cellular
approach to facilitate model definition. Likewis@e base the
development in the use of Cell-DEVS, which enalfenediate
integration with other existing DEVS and Cell-DEVWdels. A
simple example shows how to approach the problefimitien

using Cell-DEVS, and try to predict how to extemistto more
complex problems. It also compares results obtaibgdCell-
DEVS approach to those by FEM to highlight the adiages and
disadvantages of Cell-DEVS.

The advantage of modeling FEM with Cell-DEVS istthareal
life, continuous and discrete systems often intetagether. This
dictates that we need a way to integrate both nsoaletl simulate
their global behavior. DEVS provides means for nliodediscrete
event systems, and enables the construction ddrisld@cal models.
This would enable modelers to build hybrid hier&zahsystems
from continuous and discrete components using #mesbase
formalism, improving interaction and facilitate ifepentation in
existing tools.

We describe a method of mapping a physical probieat is
usually modeled by a partial differential equatiand solved
numerically either by finite differences or finikdements methods,
into a formal Cell-DEVS specification. This modslthen defined
using the CD++ tool [7], an environment that enalitee creation
of Cell-DEVS models. We also discuss the advantagesur



approach to solving complex physical and engingeproblems
against the use of finite elements or finite défeces methods.

BACKGROUND

FEM was originally created to solve problems ofustural
mechanics, and it was later applied to many othreblpms in
Physics. FEM provides piecewise approximation ofpatial
differential equation over a continuum. A partiaiffetential
equation is presumed over that continuum. A firkement is a
discrete piece of that continuum. We usually fivdo tmajor
components that can be identified within each efgnfesld, and
potential. The field is a quantity that varies with positiaithin
structure analyzed. The fields are related to thtergials as their
derivatives with respect to position. The potentiah be thought
as the driving force for the spread of the fieldhe material. For
example, temperature difference in a material waildse a heat
flux to be transferred from one point to anotherthat material.
The heat flux direction and quantity is relatedhatite difference
in temperature in that material (temperature grajlie

The finite element method is a mathematical prooedfor
satisfying partial differential equation over thdersent. By
assuming the field variable is following a simplmétion over the
finite element, we can approximate the solutiontloé partial
differential equation over that element. Elementshe structure
are considered to be connected together throughyéitices on
boundaries of each element, which are calledes. In order to
solve the problem, we must:

1. Divide the structure under study into a large numbé
elements, each of them with a simple geometry

2. A simple interpolation function is assumed over éhement,
representing the shape of the spatial solutiohan ¢lement.

3. The differential equations can be solved for thattipular
element by assuming the shape of the change ohfte
function in that element. This gives an approximsaéution
for a single element: simple algebraic equatiores atained
for the element, represented in a matrix.

4. As all the elements in the structure are connetbggther
through nodes located at their edges, we obtaipsters of
equations represented in N x N matrices. We onigvkithe
values at certain points in the structure (usually its
boundaries). These values are used to get the wmkno
potential inside the structure.

5. The global equations are solved, and the finaltsmiuwould
give the distribution of the potential over the usture,
represented by the values obtained at the nodesach
element. The precision can be enhanced by dividing
structure into more elements, or by assuming a rpogeise
distribution of the potential inside the elemeself.

Most systems modeled by FEM can be representedrbgtax of
the form: [S][T]=1P]

The matrix form results from combining the equaticior all
elements defined in a structure. Thus, [S] is ar N “stiffness”
matrix and represents elements properties (matedalstants,
dimensions, etc.), [T] is an N column vector reprgsg the
unknown potential values at each element node.igPan N
column vector representing the forcing function;, éxample in
heat transfer problems this would be the power tinper unit
volume.

Cell-DEVS defines cell spaces in which each celliefined as a
DEVS model. The DEVS formalism was originally prepd to

model discrete events systems. In Cell-DEVS, eaeh af a

cellular model is defined as an atomic DEVS mod@sll-DEVS

atomic models are specified as:

TDC =<X, Y, S, N, delay, A, Oexts T, A, D >.

Each cell will use th&\ inputs to compute the future st8eising
the functiont. The new value of the cell is transmitted to the
neighbors after the consumption of the delay funmctiA transport
delay allows us to model a variable commuting tfimeeach cell
with anticipatory semantics. Usingertial delays, the semantics is
preemptive: some scheduled events are not exedutetb a small
interval between two input evenf8elay defines the kind of delay
for the cell, andl its duration. This behavior is defined by &g,
O« A andD functions, as in other DEVS models.

Once the atomic cell model is defined, a numbesedit they can
be put together to form a coupled model, built asaaray of
atomic cells. A Cell-DEVS coupled model is defirnad

GCC =< )ﬁst: Ylist: Xv Yv n, {tlx---:tn}v N, C, B, Z>,

The cell spaceC is a coupled model composed by an array of
atomic cells with size t{ x..x t,}. Each cell in the space is
connected to the cells defined by the neighborhNodrhe cell
space can be “wrapped”, meaning that cells in adédyorare
connected with those in the opposite one. Otherwiseborder8
should have a different behavior than the remairuels. TheZ
function allows one to define the internal and eaé coupling of
cells in the model. ThRED++ tool [7] was developed following the
formal definitions of the Cell-DEVS formalism. CD+is$ a tool to
simulate both DEVS and Cell-DEVS models. DEVS medein be
written in C++, and Cell-DEVS models are describethg a built-
in specification language. The language providsstaf primitives
to define the size of the cell-space, the type afdbrs, a cell’s
interface with other DEVS models and a cell's bétav

FEM models resembles to a large extent Cell-DEVSlet®) in
which changes of a cell value would trigger itsghéioring cells to
change themselves, as though a field is propagétiroyigh all of
them. The following sections will be devoted to whbow Cell-
DEVS can be used to describe FEM models. The slemdescribe
the model behavior in terms of cell behavior, diser event
interaction and timing delays.

MAPPING FEM INTO CELL-DEVS

In this section we will show how FEM models cannb@pped into
Cell-DEVS using a traditional example found in [This model

epresents steady-state heat transfer with convedtoom a fluid

into a composite wall of different materials. Thissembles the
heat flow through a wall of a heated furnace to iemtbair. This

example involves heat transferred by convectiomfhmt air to the
inside wall and by conduction through wall mater{at this

particular example, heat transferred by radiatienneglected).
Steady-state heat flow is defined as a heat fixedfiwith regard to
time. In non steady-state heat transfer, the heathlue and thus
temperature distributions in a material change tivees.



Heat transfer occurs when there is a temperattiieretice within

a body or between a body and its surrounding meditinis
temperature difference constitutes the potentialirdy the heat
flux through the material. The temperature diffeenover a
infinitely small piece of material would give usettemperature
gradient over this element. Heat flows from hot spots toward
cooler ones. Heat conduction in a two-dimensionehdy state
isotropic medium is given by Fourier's law as:

= —kal
oy

Whereq is the heat flux (W/rh), gy is the heat flux component in

x direction, g, is the heat flux component in y directidnjs the

thermal conductivity of the material (W/FC), T = T(x,y) is the
Temperature field in the medium and is a functionxiand v,

@

0T /0x and 9T /dyare the temperature gradients over x and Y4 we get:

respectively. The minus sign is to indicate thatdirection of heat
flux is opposite to direction of increasing temparea.

In convection heat transfer, the heat flux is gibgn

q= Ah(T»-Ts) @)
whereh (W/m2.°C) is the film (a property of the fluid around the
surface), T and Ts are fluid and surface temperature
respectively, A is the surface area exposed tdldlwe For a small
element assuming a linear temperature distribusilomg its unit

length, and a unit area perpendicular to heat ftrection, the
heat flux conduction would be:

q=kdl=km=k(Th_Tl)
dx 1

®)

one at each end. These two elements are conneotgdhér
through their nodes, making the middle node shastdeen both
of them as in Figure 2 (b). Every node would thepresent a
surface of a wall and the corresponding node vedpeesents this
surface temperature. In a Cell-DEVS model, eveyenaould be
represented by a cell.

From (3) by assuming a linear temperature distigoudlong the
elements, we get:

Qu=Ki/ Ly (To—T)

Q =Ko/ Lo (T1 = To)
Having the conservation of energy equation oveorgrol volume
containing both elements 1 and 2 (input heat flgnads output
heat flux), we have:

Q=Q (3a)
&To+&-|—2 .
Ti= L1 Lo (4) for heat conduction.
=t L2
K1 K2
7+7
L. L2

Similarly, when we study two elements in which imea
convective and the other is conductive, we get:

hTe +&To
La
h+&

L1

Equations (4) and (5) above can be used as theingdales for
our cell-DEVS model. Equation (4) describes thet lveaduction
rule inside the material. It specifies the middéele T, temperature

(5) for heat convection.

T

Where, Tp, Ty are the high and low temperatures of its endsas a function of its two adjacent nodes and cohstaaterial

respectively.

Figurel. (a) Two elements physically connected. (b) Eleimen
represented as finite elements/nodes.

In order to get the updating rules for any cellour Cell-DEVS
model, we first study a subset of the complete lgralio solve, in
which we consider only two elements connected toggethrough
their nodes. By solving this sub-problem, we woulden
generalize our findings to the complete problem ehatiat we
would describe later. In figure 2 (a), we show tlagers of the
wall. These two layers are connected together tiirdbe surface
in the middle. Each Layérhas different physical propertids; is
the thermal conductivityl; the length, andQ; the heat flux
through that wall. Temperature distribution on eaatface on the
walls is denote &§,, T;, andT, as shown in Figure 1 (a).

Each layer can be represented by one finite elenasrghowed in
Figure 1 (b). Elements 1 and 2 in that figure contavo nodes,

properties. Equation (5) describes the middle rtedgperature as

a function of adjacent nodes of fluid temperatdre and inner
node temperaturd o inside the material. This represents the case
as at a convective boundary, afid is the surface temperature.
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Figure 2. (a) Steady-state heat transfer through a compuasite
(b) The problem as a Cell-DEVS space.

Every cell value would thus be a function of itghti cell value, its
stored physical properties, left cell value, arsdiéft cell physical
properties. Note that in case of having identidainents (same K
and L), the updating rule for a cell’s temperatweuld be a
simple arithmetic mean of its two neighboring delnperatures.
Figure 2 shows an extended version of the examglsepted in



[1]. Figure 2(a) represents a composite wall oé¢hmaterials with
layers numbered 1, 2 and 3. The outer temperasufg # 20°C.
Convection heat transfer takes place on the inngace of the
wall with fluid temperature = 800°C and film coefficient h =
25 WInt.°C. We need to determine the temperature distrihitio
the wall (i.e. on surfaces of each layer). Compoksiyers lengths
are 4, = 0.3 m, b = Ly = 0.15 m. Conductivities are;k= 50 W/m.
°C, k = 25 W/m.°C, K3 = 20W/m°C, for layers numbered 1, 2,
and 3 respectively.

In figure 2(b), we show an equivalent Cell-DEVS rebébr the
problem defined in (a). In this Cell-DEVS model, wepresent
each point with temperature measure in Figure (@ a cell in
the bottom row. Thus, cell (0,0), which is cell Row 0 and
Column 0, represents fluid temperatuge Cell (0,1) represents;T
Cell (0,2) represents ,T Cell (0,3) represents ;T Cell (0,4)

represents  Cells in Row 1 store the physical properties

corresponding to wall layers as shown in Figure).2@ell (1,0)
contains value of h, cell (1,1) contains the vabfigKs/L3), cell
(1,2) contains the value,K ,, cell (1,3) contains the value/k,
and cell (1,4) contains unity value, as it is ne¢diin calculations.

[conduction-rule]

rule : { ((-1,0)%(0,1)+(-1,-1)*(0,-1)) / ( (-
1,00+(-1-1)) } 1{t}

; Implements equations (3) and (4). Physical
properties K/L are stored in (-1,0) and (-1,-1).

[Constants]

rule : {(0,0)} 1 {t}

; Constant physical properties stored in row 0 as
defined in a “zone” in the model.

[Boundary]
rule : {(0,0)} 1 {t}
; boundary conditions.

Figure 3. CD++ rules for the heat transfer model.

Cells in Row 1 are constant as the physical pragserare
independent of temperature distribution. Cells X0Oadd (0,4)
contain constant temperature which constitute tlnbary
conditions, and fixed. Each element properties sioeed in the
cell above it (for example, physical propertiesedément (0,0)
would be in (-1,0), as in figure 4). Only cells Row 0, which
corresponds to T3, T2, and T1, are updated. Theehmsdnitially
loaded with values representing material propertesrow O,
boundary values on cells (1,0) and (1,4), and radyitvalues in
other cells. The following is the specification foell updating
rules in CD++.[conduction-rule] implements the equations (4)
and (5). It also works for convection as it usém feoefficient
value instead of thermal conductivity at cells adjat to fluid

[heatcond]

type : cell dim: (2,5) delay : transport
border : nowrapped

neighbors : (-1,0) (0,0) (0,1) (-1,-1) (0,-1)
localtransition : conduction-rule

zone : Constants { (0,0)..(0,4) }

zone : Boundary { (1,0) (1,4) }

Figure 4. Cell-DEVS coupled model definition.

MODEL EXECUTION RESULTS.

After defining the CD++ specification, we executttids model
with multiple test cases. The models were executetl cell
values become stable, converging to a solutionofar problem
that satisfies equilibrium equations of steadyestaat transfer as
defined in equation (3a) in section 3. The restltertues would
represent temperature distribution over the strectln our first
test case, the cells between the hot and cold lzoiesdwere
initialized with a temperature of 2T inside the wall. Figure 7 in
the Appendix shows the results for this model. Tinal step
shows F=304.75C, T,=119.03°C, T, = 57.14°C, corresponding
to nodes temperatures as in figure 3. This samengeawere
solved in [1] using Finite Elements Analysis andveyathe
following values: T = 304.6°C, T, = 119.0°C, and T, = 57.1°C.

This shows that the solution converges to the coaaswer after
23 steps. The above results show the solution cgeseto the
right value with each successive iteration. Thigcpss is in fact
equivalent to solving a system of linear equatiosgg Jacobi
iterative method. In this method, we solve one &qoafor one

variable, with all other variables fixed. In theedbi method [9], if
we have a system oflinear equations on the forAx = b, and if

theith equation in the form

Zn:ai,m:h
J=1

We can solve for value of while assuming the all other variables
are fixed as
x = (bi = a.ix)/a
J#I
And iteratively would be
x® =(bi- Zaj,j)(j(k_l))/aj,i

IEd
wherek is the iteration number. The method begins by assig
arbitrary values to all variables, and a new vatueomputed for
each variable. During each iteratidg variable values from
previous iterationk-1) are used to calculate the new valuexof
Only after iterating with all variables, the varied are updated to
their new values. The order in which the equatamsexamined is

cells. [Constants| defines the updating rule for cells in row zero. jrrglevant, since the Jacobi method treats theragiaddently. The
[Boundary] defines the updating rule for boundary cells, whichcp++ execution of our Cell-DEVS model resembles oBac

also keep a fixed value.

The complete specification of the Cell-DEVS coupleddel is
shown in Figure 4. Theheatcond model is a Cell-DEVS
component, built as a bidimensional grid (2 rowd &mcolumns).
Its delay type is d@ransport delay. Itsborder is non-wrapped (we
run specific rules for the boundary conditions).eTieighbors
define the cell space neighborhood, dmdaltransition the rules
used for local transition function (defined prevdbuin Figure 3),
andZone defines group of cells that constitute a zone wti#fown
updating rule that differs from the general updatiale.

method. We have a system of linear equations difim@ur Cell-
DEVS model, from applying equations (4) and (5) forery
adjacent two elements, thus producmd equationsrf = number
of elements). From each equation, we update tHevakles as a
function of the neighboring cells, and we keeptladl cell values
from one time step fixed to for use in next timepsto calculate
new cell values. The order of evaluation of celles is irrelevant
to the result, which enables parallel executionoaf model.
During each time step, cell updates can be donelsineously as
they are independent of each other. This expldits riature of
asynchronous updates of Cell-DEVS.



In a second test case, we considered, the noglds, Bnd T, were
initialized with temperatures of 300C, in order to measure speed
of convergence to that solution. The results amevshat Figure 6,
as we converge into the final correct answer &@esteps. This is
a 36% more steps than the first test case. Thiwsliee impact of
choosing cells initial values on the number of stepconverge to
the final solution. Solving the same problem witM, we would
get a system of linear equations that models tloblem. Then,
using a suitable method for solving this system get the
temperature distribution. Usually the method of &an
elimination is used [10]. This does not prevennhgsan iterative
method like Jacobi, which is equivalent to the v&y++ solves
this problem. However, CD++ implementation of CRHEVS
models can enhance the Jacobi method performaheecell’s
neighborhood is unchanged during a simulation tstep, the
cell's external transition function is not executgchext time step.
This means that the cell would not re-calculate.

The last two cases presented are defined to stresise previous
finding that initializing the model cells with prepvalues can save
valuable simulation time. Assume, for instancet the hot fluid
temperature Jis now 850°C. We need now to solve the new
problem, which resembles the old one in every dspet in fluid
temperature. This new problem would be modeledsémee as the
previous model, except that we use a high temperatquals to
850 degrees in thboundary element [cell (1,0)] instead of old
value of 800. The model cells fog,TT,, and T, are initialized with
values that resulted from solving the previous fEob As we may
expect, the iterative solution in this case staitk cell values near
the correct solution, thus saving some iteratiorcley and
converging in 20 time (Figure 7). Finally, we ialized the cells
with arbitrary values (-3000C). The model execution took 35
time steps to converge. This shows that for compled large

models, we can enhance performance of subsequemntelmo

executions if we initialize all unknown cell valuegth results
coming from the previous simulation for an almastikr model,
as we did in the example presented in Figure 8.

CONCLUSION

We showed how to use the Cell-DEVS formalism to etod
problems that have been usually tackled with othethods as
FEM and Finite differences. Although the exampledisere is
simple compared with real-life problems, this tdque can be
extended to model more complex problems. Modelihgsjzal
and engineering problems with Cell-DEVS can hawe dtvn
advantages over traditional methods. Cell-DEVS vgeli-defined
formalism for model specification including its émfaces with
other models. This property enables the constmaifatomic and
coupled models that can be composed together to #omore
complex model. As engineering systems are typicadiystructed
from several and possibly thousands of componemisieling and
simulating these systems need a well-defined metbdalild and
integrate those models. A method that is capableudding more
complex models from simpler ones, and allow fouse-of such
models can be very useful when using simulatiomésign and
optimize systems. Cell-DEVS enables building codpdystems
that are composed of many atomic or coupled comgsndhis
property can be very useful when simulating engingesystems

Initializing the model cells with a previous sobi of similar

model can cut simulation time, because solving gheblem in

Cell-DEVS resembles the Jacobi method for solviggtesn of
linear equations. As in Jacobi method, startingitbeation with

variables initialized near to their correct valuesuld accelerate
the convergence to the final solution. Definitioi @omplex

equations can be easily done using the rule spatdn

techniques of CD++, as it could be seen with théstipular

example. This highly reduces the effort spent by ttsers in
developing the applications. Automated verificatifatilities in

the toolkit improve testing and reduce delivery diniikewise,

applying changes to the model only results in sldfanges in the
model specifications, without any need for coderitavg, which

enables easy analysis of more complex system ¢onslit

In contrary to this, unless some intelligence igsmmatrix-solving

algorithm is used; FEM would solve the N x N mataik over

again even if a small change were done to a boyrztardition.

This small change may only affect several cellsuad that

boundary condition, in which case a Cell-DEVS mageiulation

can be more efficient than FEM. Cell-DEVS asynclousinature
makes possible to have independent components ngp#ki their

own rate of execution, and each element can beciassd with

different level of activity. This can be easily nebeld thanks to the
explicit timing delay constructions available inckeacell in a Cell-

DEVS model.
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APPENDI X
Line : 29 - Time: 00:00:00:000

1 2 3 4
e +
0| 25.00000000 66.66666412 200.00000000 333.3 3334351 1.00000000|
1| 800.00000000 20.00000000 20.00000000 20.0 0000000 20.00000000|
ommmmmmmmmeemmeemeeeeeeeee e +
Line : 44 - Time: 00:00:00:001

2 3 4

e +
0| 25.00000000 66.66666412 200.00000000 333.3 3334351 1.00000000|
1| 800.00000000 232.72727966 20.00000000 20.0 0000000 20.00000000|
ommmmmmmeeemmeemeeeeeeeee e +
Line : 473 - Time: 00:00:00:023
0 3 4
omomemmmemmmemmeeemmeeemeemeeeeeee e +
0| 25.00000000 66.66666412 200.00000000 333.3 3334351 1.00000000|
1| 800.00000000 304.74679565 119.02681732 57.1 3505936 20.00000000|
e eeeeeeeeeee e +

Figure 5. Simulation results for initial temperature =%0

Line : 30 - Time: 00:00:00:000

2 3 4
O, +
0| 25.00000000 66.66666412 200.00000000 33 3.33334351  1.00000000|
1] 800.00000000 3000.00000000 3000.00000000 300 0.00000000 20.00000000]|
U +

Line : 638 - Time: 00:00:00:031
0 1 2 3 4

S, +
0| 25.00000000 66.66666412 200.00000000 33 3.33334351  1.00000000|
1] 800.00000000 304.78213501 119.07543182 5 7.15327835 20.00000000]
O +

Line : 31 - Time: 00:00:00:000

0 1 2 3 4
S +
0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000]|
1| 850.00000000 304.76190186 119.04762268 5 7.14286041 20.00000000|
L ... N R e +
Line : 459 - Time: 00:00:00:020
2 3 4
+ -+
0| 25.00000000 66.66666412 200.00000000 33 3.33334351 1.00000000]|
1| 850.00000000 323.01135254 125.39394379 5 9.52148056 20.00000000|
L A e[ +

Figure 7. Changing boundary conditions and initial tempeata20°C.

Line : 30 - Time: 00:00:00:000

1 2 3 4
O, +
0] 25.00000000 66.66666412 200.00000000 33 3.33334351  1.00000000]
1] 850.00000000-3000.00000000-3000.00000000-300 0.00000000 20.00000000)]
O +

Line : 610 - Time: 00:00:00:035
0 1 2 3 4

O +
0] 25.00000000 66.66666412 200.00000000 33 3.33334351  1.00000000]
1] 850.00000000 323.01116943 125.39035034 5 9.52138138 20.00000000)]
S, +

Figure 8. Changing boundary conditions and arbitrary initéshperature.



