

Implementing Finite State Machines Using the CD++ toolkit

Tao Zheng Gabriel A. Wainer

Department of Systems and Computer Engineering.Carleton University
4456 Mackenzie Building . 1125 Colonel By Drive. Ottawa, ON. K1S 5B6. Canada

zhengtao@sce.carleton.ca gwainer@sce.carleton.ca

Keywords: DEVS, CD++, finite state machines, Moore
machines

Abstract

DEVS (Discrete EVents systems Specification) is a formal
modeling and simulation framework based on generic
dynamic systems concepts. DEVS well-defined concepts of
coupling of components, hierarchical, modular model
construction permitted to provide a common representation
for different existing formalisms (including Petri Nets, PDE,
and different state machines). Here, we show how to apply
the DEVS to build a library of finite state machine (Moore
machines) using a toolkit called CD++. State machines can
be easily created and simulated by composing the instances
of the state and connecting those states according to some
rules.

1. INTRODUCTION

 The DEVS formalism [1, 2] was originally defined as a
discrete-event modeling specification mechanism. It is a
systems theoretical approach that allows the definitions of
hierarchical modular models that can be easily reused. A
real system modeled with DEVS is described as a
composite of submodels, each of them being behavioral
(atomic) or structural (coupled).
 A DEVS atomic model is formally described by:

M = < X, S, Y, δint, δext, λ, D >
where X is the input events set; S is the state set; Y is the
output events set; δint is the internal transition function; δext
is the external transition function; is the output function; and
D is the duration function.
 A DEVS coupled model is composed of several atomic
or coupled submodels. They are formally defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >
where X is the set of input events; Y is the set of output
events; D is an index for the components of the coupled
model, and ∀ i ∈ D, Mi is a basic DEVS (that is, an atomic
or coupled model), Ii is the set of influencees of model i
(that is, the models that can be influenced by outputs of
model i), and ∀ j ∈ Ii, Zij is the i to j translation function.
 We can see that coupled models are defined as a set of
basic components (atomic or coupled) interconnected
through the model's interfaces. The translation function is

in charge of converting the outputs of a model into inputs
for the others. To do so, an index of influencees is created
for each model (Ii). This index defines that the outputs of
the model Mi are connected to inputs in the model Mj,
where j is an element of Ii.
 DEVS hierarchical constructions enable multi-
formalism modeling (that is, the coupling of and
transformation between models described in different
formalisms). Using different formalisms to represent such
systems enables a modeler to choose the formalism that
lends itself best to represent each sub-systems.
 CD++ [3, 4] is a tool that allows a user to implement
DEVS models. The tool is built as a hierarchy of models,
each of them related with a simulation entity. Atomic
models can be programmed and incorporated onto a basic
class hierarchy programmed in C++. A specification
language allows defining the model's coupling, including
the initial values and external events. The tool also enables
a user to build models using graph-based notations, which
allows visualization of the problem in a more abstract way.
Therefore, we have used an extended graphical notation to
allow the user define atomic models behavior. Each graph
defines the state changes according to internal and external
transition functions, and each is translated into an analytical
definition. Our long term goal is to provide the user with a
set of libraries to develop complex models based on
multiformalisms. We have already included Finite State
Automata, Petri Nets, DEVS graphs and DEVS atomic
models written in C++, enabling the users to use different
formalisms to describe different properties of a system. In
this work we will focus on the implementation of finite
state machines as an example of multi-formalism model
definition.

Finite State Machines (FSM) are popular for modelling
systems in a variety of areas such as software design and
digital logic design etc. It is formally defined as follows:

FSM = < S, X, Y, f, g >
 where X: finite input set
 Y: finite output set
 S: finite state set
 f: next state function

f: X * S -> S
 g: output function
 g: S -> Y : Moore machine
 g: X * S -> Y: Mealy machine

Every Finite State Machine (FSM) is supposed to have
an initial state, a next state function which defines how to
obtain the next state in the system, and an output function
that uses current state and inputs to generate outputs.
According to the relationship between the input sets and
output functions, two kinds of FSMs can be defined: Moore
machines, in which outputs are independent from the inputs,
and Mealy machines, in which, besides the current state
variables, the current inputs are analyzed to decide the
current output value.
 We describe an implementation where the CD++
toolkit was used for the purpose of simulating FSM Moore
machines (thus, FSM means a Moore machine from here
on) using DEVS specifications. We focused on developing
a library for FSM on CD++, obtaining an unmodified
DEVS simulator. The construction of a library of atomic
models to represent FSM was straightforward since it was
shown in [2] that FSMs can be embedded in DEVS because
any discrete event behaviour can be expressed as a DEVS
model. The remaining sections are devoted to describe how
this can be achieved.

2. FSMs IN CD++

Every Finite State Machine consists of a number of

states with transition functions. If we can define the
behavior of a generic state as an atomic model, a Finite
State Machine could be created easily and formally by
generating a coupled DEVS model which consists of a
number of those atomic models. This section defines an
atomic model called MooreState and FSM models based on
this atomic model.

2.1 Atomic model MooreState
 Figure 1 shows the sketch of the atomic model
MooreState. This atomic model represents the behavior of a
generic state in Moore machines:

Figure 1. Sketch of the Atomic Model Definition of
MooreState

A unique global stateCode is assigned to each state in

a Finite State Machine. The phase indicates whether this
state is active or passive. Only one state is active at a time in

one Finite State Machine. The events of a FSM are encoded
as integers as well. The eventIn receives encoded numbers
representing external events. If a state receives a legal event
listed in events[] when it is active, the stateOut port sends
out the current stateValue, and the transitionOut port sends
out the nextActiveState signal to all the transitionIn ports in
the FSM announcing which state is active in the next step. A
state becomes active if the encoded number received from
transitionIn port is same as its stateCode. An errorCode
would be sent out from the errorOut port if an error occurs
in the state.

The state is defined an atomic model in CD++. Using
this atomic model definition, a coupled model can be built
which defines a state in an FSM. The following figure
describes such component:

[top]
components : moorestate@MooreState
out : stateOut
out : transitionOut
out : errorOut
in : transitionIn
in : eventIn
Link : eventIn eventIn@moorestate
Link : transitionIn transitionIn@moorestate
Link : stateOut@moorestate stateOut
Link : transitionOut@moorestate transitionOut
Link : errorOut@moorestate errorOut
Link : transitionOut@moorestate
 transitionIn@moorestate

[moorestate]
StateCode : 0
// current state has stateCode 0 (initial state)
StateValue : 1
// current State has the stateValue 1
NumberOfTransitions : 2
//two legal transitions defined in current state
Transition01 : 0->1
//if event 0 is received, the state with stateCode
1 is active next
Transition02 : 1->0
//if event 1 is received, the state with stateCode
0 is active next

Figure 2. Sketch of the Coupled Model Definition of
MooreState

All the items listed in the [moorestate] part are

specific and required for the states in a FSM. The number of
TransitionXX items depends on the item
NumberOfTransitions. If the number of defined transitions
is more than NumberOfTransitions, some of the defined
transitions listed last will be ignored.
 We executed this coupled model with different test
cases. Here we show an execution scenario in which we
consider we trigger the events shown in Figure 3. According
to the model definition, the current state is the initial state,
and it is set as active initially. It responses to the first 3
events and generates outputs. The next two events with bold
fonts don’t cause any outputs in this state because the
current state is not active anymore. At time 00:00:25:000,
the current state is active again by receiving 0 from

eventIn

transitionIn

errorOut

transitionOut

stateOut

 events[]

stateCode

Phase

stateValue

nextActiveState

errorCode

isEvent

transitionIn. The event with bold and italic fonts is an
illegal event for the current state. An error messaged is
generated. However, the current state retains its phase after
this illegal event. The output is the same as what we
expected.

00:00:02:00 eventIn 1
00:00:05:00 eventIn 1
00:00:10:00 eventIn 0
00:00:15:00 eventIn 1
00:00:20:00 eventIn 2
00:00:25:00
transitionIn 0
00:00:30:00 eventIn 1
00:00:33:00 eventIn 2
00:00:35:00 eventIn 1
00:00:40:00 eventIn 0

00:00:02:000
transitionout 0
00:00:02:000 stateout 1
00:00:05:000
transitionout 0
00:00:05:000 stateout 1
00:00:10:000
transitionout 1
00:00:25:000 stateout 1
00:00:30:000
transitionout 0
00:00:30:000 stateout 1
00:00:33:000 errorout -
999
00:00:35:000
transitionout 0
00:00:35:000 stateout 1
00:00:40:000
transitionout 1

Figure 3. Executing the MooreState Atomic Model

Finite State Machine models could be easily created as
coupled DEVS models by connecting a number of instances
of MooreState.

There are several basic rules to create a Finite State
Machine by connecting the states
• All the transitionOut and transitionIn ports should be
connected together inside the FSM. I.e. in the view of a
FSM, these ports don’t communicate with the external
environment and they are not visible to the outside world.
• All the eventIn ports of states should be connected to an
input port of a FSM.
• All the errorOut ports of states are connected together as
an output port of a FSM
• Each stateOut port of state could either be connected to
an individual output port of a FSM or connected together as
one output port of a FSM
• All the states in a FSM are encoded as integer numbers
(stateCode) during simulation. The state with the stateCode
0 is the initial state in the FSM
• All the legal events for this FSM are also encoded as
integer numbers during simulation.

2.2 A Simple FSM

A simple moore machine shown in Figure 4 which
was introduced in [5]. This finite state machine sends out
value 1 whenever its input string has at least two 1's in
sequence. Otherwise, value 0 is sent out. Three states are
defined in this FSM. The state machine should send out 0 at
state 0 or1, and 1 at state 2.

Figure 4. A Simple FSM

The following figure shows a sketch of the definition

of this FSM defined as a DEVS coupled model. Each of the
states is represented using the MooreState atomic model.
The state S0, S1 and S2 represent the 3 states. The in port
receives the external events from the environment. The ports
s1, s2 and s3 generate the output from respective states. The
port error is used to check whether there are illegal events
received.

Figure 5. Coupled Model Definition of the FSM

in Figure 4

The event codes and state codes are defined as:

Event Code Table:
 Event Event Code
 Input 0 0

Input 1 1
State Code Table:

 State State Code
 S0 0
 S1 1
 S2 2

The FSM of this simple moore machine is defined as
follows in CD++:

[top]
components : s0@moorestate s1@moorestate
components :s2@moorestate
out : s0 s1 s2 error
in : in
Link : in eventIn@s0
Link : in eventIn@s1
Link : in eventIn@s2
Link : transitionOut@s0 transitionIn@s0
Link : transitionOut@s0 transitionIn@s1
Link : transitionOut@s1 transitionIn@s0
Link : transitionOut@s1 transitionIn@s2
Link : transitionOut@s2 transitionIn@s2
Link : transitionOut@s2 transitionIn@s0
Link : stateOut@s0 s0
Link : errorOut@s0 error
Link : stateOut@s1 s1
Link : errorOut@s1 error
Link : stateOut@s2 s2
Link : errorOut@s2 error

[s0]
StateCode : 0
StateValue : 0
NumberOfTransitions : 2
Transition01 : 0->0
Transition02 : 1->1

[s1]
StateCode : 1
StateValue : 0
NumberOfTransitions : 2
Transition01 : 0->0
Transition02 : 1->2

[s2]
StateCode : 2
StateValue : 1
NumberOfTransitions : 2
Transition01 : 0->0
Transition02 : 1->2

Figure 6. Coupled Model Definition of the FSM in Figure
4 in CD++

We executed this coupled model with different test

cases. Here we show an execution scenario in which we
consider we trigger the following events:

00:00:00:10 in 0
00:00:00:20 in 1
00:00:00:30 in 1
00:00:00:40 in 1
00:00:00:50 in 0
00:00:00:60 in 0
00:00:00:70 in 1
00:00:00:80 in 0
00:00:00:90 in 0
00:00:00:100 in 0
00:00:00:110 in 1
00:00:00:120 in 0
00:00:00:130 in 1
00:00:00:140 in 1
00:00:00:150 in 0

00:00:00:010 s0 0
00:00:00:020 s1 0
00:00:00:030 s2 1
00:00:00:040 s2 1
00:00:00:050 s0 0
00:00:00:060 s0 0
00:00:00:070 s1 0
00:00:00:080 s0 0
00:00:00:090 s0 0
00:00:00:100 s0 0
00:00:00:110 s1 0
00:00:00:120 s0 0
00:00:00:130 s1 0
00:00:00:140 s2 1
00:00:00:150 s0 0

Figure 7. Executing the FSM in Figure 4 in CD++

The input events with bold fonts should cause the FSM
to generate 1 as the output, and the output with bold fonts
do have the expected results.

2.3 Vender Machine Model

A vender machine model shown in Figure 8 was
introduced in [6]. This vender machine accepts 5, 10 cents
coins and sells candy bars worth 15 or 20 cents. The
simplified coupled model definition (the connections among
the transitionIns and transitionsOuts are omitted) is shown
in Figure 9.

Figure 8. Vender Machine Model

Figure 9. Simplified Coupled Model Definition

of the Vender Machine Model in Figure 8

In Figure 9, the states Zero, Five, Ten, Fifteen, Twenty

indicates the mount of coins that has been inserted before

zero stateOut

twenty stateOut

fifteen stateOut

five stateOut

ten stateOut

error

eventIn

eventIn
n

eventIn

eventIn

eventIn

in

Zero

Five

Ten

Fifteen

Twenty

selling a candy. The in port receives the external events
from the environment. The ports zero, five, ten, fifteen and
twenty generate the output from respective states. The port
error is used to check whether there are illegal events
received.

The vender machine has the following event code table
and state code table:

Event Code Table:
Event Event Code
Deposit 5¢ 0
Deposit 10¢ 1
Get 15¢ Candy 2
Get 20¢ Candy 3

State Code Table:
State State Code
Zero 0
Five 1
Ten 2
Fifteen 3
Twenty 4

The FSM of this vender machine model is defined as

follows in CD++:

[top]
components : zero@moorestate five@moorestate
components : ten@moorestate fifteen@moorestate
components : twenty@moorestate
out : zero five ten fifteen twenty error
in : in

Link : in eventIn@zero
Link : in eventIn@five
Link : in eventIn@ten
Link : in eventIn@fifteen
Link : in eventIn@twenty

Link : transitionOut@zero transitionIn@five
Link : transitionOut@zero transitionIn@ten
Link : transitionOut@five transitionIn@ten
Link : transitionOut@five transitionIn@fifteen
Link : transitionOut@ten transitionIn@fifteen
Link : transitionOut@ten transitionIn@twenty
Link : transitionOut@fifteen transitionIn@twenty
Link : transitionOut@fifteen transitionIn@zero
Link : transitionOut@twenty transitionIn@zero

Link : stateOut@zero zero
Link : errorOut@zero error
Link : stateOut@five five
Link : errorOut@five error
Link : stateOut@ten ten
Link : errorOut@ten error
Link : stateOut@fifteen fifteen
Link : errorOut@fifteen error
Link : stateOut@twenty twenty
Link : errorOut@twenty error

[zero]
StateCode : 0
StateValue : 0
NumberOfTransitions : 2
Transition01 : 0->1
Transition02 : 1->2

[five]
StateCode : 1
StateValue : 5
NumberOfTransitions : 2
Transition01 : 0->2
Transition02 : 1->3

[ten]
StateCode : 2
StateValue : 10
NumberOfTransitions : 2
Transition01 : 0->3
Transition02 : 1->4

[fifteen]
StateCode : 3
StateValue : 15
NumberOfTransitions : 3
Transition01 : 0->4
Transition02 : 1->4
Transition03 : 2->0

[twenty]
StateCode : 4
StateValue : 20
NumberOfTransitions : 1
Transition01 : 3->0

Figure 10. Coupled Model Definition of the Vender
Machine Model in Figure 8 in CD++

The scenarios of buying one 15¢ candy and two 20¢

candies are simulated and the expected results are shown in
Figure 11.

00:00:00:10 in 0
00:00:00:20 in 0
00:00:00:30 in 0
00:00:00:40 in 2
00:00:00:50 in 0
00:00:00:60 in 0
00:00:00:70 in 1
00:00:00:80 in 3
00:00:00:90 in 1
00:00:00:110 in 1
00:00:00:130 in 3

00:00:00:010 five 5
00:00:00:020 ten 10
00:00:00:030 fifteen 15
00:00:00:040 zero 0
00:00:00:050 five 5
00:00:00:060 ten 10
00:00:00:070 twenty 20
00:00:00:080 zero 0
00:00:00:090 ten 10
00:00:00:110 twenty 20
00:00:00:130 zero 0

Figure 11. Executing the Vender Machine Model in Figure

8 in CD++

Two more FSM models, an ATM model introduced in
[7] and a "Plain Ordinary Telephony Service" (POTS)
model described in [8], were created, simulated and tested.
Due to the page limitation, these two models can’t be shown
in this paper. The atomic models, FSMs implemented and
the CD++ tools can be found in:
http://www.sce.carleton.ca/faculty/wainer/wbgraf/

3.CONCLUSION

We showed how we implemented an atomic DEVS
model called MooreState representing the generic state
behavior of the Finite State Machines (Moore machines)
using CD++ toolkit. By connecting a number of these
generic states according to some rules, Finite State

Machines could be created easily and formally. CD++
provides an effective way to create and generate Finite State
Machines.

ACKNOWLEDGMENTS

This work was partially funded by the Natural Sciences and
Engineering Research Councel of Canada (NSERC) and the
Institute of Robotics and Intelligent Systems (IRIS,
Canada).

REFERENCES

[1] B. Zeigler, “Theory of modeling and simulation”.
Wiley, 1976

[2] B. Zeigler, T. Kim, H. Praehofer, “Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems”. Academic Press, 2000

[3] G. Wainer, “CD++: A toolkit to Develop DEVS
Models”, Software - Practice and Experience, Vol. 32, No.
13, pp1261-1306, 2002 .

[4] Rodriguez, D.; Wainer, G. "New Extensions to the
CD++ tool". In Proceedings of SCS Summer Computer
Simulation Conference, Chicago, IL. 1999.

[5] A. Rosetti, “Finite State Machine Design”,
http://www2.ele.ufes.br/~ailson/digital2/cld/chapter8/chapte
r08.doc4.html (Accessed on Nov. 30, 2002)

[6] G. Quan, “Computational Models”
http://www.cse.sc.edu/~gquan/Course790/Lecture6-7.ppt
(Accessed on Nov. 30, 2002)

[7] “Finite State Machines”,
http://www.csc.ncsu.edu/eos/users/e/efg/210/s99/course_loc
ker/www/Notes/fsm/ (Accessed on Nov. 30)

[8] Erlang, ”Finite State Machines”
http://www.erlang.org/doc/r8b/doc/design_principles/fsm.ht
ml (Accessed on Nov. 30, 2002)

