
Implementing Parallel Cell-DEVS

Alejandro Troccoli

Departamento de Computación.
Pabellón I. Ciudad Universitaria

(1428). Buenos Aires.
 Argentina.

Gabriel Wainer

Department of Systems and Computing
Engineering, Carleton University. 1125
Colonel By Dr. K1S 5BE. Ottawa, ON.

Canada
gwainer@sce.carleton.ca

Abstract

Cell-DEVS is a formalism intended to model complex
physical systems as cell spaces. Cell-DEVS allow descri-
bing cellular models using timing delay constructions,
allowing simple definition of complex timing. The original
specificationw sere extended to permit parallel specifica-
tion of these models, and an associated simulation mecha-
nism allows their execution. Here we present some imple-
mentation issues related with the definition of parallel
simulators for Cell-DEVS.

1. Introduction

The DEVS formalism [1] provides a framework for the

construction of hierachical models in a modular manner,
allowing for model reuse and reducing development time
and testing. The execution of complex models requires a
computing power that stand alone computers do not pro-
vide. Therefore, the original DEVS formalism was revised
and the Parallel DEVS (P-DEVS) [2] formalism was pro-
posed. P-DEVS defines a function to handle transition
collisions and eliminates the use of a sequential function to
resolve simultaneous events. The revision eliminates all
restrictions that forced the original DEVS definition to
sequential execution.

A P-DEVS is composed by atomic models that can be
coupled in a hierarchical and modular fashion. A P-DEVS
atomic is defined as:

M = < X, S, Y, δint, δext, δcon , λ, ta >
where
X: a set of input events.
S: a set of sequential states.
Y: a set of output events.
δint: S → S: internal transition function.
δext: Q x Xb → S: external transition function,
 Xb is a set of bags over elements in X,

δext (s, e, φ) = (s, e)
δcon: S x Xb → S: confluent transition function.
λ : S → Yb : output function.
Ta : S → R0 → ∞ : time advance function,
 where Q = { (s, e) | s ∈ S, 0 < e < ta(s)}
 e is the elapsed time since last state transition.

Internal transitions execute at the next event time for

all imminent components receiving no external events.
Likewise, external events generated by these imminents
trigger external transitions at receptive non-imminents
(those components for which there are no internal transi-
tions scheduled for the receiving time). However, for those
components which the internal and external transitions
collide, the confluent transition function is employed in-
stead of either the internal or external transition function to
determine the new state [2].

A coupled model is defined by:
DN = < X, Y, D, { Mi}, { I i}, { Zi , j} >

X : a set of input events.
Y : a set of output events.
D : a set of components.
for each i in D,
 Mi is a componment.
for each i in D ∪ { self }, I i is the influencees of i.
For each j in I i,
 Zi , j is the i to j output translation function.

The structure is subject to the constraints that for each

i in D, Mi = < Xi, Si, Yi, δint i, δext i, δcon i , λi, tai > is a P-
DEVS, I i is a subset of D ∪ { self }, i is not in I i , and

Zself, j : Xself → Xj

Zi , self : Yi → Yself

Zi, j : Xi → Yj

Here self refers to the coupled model itself and is a de-

vice for allowing specification of external input and exter-
nal output couplings.

In [3] the Cell-DEVS formalism was introduced. When
executing cellular models, large amounts of compute time
are required, and the use of a discrete time base poses
restrictions in the precision of the model. The Timed Cell-
DEVS formalism tries to solve these problems by using
the DEVS paradigm to define a cell space where each cell
is defined as a DEVS atomic model. The goal is to build
discrete event cell spaces, improving their definition by
making the timing specification more expressive. In [4] it
was revised to eliminate all the sequential restrictions the
original formalism presented. A parallel Cell-DEVS ato-
mic model can be formally defined as:

TDC = < Xb, Yb, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D

>

Two confluent functions have been added to the origi-

nal Cell-DEVS definition: δcon and τcon. In addition, the
external transition and output functions have been changed
to handle input/output bags (Xb and Yb) for each cell. The
external transition function activates the local computa-
tion, whose result is delayed using one of both kinds of
constructions: transport or inertial delays. The output func-
tion executes prior to the internal transition function,
transmitting the present values to other models. The δint

function is in charge of keeping the values for a transport
delay. The following figure shows a sketch of the contents
of each cell.

Figure 1. Cell’s definition [4].

The confluent transition function δcon is activated when

there are collisions between internal and external events. It
must activate the confluent local transition function τcon,
whose goal is to analyze the present values for the input
bags, and to provide a unique set of input values for the
cell. In this way, the cell will compute the next state by
using the values chosen by the modeler.

The external transition function activates the local

computation, whose result is delayed using one of both
kinds of constructions. The output function, which ex-
ecutes prior to the internal transition function, is in charge
to transmit the present values to other models.

In case of a collision, the confluent transition function
chooses members from the bag, and updates the inputs for
the cell. After, it deletes the unnecessary members of the
bag. As σ = 0, an internal transition function is scheduled
immediately. The modeler should define the behavior for
the τcon function in each cell, thus allowing the definition
for this behavior under collisions.

DEVS separates the model from the actual simulation.

The simulation mechanism is implemented by abstract
simulators. In [5] an abstract simulator for the Parallel
DEVS formalism was presented. Based on that work, we
defined an abstract simulator for distributed simulation,
which is the subject of this paper. In a distributed envi-
ronment, there is considerable communications overhead
which can not be ignored. Therefore, the abstract simulator
should restrict the communications over the network to a
minimum. The goal of this work is to present an abstract
simulator developed to execute DEVS and Cell-DEVS
models using standard tools for distributed and parallel
programming. Several abstract simulators were imple-
mented to allow parallel execution in the CD++ toolkit [9],
entitling to have efficient execution of cellular models.

2. Parallel DEVS Abstract Simulators

As it was mentioned earlier, the modularity of the Pa-

rallel DEVS formalism makes it possible to separate the
model from the simulation mechanism. The original ab-
stract simulator mechanism [6] was revised to suit the
Parallel DEVS formalism [2].

As in the existing definition of the abstract simulator

[2], the DEVS processors will be specialized into two
different simulation engines, simulator and coordinator.
Basically, the role of the simulator is to invoke an atomic
model transition and external event functions. On the other
hand, a coordinator is attached to a coupled model and has
the responsibility of translating its children’ output events
and of keeping the time of the next imminent/s depen-
dants.

Every coordinator has a set of child DEVS processors.

When a simulation run in distributed fashion, coordina-
tor’s children need not be executing on the same proces-
sor. If every coupled model is associated to only one coor-
dinator, every message sent to child processors running on
a different CPU will require interprocess communication.
Figure 2(a) illustrates this case. It shows a coordinator
sending a message to its 8 children distributed on two
CPUs. Four interprocess messages are required for the
four children running on processor 1.

(a)

(b)

Figure 2. (a) A single coordinator sending a message to all
its child processor. Dashed lines = interprocess messages. (b) A
master- slave pair sending messages to all their children proces-
sors.

If the number of children processors is high (for in-

stance, in coupled Cell-DEVS), the number of messages
sent across the network will also be significant. This can
be avoided if every coupled model have more than one
coordinator. Figure 2(b) illustrates this case. For the same
coupled model, there are two coordinators, one in proces-
sor 0 and another in processor 1. In this case, only one
message is sent over the network.

For coupled models, coordinators will be required on
each processor where a child processor is running. Child-
ren processors will send messages to the local coordinator,
which will decide how to handle the received messages.
Upon receiving a message from a child, a coordinator
could forward this message to all the coordinators for the
model. This would require all coordinators to know about
the others. For instance, if coupled model A is a child of
coupled model B, then B´s coordinators have to interact
with A´s coordinators. If handled uncarefully, this com-
munication can turn out producing the same number of
interprocess messages we wanted to avoid. In such a sce-
nario, a way of keeping the number of interprocess mes-
sages to a minimum is to have only one of the coordinators
to handle all messages to the parent´s model local coordi-

nator. This specialized coordinator will be known as a
master coordinator and all other model coordinators will
be slaves. The master coordinator for model A will then
be the only one that can receive or send messages to B´s
local coordinator.

With the exception of the top level DEVS processor,
known as root coordinator, all DEVS processors will have
a parent coordinator. To set the parent-child relationship
on a distributed environment, the following rules apply,

a. for each simulator, the parent coordinator will be
the parent’s model local processor (it is guaranteed that
this will exist)

b. for each slave coordinator, the parent coordinator
will be the model’s master coordinator.

c. For each master coordinator, the parent coordinator
will be the parent’s model local processor; just as if it were
a simulator.

DEVS processors exchange messages which can be
classified into two categories: synchronization messages
and content messages. The synchronization messages are (
@ , t) and (done, t) and the contents messages (y, t) and
(q , t). It is assumed that any two messages sent from the
same source to the same destination will preserve their
original ordering. The P-DEVS formalism states that all
imminent model’s output functions must be executed
before any transition function. All outputs are collected
and only after they have been sorted, the transition func-
tions can be activated. These activities are co-ordinated
using the synchronization messages.

We will now proceed to describe the abstract simulator
mechanism for the simulator, master coordinator, slave
coordinator and root coordinator.

The simulator attached to an atomic model has been
implemented as in [2], with some minor changes:

when a (@ , t) message is received
if t = tN then
 y := λ(s)
 send (y , t) to the parent coordinator
 send (done, t) to the parent coordinator
end if
else raise error
end when

when a (q , t) message is received
lock the bag
Add event q to the bag
unlock the bag
end when

when a (* , t) message is received
case tL ≤ t < tN

 e := t - tL

 s := δext(s, e, bag)
 empty bag

end case
case t = tN and bag is empty
 s := δint(s)
end case
case t = tN and bag not is empty
 s := δcon(s, bag)
 empty bag
end case
case t > tN or t < tL

 raise error
end case
tL := t
tN := ta (s)
send (done, tN) to parent coordinator
end when

The implementation of a master coordinator is now

given.

when a (@ , t) message is received from parent coor-

dinator
if t = tN then
 tL := t
for all imminent child processors i with minimum tN

send (@, t) to child i
cache i in the synchronize set
end for
wait until (done, t)’s have been received from all im-

minent processors
send (done, t) to parent coordinator
end if
else raise error
end when

For a master coordinator the set of child processors is

made by the set of slave coordinators, the set of local
child simulators and the set of child local master coordi-
nators. A processor is local if it is executing on the same
processor.

To simplify the next description it is necessary to de-
fine the function coordinator.

coordinator : M x P → C
 where
M is a coupled model
P is a DEVS processor
S is a coordinator (master or slave)

coordinator (M, j) = i , where i is the coordinator as-

sociated to coupled M that is local to child j. The follow-
ing restrictions apply for the function to be well defined:

j is a DEVS processor associated to a dependant of M

i is one of the coordinators associated with M

Now we can describe the behavior of a master coordi-
nator upon receiving an output message. Two cases need
to be distinguished:

an output message (y , t) received from a child i that

is not a slave coordinator

an output message (y , i, t) forwarded from a slave

coordinator that received (y , t) from a local child i.
when a (y , t) message is received from child i
for all influencees, j of child i
 if j is a local processor
 q := zi,j (y)
 send (q, t) to child j
 cache j in the synchronize set
 else
 s := coordinator(self, j)
 if s ∉ slave-sync set then
 send (y, i, t) to s
 cache s in the slave-sync set
 cache s in the synchronize set
 end if
 end if
end for
if self ∈ Ii (y is to be transmitted upward) then
 y := zi, self (y)
 send (y, t) to parent coordinator
end if
clear slave-sync set
end when

when a (y , i, t) message is received from a slave s
cache s in the slave-sync set and proceed as if a (y , t)

message had been received from child i
end when

Here slave-sync is used to avoid forwarding an output

message twice to a slave coordinator. It is important to
note that instead of forwarding a (q, t) message to a slave
coordinator, a (y, i, t) is sent. This is done to reduce the
number of messages sent across the network. A slave
coordinator might be the parent coordinator for more than
one of the influencees of i. If (q , t) messages were to be
forwarded, then there will be one (q, t) message for each
influencee of i. For Cell–DEVS models, this can be an
important overhead. Instead, just one (y, i, t) message is
sent across the network and it will be the responsibility of
the slave coordinator to generate the appropiate (q, t)
messages.

As mentioned in [2], all children ready for a transition
are cached in a synchronize set to later distinguish active
from inactive components.

when a (q , t) message is received from parent coor-

dinator

lock the bag
Add event q to the bag
unlock the bag
end when

when a (* , t) message is received from parent coor-

dinator
if tL ≤ t ≤ tN

 for all q ∈ bag
 for all receivers of q, j ∈ Iself
 if j is a local processor
 q := zself, j (q)
 send (q, t) to j
 cache j in the synchronize set
 else
s := coordinator(self, j)
 if s ∉ slave-sync set then
 send (q , t) to s
 cache s in the slave-sync set
 cache s in the synchronize set
 end if
 end if
 end for
 clear slave-sync set
 end for
 empty bag
 for all i in the synchronize set
 send (*, t) to i
 end for
 wait until all (done, tN)’s are received
 tL := t
 tN := minimum of components’ tN’s

 clear the synchronize set
 send (done, tN) to parent coordinator
else raise an error
end when

When the output events are routed down to child pro-

cessors, if the message is to be forwarded to a slave coor-
dinator the z translation will not be applied. Instead, the
original q message will be sent. Therefore, care must be
taken not to forward a message twice to a slave coordina-
tor. Here again, the slave-sync is used for that purpose.

The slave coordinator will be introduced next.
when a (@ , t) message is received from parent coor-

dinator
if t = tN then
 tL := t
for all imminent child processors i with minimum tN

send (@, t) to child i
cache i in the synchronize set
end for
wait until (done, t)’s have been received from all im-

minent processors

send (done, t) to parent coordinator
end if
else raise error
end when

As it can be noticed, there is no difference on how both

master and slave coordinators handle a (@, t). However,
the set of child processor of a slave coordinator is differ-
ent. For a slave coordinator the set of child processors is
made by the set of local child simulators and the set of
local child master coordinators, only.

when a (y , t) message is received from child i
sent_to_master := false
for all influencees, j of child i
 if j is a local processor
 q := zi,j (y)
 send (q, t) to child j
 cache j in the synchronize set
 else
 if not sent_to_master
 send (y, t) to parent coordinator
 sent_to_master := true
 end if
 end if
end for
if self ∈ Ii (y is to be transmitted upward) then
 if not sent_to_master
 send (y, t) to parent coordinator
 end if
end if
end when

when a (y , i, t) message is received from parent

coordinator

sent_to_master := true
proceed as if a (y , t) message had been received from

child i
end when

When an output event is received from a child i, the

slave coordinator sorts the message to the influencees of i.
If any influencee is local, the z function is applied a (q , t)
message is sent. If there are non-local influencees, then the
output event is sent to the master coordinator, who will
then sort the message to other slave coordinators if neces-
sary. Only one (y , t) message should be forwarded to the
master coordinator.

When the slave coordinator receives an output event
that has been forwarded by the master coordinator on
behalf of child i, it will handle the event as if i had been
local, but no (y, t) messages will be forwarded back to the
master coordinator if there is a non-local influencee. This

is to avoid infinite loops of messages being forwarded
back and forth.

when (q,t) message is received from parent coordinator
lock the bag
Add event q to the bag
unlock the bag
end when

when (* ,t) message is received from parent coordinator
if tL ≤ t ≤ tN

 for all q ∈ bag
 for all receivers of q, j ∈ Iself
 if j is a local processor
 q := zself, j (q)
 send (q, t) to j
 cache j in the synchronize set
 else
 do nothing
 end if
 end for
end for
 empty bag
 for all i in the synchronize set
 send (*, t) to i
 end for
 wait until all (done, tN)’s are received
 tL := t
 tN := minimum of components’ tN’s

 clear the synchronize set
 send (done, tN) to parent coordinator
else raise an error
end when

The root coordinator is a special processor that is

above the topmost coordinator. It is responsible for driving
the simulation and advancing the virtual simulation time.
Our root coordinator can also handle external events which
are stored in a sorted queue of events.

Root coordinator

load queue of external events and sort them by arrival

time.

t := minimum of tN of topmost coordinator and tN of

queue.
while t ≠ ∞
if t = tN of queue
 for all q in queue with time t
 send (q , t) to topmost coordinator
 end for
end if

if t = tN of topmost coordinator

 send (@, t) to topmost coordinator
 wait until (done, t) is received from it
end if

send (*, t) to topmost coordinator
wait until (done, t) is received from it

end while
raise simulation completed

This abstract simulator mechanism will be able to han-

dle both, Parallel DEVS and Parallel Cell-DEVS models
because the latter one is a specialization of the first one.

3. Parallel CD++

CD++ [7] is a modeling tool for the simulation of

DEVS and Cell-DEVS models. This tool has been ex-
tended into Parallel CD++ (PCD++), a tool for the simu-
lation of Parallel DEVS and Parallel Cell-DEVS models
on a distributed environment.

PCD++ has been built on top of a modified version of
Warped [8]. All DEVS processors have been defined as
Warped objects. Warped defines a simulation API and
provides a set of different simulation kernels: a sequential
kernel for the execution of models in standalone mode, a
TimeWarp kernel for parallel execution using optimistic
synchronization mechanisms and a NoTime kernel, for
parallel and standalone simulation that uses no synchroni-
zation at all. In addition, we have developed a kernel that
uses pessimistic synchronization mechanisms. For the
parallel kernels, Warped uses MPI for communication
between CPUs. The current PCD++ has been succesfully
tested with the NoTime kernel.

Figure 3. PCD++ layered architecture

In the abstract simulator mechanism that we presented

for distributed environments, the time advance is con-
trolled by the root coordinator. Therefore, no synchroniza-
tion is required because no processor will execute an out
of order event. The NoTime kernel is very well suited for
this case because it provides the necessary communication
primitives and avoids the overhead of TimeWarp. Figure 4
shows the Warped API.

MPI

WARPED

PCD++

MODEL

class TimeWarp {
// Methods the user defines
virtual void initialize();
virtual void finalize();
virtual void executeProcess();
BasicState* allocateState();

//Simulation kernel services
void sendEvent (BasicEvent *);
BasicEvent* getEvent();
};

class BasicEvent {
int size;
Vtime sendTime;
Vtime recvTime;

int sender;
int dest;
}

class BasicState {
BasicState* copyState(BasicState*);
}

Figure 4. Warped API

To define new atomic models, PCD++ provides an ab-
stract class Atomic that the modeler has to extend using
inheritance. Coupled models, need no programming. In-
stead, they are defined writing a model file using a specifi-
cation language PCD++ provides for that purpose. This
specification language is also used for the definition of
Cell-DEVS models.

class Atomic {
// Methods the user should def
Model& internalFunction();
Model& externalFunction (MessageBag&)
Model& outputFunction();
Model& confluentFunction();
ModelState* allocateState();

//Simulation kernel services
void sendOutput (Port&, BasicMsgValue*);
const Vtime& lastChange();
void holdIn(state, Vtime);
};

Figure 5. The Atomic class

Finally, having defined the model and the set of avail-

able machines, it only remains to define how the models
will be distributed. The modeler has to create a partition
file that tells PCD++ which machine each atomic model
should run on. This tells PCD++ where each simulator
should be placed. The location of the coordinators is de-
cided by PCD++.

4. A heat diffusion model

PCD++ has been used to simulate a heat diffusion

model. A surface is represented by a 50 x 50 cellular au-
tomaton, each cell containing a temperature. In each simu-

lation cycle, the temperature of the cell is updated to the
average of the values of the neighborhood. In addition, a
heat generator is connected to the cells (25, 25) and (10,
10), generating temperatures in the range [24, 40] with
uniform distribution. Also, a cold generator that creates
temperatures in the range [10, 15] with uniform distribu-
tion, has been connected to the cells (10, 40) and (40, 40).
Both generators create values after x seconds, where x
follows an exponential distribution with mean 50 seconds.
When any of the generators outputs a new value, the cell
to which it is connected will take that value.

The definition of the model using the language pro-
vided by the tool is showed in Figure 6. The top model and
its components are defined between lines 1 and 4. Between
lines 6 and 26, the model representing the surface is de-
fined. It is composed of a cellular automata of 50x50 cells
with an initial temperature of 24° C. In the lines 28 and 29
the local transition function is defined.

Lines 31 and 32 define the transition function upon re-
ceiving an external event from the heat generator, and
lines 34 and 35 for transition triggered by external events
coming from the cold generator. Lines 37 to 47 define the
distribution parameters for the generators.

01 [top]
02 components : surface generatorHeat@Generator
 generatorCold@generator
03 link : out@generatorHeat inputHeat@surface
04 link : out@generatorCold inputCold@surface
05
06 [surface]
07 type : cell
08 width : 50
09 height : 50
10 delay : transport
11 defaultDelayTime : 100
12 border : wrapped
13 neighbors : (-1,-1) (-1,0) (-1,1)
14 neighbors : (0,-1) (0,0) (0,1)
15 neighbors : (1,-1) (1,0) (1,1)
16 initialvalue : 24
17 in : inputHeat inputCold
18 link : inputHeat in@surface(25,25)
19 link : inputHeat in@surface(10,10)
20 link : inputCold in@surface(40,40)
21 link : inputCold in@surface(10,40)
22 localtransition : heat-rule
23 portInTransition : in@surface(25,25) setHeat
24 portInTransition : in@surface(10,10) setHeat
25 portInTransition : in@surface(40,40) setCold
26 portInTransition : in@surface(10,40) setCold
27
28 [heat-rule]
29 rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1)
 + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }
30
31 [setHeat]
32 rule : { uniform(24,40) } 1000 { t }
33
34 [setCold]
35 rule : { uniform(-10,15) } 1000 { t }
36
37 [generatorHeat]
38 distribution : exponential
39 mean : 50
40 initial : 1
41 increment : 0
42
43 [generatorCold]
44 distribution : exponential
45 mean : 50
46 initial : 1
47 increment : 0

Figure 6. Definition of the heat diffusion model

The model has been simulated on a 12 PC network
running Linux. Different tests were done, each with a
different model partition.

01 0 : generatorHeat generatorCold
02 0 : surface(0,0)..(24,24)
03 1 : surface(25,0)..(49,24)
04 2 : surface(0,25)..(24,49)
05 3 : surface(25,25)..(49,49)

Figure 7. Model partition for 4 processors.

Figure 7 shows a model partition for running the heat

diffusion model on 4 machines. There are a total of 252
simulators that have to be assigned to 4 CPUs. Line 1
defines the location for the simulators associated to the
generatorHeat and generatorCold atomic models. Lines 2
to 5 set where the simulators for the cells of the surface
model will be running.

In addition, there are two coupled models: the top
model and the surface model. For the surface model,
PCD++ will create four coordinators: a master coordina-
tor running on processor 0 and three slave coordinators,
each running in one of the CPUs 1 to 3. For the top model,
there will only be one master coordinator on processor 0.

The results of running the simulation on 1, 2, 4 and 8
processors are shown below. For this test, the simulation
was configured to use the NoTimekernel.

processors Time (sec)

1 590
2 476
4 383
8 369

Figure 8. Simulation execution time

As it can be appreciated, there is a significant reduction

in the simulation time as more processors are used. The
speedups are not exponential, but they add up to the per-
formance provided by Cell-DEVS. The following figure
shows the execution time of Cell-DEVS models (ACA)
against traditional Cellular Automata for this particular
model.

0
100
200
300
400
500
600

5 10 50 100

Cell's delay (milliseconds)

E
xe

cu
tio

n
tim

e
pe

r
tr

an
si

tio
n

AC

ACA

Figure 9. Simulation execution times of Cell-DEVS models

5. Conclusion

CD++ is a tool for the simulation of Parallel DEVS and

Cell-DEVS models that implements this distributed ab-
stract simulator mechanism. The tool has proven to reduce
the execution time models with a high number of simulta-
neous events.

Distributed environments have a communications
overhead that can be quite significant. The extension of the
Parallel-DEVS abstract simulator here presented keeps to
a minimum the number of messages sent across machines.
This was possible by assigning each coupled model one
master coordinator and zero, one or more slave coordina-
tors. Messages that have to cross a processor boundary are
always sent between master and slave coordinators, which
then forward the received messages to their local depen-
dants.

A new abstract simulator that will allow for out of or-
der execution of events is being studied. For this new
mechanism the Warped TimeWarp kernel will be used.

References

[1] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of Mode-
ling and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems". Academic Press. 2000.

[2] ALEX C. CHOW; BERNARD P. ZEIGLER. Parallel DEVS:
A parallel, hierarchical, modular modeling formalism. In Winter
Simulation Conference Proceedings, Orlando, Florida, 1994.
SCS.

[3] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS: mode-
lling and simulation of cell spaces ". In "Discrete Event Mode-
ling & Simulation: Enabling Future Technologies", to be publis-
hed by Springer-Verlag. 2001.

[4] WAINER, G. “Improved cellular models with parallel Cell-
DEVS”. In Transactions of the SCS. June 2000.

[5] ALEX C. CHOW, DOO H. KIM; BERNARD P. ZEIGLER.
"Abstract Simulator for the parallel DEVS formalism". AI, Simu-
lation, and Planning in High Autonomy Systems. Dec., 1994

[6] BERNARD P. ZEIGLER. Object Oriented Simulation with
Hierarchical, Modular Models. Academic Press, San Diego,
California, 1990.

[7] RODRIGUEZ, D.; WAINER, G. "New Extensions to the
CD++ tool". In Proceedings of SCS Summer Multiconference on
Computer Simulation. 1999.

[8] MARTIN, D.; MCBRAYER, T.; RADHAKRISHNAN, R.;
WILSEY, P. "TimeWarp Parallel Discrete Event Simulator''.
Technical Report. Computer Architecture Design Laboratory,
University of Cincinnati. December 1997.

