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Abstract 
 

Cell-DEVS is a formalism intended to model complex 
physical systems as cell spaces. Cell-DEVS allow descri-
bing cellular models using timing delay constructions, 
allowing simple definition of complex timing. The original 
specificationw sere extended to permit parallel specifica-
tion of these models, and an associated simulation mecha-
nism allows their execution. Here we present some imple-
mentation issues related with the definition of parallel 
simulators for Cell-DEVS. 

 
 

1. Introduction 
 
The DEVS formalism [1] provides a framework for the 

construction of hierachical models in a modular manner, 
allowing for model reuse and reducing development time 
and testing. The execution of complex models requires a 
computing power that stand alone computers do not pro-
vide. Therefore, the original DEVS formalism was revised 
and the Parallel DEVS (P-DEVS) [2] formalism was pro-
posed. P-DEVS defines a function to handle transition 
collisions and eliminates the use of a sequential function to 
resolve simultaneous events. The revision eliminates all 
restrictions that forced the original DEVS definition to 
sequential execution.  

A P-DEVS is composed by atomic models that can be 
coupled in a hierarchical and modular fashion. A P-DEVS 
atomic is defined as: 

M = < X, S, Y, δint, δext, δcon , λ, ta > 
where  
X: a set of input events. 
S: a set of sequential states. 
Y: a set of output events. 
δint: S → S: internal transition function. 
δext: Q x Xb → S: external transition function, 
 Xb is a set of bags over elements in X, 

δext ( s, e, φ ) = ( s, e ) 
δcon: S x Xb → S: confluent transition function. 
λ : S → Yb : output function. 
Ta : S → R0 → ∞ : time advance function, 
   where Q = { ( s, e ) | s ∈ S, 0 < e < ta(s)} 
   e is the elapsed time since last state transition. 
 
Internal transitions execute at the next event time for 

all imminent components receiving no external events. 
Likewise, external events generated by these imminents 
trigger external transitions at receptive non-imminents 
(those components for which there are no internal transi-
tions scheduled for the receiving time). However, for those 
components which the internal and external transitions 
collide, the confluent transition function is employed in-
stead of either the internal or external transition function to 
determine the new state [2]. 

A coupled model is defined by: 
DN = < X, Y, D, { Mi}, { I i}, { Zi , j} > 

X : a set of input events. 
Y : a set of output events. 
D : a set of components. 
for each i in D, 
 Mi is a componment. 
for each i in D ∪ {  self }, I i is the influencees of i. 
For each j in I i,  
 Zi , j  is the i to j output translation function. 
 
The structure is subject  to the constraints that for each 

i in D, Mi = < Xi, Si, Yi, δint i, δext i, δcon i , λi, tai > is a P-
DEVS, I i is a subset of D ∪ {  self }, i is not in I i , and 

Zself, j : Xself →   Xj 

Zi , self : Yi →   Yself 

Zi, j : Xi →   Yj 
 
Here self refers to the coupled model itself and is a de-

vice for allowing specification of external input and exter-
nal output couplings. 



In [3] the Cell-DEVS formalism was introduced. When 
executing cellular models, large amounts of compute time 
are required, and the use of a discrete time base poses 
restrictions in the precision of the model. The Timed Cell-
DEVS formalism tries to solve these problems by using 
the DEVS paradigm to define a cell space where each cell 
is defined as a DEVS atomic model. The goal is to build 
discrete event cell spaces, improving their definition by 
making the timing specification more expressive. In [4] it 
was revised to  eliminate all the sequential restrictions the 
original formalism presented. A parallel Cell-DEVS ato-
mic model can be formally defined as:  

 
TDC = < Xb, Yb, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D 

> 
 
Two confluent functions have been added to the origi-

nal Cell-DEVS definition: δcon and τcon. In addition, the 
external transition and output functions have been changed 
to handle input/output bags (Xb and Yb) for each cell. The 
external transition function activates the local computa-
tion, whose result is delayed using one of both kinds of 
constructions: transport or inertial delays. The output func-
tion executes prior to the internal transition function, 
transmitting the present values to other models. The δint 

function is in charge of keeping the values for a transport 
delay. The following figure shows a sketch of the contents 
of each cell.  

 
Figure 1. Cell’s definition [4]. 
 
The confluent transition function δcon is activated when 

there are collisions between internal and external events. It 
must activate the confluent local transition function τcon, 
whose goal is to analyze the present values for the input 
bags, and to provide a unique set of input values for the 
cell. In this way, the cell will compute the next state by 
using the values chosen by the modeler.  

 
The external transition function activates the local 

computation, whose result is delayed using one of both 
kinds of constructions. The output function, which ex-
ecutes prior to the internal transition function, is in charge 
to transmit the present values to other models.  

 

In case of a collision, the confluent transition function 
chooses members from the bag, and updates the inputs for 
the cell. After, it deletes the unnecessary members of the 
bag. As σ = 0, an internal transition function is scheduled 
immediately. The modeler should define the behavior for 
the τcon function in each cell, thus allowing the definition 
for this behavior under collisions.  

 
DEVS separates the model from the actual simulation. 

The simulation mechanism is implemented by abstract 
simulators. In [5] an abstract simulator for the Parallel 
DEVS formalism was presented. Based on that work, we 
defined an abstract simulator for distributed simulation, 
which is the subject of this paper. In a distributed envi-
ronment, there is considerable communications overhead 
which can not be ignored. Therefore, the abstract simulator 
should restrict the communications over the network to a 
minimum. The goal of this work is to present an abstract 
simulator developed to execute DEVS and Cell-DEVS 
models using standard tools for distributed and parallel 
programming. Several abstract simulators were imple-
mented to allow parallel execution in the CD++ toolkit [9], 
entitling to have efficient execution of cellular models. 

 
2. Parallel DEVS Abstract Simulators 

 
As it was mentioned earlier, the modularity of the Pa-

rallel DEVS formalism makes it possible to separate the 
model from the simulation mechanism. The original ab-
stract simulator mechanism [6] was revised to suit the 
Parallel DEVS formalism [2]. 

 
As in the existing definition of the abstract simulator 

[2], the DEVS processors will be specialized into two 
different simulation engines, simulator and coordinator.  
Basically, the role of the simulator is to invoke an atomic 
model transition and external event functions. On the other 
hand, a coordinator is attached to a coupled model and has 
the responsibility of translating its children’ output events 
and of keeping the time of the next imminent/s depen-
dants. 

 
Every coordinator has a set of child DEVS processors. 

When a simulation run in distributed fashion, coordina-
tor’s children need not be executing on the same proces-
sor. If every coupled model is associated to only one coor-
dinator, every message sent to child processors running on 
a different CPU will require interprocess communication. 
Figure 2(a) illustrates this case. It shows a coordinator 
sending a message to its 8 children distributed on two 
CPUs. Four interprocess messages are required for the 
four children running on processor 1.  

 



 
(a) 
 

 
(b) 

Figure 2. (a) A single coordinator sending a message to all 
its child processor. Dashed lines = interprocess messages. (b) A 
master- slave pair sending messages to all their children proces-
sors. 

 
If the number of children processors is high (for in-

stance, in coupled Cell-DEVS), the number of messages 
sent across the network will also be significant. This can 
be avoided if every coupled model have more than one 
coordinator. Figure 2(b) illustrates this case. For the same 
coupled model, there are two coordinators, one in proces-
sor 0 and another in processor 1. In this case, only one 
message is sent over the network. 

For coupled models, coordinators will be required on 
each processor where a child processor is running. Child-
ren processors will send messages to the local coordinator, 
which will decide how to handle the received messages. 
Upon receiving a message from a child, a coordinator 
could forward this message to all the coordinators for the 
model. This would require all coordinators to know about 
the others. For instance, if coupled model A is a child of 
coupled model B, then B´s coordinators have to interact 
with A´s coordinators. If handled uncarefully, this com-
munication can turn out producing the same number of 
interprocess messages we wanted to avoid. In such a sce-
nario, a way of keeping the number of interprocess mes-
sages to a minimum is to have only one of the coordinators 
to handle all messages to the parent´s model local coordi-

nator. This specialized coordinator will be known as a 
master coordinator and  all other model coordinators will 
be slaves. The master coordinator for model A will then 
be the only one that can receive or send messages to B´s 
local coordinator. 

With the exception of the top level DEVS processor, 
known as root coordinator, all DEVS processors will have 
a parent coordinator. To set the parent-child relationship 
on a distributed environment, the following rules apply, 

a. for each simulator, the parent coordinator will be 
the parent’s model local processor (it is guaranteed that 
this will exist) 

b. for each slave coordinator, the parent coordinator 
will be the model’s master coordinator. 

c. For each master coordinator, the parent coordinator 
will be the parent’s model local processor; just as if it were 
a simulator.  

DEVS processors exchange messages which can be 
classified into two categories: synchronization messages 
and content messages. The synchronization messages are ( 
@ , t) and ( done, t ) and the contents messages ( y, t ) and 
( q , t ). It is assumed that any two messages sent from the 
same source to the same destination will preserve their 
original ordering. The P-DEVS formalism states that all 
imminent model’s output functions must be executed 
before any transition function. All outputs are collected 
and only after they have been sorted, the transition func-
tions can be activated. These activities are co-ordinated 
using the synchronization messages. 

We will now proceed to describe the abstract simulator 
mechanism for the simulator, master coordinator, slave 
coordinator and root coordinator. 

The simulator attached to an atomic model has been 
implemented as in [2], with some minor changes: 

 
when a ( @ , t ) message is received 
if t = tN then 
 y := λ(s) 
 send ( y , t ) to the parent coordinator 
 send ( done, t ) to the parent coordinator 
end if 
else raise error 
end when 
 
when a ( q , t ) message is received 
lock the bag 
Add event q to the bag 
unlock the bag 
end when 
 
when a ( *  , t ) message is received 
case tL ≤ t < tN 

 e := t - tL 

 s := δext( s, e, bag ) 
 empty bag 



end case 
case t = tN  and bag is empty 
 s := δint( s )  
end case 
case t = tN  and bag not is empty 
 s := δcon( s, bag )  
 empty bag 
end case 
case  t > tN or t < tL 

 raise error 
end case 
tL := t 
tN := ta (s) 
send ( done, tN) to parent coordinator 
end when 
 
The implementation of a master coordinator is now 

given. 
 
when a ( @ , t ) message is received from parent coor-

dinator 
if t = tN then 
 tL := t 
for all imminent child processors i with minimum tN 

send ( @, t ) to child i 
cache i in the synchronize set 
end for 
wait until ( done, t )’s have been received from all im-

minent processors 
send ( done, t ) to parent coordinator 
end if 
else raise error 
end when 
 
For a master coordinator the set of child processors is 

made by the set of slave coordinators, the set of local 
child simulators and  the set of child local master coordi-
nators. A processor is local if it is executing on the same 
processor. 

To simplify the next description it is necessary to de-
fine the function coordinator. 

 
coordinator : M x P → C 
   where  
M is a coupled model 
P is a DEVS processor 
S is a coordinator ( master or slave) 
 
coordinator ( M, j) = i , where i is the  coordinator as-

sociated to coupled M that is local to child j. The follow-
ing restrictions apply for the function to be well  defined: 

 
j is a DEVS processor associated to a dependant of M 
 
i is one of the coordinators associated with M 

Now we can describe the behavior of a master coordi-
nator upon receiving an output message. Two cases need 
to be distinguished:  

 
an output message ( y , t ) received from a child i that 

is not a slave coordinator  
 
an output message ( y , i, t ) forwarded from a slave 

coordinator that received ( y , t ) from a local child i. 
when a ( y , t ) message is received from child i  
for all influencees, j of child i 
 if j is a local processor 
  q := zi,j ( y ) 
  send ( q, t ) to child j 
  cache j in the synchronize set 
 else  
  s := coordinator( self, j) 
  if s ∉ slave-sync set then 
      send ( y, i, t) to s 
      cache s in the slave-sync set 
    cache s in the synchronize set 
  end if 
 end if 
end for 
if self ∈ Ii ( y is to be transmitted upward) then  
 y := zi, self  ( y ) 
 send ( y, t ) to parent coordinator 
end if 
clear slave-sync set 
end when 
 
when a ( y , i, t ) message is received from a slave s 
cache s in the slave-sync set and proceed as if a ( y , t ) 

message had been received from child i  
end when 
 
Here slave-sync is used to avoid forwarding an output 

message twice to a slave coordinator. It is important to 
note that instead of forwarding a (q, t) message to a slave 
coordinator, a (y, i, t) is sent. This is done to reduce the 
number of messages sent across the network. A slave 
coordinator might be the parent coordinator for more than 
one of the influencees of i. If (q , t) messages were to be 
forwarded, then there will be one (q, t) message for each 
influencee of i. For Cell–DEVS models, this can be an 
important overhead. Instead, just one (y, i, t) message is 
sent across the network and it will be the responsibility of 
the slave coordinator to generate the appropiate  (q, t) 
messages.  

As mentioned in [2], all children ready for a transition 
are cached in a synchronize set to later distinguish active 
from inactive components. 

 
when a ( q , t ) message is received from parent coor-

dinator 



lock the bag 
Add event q to the bag 
unlock the bag 
end when 
 
when a ( *  , t ) message is received from parent coor-

dinator 
if tL ≤ t ≤ tN 

 for all q ∈ bag 
  for all receivers of q,  j ∈ Iself 
     if j is a local processor 
  q := zself, j (q) 
  send ( q, t ) to j 
  cache j in the synchronize set 
     else 
s := coordinator( self, j) 
  if s ∉ slave-sync set then 
      send ( q , t ) to s 
      cache s in the slave-sync set 
    cache s in the synchronize set 
  end if 
     end if 
   end for 
  clear slave-sync set 
 end for 
 empty bag 
 for all i in the synchronize set 
  send ( *, t ) to i 
 end for 
 wait until all ( done, tN)’s are received 
 tL :=  t 
 tN := minimum of components’ tN’s  

 clear the synchronize set  
 send ( done, tN ) to parent coordinator 
else raise an error 
end when 
 
When the output events are routed down to child pro-

cessors, if the message is to be forwarded to a slave coor-
dinator the z translation will not be applied. Instead, the 
original q message will be sent. Therefore, care must be 
taken not to forward a message twice to a slave coordina-
tor. Here again, the slave-sync is used for that purpose.  

 
The slave coordinator will be introduced next. 
when a ( @ , t ) message is received from parent coor-

dinator 
if t = tN then 
 tL := t 
for all imminent child processors i with minimum tN 

send ( @, t ) to child i 
cache i in the synchronize set 
end for 
wait until ( done, t )’s have been received from all im-

minent processors 

send ( done, t ) to parent coordinator 
end if 
else raise error 
end when 
 
As it can be noticed, there is no difference on how both 

master and slave coordinators handle a (@, t ). However, 
the set of child processor of a slave coordinator is differ-
ent. For a slave coordinator the set of child processors is 
made by the set of local child simulators and  the set of 
local child master coordinators, only. 

 
when a ( y , t ) message is received from child i  
sent_to_master := false 
for all influencees, j of child i 
 if j is a local processor 
  q := zi,j ( y ) 
  send ( q, t ) to child j 
  cache j in the synchronize set 
 else  
  if not sent_to_master 
  send ( y, t ) to parent coordinator 
  sent_to_master := true 
  end if 
 end if 
end for 
if self ∈ Ii ( y is to be transmitted upward) then  
 if not sent_to_master 
  send ( y, t ) to parent coordinator 
 end if 
end if 
end when 
 
when a ( y , i, t ) message is received from parent 

coordinator 
 
sent_to_master := true 
proceed as if a ( y , t ) message had been received from 

child i  
end when 
 
When an output event is received from a child i, the 

slave coordinator sorts the message to the influencees of i. 
If any influencee is local, the z function is applied a ( q , t ) 
message is sent. If there are non-local influencees, then the 
output event is sent to the master coordinator, who will 
then sort the message to other slave coordinators if neces-
sary. Only one ( y , t ) message should be forwarded to the 
master coordinator. 

When the slave coordinator receives an output event 
that has been forwarded by the master coordinator on 
behalf of child i, it will handle the event as if i had been 
local, but no ( y, t ) messages will be forwarded back to the 
master coordinator if there is a non-local influencee. This 



is to avoid infinite loops of messages being forwarded 
back and forth.  

 
when (q,t) message is received from parent coordinator 
lock the bag 
Add event q to the bag 
unlock the bag 
end when 
 
when (* ,t) message is received from parent coordinator 
if tL ≤ t ≤ tN 

 for all q ∈ bag 
  for all receivers of q,  j ∈ Iself 
     if j is a local processor 
  q := zself, j (q) 
  send ( q, t ) to j 
  cache j in the synchronize set 
     else 
  do nothing 
     end if 
   end for 
end for 
 empty bag 
 for all i in the synchronize set 
  send ( *, t ) to i 
 end for 
 wait until all ( done, tN)’s are received 
 tL :=  t 
 tN := minimum of components’ tN’s  

 clear the synchronize set  
 send ( done, tN ) to parent coordinator 
else raise an error 
end when 
 
The root coordinator is a special processor that is 

above the topmost coordinator. It is responsible for driving 
the simulation and advancing the virtual simulation time. 
Our root coordinator can also handle external events which 
are stored in a sorted queue of events. 

 
Root coordinator 
 
load queue of external events and sort them by arrival 

time. 
 
t :=  minimum of tN of topmost coordinator and tN of 

queue. 
while t ≠ ∞ 
if t = tN of queue 
 for all q in queue with time t 
  send ( q , t ) to topmost coordinator 
 end for 
end if 
 
if t = tN of topmost coordinator 

 send ( @, t ) to topmost coordinator 
 wait until ( done, t ) is received from it 
end if 
 
send ( *, t ) to topmost coordinator 
wait until ( done, t ) is received from it 
 
end while 
raise simulation completed 
 
This abstract simulator mechanism will be able to han-

dle both, Parallel DEVS and Parallel Cell-DEVS models 
because the latter one is a specialization of the first one. 

 
3. Parallel CD++ 

 
CD++ [7] is a modeling tool for the simulation of 

DEVS and Cell-DEVS models. This tool has been ex-
tended into Parallel CD++ ( PCD++  ), a tool for the simu-
lation of Parallel DEVS and Parallel Cell-DEVS models 
on a distributed environment. 

PCD++ has been built on top of a modified version of 
Warped [8]. All DEVS processors have been defined as 
Warped objects. Warped defines a simulation API and 
provides  a set of different simulation kernels: a sequential 
kernel for the execution of models in standalone mode, a 
TimeWarp kernel for parallel execution using optimistic 
synchronization mechanisms and a NoTime kernel, for 
parallel and standalone simulation that uses no synchroni-
zation at all. In addition, we have developed a kernel that 
uses pessimistic synchronization mechanisms. For the 
parallel kernels, Warped uses MPI for communication 
between CPUs. The current PCD++ has been succesfully 
tested with the NoTime kernel. 

 
 
 
 
 
 
 
 
 
Figure 3. PCD++ layered architecture 
 
In the abstract simulator mechanism that we presented 

for distributed environments, the time advance is con-
trolled by the root coordinator. Therefore, no synchroniza-
tion is required because no processor will execute an out 
of order event. The NoTime kernel is very well suited for 
this case because it provides the necessary communication 
primitives and avoids the overhead of TimeWarp. Figure 4 
shows the Warped API. 

 
 

MPI 

WARPED 

PCD++ 

MODEL 



class TimeWarp { 
// Methods the user defines  
virtual void initialize(); 
virtual void finalize(); 
virtual void executeProcess(); 
BasicState* allocateState(); 
 
//Simulation kernel services 
void sendEvent (BasicEvent * ); 
BasicEvent* getEvent(); 
}; 
 
class BasicEvent { 
int size; 
Vtime sendTime; 
Vtime recvTime; 
 
int sender; 
int dest; 
} 
 
class BasicState { 
BasicState* copyState( BasicState*); 
} 

Figure 4. Warped API 
 

To define new atomic models, PCD++ provides an ab-
stract class Atomic that the modeler has to extend using 
inheritance. Coupled models, need no programming. In-
stead, they are defined writing a model file using a specifi-
cation language PCD++ provides for that purpose. This 
specification language is also used for the definition of 
Cell-DEVS models. 

 
class Atomic { 
// Methods the user should def  
Model& internalFunction(); 
Model& externalFunction (MessageBag&) 
Model& outputFunction(); 
Model& confluentFunction(); 
ModelState* allocateState(); 
 
//Simulation kernel services 
void sendOutput ( Port&, BasicMsgValue* ); 
const Vtime& lastChange(); 
void holdIn( state, Vtime ); 
}; 

Figure 5. The Atomic class 
 
Finally, having defined the model and the set of avail-

able machines, it only remains to define how the models 
will be distributed. The modeler has to create a partition 
file that tells PCD++ which machine each atomic model 
should run on. This tells PCD++ where each simulator 
should be placed. The location of the coordinators is de-
cided by PCD++.  

 
4. A heat diffusion model 

 
PCD++ has been used to simulate a heat diffusion 

model. A surface is represented by a 50 x 50 cellular au-
tomaton, each cell containing a temperature. In each simu-

lation cycle, the temperature of the cell is updated to the 
average of the values of the neighborhood. In addition, a 
heat generator is connected to the cells (25, 25) and (10, 
10), generating temperatures in the range [24, 40] with 
uniform distribution. Also, a cold generator that creates 
temperatures in the range [10, 15] with uniform distribu-
tion, has been connected to the cells (10, 40) and (40, 40). 
Both generators create values after x seconds, where x 
follows an exponential distribution with mean 50 seconds. 
When any of the generators outputs a new value, the cell 
to which it is connected will take that value. 

The definition of the model using the language pro-
vided by the tool is showed in Figure 6. The top model and 
its components are defined between lines 1 and 4. Between 
lines 6 and 26, the model representing the surface is de-
fined. It is composed of a cellular automata of 50x50 cells 
with an initial temperature of 24° C. In the lines 28 and 29 
the local transition function is defined.  

Lines 31 and 32 define the transition function upon re-
ceiving an external event from the heat generator, and 
lines 34 and 35 for transition triggered by external events 
coming from the cold generator. Lines 37 to 47 define the 
distribution parameters for the generators.  

 
01   [top] 
02 components : surface generatorHeat@Generator  
                  generatorCold@generator  
03   link : out@generatorHeat inputHeat@surface  
04   link : out@generatorCold inputCold@surface  
05  
06   [surface] 
07   type : cell 
08   width : 50 
09   height : 50 
10   delay : transport 
11   defaultDelayTime  : 100 
12   border : wrapped  
13   neighbors : (-1,-1) (-1,0) (-1,1)  
14   neighbors : (0,-1)  (0,0)  (0,1) 
15   neighbors : (1,-1)  (1,0)  (1,1) 
16   initialvalue : 24 
17   in : inputHeat inputCold 
18   link : inputHeat in@surface(25,25) 
19   link : inputHeat in@surface(10,10) 
20   link : inputCold in@surface(40,40) 
21   link : inputCold in@surface(10,40) 
22   localtransition : heat-rule 
23   portInTransition : in@surface(25,25)  setHeat 
24   portInTransition : in@surface(10,10)  setHeat 
25   portInTransition : in@surface(40,40)  setCold 
26   portInTransition : in@surface(10,40)  setCold 
27 
28   [heat-rule] 
29   rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1) 
      + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }  
30 
31   [setHeat] 
32   rule : { uniform(24,40) } 1000 { t } 
33 
34   [setCold] 
35   rule : { uniform(-10,15) } 1000 { t } 
36 
37   [generatorHeat] 
38   distribution : exponential 
39   mean : 50 
40   initial : 1 
41   increment : 0 
42 
43   [generatorCold] 
44   distribution : exponential 
45   mean : 50 
46   initial : 1 
47   increment : 0 

Figure 6. Definition of the heat diffusion model 



The model has been simulated on a 12 PC network 
running Linux. Different tests were done, each with a 
different model partition.  

 
 
01   0 : generatorHeat generatorCold 
02   0 : surface(0,0)..(24,24) 
03   1 : surface(25,0)..(49,24) 
04   2 : surface(0,25)..(24,49) 
05   3 : surface(25,25)..(49,49) 

 

Figure 7.  Model partition for 4 processors. 
 
Figure 7 shows a model partition for running the heat 

diffusion model on 4 machines. There are a total of 252 
simulators that have to be assigned to 4 CPUs. Line 1 
defines the location for the simulators associated to the 
generatorHeat and generatorCold atomic models. Lines 2 
to 5 set where the simulators for the cells of the surface 
model will be running. 

In addition, there are two coupled models: the top 
model and the surface model. For the surface model,  
PCD++  will create four coordinators: a master coordina-
tor running on processor 0 and three slave coordinators, 
each running in one of the CPUs 1 to 3. For the top model, 
there will only be one master coordinator on processor 0. 

The results of running the simulation on 1, 2, 4 and 8 
processors are shown below. For this test, the simulation 
was configured to use the NoTimekernel.  

 
processors Time (sec) 

1 590 
2 476 
4 383 
8 369 

Figure 8. Simulation execution time 
 
As it can be appreciated, there is a significant reduction 

in the simulation time as more processors are used. The 
speedups are not exponential, but they add up to the per-
formance provided by Cell-DEVS. The following figure 
shows the execution time of Cell-DEVS models (ACA) 
against traditional Cellular Automata for this particular 
model.  
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Figure 9. Simulation execution times  of Cell-DEVS models 
 

5. Conclusion 
 
CD++ is a tool for the simulation of Parallel DEVS and 

Cell-DEVS models that implements this distributed ab-
stract simulator mechanism. The tool has proven to reduce 
the execution time models with a high number of simulta-
neous events. 

Distributed environments have a communications 
overhead that can be quite significant. The extension of the 
Parallel-DEVS abstract simulator here presented keeps to 
a minimum the number of messages sent across machines. 
This was possible by assigning each coupled model one 
master coordinator and zero, one or more slave coordina-
tors. Messages that have to cross a processor boundary are 
always sent between master and slave coordinators, which 
then forward the received messages to their local depen-
dants.  

A new abstract simulator that will allow for out of or-
der execution of events is being studied. For this new 
mechanism the Warped TimeWarp kernel will be used. 
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