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Abstract 

 

Simulation is becoming increasingly important in the analysis and design of complex systems with natural and artificial 

components. CD++ is a modeling and simulation tool that was created to study this kind of systems by using a discrete-

event cell-based approach. It was successfully employed to define a variety of models for complex applications using a 

cell-based approach. Here, we present different extensions done to the tool using a client/server architecture. Users can 

create models in local workstations, execute them in a remote high performance simulation engine, then receive, visualize 

and analyze the results locally with easy-to-use 2D and 3D interfaces. The 3D interface was built using VRML in order to 

facilitate web-based visualization. The tool now enables running several models simultaneously, and it supports multi-

view outputs.  
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1. INTRODUCTION 

 

Scientists and engineers have long relied in using models to better comprehend the systems they study. Models have been 

used for analysis, design, prediction and understanding of different complex phenomena. In most cases, these models were 

defined using mathematical representations, enabling mathematical analysis techniques. Unfortunately, these methods 

showed to be infeasible for studying several complex artificial systems developed in the second half of the 20th century 

(traffic controllers, digital systems, automated factories, robots, etc.). Likewise, the complexity of the natural systems 

under analysis grew, making impossible to use analytical methods.  

 

Digital computers provided alternative methods of analysis. Since the early days of computing, the users started 

translating their analytical models into computer simulations, which enabled them to experiment with virtual 

environments. Computer simulation has enabled the analysis of natural and artificial systems with a level of detail 

unknown in earlier stages of scientific development. Simulated models are also well suited for training purposes, as they 

provide cost-effective risk-free environments. 

 

At present, there are a large number of modeling and simulation techniques and tools developed to deal with complex 



systems. A formalism that is gaining popularity in recent years is called DEVS (Discrete Event Systems Specification) 

[01,2]. DEVS provides a framework for the construction of discrete-event hierarchical models in a modular manner, 

allowing for model reusing to reduce development time. In DEVS, basic models (called atomic) are specified as black 

boxes, and several DEVS models can be integrated together forming a hierarchical structural model (called coupled). 

 

Cell-DEVS [3] extended the DEVS formalism allowing simulating discrete-event cell spaces. The approach is based on 

Cellular Automata (CA), which are defined as a lattice of cells updated synchronously and simultaneously [4]. Each cell in 

a CA holds a state variable and a computing apparatus that defines how to obtain a new value based on the current state 

and the values of neighboring cells. Cell-DEVS extends these concepts by defining a cell as a DEVS atomic model and a 

cell space as a DEVS coupled model. It also introduces a new way of defining the timing of each cell, which is more 

flexible than previously existing approaches.  

 

The CD++ tool [5] enables simulating DEVS and Cell-DEVS models, and it has been used to create a variety of models in 

different areas: biology (watersheds, fire spread, ant colonies), physics (crystal growth, lattice gases, heat diffusion), 

chemistry (solution diffusion in moving fluids), and several artificial systems (autonomous robots, heat seekers, urban 

traffic, etc.) [6, 7, 8, 9].  

 

In several of these models, we found out that the computing power provided by standard workstations is not enough, 

moreover when running large cell spaces. Despite this fact, most end users nowadays have restricted access to high 

performance computing resources. Likewise, many of them prefer to use personal computers with standard software 

packages for development and analysis of the simulation results. A solution to these problems is to let the user to execute 

the simulations in high-performance remote computers, while using standard workstations for development and analysis. 

In these cases, client/server architectures provide an adequate framework to organize the model's distributed execution. 

The simulation software can be designed as a server able to execute many simulation models simultaneously, whereas the 

users can communicate with this server through a network to request simulation services. The design of CD++ was 

modified following these ideas, and it was transformed into a simulation server.  

 

Another problem of using CD++ for complex systems analysis was the lack of adequate visualization mechanisms. 

Graphical tools are crucial to understand better the behavior of complex systems, and they facilitate thinking, problem 

solving, and decision-making. Scientific visualization tools create visual displays, in which numeric values in data sets are 

represented visually as colors, shapes, or symbols [1011]. The goal of visualization is to provide a deeper understanding of 

the physical systems being investigated, and to help in exploring the large set of numerical data produced in the simulation 

execution, which is a concern for model validation. In order to achieve these goals, CD++ was extended to enable 2D and 

3D visualization. A 3D GUI (Graphical User Interface) was developed, providing useful functions for the users (select 

geometries for the nodes, assign different colors, edit individual nodes and navigate in the field of visualization). The GUI 

was designed with the intention of being used by various users from remote locations. The main interest of the users is to 

rapidly obtain results, and data visualizations would help them to assist in analysis for scientific and technical purposes. 

Their expertise will be diverse, and although they might be familiar with the technical domain of the models under 

development, we want to reduce the learning curve. Consequently, the visualization environment relies on standard 

interface conventions. 



In summary, CD++ was transformed into a client/server engine that is able to provide visual simulation results and remote 

access to a high performance DEVS simulation server. The end user tools were organized as a simulation client applied to 

the CD++ simulation engine. The server is able to receive model specifications from the clients, and run them in parallel, 

sending back results to the local computers. In addition, many users can run simulations simultaneously. Using these 

facilities, the users can now develop and test their models in local workstations, and send them to be simulated in a remote 

CD++ server executing in a high performance platform. Then, they can receive, visualize and analyze the result on the 

local computer, improving model definition and execution.  

 

The following sections will present the results of this effort. We first introduce basic aspects related to the modeling 

techniques we used. Then, we present a design for the modified tools and the visualization environment. Finally, we show 

several examples presenting the visualization facilities of the toolkit. 

 

2. THE DEVS FORMALISM 

 

The DEVS formalism [1] was originally defined in the ‘70s as a discrete-event modeling technique. A real system 

modeled with DEVS is defined of a composite of sub-models, each of them being a behavioral model (called atomic) or a 

structural model (called coupled). Each model is defined by a time base, state variables, inputs, outputs, and functions to 

determine the next states and outputs. Tested models can be integrated into a model hierarchy, improving model reuse, 

reducing testing time and enhancing productivity. 

 

A DEVS atomic model is described as:  

 
M = < X, S, Y, δint, δext, λ, D > 

 
X is the input events set; 

S is the state set; 

Y is the output events set; 

δδδδint: S → S, is the internal transition function; 

δδδδext: Q x X → S, is the external transition function; where Q = { (s, e) / s ∈ S, and e ∈ [0, D(s)]};  

λλλλ: S→Y, is the output function; and 

D: S → R0+ ∪ ∞, is the duration function. 

 

The model is seen as having an interface consisting of input (X) and output (Y) ports to interact with other models. Each 

state in a model has an associated lifetime, defined by the duration function. Once the lifetime of a given state is 

consumed, the internal transition function is activated to produce an internal state change. Before this state change, the 

model can generate outputs using the current state values through the output ports. To do so, the output function executes 

before activating the internal transition. At any moment, a model can receive input external events from other models 

through its input ports. When an external event arrives, the external transition function is activated. This function 

computes a new state for the model using the present state, the input values, and the time elapsed since the last event. 

Every time a transition function is activated, a new lifetime must be associated with the new state. 



 
A DEVS coupled model is composed of several atomic or coupled sub-models, and it can be defined as:  

 
CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select > 

 
X is the set of input events; 

Y is the set of output events; 

D ∈ N, D <∞ is an index for the components of the coupled model, and  

∀ i ∈ D, Mi is a basic DEVS model, where 

Mi = < Xi, Si, Yi, δinti, δexti, Di > 

Ii is the set of influencees of model i, and ∀ j ∈ Ii, and 

Zij: Yi → Xj is the i to j translation function. 

Finally, select is the tie-breaking selector. 

 

Each coupled model consists of a set of basic models (atomic or coupled) connected through the input/output ports of the 

interfaces. Each component is identified by an index number. Each model is associated with a set of influencees, defined 

as those models to which output values must be sent. The translation function uses an index of influencees, created for 

each model (Ii). This function defines which outputs of model Mi will be converted into inputs for model Mj. When two 

submodels have simultaneous events, the select function defines which of them should be activated first. 

 

The Cell-DEVS formalism extended this basic behavior to allow the implementation of cellular models with timing delays 

[3]. Each cell in these spaces includes a state variable, which is updated according to a local rule that considers the present 

cell state and those of a finite set of nearby cells (called the cell's neighborhood). The cells are defined as atomic models, 

and they can be specified as: 

 
TDC = < X, Y, S, θ, I, d, δint, δext, τ, λ, D > 

 

where for #Τ < ∞  ∧  T ∈ {ΝΝΝΝ, ΖΖΖΖ, R, {0,1}{0,1}{0,1}{0,1} } ∪ {φ}; 

X ⊆ T is the set of external input events; 

Y ⊆ T is the set of external output events; 

S ⊆ T is the set of sequential states for the cell; 

θθθθ is the definition of the cell's state, defined as 

θ = { (s, phase, σqueue, σ)  / s ∈ S is the status value for the cell, phase ∈ {active, passive}, 

 σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m <∞) ∧ ∀ (i ∈ N, i ∈ [1,m]), vi ∈ S ∧ σi ∈ R0+∪∞};  

 σ ∈ R0+ ∪ ∞ } for transport delays, or 

θ = { (s, phase, f, σ)  / s ∈ S, phase ∈ {active, passive}, f ∈ T, and σ ∈ R0+ ∪ ∞ } for inertial delays; 

I ∈ Sη+µ is the set of states for the input events; 

d ∈ R0+, d < ∞ is the transport delay for the cell; 



δδδδint: θ → θ is the internal transition function; 

δδδδext: QxX → θ is the external transition function, where Q is the state values defined as: 

Q = { (s, e) / s ∈ θ x I x d; e ∈ [0, D(s)]}; 

ττττ: I → S is the local computation function; 

λλλλ: S →Y is the output function; and 

D: θ x I x d → R0+ ∪ ∞, is the state's duration function. 
 

A cell uses the input values I to compute its next state, which is obtained by applying the local computation function τ. A 

delay function associated with each cell enables deferring the moment to transmit the computed result. There are two 

types of delays: inertial and transport. For the transport delay, the next value will be added to a queue sorted by output 

time, and the results will be stored during the delay. When this time is consumed, the value will be sent out. Inertial delays 

use a preemptive policy, that is, if the cell state changes before the delay, the previously computed result is not 

transmitted. This basic behavior is provided by the δint, δext, λ, and D functions. 

 

After the basic behavior of a cell is defined, a whole cell space is built by creating a coupled Cell-DEVS model that 

includes copies of each of the atomic cells. The Cell-DEVS coupled model can be defined as: 

  
GCC = < Xlist, Ylist, I, X, Y, n, {m, n}, N, C, B, Z> 

 
 
where for #Τ < ∞  ∧  T ∈ {ΝΝΝΝ, ΖΖΖΖ, R, {0,1}{0,1}{0,1}{0,1} } ∪ {φ}; 
 
X ⊆ T is the set of external input events; 

Y ⊆ T is the set of external output events; 

Ylist = { (k,l) / k ∈ [0,m], l ∈ [0,n]} is the list of output coupling;  

Xlist = { (k,l) / k ∈ [0,m], l ∈ [0,n]} is the list of input coupling; and 

I = < Px, Py > represents the definition of the modular model interface. Here, 

    for i = X | Y, Pi is a port definition (input or output respectively), where 

Pi = { (N(f,g)i, T(f,g)i) / ∀ (f,g) ∈ Xlist, N(f,g)i = i(f,g)k (port name), and T(f,g)i ∈ T (port type)}; 

ηηηη ∈ N is the neighborhood size and N is the neighborhood set, defined as 

N = { (ip,jp) / ∀ p ∈ N, p ∈ [1,η] � ip, jp ∈ Z ∧  ip, jp ∈ [-1, 1] }; 

{m, n} ∈ N is the size of the cell space; 

C defines the cell space, where C = {Cij / i ∈ [1,m], j ∈ [1,n]}, with  

 Cij = < Xij, Yij, Sij, Nij, dij, δintij, δextij, τij, λij, Dij >  

is a Cell-DEVS atomic model; 

B is the set of border cells, where  

• B = {∅} if the cell space is wrapped; or 

• B = {Cij / ∀ (i = 1 ∨ i = m ∨  j = 1 ∨ j = n) ∧ Cij ∈ C} , where 

Cij = < Xij, Yij, Sij, I ij, dij, δintij, δextij, τij, λij, Dij >  



is a Cell-DEVS atomic model, if the border cells have different behavior than the rest of the cell space. 

Z is the translation function, defined by: 

Z: Pkl
Yq → Pij

Xq, where Pkl
Yq ∈ Ikl, Pij

Xq ∈ Iij, q ∈ [0,η] and ∀(f,g) ∈ N, k = (i+f) mod m; l=(j+g) mod n;  

    Pij
Yq → Pkl

Xq, where Pij
Yq ∈ Iij, Pkl

Xq ∈ Ikl, q ∈ [0,η] and ∀(f,g) ∈ N, k = (i-f) mod m; l = (j-g) mod n;  

select is the tie-breaking selector function, with select ⊆ mxn → mxn. 

 

Here, Xlist and Ylist are input/output coupling lists, used to define the model interface I. X and Y represent the input/output 

event sets. The space size is defined by {m, n}, and N defines the neighborhood shape. C, together with B, the set of 

border cells, and Z the translation function define the cell space. The B set defines the cell's space border. If this set is 

empty, the space is "wrapped", meaning that cells in one border are connected with those in the opposite. In this case, 

every cell in the space will be considered as having identical behavior. Otherwise, the border cells need to be provided 

with a behavior different from those of the rest of the model. Finally, the Z function allows defining the coupling of cells 

in the model. This function translates the outputs of m-eth output port in cell Cij into values for the m-eth input port of cell 

Ckl. Each output port will correspond to one neighbor and each input port will be associated with one cell in the inverse 

neighborhood [01]. The ports' names are generated using the following notation: PijXq refers to the q-eth input port of cell 

Cij, and PijYq to the q-eth output port. These ports correspond with the port names denoted as Xq or Yq for each cell. This 

definition, valid for bidimensional models, has been extended for n-dimensional spaces in [12]. 

 

CD++ [5] is a tool built to implement the DEVS and Cell-DEVS theory. The toolkit has been built as a set of independent 

software pieces, each of them independent of the operating environment chosen. The tool allows defining models 

according to the specifications introduced in the previous section. The models are built as a class hierarchy, and new 

atomic models can be incorporated into this class hierarchy by writing DEVS models in C++, overloading the basic 

methods representing DEVS specifications: external transitions, internal transitions and output functions. Once an atomic 

model is tested, it can be stored in a model database and then combined into a multicomponent model. Coupled models are 

defined using a specification language specially defined with this purpose, following DEVS formal definitions.  

  

CD++ can also be used to define Cell-DEVS models. The tool includes an interpreter for a specification language that 

allows describing the behavior of each cell, including the local computing function and a delay. In addition, it allows 

defining the size of the cell space and its connection with other DEVS models, the border and the initial state of each cell. 

This language was defined following the theoretical definitions for the Cell-DEVS formalism.  

 

The behavior specification of a cell is defined using a set of rules, each indicating the future value for the cell's state if a 

precondition is satisfied. A delay is associated with each of the rules, and the state changes will be distributed to the 

neighbors only after this delay. The local computing function evaluates the first rule, and if the precondition does not hold, 

the following rules are evaluated until one of them is satisfied or there are no more rules. For instance, Figure 1 shows an 

example for the specification of a Cell-DEVS model developed using CD++. The specification follows Cell-DEVS 

coupled model's formal definitions. In this case, Xlist = Ylist = { ∅ }. The set {m, n} is defined by width-height, which 

specifies the size of the cell space (in this example, m=20, n=40). The N set is defined by the lines starting with the 



neighbors keyword. The border (B) is wrapped. Using this information, the tool builds a cell space (specified by C in the 

formal specification), I/O ports, and the Z translation function following Cell-DEVS specifications. Each cell in the cell 

space is built following Cell-DEVS specifications for atomic models. The X, Y, S, N, θ, δint, δext, λ, and D functions are 

built following Cell-DEVS definitions (see [03] for details). The user only needs to define the τ function (defined by 

localtransition), and the delay (defined by delay, the delay values in each rule, and defaultDelayTime). 

 

[ex] 
type : cell 
width : 20 
height : 40 
delay : transport 
border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) 
neighbors : (0,-1)  (0,0)  (0,1) 
neighbors : (1,-1)  (1,0)  (1,1) 
localtransition : tau-function 
 
[tau-function] 
rule : 1 100 { (0,0) = 1 and (truecount = 8 or truecount = 10) }  
rule : 1 200 { (0,0) = 0 and truecount >= 10 } 
rule : (0,0) 150 { t } 

Figure 1. A Cell-DEVS specification in CD++ 

 

The outputs of the cells are delayed by using a specified time. The main operators available to define rules and delays 

include: Boolean, comparison, arithmetic, neighborhood values, time, conditionals, angle conversion, pseudo-random 

numbers, error rounding and constants (i, e, gravitation, acceleration, light, Planck, etc.). n the example presented in 

Figure 1, the local computing function executes very simple rules. The first one indicates that, whenever a cell state is 1 

and the sum of the state values in N is 8 or 10, the cell state remain in 1. This state change will be spread to the 

neighboring cells after 100 ms. The second rule states that, whenever a cell state is 0 and the sum of the inputs is larger or 

equal to 10, the cell value changes to 1. In any other case (t = true), the result remains unchanged, and it will be spread to 

the neighbors after 150 ms. As we can see, cells evolve using a discrete-event approach.  

 

Message * / 00:00:08:686 / Root(00) to top(01) 
Message * / 00:00:08:686 / top(01) to processor(03) 
Message Y / 00:00:08:686 / processor(03) / out / 10.00000 to top(01) 
Message D / 00:00:08:686 / processor(03) / ... to top(01) 
Message X / 00:00:08:686 / top(01) / done / 10.00000 to queue(02) 
Message X / 00:00:08:686 / top(01) / solved / 10.00000 to transducer(04) 

Figure 2. A fragment of a log stream. 

CD++ simulator is message-driven, and each message represents an event with its associated timestamp. The simulation 

outputs can be recorded into a log. Using this stream as input, we can reproduce the state of each model, and we can use it 

to analyze model outputs. For instance, figure 2 shows an excerpt of a log stream showing different messages evolving in 

a simple DEVS coupled model, which represents a CPU connected to a Queue, and a Transducer that computes 

performance metrics. There are four different messages involved: X (inputs), Y (outputs), * (internal transitions) and D 

(done messages). In the first message of Figure 2, a model called processor is activated due to an internal transition. The 

model thus generates an output (the value 10.00000, which is sent through the out port), and executes the internal 

transition function. After that, a done message is generated, including the scheduled time for the following internal event 

(in this case, infinity, represented as "..."). The Y message is translated into an input message (X) that is transmitted to 

two different submodels (queue and transducer). 



By using these output streams, CD++ can generate a text stream representing the execution of Cell-DEVS models as a set 

of 2-dimensional slice. Figure 3 shows a fragment of the output generated by this facility (called drawlog) for a two-

dimensional model of size 10x10.  

 

       Line : 1144 - Time: 00:00:03:050 
                0    1    2    3    4    5    6    7    8    9  
       +--------------------------------------------------+ 
     0| 23.6 24.4 24.5 24.4 24.2 24.0 23.4 22.8 22.3 22.8| 
     1| 23.5 24.7 25.1 24.7 24.4 24.0 23.2 22.4 21.5 22.4| 
     2| 23.3 25.1 29.1 25.1 24.5 24.0 22.8 21.5 20.3 21.5| 
     3| 23.5 24.7 25.1 24.9 24.7 24.5 23.5 22.5 21.5 22.4| 
     4| 23.8 24.4 24.5 24.7 24.9 25.0 24.3 23.5 22.8 23.2| 
     5| 24.0 24.0 24.0 24.5 25.0 28.2 25.0 24.5 24.0 24.0| 
     6| 23.8 24.0 24.0 24.3 24.7 25.0 24.5 24.0 23.5 23.7| 
     7| 23.7 24.0 24.0 24.2 24.3 24.5 24.0 23.5 23.0 23.3| 
     8| 23.5 24.0 24.0 24.0 24.0 24.0 23.5 23.0 22.5 23.0| 
     9| 23.7 24.0 24.0 24.0 24.0 24.0 23.7 23.3 23.0 23.3| 

      +--------------------------------------------------+ 
Figure 3. A fragment of an output stream 

 

This fragment shows the results of executing a heat diffusion model. The cells at (2, 2) and (5, 5) are connected to a 

heating device (in this case, they have received a heat flow of 29.1 °C and 28.2 °C). The cells (8, 8) and (2, 8) are 

connected to a source of cold (i.e., two open windows). The initial temperature in the room is 24.0 °C. A cell's temperature 

value is measured computing the average of the temperature values in the cell's neighborhood. In models of three or more 

dimensions, the results can be shown as slices representing 2-dimensional planes, each of them shown as a matrix like the 

one in Figure 3. For instance, in a 3D dimensional space, the first plane corresponds to (x, y, 0), the second one to (x, y, 

1), etc. Figure 4 shows a model executing a 3D simulation of the 'Life' game [13] with the original rules proposed by 

Conway. Each cell can be alive (1) or dead (0). A new cell is born when it has exactly three living neighbors. An existing 

cell survives if it has two or three neighbors that are alive. Otherwise, it dies. 

 

     Line : 247 - Time: 00:00:00:000 
           0123456      0123456        0123456  
       +-------+         +-------+      +-------+     
     0|1      |        0|       |    0|1      |    

    1|1 1  11|        1|11   11|    1|  111  |     
    2| 1   1 |        2|   11 1|    2| 1 11  |      
    3|       |        3|  1  11|    3|     11|       
  4|  1  11|        4|  1 1  |    4| 1   11|     
  5|  11  1|        5|   1 1 |    4| 11  1 | 
  6|1  1  1|        6| 1   1 |    4| 1 11 1| 
       +-------+         +-------+     +-------+     
 
     Line : 247 - Time: 00:00:00:100 
            0123456      0123456        0123456  
       +-------+         +-------+      +-------+     
     0| 1    1|        0|11    1|    0| 1    1|    
     1|1 1   1|        1|1     1|    1|1 11  1|     
    2|11  1 1|        2|1    1 |    2|11   11|      
    3|    111|        3|  1 1 1|    3|    1 1|       
  4|       |        4|     11|    4|       |     
  5|1  111 |        5|1 111 1|    4|1  11 1| 
  6|       |        6| 1     |    4| 1  1 1| 
       +-------+         +-------+     +-------+ 

 
Figure 4. A fragment of a 3D model. 

 
 
 
 



3. RELATED EFFORTS 

 

At present, there are a number of efforts devoted to develop DEVS models and others focusing in cellular models, but 

none of them meet our requirements: we intend to provide tools to build complex physical systems that can be executed 

remotely in a high performance platform, being able to visualize the results in local workstations. Several existing tools 

are devoted model and simulate CA. Some of them provide good visualization facilities; others enable distributed 

execution of the models. At present, dozens of CA toolkits have been developed. We will briefly describe of the existing  

tools following. 

• MJCell [014] is a Java applet to simulate CA. Its main purpose is exploring existing and creating new rules and 

patterns of 1-D and 2-D CA. It can use rules from thirteen different CA rules families, and allow experimenting with 

new rules.  

• Cellsprings [15] is a powerful 2D CA Java applet. More than seventy CA rules are predefined, and the users can 

define, run, and save their own arbitrary rules. The users also can change the size of the model and the color map, 

specify some characters of the model, then initiate and run the model. 

• Trend [16], is a general-purpose 1D or 2D CA simulation system. It is flexible about the space sizes, cell and 

neighborhood structures and CA rules. It also has a backtracking feature that simplifies rule set development. 

• SpaSim [17] allows the user to build, simulate and perform spatial and spatial-temporal analysis on the same 

environment using a friendly user interface. It has no real 3D visualization, but a dynamic window dialog containing 

several tabs, one for each of the automata layers.  

• Capow [18], is a program for evolving 1D and 2D CAs. The user can control the simulation and the visualization 

with color, selecting the type of view and 3D view details. However, for 3D visualization, the tool needs to create a 

VRML output file with the result. In addition, it only displays the surface of the 3D graph.  

• PascGalois [19] can produce innovative 3D visualization of 2D CA. It lays different results over together, or changes 

the 2D graph to 3D graph (rolling a 2D graph to implement the idea in 3D).  

• CASim [a20] is an environment for simulating 1D, 2D and 3D cellular automata. The user designs the model by 

giving the names and number of states, state transition rules, colors and icons. 

 

Besides the lack of visualization facilities or support for distributed execution, these tools also have problems related with 

the synchronous execution of the cellular models. In [021] we showed that the use of a discrete time base poses 

restrictions in the precision and efficiency of the simulated models. If complex CA are considered, higher precision can 

only be achieved by reducing the activation period for each time step. Therefore, large amounts of compute time will be 

wasted to obtain the desired results. Furthermore, most cells do not need to be updated in each time step. The existence of 

these "quiescent" states allowed defining different modifications in which the automaton advances using instantaneous 

events that can occur at unpredictable times.  

 

The Cell-DEVS formalism is one of the existing approaches providing the advantages of asynchronous execution. As 

DEVS and Cell-DEVS are discrete event formalisms, higher precision and speedups in the simulations than the discrete 

time approaches used by traditional CA. In [22], the authors showed that DEVS combined with parallel simulation 

techniques can produce speedups of up to 1000 times. In [21], it was showed that Cell-DEVS model execution also 



provides execution speedups when compared with CA. these advantages. Besides this, Cell-DEVS models enable 

integration with other models defined with different techniques, improving model definition.  

Therefore, we also investigated existing DEVS tools, in order to see the possible integration with executing Cell-DEVS 

models. At present, there are different DEVS modeling tools, but most of them do not provide facilities for execution of 

cellular models. Some of them do not even provide visualization facilities or distributed execution services. All of them 

provide much flexibility for the users to develop their own models. We summarize the main features of some of these 

tools following. 

• ADEVS [023] provides a C++ library based on the DEVS formalism. No distributed environment, or visualization 

tools have been implemented. To use it, the users should have basic familiarity with DEVS, and use the classes in the 

library to construct their own models. The users should decide how to output the result files, and design the 

corresponding visualization tools.  

• PyDEVS [24] uses the ATOM3-DEVS tool to construct DEVS models. The models are represented as a graph used 

to generate Python code. The users can add nodes, ports and links, and edit them according to the real system. The 

model files are saved in directory structure matching the hierarchical structure of the model. For each atomic or 

coupled DEVS model, a Python file is created. Python DEVS deals with the graph model, the code generation and 

execution, and does not introduce remote execution environment or visualization of the results.  

• SimBeams [25] is a component-based software architecture based on Java and JavaBeans. The idea is to provide a 

set of components that can be used in model creation, result output, analysis and visualization using DEVS. For 

actual simulation applications, the users need to select suitable components and place them on a worksheet to build 

models and connect them with external events. No remote execution facility is introduced, and the users should 

realize their own special-purpose simulation environments for particular application domains. All the components 

are displayed in 2D graphs.  

• JDEVS [26] is a DEVS simulation engine written in Java. It enables general purpose, component based, GIS 

connected, visual simulation model development and execution. It was developed mainly to interact with Geographic 

Information Systems. It also provides easy-to-use 2D and 3D visualization tools. However, it has no powerful 

navigation functions and visualization edition functions to better check the visualization contents. In addition, no 

remote execution is considered here. 

 

Some of the existing DEVS environments could be suitable to meet our goals. Unfortunately, none of these environments 

is able to run Cell-DEVS models in remote environments, or to display the results of executing cellular models in 3D. 

Some of them were provided with extensions for visualization of particular problems, but no generic visualization 

facilities are provided. DEVS/C++ [027] is a DEVS-based modeling and simulation environment written in C++, which 

supports parallel execution. It provides classes for the users to implement their own DEVS models. The tool does not 

include 3D visualization for cellular models. DEVS/Java [28] is a DEVS-based modeling and simulation environment 

written in Java that supports parallel execution. It provides classes for the users to implement their own DEVS models. 

The users can use the interface to visualize the state of the components in the model, their ports and couplings. A model 

can execute in a web browser, but it does not provide client/server facilities. DEVSim++ [29] is an object-oriented tool to 

develop DEVS models using C++. It includes a graphical user interface, but no support for the execution of 3D cellular 

models.  



DEVS/HLA [30] is based on the High Level Architecture (HLA) [31] and DEVS. It is used to demonstrate how an HLA-

compliant DEVS environment can significantly improve the performance of large-scale distributed modeling and 

simulation environments. HLA has been proposed and developed to support the reuse and inter-operation of simulations, 

and establish a common technical framework facilitating the inter-operability of all types of models and simulations. The 

user should implement DEVS/HLA models using a standard programming language, such as, C++. The tool does not 

provide visualization facilities, but it has been integrated with powerful visual displays [32]. The extensions of our toolkit 

were designed to make easy the future integration with these tools. If a common standardized representation for DEVS 

models is defined, we would be able to analyze the execution results for Cell-DEVS models while making the models 

ready to interact with others developed under DEVS/HLA, DEVS/C++ or DEVS/Java, thus making possible 

interoperability between these advanced environments. 

 
As we are interested in building a web-based environment, the use of VRML (Virtual Reality Markup Language) [33] 

appeared to be a good choice to build our visualization interface. VRML is a web-based graphics language for creating 3D 

models. It provides a file format for describing 3D objects and worlds, and it allows user interaction within a scene 

through viewpoints, movement, and rotation. VRML worlds are created with a scene-graph structure. Scene graphs are 

comprised of various groups of nodes, which are responsible for displaying shapes, interact, and navigate through the 

world. The External Authoring Interface (EAI) [34] is a Java API, which enables a currently running applet to interact 

with, and update a 3D VRML scene, letting the users to create dynamic VRML worlds. 

 

We used some of the basic VRML constructions in order to develop our visualization facilities. The basic standalone 

structure in a VRML file is called a node, and it describes shapes, colors, lights, viewpoints, sub-scenes, sensors (used to 

sense user input), position and orient shapes, etc.  A VRML scene is composed of various groups of nodes, which create a 

hierarchical architecture to represent a VRML scene [34]. Grouping nodes are used to band other nodes into a common 

entity. They have a children field, which can contain a list of nodes, and events (methods) to add or remove nodes from 

this field. All the nodes in the children field can treated and manipulated as a whole. Group nodes simply serve as a 

container for children nodes. Transform nodes allow manipulating the entity's size, position, and orientation. Inline 

nodes are used as children of any grouping node. Defining nodes define names for nodes in the scene, in order to facilitate 

the access to it. Sensors are used to generate events based on user actions, such as a mouse click or navigating close to a 

particular object. Geometry nodes should be contained by a shape node in order to be visible to the user. A shape node 

contains exactly one geometry node in its field. Each shape can be manipulated by changing its parameters, such as, the 

radius of a sphere, the height and width of a box, the color of a cone. Navigation nodes are used to set up predefined 

"camera" viewpoints within a virtual world. Viewpoints are used to predefine a position and orientation that automatically 

takes a viewer to that location when first entering the world. Additional viewpoints can be defined that enable the viewer 

to easily navigate to predetermined areas throughout the world. We will show how to use these facilities to build our 

visualization environment in section 4. 

 
 

4. DESIGN OF A SIMULATION CLIENT/SERVER PLATFORM FOR CD++  

 

Considering the background information presented in the previous sections, we decided to define a set of tools to improve 

the definition of Cell-DEVS simulation models, visualizing and analyzing the results, and accessing to a remote server for 



execution. The idea was to incorporate all of these components together as a client/server simulation engine. Here, we will 

describe the design aspects and the inter-relationship of the components in this engine.   

 

Client/server architectures are popular in distributed systems, in which the resources are spread over various computing 

platforms and in distant locations. The inherent modularity of client/server systems leads to greater overall robustness, 

since computing responsibility is no longer concentrated in one computer. Client/Server applications typically distribute 

the software components so that the data source resides on the server, the user interface resides on the client, and the logic 

resides in either, or both sides.  

 

Following these ideas, the CD++ simulator was modified to run as a stand-alone application or as a server. In stand-alone 

mode, CD++ can be seen as integrated by the components presented in Figure 5. As we see, there is a separation between 

model definition, simulation execution, and visualization tools, and the interaction is done through input/output streams. 

Users run CD++ on the local machine using the CD++ Modeler to specify a model. This model is specified according to 

the DEVS and Cell-DEVS specifications, and it can be executed by a DEVS simulation engine. After the simulation is 

over, a log stream like the one in figure 2 is generated.  

 

 

Figure 5. CD++ running as stand-alone application. 

 

In order to achieve high-performance execution, the original abstract simulator mechanism (which was based on the 

techniques described in [35]) was extended to enable parallel execution using a distributed memory approach with 

message-passing. In this abstract simulator, DEVS processors are specialized into two different simulation engines, 

simulators and coordinators. The structure of these hierarchical processors mimics DEVS models hierarchy. The role of a 

simulator is to invoke an atomic model internal and external transition functions. On the other hand, a coordinator is 

attached to a coupled model and it has the responsibility of translating its children output events and of keeping the time of 

the next imminent dependants. Figure 6 shows the relationship between models and simulators. As we can see, the root 

coordinator (in charge of managing the higher level of the simulation, creating input/output streams and managing time 

and end conditions) is connected to a coordinator which is associated with the top level coupled model (TOP). The 

CoupledModel#2 is associated with a coordinator, while each atomic model is associated with a simulator.  
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Figure 6. Models/Processors relationship. 

 

This modular definition enabled us to extend the CD++ simulation engine in order to run DEVS models in a distributed 

platform, as shown in Figure 7. As we see, the simulation engine was replaced by a new application, able to run parallel 

simulations of DEVS and Cell-DEVS models in a high performance environment.  

 

 

Figure 7. CD++ running as client/server application. 

 

The new extensions were built on top of a modified version of the Warped kernel [36]. The Warped project was dedicated 

to the implementation of a simulation API to support different parallel simulation kernels. We mainly used two of the 

kernels provided in Warped: an optimistic kernel that implements the TimeWarp protocol and a NoTime kernel that uses 

no synchronization. A conservative kernel that complies with the Warped API was introduced in [37]. Having three 

different simulation kernels with the same API, Warped proved to be ideal for implementing the parallel CD++ simulator.  

The Warped kernel presents an interface in which objects are modeled as entities that send and receive events to and from 

each other, and act on these events by applying them to their internal state. The kernel provides basic functions for the 

application to send and receive events, with periodic state saving for a potential rollback and recovery process. All DEVS 

processors have been defined as Warped objects. In order to define new atomic models, CD++ provides an Atomic 

abstract class that a modeler must extend, which is described in Figure 9. A new atomic model is created by including a 

new class derived from Atomic. In doing so, the following methods may be overloaded:  

• initFunction: this method is invoked when the simulation starts. It allows to define initial values and to execute setup 

functions for the model.  



• externalFunction: this method is invoked when an external event arrives from an input port.  

• internalFunction: this method is started when an internal event occurs (that is, the value of sigma is zero).  

• outputFunction: this method executes before the internal function, in order to generate outputs for the model.  

 

class Atomic {  
// Methods the user should define 
Model& internalFunction(); 
Model& externalFunction (MessageBag&) 
Model& outputFunction(); 
Model& confluentFunction(); 
ModelState* allocateState(); 
 
//Simulation kernel services 
void sendOutput( Port&, BasicMsgValue* ); 
const Vtime& lastChange(); 
void holdIn( state, Vtime ); 
}; 

Figure 9. The Atomic class. 
 
After defining the model and the set of available processors, it only remains to define how the models will be distributed. 

The modeler must create a partition file that tells CD++ in which machine to run each atomic model. Using this 

information, CD++ decides the location of the coordinators and it creates them. The hierarchical structure of simulators 

and coordinators is such that every coordinator has a set of child DEVS processors. Nevertheless, when a simulation runs 

in a parallel environment, coordinator’s children might run on different processors. As every coupled model is associated 

to only one coordinator, every message sent to its child processors on a different CPU will require interprocess 

communication. Figure 10(a) illustrates this case. The coordinator in CPU 0 sends messages to its 8 children distributed on 

two CPUs. Four interprocess messages are required for the four children running on CPU 1. This can be avoided if every 

coupled model has more than one coordinator, each on a different processor. Figure 10(b) illustrates this case. For the 

same coupled model, there are two coordinators, and only one message is sent over the network. 

                 
(a)                             (b) 

 
Figure 10. (a) Single coordinator sending messages to its children processors. Dashed lines = interprocess messages. 

(b) A master-slave pair sending messages to the children processors [38]. 

 

A coordinator will be created on each CPU with a child processor. Children processors will send messages to the local 

coordinator, which will decide how to handle them. Upon receiving a message from a child, a coordinator could forward it 

to other coordinators in other CPUs for the model. This requires all coordinators to know about the others. For instance, if 

coupled model A is a child of coupled model B, then B´s coordinators have to interact with A´s coordinators. If not 

handled carefully, this communication can turn out producing the same number of interprocess messages we wanted to 



avoid. In such scenario, a way of keeping the number of interprocess messages to a minimum is to have only one of the 

coordinators to handle all messages to the parent model local coordinator. This specialized coordinator will be known as a 

master coordinator and all other model coordinators will be slaves. The master coordinator for model A will then be the 

only one that can receive or send messages to B´s local coordinator [39]. 

 

With the exception of the top level DEVS processor, known as root coordinator, all DEVS processors will have a parent 

coordinator. To set the parent-children relationship on a parallel environment, the following rules apply: 

a. for each simulator, the parent coordinator will be the parent’s model local processor (it is guaranteed that it will exist) 

b. for each slave coordinator, the parent coordinator will be the model’s master coordinator. 

c. For each master coordinator, the parent coordinator will be the parent’s model local processor; just as if it were a 

simulator.  

 

When CD++ is running as a server, it expects receiving a model specification on a given TCP socket. The clients needing 

service will communicate with it and will send model streams through this input socket. The server was built to service 

several clients at the same time, and whenever it accepts a simulation requirement, a child process is created to serve the 

specific requirement. The most recently created process takes the place of its parent and waits for the next request in the 

input socket. When a new incoming simulation request arrives, the described process is repeated; a copy of CD++ server 

is created as a child process, and the simulation request is satisfied. When the simulation is over, the process is terminated. 

In the case of concurrent requests, multiple requests can be serviced concurrently. 

 

 
Figure 11. Setting up the CD++ server. 

 

In order to execute a simulation, the client must send a model file like the one defined in figure 1, an optional event list 

and an optional stop time through the network. When a request is received, the CD++ server executes the model, and it 

returns the result through the same TCP port, with the format described in figure 2. The CD++ server will send back this 

log stream, and the client will be able to manipulate it. In our case, the client will save the results on the local disk, and 

later we will activate the CD++ drawlog to change its format into a text stream that can be used with visualization 

purposes. A user willing to run a model using these facilities must follow these steps:  

 

a) Set a Configuration File: this file stores the server address, the local port number to be used, and a directory to save 

this default information. When the client starts, this file will be read and the default server, port and directory will be set. 

b) Select the model stream(s): the user must pick the model stream(s) that will be sent to the server for simulation. 

c) Change the Server and input socket: a user can change the server and port addresses to be different from those 

defined as default in the configuration file (see Figure 11). 



 d) Connect with the Server: the client sends the chosen model file(s) to the server, receives the execution results, and 

then saves them in the default directory. 

 

 

 

The main classes related to these procedures and their relationships are shown in Figure 12. Once a model file is sent to 

the remote server, the client waits for a response by listening to the input port defined in the configuration file. The results 

are stored into a buffer (Queue), which is saved to a file after some time. In order to do this, three different threads are 

used: 

- Listening thread: it is always ready to receive data in the input port. Once a result arrives, it starts a read thread. 

- Read thread: it reads the result, which is stored in a buffer. When the amount of data in the buffer reaches a threshold, it 

starts a saving thread and it resets the buffer. 

- Saving thread: it appends the buffer data to the result stream. 

 

 

Figure 12. Class diagram of CD++ client interface. 

  

5. USER VISUALIZATION ENVIRONMENT 

 

This new client/server simulator was integrated with different modeling and visualization facilities. One of the basic 

components is the CD++ Modeler, which consists of a set of utilities to let the users to define DEVS models using 

graphical notations. This application can be used to create atomic or coupled models that can be executed by the CD++ 

simulator. The basic functions of the Modeler include creating atomic models using DEVS graphs [40], and coupled 

models using directed graphs [2]. The Modeler also includes a text editor to write and modify Cell-DEVS models and to 

run the simulation engine locally or remotely. The tool, coded in Java, enables execution on various environments. The 

main screen of the application is a design space, which is depicted in Figure 13. 

 
Before creating a model, the user should select the proper design space (for defining atomic or coupled models). The user 

can refer to models previously coded in C++, as the ones presented in section 3, after being added to the CD++ model 

base. Besides this, Atomic models can be defined as DEVS graphs. Every state in a DEVS graph is composed by a state 

identification and a lifetime.  



 
Figure 13. CD++ Modeler design space 

 

Figure 14 shows the definition of a simple DEVS graph. The states are defined as circles with a name and a lifetime. For 

instance, the state end has a lifetime of 10 time units. Every state change can be associated with input/output activities, 

thus, input/output ports might need to be associated to each state. For instance, the start is associated with two 

input/output ports: in and out.  

 

 
Figure 14. CD++ atomic model definition. 

 

States are interconnected using different links, representing the transition functions. Internal transitions are represented by 

full lines, and external transitions by dotted lines. External transitions can be associated with an input port, which 

represents an input for the model. For instance, Figure 14 shows that every time an input is received through the in port 

and the model is in start state, the model will execute an external transition and will change to the end state. Internal 

transitions are associated with output ports (representing execution of the output function). For instance, if the lifetime of 

state mid is consumed (e.g., 5 time units have been elapsed), the output function is executed and the current state and time 

of the model are sent through the out port. After, the internal transition executes, and the model state changes to end. 

 



The tool also permits creating coupled models on the coupled model workplace, which are defined as graphs connecting 

internal components or input/output ports. The first step to build a coupled model is to select the Atomic or Coupled 

subcomponents, which can be chosen from the ones previously added to the model database. Then, we can give a new 

name to an instance of the chosen model. Models within coupled models are represented as squares, as it can be seen in 

Figure 15. For instance, the queue model is an instance of the Queue atomic model previously defined. The user can 

define different instances of the same model. Once these components have been created, we can establish links connecting 

the input/output ports to each component. For instance, Figure 15 shows that the output port out in the generator model is 

connected to the in port in the queue model. Finally, we can establish links between output ports in a component, and 

input/output ports of the coupled model under definition. For instance, the throughput port in the transducer model of 

Figure 15 will be connected to the throughput port of the coupled model being defined (represented by a circle). 

 

 
Figure 15. CD++ coupled model definition and execution. 

 

The modeler can launch the local or the remote simulators. Once the simulation finishes, the user can analyze the 

execution results using different visual tools to enable better model validation. One of these facilities enables analyzing 

the input/output trajectories of an atomic model by studying the values transmitted into each of its input/output ports. 

Usually, a DEVS coupled model includes many atomic components, and the information for each of them is collected in 

the log stream during the simulation. Accordingly, every message value sent or received by a specific atomic model can 

be extracted and visualized. The execution results of this application can be seen in Figure 16. Besides this, execution of 

coupled models can be visualized by associating the digraphs representing coupled models, with the log stream generated 

during the execution of the coupled model. The graphical specification for a coupled model can be defined using the 

CD++ Modeler, and the log file will contain the information needed for displaying. In this case, we are able to see the 

input/output values transmitted during the simulation within a structural model, as it can be seen in Figure 15. 

 



 

Figure 16. CD++ atomic model execution. 

 

Cell-DEVS models can be created and modified using a built-in text editor, in which the user can specify model rules (as 

the ones presented in figure 1). In order to better visualize the execution results of Cell-DEVS models, we also added a 

new facility in order to visualize the outputs generated by the drawlog tool with a graphical interface. Simulation results 

for 2D Cell-DEVS models are shown in one plane by giving different colors to the different cell values (as seen in Figure 

17.a.). Simulation results for 3D models are showed by displaying the values of all of the planes comprising the model 

simultaneously. In addition, different colors are given to different cell values in order to improve model visualization (as 

seen in Figure 17,b.)  

           
                               (a)              (b) 

Figure 17. Cell-DEVS model execution. (a) 2D model (b) 3D model 

 

A main addition to the visualization capabilities of the toolkit was to define a 3D visualization GUI in which the results 

can be seen in a 3D environment. In this application, the results are represented by nodes in a VRML scene. The user can 



navigate in the scene, and edit the nodes for more convenient investigation of the results.  

 

This visualization tool was built using several of the predefined VRML classes. We will explain some basic aspects about 

them here, but further information can be found in [33].  

 

The VRML root file is embedded in an HTML file, and it is loaded as an empty scene to hold the nodes representing the 

result. Any of these nodes, which are used to represent the simulation results, should be authored as a child of the root file, 

so they can be added or removed by the applet according to the current results. In order to facilitate to identify the nodes in 

the scene and to visualize results, two nodes were also included in the root file. 

- Background node: the background node allows defining the background of the VRML world.  

- Viewpoint node: a viewpoint describes a predefined viewing position and orientation in a VRML world, acting 

as a camera in the real world. A VRML world can have any number of viewpoints (or cameras), that is, interesting 

places from which the user might wish to check the world. To facilitate the result visualization, we define a 

Viewpoint named UserEye, and a group of viewpoints, which will be used to switch to different viewing areas of 

the scene. 

 

The VRML node class is used to create visible nodes in the scene representing the simulation results. The Transform 

nodes include every attribute needed to present a node in the scene. It allows manipulating a node’s size, position, and 

orientation.  

 

The Inline node is used to translate and rotate nodes in a VRML scene. It can be inserted as a child in a Transform node. 

Inline nodes have predefined shapes that already exist in VRML; only translation and rotation operations can be applied to 

these shapes.  

 

The application starts with an empty VRML world that is embedded in an HTML file as a root file. This file also includes 

an applet to control the scene, having a variety of functions such as:  

- Add or remove a node from the scene 

- Change the shape and colors of the nodes, or hide the nodes 

- Select the colors for the value ranges of the nodes 

- Change the scale of the nodes, and the interval between the nodes 

- Navigate in the Scene 

- Edit the scene and the individual node 

- Load a result stream to be displayed 

 

These functions were classified into several categories, each of them implemented in a different panel, which are 

organized as in Figure 18. The ReadDrwFile class is in charge of reading the values to be displayed from the result 

stream. It is activated by the NavigatePanel when the user decides to view the next result. The result can be chosen from: 

a) the result with the next timestamp in the result stream; b) the result with the previous timestamp; c) the result with a 

user-defined timestamp. The InfoPanel class is shown when the application starts. It includes methods to select the result 

stream to be displayed and an associated color palette. These streams are checked for consistency, and a text area displays 



debugging and status information.  

 

 
Figure 18. Class diagram of the visualization applet. 

 

NavigatePanel is the main class in the application. It stores the currently displayed result, the recent displayed nodes, and 

the names of every displayed node. This information changes whenever a scene is updated with a new result, or the color 

palette is modified. It first initiates the scene as a block of nodes corresponding to the size of rows, columns and layers. 

Then, it associates each value in the result stream with a node in the block. The class includes methods to add or remove 

nodes in the scene, to change the shape, color, and size of the nodes, and to check the results from a favorite viewpoint.  

 

 
Figure 19. NavigatePanel execution. 

 

This class also provides the functionality for navigation, which is implemented as the possibility of having different 

viewpoints. A viewpoint can be defined as a child of Transform nodes, therefore, its position and orientation change with 

those in the parent Transform node. The user can select different viewpoints, and if another viewpoint is bound, the active 

viewpoint will be unbound automatically, enabling the user to see the scene corresponding to the newly bound viewpoint. 



It also enables to choose a node as the current node, and a method to remove layers in the scene or add the removed layers. 

A reset method for the scene enables redisplaying all the layers. Figure 19 shows the results obtained when the 

NavigatePanel class is executed. 

 

The EntityPanel class allows editing individual nodes in the scene. A list of entities is populated by the NavigatePanel 

class every time it updates the nodes in the scene. A node can be picked up to become the current node. After being 

selected, it can be edited by calling the related methods in the node and NavigatePanel classes. The functions included in 

this class permit to change the shape, color, and size of the selected node, add or remove the individual node in the scene. 

 

The ResultPanel is used to navigate in the VRML world. Different methods are defined to control the navigation, 

including: a) a start method to start the execution; b) a resume method to continue if stopped; c) a go back method to go to 

the previous timestamp; d) a go next method to go to the next time; e) a stop method to stop the visualization at a given 

time; f) a continuously display method (this iteration will end only at the end of file); g) a method to go to any selected 

timestamp. These methods call the corresponding methods in the ResultPanel Class, which activates the corresponding 

methods in the NavigatePanel Class. 

 

CD++ generates text streams with the structure shown in figure 3, which represents the coordinates of all the nodes in the 

cell space, and the two end points of all the links between these nodes. The 2D node positions need to be transformed into 

a 3D VRML node. To do so, if we call (x2, y2) to a position in a 2D stream, and (x3, y3,  z3) for a position in a 3D file, 

we use the position x2, y2, and transform them into the x3, y3 positions of a VRML 3D space. Then, we use the remaining 

layer for the z3 value. As the nodes have a non-zero size, in order to allocate the center of the 2D graph to the center of a 

3D VRML scene, the coordinate x and y need following transformations: 

x3 = - (max x2 + min x2) / 2 + x2 

 y3 = - (max y2 + min y2) / 2 + y2 

 
For each link in the 2D model, we must: 

 

(1) Get the corresponding 2D coordinate for the two end nodes (x2_start, y2_start), (x2_end, y2_end), computing y2 

with the above transformations.  

 

(2) Calculate the length of the link llink, which will be used in scale attribute in  the Transform node, to let the link in 

3D have the length llink 

               _______________________________________ 

Llink = √ (x2_end - x2_start)
2  +  (y2_end - y2_start)

2 

 

(3) Calculate the link α link and orient the link with θ link, as illustrated in Figure 16. 

α link =  tan -1((y2_end - y2_start) / (x2_end - x2_start)) 

 



(4) Translate the center of the link to the new center (xcenter, ycenter) 

Xcenter = (y3_end + y3_start) / 2,    

Ycenter  = (x3_end + x3_start) / 2 

 

These procedures are summarized in Figure 20. 

 

 
 

 

 

 

 

 
        (1)            (2) 
  
  x2_end - x2_start  > 0    x2_end - x2_start  > 0 
  y2_end - y2_start  > 0    y2_end - y2_start  < 0 

  α link > 0     α link < 0 

  θ link = - (π / 2 -  α link )   θ link = - (π / 2 -  α link ) 
 

 

 

 

 

 

 

        (3)            (4) 
  
  x2_end - x2_start  < 0    x2_end - x2_start  < 0 
  y2_end - y2_start  < 0    y2_end - y2_start  > 0 

  α link > 0     α link < 0 

θ link = π / 2 + α link    θ link = π / 2 + α link 
 

Figure 20. Computing the Orientation Angle 

 

5. VISUALIZING CD++ SIMULATIONS 

 

In this section, we will show some examples of execution of models using the VRML 3D interface. We will not focus in 

the model definition or the execution results, but in the client functionality, including viewpoints, geometry, scales and 
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colors (see [56] for further details about model definition). In the following examples, we will use a 3D version of the heat 

diffusion model presented in figure 3.  

 

As previously explained, we can use different geometries to represent the objects in the result space. The user can select 

boxes, spheres, cones or cylinders for the nodes in the scene. Two examples can be seen in Figure 21. The original result 

matrix is now shown as a 3D VRML model consisting of colored nodes with the same size. Each node corresponds to a 

value in the result matrix, and the color of the node is specified by its value and set with a color selection. 

 
Figure 21. Changing geometries 

 

Another of the facilities available enables selecting different viewpoints to visualize the results. This can be seen in Figure 

22. A user can select any viewpoint defined in the VRML file to visualize the results. Here, we show the User's Eye and 

the Side view viewpoints. In addition, the user can select any viewing area, as shown in previous figures. 

                   

 Figure 22. Different Viewpoints 

 

The navigation facilities enable displaying the results following the sequence of the original simulation. A user can see the 

results continuously, advance one step at a time, move backwards, or advance up to a certain time following the 

simulation sequence. Figure 23 shows the execution results obtained using this facility. 



 
(1) Time: 00:00:02:000     (2) Time: 00:00:03:000   (3) Time: 00:00:04:000  (4) Time: 00:00:05:000 

 

Figure 23. Continuous advance function. 

 

The user can also edit a single node in the scene, changing its shape, color or position, as shown in the Figure 24. The 

edited node will keep the modified attributes. Therefore, the user can highlight the special nodes he wants to check. A user 

can modify a node with color, size, translation and rotation, or delete an edited node. The user also can redisplay a 

previously deleted node, then the display will be as in the original version, and all the modified attributes remain 

unchanged.  

                
Figure 24. Editing single nodes 

 

A user can also remove any layer in the display, in order to make easier the visualization of certain phenomena. In Figure 

25.a), we show the previous examples, but level 1 was removed, which can be redisplayed later if needed. The nodes in 

the scene can be scaled up or down, as shown in Figure 25.b), where the nodes have been scaled to the minimum distance 

and cannot be scaled further. The nodes also can be scaled to smaller size. 

 

             
               (a)         (b) 

Figure 25. (a) Deleting layers (b) scaling nodes 



 

Finally, as shown in Figure 26, multiple instances of the GUI can be activated to visualize the same result, using different 

viewing areas, as shown in the following figure. Likewise, different geometry or Inline nodes can be used, if needed. 

       

Figure 26. Multiview: different shapes from different viewpoints. 
 

 

6. CONCLUSION 

 
Simulation is becoming increasingly important in the analysis and design of complex systems. CD++ is a tool for the 

simulation of complex physical systems that can be used to simulate a variety of models. To facilitate the users to use the 

CD++ simulator, we extended its design to provide a number of services using a client/server approach. This client 

provides a series of tools, including 3D simulation visualization and remote execution. The CD++ server was extended to 

provide high performance simulation by executing DEVS and Cell-DEVS models in a parallel fashion. The abstract 

simulator here defined keeps to a minimum the number of messages interchanged. This was possible by assigning each 

coupled model one master coordinator and zero, one or more slave coordinators. Messages that have to cross a processor 

boundary are always sent between master and slave coordinators, which then forward the received messages to their local 

dependants.  

 

The 3D visualization GUI enables sophisticated visualization of Cell-DEVS models. To better understand the results, the 

user can select shapes to represent a node in the 3D space, select different colors, edit individual nodes and remove layers. 

The interface in the client can send models to a remote CD++ server, then receive, and visualize the results locally. This 

client also can support real-time multi-view, multi-user simulation, and run several different models simultaneously. The 

simulation server is installed for public domain. The simulator, visualization tools and client software can be obtained by 

accessing http://www.sce.carleton.ca/faculty/wainer/celldevs.  

 

The current facilities have highly improved the use of the previously existing tools, thus enhancing the analysis experience 

of the modelers using the toolkit. At present, we are focusing in extending these results providing even more advanced 

visualization facilities, focusing in standard DEVS models and their interaction with VRML worlds. We also started to 

analyze the interaction between the CD++ toolkit and tools based on the HLA standard (such as DEVS/HLA), in order to 

facilitate interoperation of different DEVS models developed in different tools. The results will permit defining models 

using different DEVS environments, using them in a distributed collaborative environment based on HLA tools, and 

enabling advanced visualization using Virtual Reality tools. 
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