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Abstract

DEVS (Discrete EVents systems Specification) i@l

modeling and simulation framework based on generidormalism modeling (that

dynamic systems concepts. DEVS well-defined corscept
coupling of components, hierarchical,
construction permitted to provide a common reprigiem
for different existing formalisms (including Pelets, PDE,
and different state machines). Here, we show hoaptaly
the DEVS to build a library of finite state machi(idoore
machines) using a toolkit called CD++. State magioan
be easily created and simulated by composing ttarices
of the state and connecting those states accotdirspme
rules.

1. INTRODUCTION

The DEVS formalism [1, 2] was originally defined a
discrete-event modeling specification mechanismis la
systems theoretical approach that allows the difird of
hierarchical modular models that can be easily ggu#\

for the others. To do so, an index of influenceesreated
for each model (li). This index defines that thepos of
the model Mi are connected to inputs in the modgl M
where j is an element of li.
DEVS hierarchical enable multi-
the coupling of and

in differen

constructions
is,
transformation between models described

modular modeformalisms). Using different formalisms to repressunch

systems enables a modeler to choose the formalisn t
lends itself best to represent each sub-systems.

CD++ [3, 4] is a tool that allows a user to impksth
DEVS models. The tool is built as a hierarchy ofdels,
each of them related with a simulation entity. Atom
models can be programmed and incorporated ontcsia ba
class hierarchy programmed in C++. A specification
language allows defining the model's coupling, udahg
the initial values and external events. The tdeb @nables
a user to build models using graph-based notatiwhg;h
allows visualization of the problem in a more aastway.
Therefore, we have used an extended graphicaliootad
allow the user define atomic models behavior. Egqw@ph
defines the state changes according to internalkeatetnal
transition functions, and each is translated im@umaalytical

real system modeled with DEVS is described as adefinition. Our long term goal is to provide theeusvith a

composite of submodels, each of them being behalvior set of libraries to develop complex models based

(atomic) or structural (coupled).
A DEVS atomic model is formally described by:
M=< X, S, Y,aim, aex[, }\, D>
where X is the input events set; S is the state¥sé$ the
output events sef,, is the internal transition functio,,,
is the external transition function; is the outfwriction; and
D is the duration function.

A DEVS coupled model is composed of several atomic

or coupled submodels. They are formally defined as:

CM =< X, Y, D, {Mi}, {Ii}, {Zij} >
where X is the set of input events; Y is the sebofput
events; D is an index for the components of theptzml
model, and] i 00 D, Mi is a basic DEVS (that is, an atomic
or coupled model), li is the set of influenceesnuddel i
(that is, the models that can be influenced by wtstpf
model i), andd j O Ii, Zij is the i to j translation function.

We can see that coupled models are defined asd se
basic components (atomic or coupled) interconnected

through the model's interfaces. The translatiorction is

on
multiformalisms. We have already included Finiteat8t
Automata, Petri Nets, DEVS graphs and DEVS atomic
models written in C++, enabling the users to ugteint
formalisms to describe different properties of ategn. In
this work we will focus on the implementation ohife
state machines as an example of multi-formalism ehod
definition.
Finite State Machines (FSM) are popular for modglli
systems in a variety of areas such as softwareymiesid
digital logic design etc. It is formally defined fmdlows:

FSM =<S,X,Y,f,g>

where  X: finite input set

Y: finite output set

S: finite state set

f:  next state function
f: X*S->S

g: output function
g S->Y: Moore machine
g X*S->Y: Mealy machine



Every Finite State Machine (FSM) is supposed teehavone Finite State Machine. The events of a FSM aceded

an initial state, a next state function which de§irhow to
obtain the next state in the system, and an odtmdtion
that uses current state and inputs to generateutsutp
According to the relationship between the inputs sand
output functions, two kinds of FSMs can be defingdore
machines, in which outputs are independent fronirtpets,
and Mealy machines, in which, besides the curréates
variables, the current inputs are analyzed to dedite
current output value.

as integers as well. Theventin receives encoded numbers
representing external events. If a state receidega event
listed inevents] ] when it is active, thetateOut port sends
out the currenstateValue, and thetransitionOut port sends
out thenextActiveState signal to all theéransitionln ports in
the FSM announcing which state is active in the s&ep. A
state becomes active if the encoded number recdioed
transitionin port is same as itstateCode. An errorCode
would be sent out from therorOut port if an error occurs

We describe an implementation where the CD++in the state.

toolkit was used for the purpose of simulating FSMore

The state is defined an atomic model in CD++. Using

machines (thus, FSM means a Moore machine from herthis atomic model definition, a coupled model canhwilt

on) using DEVS specifications. We focused on demielp
a library for FSM on CD++, obtaining an unmodified
DEVS simulator. The construction of a library obmaiic

which defines a state in an FSM. The following figu
describes such component:

models to represent FSM was straightforward siheeas
shown in [2] that FSMs can be embedded in DEVS leea
any discrete event behaviour can be expressedDdsV&
model. The remaining sections are devoted to des¢row
this can be achieved.

2. FSMsIN CD++

Every Finite State Machine consists of a number
states with transition functions. If we can defitiee
behavior of a generic state as an atomic modelinaeF
State Machine could be created easily and formbity
generating a coupled DEVS model which consists of
number of those atomic models. This section defiaes
atomic model calledlooreState and FSM models based on
this atomic model.

2.1 Atomic model MooreState

MooreState. This atomic model represents the behavior of &

generic state in Moore machines:

o ok

Figure 1 shows the sketch of the atomic moder/if event O is received, the state with stateCode

[top]

conponents : noorestate@boreState

out : stateQut

out : transitionQut

out : errorQut

in: transitionln

in: eventln

Link : eventln event!| n@morestate

Link : transitionln transitionln@moorestate
Link : stateCQut @moorestate stateCut

transiti onQut @oorestate transitionQut
error Qut @moor estate errorQut

transiti onQut @moor est at e

transi tionl n@morestate

Link :

nmoor est at e]

ateCode : 0
// current state has stateCode 0 (initial
StateValue : 1
// current State has the stateValue 1
Nunber Of Transitions : 2
//two legal transitions defined in current state
Transition0l : 0->1

state)

1 is active next
ransition02 : 1->0

/1if event 1 is received,
0 is active next

the state with stateCode

eventin events| | stateValue stateOut
—>
stateCode nextActiveState transitionOut
transitionIn
—>
Phase errorCode errorOut
isEvent

Figure 1. Sketch of the Atomic Model Definition of
MooreSate

Figure 2. Sketch of the Coupled Model Definition of
MooreState

All the items listed in thelmoorestate] part are
specific and required for the states in a FSM. iitvaber of
TransitionXX items depends on the item
NumberOfTransitions. If the number of defined transitions
is more thanNumberOfTransitions, some of the defined
transitions listed last will be ignored.

We executed this coupled model with different test
cases. Here we show an execution scenario in wiieh
consider we trigger the events shown in Figure &oiding
to the model definitionthe current state is the initial state,
and it is set as active initially. It responsesthe first 3

A unigue globalstateCode is assigned to each state in events and generates outputs. The next two evatitdald

a Finite State Machine. Thghase indicates whether this
state is active or passive. Only one state is acta time in

fonts don't cause any outputs in this state becatse
current state is not active anymore. At time 0@28@MO00,
the current state is active again by receiving 6mfr



transitionin. The event with bold and italic fonts is an
illegal event for the current state. An error mgsshis
generated. However, the current state retainghiise after
this illegal event. The output is the same as wivat
expected.

00: 00: 02: 00 eventln 1 | 00: 00: 02: 000

00: 00: 05: 00 eventln 1 | transitionout O

00: 00: 10: 00 eventln O | 00:00: 02: 000 stateout 1

00: 00: 15: 00 eventln 1 | 00: 00: 05: 000

00: 00: 20: 00 eventln 2 | transitionout O

00: 00: 25: 00 00: 00: 05: 000 stateout 1

transitionln O 00: 00: 10: 000

00: 00: 30: 00 eventln 1 | transitionout 1

00: 00: 33: 00 eventln 2 | 00: 00: 25: 000 stateout 1

00: 00: 35: 00 eventln 1 | 00:00: 30: 000

00: 00: 40: 00 eventln O | transitionout O
00: 00: 30: 000 stateout 1
00: 00: 33: 000 errorout -
999
00: 00: 35: 000
transitionout O
00: 00: 35: 000 stateout 1
00: 00: 40: 000
transitionout 1

Figure 3. Executing theVlooreState Atomic Model

Finite State Machine models could be easily created
coupled DEVS models by connecting a number of insta
of MooreState.

There are several basic rules to create a Findge St
Machine by connecting the states
All the transitionOut and transitionin ports should be
connected together inside the FSM. l.e. in the viEwa

FSM, these ports don’t communicate with the externa

environment and they are not visible to the outsiddd.

input port of a FSM.
an output port of a FSM

EachstateOut port of statecould either be connected to
an individual output port of a FSM or connectedetihgr as
one output port of a FSM

All the states in a FSM are encoded as integer eusnb
(stateCode) during simulation. The state with tlseteCode

0 is the initial state in the FSM

All the legal events for this FSM are also encodsd
integer numbers during simulation.

2.2A SmpleFSM

A simple moore machine shown in Figure 4 which
was introduced in [5]. This finite state machinexdse out
value 1 whenever its input string has at least s in
sequence. Otherwise, value 0 is sent out. Threesstxe
defined in this FSM. The state machine should send at
stateO orl, and 1 at state.

All the eventln ports of states should be connected to ar

All the errorOut ports of states are connected together a

Figure4. A Simple FSM

The following figure shows a sketch of the defimiti
of this FSM defined as a DEVS coupled model. Edcthe
states is represented using tkeoreSate atomic model.
The state), S1 and 2 represent the 3 states. Timeport
receives the external events from the environngm. ports
sl, s2 ands3 generate the output from respective states. The
port error is used to check whether there are illegal events
received.

sl
stateCht
ewentln
— L transitionCt
transtinnln =0 -
> errorOu
sl
in stateCut
evertln —
I — transitionCut
trangitionln =1 »
g errorOu
g5
stateCht
evertln —
— transitionCut
trangitionln 57 » error
g errorOu

Figure5. Coupled Model Definition of the FSM
in Figure 4

The event codes and state codes are defined as:

Event Code Table:
Event Event Code
Input O 0
Input 1 1
State Code Table:
State State Code
SO 0
S1 1
S2 2



The FSM of this simple moore machine is defined as

follows in CD++:

[top]
conponents : sO@morestate sl@morestate
conponents :s2@morestate

out sO sl s2 error

in: in

Link : in eventln@0

Link : in eventin@1

Link : in eventln@2

Link : transitionQut @O0 transitionln@0
Link : transitionQut @0 transitionln@1l
Link : transitionQut @1 transitionl n@0
Link : transitionQut @1 transitionln@?2
Link : transitionQut @2 transitionln@?2
Link : transitionQut @2 transitionl n@0
Link : stateQut @0 sO

Link : errorQut @0 error

Link : stateQut @1 sl

Link : errorQut @1 error

Link : stateQut @2 s2

Link : errorQut @2 error

[s0]

StateCode : 0
StatevValue : 0
Nunber Of Transitions : 2
Transition0l : 0->0
Transition02 : 1->1

[s1]

StateCode : 1
StateValue : 0
Nunber Of Transitions : 2
Transition0l : 0->0
Transition02 : 1->2

[s2]

St ateCode : 2
StatevValue : 1
Nunber Of Transitions : 2
Transition0l : 0->0
Transition02 : 1->2

Figure 6. Coupled Model Definition of the FSM in Figure

4 in CD++

We executed this coupled model with different test in

cases. Here we show an execution scenario in wivigh
consider we trigger the following events:

00:00:00:10 in O 00: 00: 00: 010 sO O
00:00:00:20 in 1 00:00:00: 020 s1 O
00:00:00:30 in 1 00: 00: 00: 030 s2 1
00:00:00:40 in 1 00: 00:00: 040 s2 1
00: 00: 00:50 in O 00: 00: 00: 050 sO0 O
00:00:00:60 in O 00: 00: 00: 060 sO O
00:00:00: 70 in 1 00:00:00: 070 s1 O
00: 00: 00: 80 in O 00: 00: 00: 080 sO O
00:00: 00: 90 in O 00: 00: 00: 090 sO O
00: 00: 00: 100 in O 00: 00: 00: 100 sO O
00:00: 00:110 in 1 00:00:00:110 s1 O
00: 00: 00: 120 in O 00: 00: 00: 120 sO O
00: 00: 00: 130 in 1 00: 00: 00: 130 s1 O
00: 00: 00: 140 in 1 00: 00: 00: 140 s2 1
00:00: 00:150 in O 00:00:00:150 sO O

Figure 7. Executing the FSM in Figure 4 in CD++

The input events with bold fonts should cause {B&F
to generate 1 as the output, and the output witt fomts
do have the expected results.

2.3 Vender Machine M odel

A vender machine model shown in Figure 8 was
introduced in [6]. This vender machine accepts 5, 10 cents
coins and sells candy bars worth 15 or 20 cents. Th
simplified coupled model definition (the connecsegmong
thetransitionlns andtransitionsOuts are omitted) is shown
in Figure 9.

Get 15 ¢ candy
[

U

S¢ Deposit 10 ¢

Deposit 5 ¢

0¢ °
Py

Deposit 10 ¢

10¢

Deposit
10¢

Get 20 ¢ candy
Figure 8. Vender Machine Model

stateOut zero
eventin
Zero >
—> »
stateut five
eveptin Five >
> »
stateOut ten
> eveptin Ten >
> »
stateut fifteen
eventin Fifteen >
> »
" stateut twenty
eventin Twenty >
—> > >
error

Figure9. Simplified Coupled Model Definition
of the Vender Machine Model in Figure 8

In Figure 9, the stategero, Five, Ten, Fifteen, Twenty
indicates the mount of coins that has been insdvafdre



selling a candy. Theén port receives the external event
from the environment. The portsro, five, ten, fifteen and

twenty generate the output from respective states. Thie p
error is used to check whether there are illegal ever

received.

The vender machine has the following event codke tat

and state code table:
Event Code Table:
Event
Deposit 5¢
Deposit 10¢
Get 15¢ Candy
Get 20¢ Candy
State Code Table:
State
Zero
Five
Ten
Fifteen
Twenty

Event Code

wN PO

State Code

~APwNEFEO

The FSM of this vender machine model is defined
follows in CD++:

[top]

conponents : zero@morestate five@morestate
conponents : ten@morestate fifteen@morestate
conponents : twenty@morestate

out zero five ten fifteen twenty error

in: in

Link : in eventln@ero

Link : in eventln@ive

Link : in eventln@en

Link : in eventin@ifteen

Link : in eventln@wenty

Link : transitionQut@ero transitionln@ive
Link : transitionQut@ero transitionln@en
Link : transitionQut @ive transitionln@en
Link : transitionQut @ive transitionln@ifteen
Link : transitionQut@en transitionln@ifteen
Link : transitionQut@en transitionl n@wenty
Link : transitionQut@ifteen transitionln@wenty
Link : transitionQut@ifteen transitionln@ero
Link : transitionQut@wenty transitionln@ero
Link : stateQut @ero zero

Link : errorQut @ero error

Link : stateQut @ive five

Link : errorQut@ive error

Link : stateQut @en ten

Link : errorQut@en error

Link : stateQut@ifteen fifteen

Link : errorQut@ifteen error

Link : stateQut @wenty twenty

Link : errorQut @wenty error

[ zero]

StateCode : 0

StateValue : 0

Nunber Of Transitions : 2

Transition0l : 0->1

Transition02 : 1->2

5[five]

StateCode : 1
StateValue : 5
ONunber OF Transi tions : 2
t$ransition0l : 0->2
Transition02 : 1->3
)[ten]

St at eCode @ 2

StateVal ue : 10
Nunber Of Transitions : 2
Transition0l : 0->3
Transition02 : 1->4
[fifteen]

StateCode : 3
StateValue : 15
Nunber Of Transitions : 3
Transition0l : 0->4
Transition02 : 1->4
Transition03 : 2->0
[twenty]

StateCode : 4
StateValue : 20
Nunber Of Transitions : 1
Transition0l : 3->0

ds

Figure 10. Coupled Model Definition of the Vender
Machine Model in Figure 8 in CD++

The scenarios of buying one 15¢ candy and two 20¢
candies are simulated and the expected resulsharen in
Figure 11.

00:00:00:10 in O 00: 00: 00: 010 five 5
00:00:00:20 in O 00: 00: 00: 020 ten 10
00:00:00:30 in O 00: 00: 00: 030 fifteen 15
00: 00:00:40 in 2 00: 00: 00: 040 zero O
00: 00:00:50 in O 00: 00: 00: 050 five 5
00: 00: 00: 60 in O 00: 00: 00: 060 ten 10
00:00:00: 70 in 1 00: 00: 00: 070 twenty 20
00: 00:00:80 in 3 00: 00: 00: 080 zero O
00:00:00:90 in 1 00: 00: 00: 090 ten 10
00:00:00:110 in 1 00: 00: 00: 110 twenty 20
00: 00: 00: 130 in 3 00: 00: 00: 130 zero O

Figure 11. Executing the Vender Machine Model in Figure
8 in CD++

Two more FSM models, an ATM model introduced in
[7] and a "Plain Ordinary Telephony Service" (POTS)
model described in [8], were created, simulated t@sted.
Due to the page limitation, these two models cha'shown
in this paper. The atomic models, FSMs implemersted

the CD++ tools can be found in:
http://ww. sce. carl eton. ca/ facul ty/wai ner/wbgraf/

3.CONCLUSION

We showed how we implemented an atomic DEVS
model called MooreState representing the generic state
behavior of the Finite State Machines (Moore maesjn
using CD++ toolkit. By connecting a number of these
generic states according to some ruld3nite State



Machines could be created easily and formally. CD++
provides an effective way to create and generatiteFState
Machines.
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