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Abstract 
 
DEVS (Discrete EVents systems Specification) is a formal 
modeling and simulation framework based on generic 
dynamic systems concepts. DEVS well-defined concepts of 
coupling of components, hierarchical, modular model 
construction permitted to provide a common representation 
for different existing formalisms (including Petri Nets, PDE, 
and different state machines). Here, we show how to apply 
the DEVS to build a library of finite state machine (Moore 
machines) using a toolkit called CD++. State machines can 
be easily created and simulated by composing the instances 
of the state and connecting those states according to some 
rules.  
 
1. INTRODUCTION 
 
 The DEVS formalism [1, 2] was originally defined as a 
discrete-event modeling specification mechanism. It is a 
systems theoretical approach that allows the definitions of 
hierarchical modular models that can be easily reused. A 
real system modeled with DEVS is described as a 
composite of submodels, each of them being behavioral 
(atomic) or structural (coupled).   
 A DEVS atomic model is formally described by: 

M = < X, S, Y, δint, δext, λ, D > 
where X is the input events set; S is the state set; Y is the 
output events set; δint is the internal transition function; δext 
is the external transition function; is the output function; and 
D is the duration function. 
 A DEVS coupled model is composed of several atomic 
or coupled submodels. They are formally defined as: 

CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 
where X is the set of input events; Y is the set of output 
events; D is an index for the components of the coupled 
model, and ∀ i ∈ D, Mi is a basic DEVS (that is, an atomic 
or coupled model), Ii is the set of influencees of model i 
(that is, the models that can be influenced by outputs of 
model i), and ∀ j ∈ Ii, Zij is the i to j translation function. 
 We can see that coupled models are defined as a set of 
basic components (atomic or coupled) interconnected 
through the model's interfaces. The translation function is 

in charge of converting the outputs of a model into inputs 
for the others. To do so, an index of influencees is created 
for each model (Ii). This index defines that the outputs of 
the model Mi are connected to inputs in the model Mj, 
where j is an element of Ii.  
 DEVS hierarchical constructions enable multi-
formalism modeling (that is, the coupling of and 
transformation between models described in different 
formalisms). Using different formalisms to represent such 
systems enables a modeler to choose the formalism that 
lends itself best to represent each sub-systems.  
 CD++ [3, 4] is a tool that allows a user to implement 
DEVS models. The tool is built as a hierarchy of models, 
each of them related with a simulation entity. Atomic 
models can be programmed and incorporated onto a basic 
class hierarchy programmed in C++. A specification 
language allows defining the model's coupling, including 
the initial values and external events.  The tool also enables 
a user to build models using graph-based notations, which 
allows visualization of the problem in a more abstract way. 
Therefore, we have used an extended graphical notation to 
allow the user define atomic models behavior. Each graph 
defines the state changes according to internal and external 
transition functions, and each is translated into an analytical 
definition. Our long term goal is to provide the user with a 
set of libraries to develop complex models based on 
multiformalisms. We have already included Finite State 
Automata, Petri Nets, DEVS graphs and DEVS atomic 
models written in C++, enabling the users to use different 
formalisms to describe different properties of a system. In 
this work we will focus on the implementation of finite 
state machines as an example of multi-formalism model 
definition.  

Finite State Machines (FSM) are popular for modelling 
systems in a variety of areas such as software design and 
digital logic design etc. It is formally defined as follows: 

FSM  = < S, X, Y, f, g > 
 where  X:  finite input set  
  Y:  finite output set  
  S:   finite state set  
  f: next state function   

f:  X * S -> S 
  g: output function 
   g:  S -> Y :   Moore machine 
   g:  X * S -> Y: Mealy machine 



 

Every Finite State Machine (FSM) is supposed to have 
an initial state, a next state function which defines how to 
obtain the next state in the system, and an output function 
that uses current state and inputs to generate outputs. 
According to the relationship between the input sets and 
output functions, two kinds of FSMs can be defined: Moore 
machines, in which outputs are independent from the inputs, 
and Mealy machines, in which, besides the current state 
variables, the current inputs are analyzed to decide the 
current output value. 
 We describe an implementation where the CD++ 
toolkit was used for the purpose of simulating FSM Moore 
machines (thus, FSM means a Moore machine from here 
on) using DEVS specifications. We focused on developing 
a library for FSM on CD++, obtaining an unmodified 
DEVS simulator. The construction of a library of atomic 
models to represent FSM was straightforward since it was 
shown in [2] that FSMs can be embedded in DEVS because 
any discrete event behaviour can be expressed as a DEVS 
model. The remaining sections are devoted to describe how 
this can be achieved. 
  
2. FSMs IN CD++ 

 
Every Finite State Machine consists of a number of 

states with transition functions. If we can define the 
behavior of a generic state as an atomic model, a Finite 
State Machine could be created easily and formally by 
generating a coupled DEVS model which consists of a 
number of those atomic models. This section defines an 
atomic model called MooreState and FSM models based on 
this atomic model.  

 
2.1 Atomic model MooreState 
 Figure 1 shows the sketch of the atomic model 
MooreState. This atomic model represents the behavior of a 
generic state in Moore machines: 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Sketch of the Atomic Model Definition of 
MooreState 

 
A unique global stateCode is assigned to each state in 

a Finite State Machine. The phase indicates whether this 
state is active or passive. Only one state is active at a time in 

one Finite State Machine. The events of a FSM are encoded 
as integers as well. The eventIn receives encoded numbers 
representing external events. If a state receives a legal event 
listed in events[ ] when it is active, the stateOut port sends 
out the current stateValue, and the transitionOut port sends 
out the nextActiveState signal to all the transitionIn ports in 
the FSM announcing which state is active in the next step. A 
state becomes active if the encoded number received from 
transitionIn port is same as its stateCode. An errorCode 
would be sent out from the errorOut port if an error occurs 
in the state. 

The state is defined an atomic model in CD++. Using 
this atomic model definition, a coupled model can be built 
which defines a state in an FSM. The following figure 
describes such component: 
 
[top] 
components : moorestate@MooreState 
out : stateOut 
out : transitionOut 
out : errorOut 
in : transitionIn 
in : eventIn 
Link : eventIn eventIn@moorestate 
Link : transitionIn  transitionIn@moorestate 
Link : stateOut@moorestate stateOut 
Link : transitionOut@moorestate  transitionOut 
Link : errorOut@moorestate errorOut 
Link : transitionOut@moorestate 
       transitionIn@moorestate 
 
[moorestate] 
StateCode : 0  
// current state has stateCode 0 (initial state) 
StateValue : 1   
// current State has the stateValue 1 
NumberOfTransitions : 2  
//two legal transitions defined in current state 
Transition01 : 0->1  
//if event 0 is received, the state with stateCode 
1 is active next  
Transition02 : 1->0  
//if event 1 is received, the state with stateCode 
0 is active next 

Figure 2. Sketch of the Coupled Model Definition of 
MooreState 

 
All the items listed in the [moorestate] part are 

specific and required for the states in a FSM. The number of 
TransitionXX items depends on the item 
NumberOfTransitions. If the number of defined transitions 
is more than NumberOfTransitions, some of the defined 
transitions listed last will be ignored. 
 We executed this coupled model with different test 
cases. Here we show an execution scenario in which we 
consider we trigger the events shown in Figure 3. According 
to the model definition, the current state is the initial state, 
and it is set as active initially. It responses to the first 3 
events and generates outputs. The next two events with bold 
fonts don’t cause any outputs in this state because the 
current state is not active anymore.  At time 00:00:25:000, 
the current state is active again by receiving 0 from 

eventIn 

transitionIn 

errorOut 

transitionOut 

stateOut 
 
 events[ ] 

stateCode 

Phase 

stateValue 

nextActiveState 

errorCode 

isEvent 



 

transitionIn. The event with bold and italic fonts is an 
illegal event for the current state. An error messaged is 
generated. However, the current state retains its phase after 
this illegal event. The output is the same as what we 
expected. 
 
00:00:02:00 eventIn 1 
00:00:05:00 eventIn 1 
00:00:10:00 eventIn 0 
00:00:15:00 eventIn 1 
00:00:20:00 eventIn 2 
00:00:25:00 
transitionIn 0 
00:00:30:00 eventIn 1 
00:00:33:00 eventIn 2 
00:00:35:00 eventIn 1 
00:00:40:00 eventIn 0 

00:00:02:000 
transitionout 0 
00:00:02:000 stateout 1 
00:00:05:000 
transitionout 0 
00:00:05:000 stateout 1 
00:00:10:000 
transitionout 1 
00:00:25:000 stateout 1 
00:00:30:000 
transitionout 0 
00:00:30:000 stateout 1 
00:00:33:000 errorout -
999 
00:00:35:000 
transitionout 0 
00:00:35:000 stateout 1 
00:00:40:000 
transitionout 1 

Figure 3. Executing the MooreState Atomic Model 
 

Finite State Machine models could be easily created as 
coupled DEVS models by connecting a number of instances 
of MooreState.  

There are several basic rules to create a Finite State 
Machine by connecting the states 
• All the transitionOut and transitionIn ports should be 
connected together inside the FSM. I.e. in the view of a 
FSM, these ports don’t communicate with the external 
environment and they are not visible to the outside world. 
• All the eventIn ports of states should be connected to an 
input port of a FSM. 
• All the errorOut ports of states are connected together as 
an output port of a FSM 
• Each stateOut port of state could either be connected to 
an individual output port of a FSM or connected together as 
one output port of a FSM  
• All the states in a FSM are encoded as integer numbers 
(stateCode) during simulation. The state with the stateCode 
0 is the initial state in the FSM 
• All the legal events for this FSM are also encoded as 
integer numbers during simulation. 
 
2.2 A Simple FSM 

A simple moore machine shown in Figure 4 which 
was introduced in [5]. This finite state machine sends out 
value 1 whenever its input string has at least two 1's in 
sequence. Otherwise, value 0 is sent out. Three states are 
defined in this FSM. The state machine should send out 0 at 
state 0 or1, and 1 at state 2.   

 
Figure 4.  A Simple FSM 

 
The following figure shows a sketch of the definition 

of this FSM defined as a DEVS coupled model. Each of the 
states is represented using the MooreState atomic model. 
The state S0, S1 and S2 represent the 3 states. The in port 
receives the external events from the environment. The ports 
s1, s2 and s3 generate the output from respective states. The 
port error is used to check whether there are illegal events 
received.  
 

 
Figure 5.  Coupled Model Definition of the FSM  

in Figure 4 
 

The event codes and state codes are defined as: 
  

Event Code Table: 
  Event  Event Code 
  Input 0   0 

Input 1   1 
State Code Table: 

  State  State Code 
  S0    0 
  S1    1 
  S2    2 
 



 

The FSM of this simple moore machine is defined as 
follows in CD++:  
 
[top] 
components : s0@moorestate s1@moorestate     
components :s2@moorestate 
out : s0 s1 s2 error 
in : in 
Link : in eventIn@s0  
Link : in eventIn@s1 
Link : in eventIn@s2 
Link : transitionOut@s0 transitionIn@s0 
Link : transitionOut@s0 transitionIn@s1 
Link : transitionOut@s1 transitionIn@s0 
Link : transitionOut@s1 transitionIn@s2 
Link : transitionOut@s2 transitionIn@s2 
Link : transitionOut@s2 transitionIn@s0 
Link : stateOut@s0 s0 
Link : errorOut@s0 error 
Link : stateOut@s1 s1 
Link : errorOut@s1 error 
Link : stateOut@s2 s2 
Link : errorOut@s2 error 
 
[s0] 
StateCode : 0 
StateValue : 0 
NumberOfTransitions : 2 
Transition01 : 0->0 
Transition02 : 1->1 
 
[s1] 
StateCode : 1 
StateValue : 0 
NumberOfTransitions : 2 
Transition01 : 0->0 
Transition02 : 1->2 
 
[s2] 
StateCode : 2 
StateValue : 1 
NumberOfTransitions : 2 
Transition01 : 0->0 
Transition02 : 1->2 

Figure 6.  Coupled Model Definition of the FSM in Figure 
4 in CD++ 

 
We executed this coupled model with different test 

cases. Here we show an execution scenario in which we 
consider we trigger the following events: 
 
00:00:00:10 in 0 
00:00:00:20 in 1 
00:00:00:30 in 1 
00:00:00:40 in 1 
00:00:00:50 in 0 
00:00:00:60 in 0 
00:00:00:70 in 1 
00:00:00:80 in 0 
00:00:00:90 in 0 
00:00:00:100 in 0 
00:00:00:110 in 1 
00:00:00:120 in 0 
00:00:00:130 in 1 
00:00:00:140 in 1 
00:00:00:150 in 0 

00:00:00:010 s0 0 
00:00:00:020 s1 0 
00:00:00:030 s2 1 
00:00:00:040 s2 1 
00:00:00:050 s0 0 
00:00:00:060 s0 0 
00:00:00:070 s1 0 
00:00:00:080 s0 0 
00:00:00:090 s0 0 
00:00:00:100 s0 0 
00:00:00:110 s1 0 
00:00:00:120 s0 0 
00:00:00:130 s1 0 
00:00:00:140 s2 1 
00:00:00:150 s0 0 

Figure 7. Executing the FSM in Figure 4 in CD++ 
 

The input events with bold fonts should cause the FSM 
to generate 1 as the output, and the output with bold fonts 
do have the expected results.  
 
2.3 Vender Machine Model 

A vender machine model shown in Figure 8 was 
introduced in [6].  This vender machine accepts 5, 10 cents 
coins and sells candy bars worth 15 or 20 cents. The 
simplified coupled model definition (the connections among 
the transitionIns and transitionsOuts are omitted) is shown 
in Figure 9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Vender Machine Model 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Simplified Coupled Model Definition 

of the Vender Machine Model in Figure 8  
 
In Figure 9, the states Zero, Five, Ten, Fifteen, Twenty 

indicates the mount of coins that has been inserted before 
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selling a candy. The in port receives the external events 
from the environment. The ports zero, five, ten, fifteen and 
twenty generate the output from respective states. The port 
error is used to check whether there are illegal events 
received.  

The vender machine has the following event code table 
and state code table: 

Event Code Table: 
Event   Event Code 
Deposit 5¢   0 
Deposit 10¢   1 
Get 15¢ Candy   2 
Get 20¢ Candy   3 

State Code Table: 
State   State Code 
Zero    0 
Five    1 
Ten    2 
Fifteen   3 
Twenty   4 

 
The FSM of this vender machine model is defined as 

follows in CD++:  
 

[top] 
components : zero@moorestate five@moorestate  
components : ten@moorestate fifteen@moorestate 
components : twenty@moorestate 
out : zero five ten fifteen twenty error 
in : in 
 
Link : in eventIn@zero 
Link : in eventIn@five 
Link : in eventIn@ten 
Link : in eventIn@fifteen 
Link : in eventIn@twenty 
 
Link : transitionOut@zero transitionIn@five 
Link : transitionOut@zero transitionIn@ten 
Link : transitionOut@five transitionIn@ten 
Link : transitionOut@five transitionIn@fifteen 
Link : transitionOut@ten transitionIn@fifteen 
Link : transitionOut@ten transitionIn@twenty 
Link : transitionOut@fifteen transitionIn@twenty 
Link : transitionOut@fifteen transitionIn@zero 
Link : transitionOut@twenty transitionIn@zero 
 
Link : stateOut@zero zero 
Link : errorOut@zero error 
Link : stateOut@five five 
Link : errorOut@five error 
Link : stateOut@ten ten 
Link : errorOut@ten error 
Link : stateOut@fifteen fifteen 
Link : errorOut@fifteen error 
Link : stateOut@twenty twenty 
Link : errorOut@twenty error 
 
[zero] 
StateCode : 0 
StateValue : 0 
NumberOfTransitions : 2 
Transition01 : 0->1 
Transition02 : 1->2 

[five] 
StateCode : 1 
StateValue : 5 
NumberOfTransitions : 2 
Transition01 : 0->2 
Transition02 : 1->3 
 
[ten] 
StateCode : 2 
StateValue : 10 
NumberOfTransitions : 2 
Transition01 : 0->3 
Transition02 : 1->4 
 
[fifteen] 
StateCode : 3 
StateValue : 15 
NumberOfTransitions : 3 
Transition01 : 0->4 
Transition02 : 1->4 
Transition03 : 2->0 
 
[twenty] 
StateCode : 4 
StateValue : 20 
NumberOfTransitions : 1 
Transition01 : 3->0 

Figure 10.  Coupled Model Definition of the Vender 
Machine Model in Figure 8 in CD++ 

 
The scenarios of buying one 15¢ candy and two 20¢ 

candies are simulated and the expected results are shown in 
Figure 11. 

 
00:00:00:10 in 0 
00:00:00:20 in 0 
00:00:00:30 in 0 
00:00:00:40 in 2 
00:00:00:50 in 0 
00:00:00:60 in 0 
00:00:00:70 in 1 
00:00:00:80 in 3 
00:00:00:90 in 1 
00:00:00:110 in 1 
00:00:00:130 in 3 

00:00:00:010 five 5 
00:00:00:020 ten 10 
00:00:00:030 fifteen 15 
00:00:00:040 zero 0 
00:00:00:050 five 5 
00:00:00:060 ten 10 
00:00:00:070 twenty 20 
00:00:00:080 zero 0 
00:00:00:090 ten 10 
00:00:00:110 twenty 20 
00:00:00:130 zero 0 

 
Figure 11. Executing the Vender Machine Model in Figure 

8 in CD++ 
 

Two more FSM models, an ATM model introduced in 
[7] and a "Plain Ordinary Telephony Service" (POTS) 
model described in [8], were created, simulated and tested. 
Due to the page limitation, these two models can’t be shown 
in this paper. The atomic models, FSMs implemented and 
the CD++ tools can be found in: 
http://www.sce.carleton.ca/faculty/wainer/wbgraf/ 

 
 
3.CONCLUSION  

We showed how we implemented an atomic DEVS 
model called MooreState representing the generic state 
behavior of the Finite State Machines (Moore machines) 
using CD++ toolkit. By connecting a number of these 
generic states according to some rules, Finite State 



 

Machines could be created easily and formally. CD++ 
provides an effective way to create and generate Finite State 
Machines. 
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