
Using Cell-DEVS for modeling complex cell spaces

Javier Ameghino1, Gabriel Wainer2

1Computer Science Department. Universidad de Buenos Aires
Ciudad Universitaria (1428). Buenos Aires. Argentina.

2Department of Systems and Computer Engineering. Carleton University
1125 Colonel By Dr. Ottawa, ON. K1S 5B6. Canada.

Abstract. Cell-DEVS is an extension to the DEVS formalism that allows the
definition of cellular models. CD++ is a modeling and simulation tool that im-
plements DEVS and Cell-DEVS formalisms. Here, we show the use of these
techniques through different application examples. Complex applications can
be implemented in a simple fashion, and they can be executed effectively. We
present example models of wave propagation, a predator following prey while
avoiding natural obstacles, an evacuation process, and a flock of birds.

Introduction

In recent years, many simulation models of real systems have been represented as cell
spaces [1, 2]. Cellular Automata [3] is a well-known formalism to describe these sys-
tems, defined as infinite n-dimensional lattices of cells whose values are updated ac-
cording to a local rule. Cell-DEVS [4] was defined as a combination of cellular auto-
mata and DEVS (Discrete Events Systems specifications) [5]. The goal is to improve
execution speed building discrete-event cell spaces, and to improve their definition by
making the timing specification more expressive.

DEVS is a formalism proposed to model discrete events systems, in which a
model is built as a composite of basic (behavioral) models called atomic that are
combined to form coupled models. A DEVS atomic model is defined as:

M = < X, S, Y, δINT, δEXT, λ, D > (1)

where X represents a set of input events, S a set of states, and Y is the output events
set. Four functions manage the model behavior: δδδδINT the internal transitions, δδδδEXT the
external transitions, λλλλ the outputs, and D �the duration of a state. When external events
are received, the external transition function is activated. The internal events produce
state changes when the lifetime of a state is consumed. At that point, the model can
generate outputs, and results are communicated to its influencees using the output
ports.

Once an atomic model is defined, it can be incorporated into a coupled model is
defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} > (2)

Each coupled model consists of a set of D basic models Mi. The list of influences
Ii of a given model is used to determine the models to which outputs (Y) must be sent,
and to build the translation function Zij, in charge of converting outputs of a model
into inputs (X) for the others. An index of influences is created for each model (Ii).
For every j in the index, outputs of model Mi are connected to inputs in model Mj.

In Cell-DEVS, each cell of a cellular model is defined as an atomic DEVS. Cell-
DEVS atomic models are specified as:

TDC = < X, Y, S, �, N, delay, d, δINT, δEXT, τ, λ, D > (3)

Each cell will use the N inputs to compute the future state S using the function ττττ.
The new value of the cell is transmitted to the neighbors after the consumption of the
delay function. Delay defines the kind of delay for the cell, and d its duration. The
outputs of a cell are transmitted after the consumption of the delay.

Once the cell atomic model is defined, they can be put together to form a coupled
model. A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z > (4)

The cell space C defined by this specification is a coupled model composed by an
array of atomic cells with size {t1 x...x tn}. Each cell in the space is connected to the
cells defined by the neighborhood N, and the border (B) can have different behavior.
The Z function allows one to define the internal and external coupling of cells in the
model. This function translates the outputs of output port m in cell Cij into values for
the m input port of cell Ckl. The input/output coupling lists (Xlist, Ylist) can be used
to interchange data with other models.

The CD++ tool [6] was developed following the definitions of the Cell-DEVS
formalism. CD++ is a tool to simulate both DEVS and Cell-DEVS models. Cell-
DEVS are described using a built-in specification language, which provides a set of
primitives to define the size of the cell-space, the type of borders, a cell’s interface
with other DEVS models and a cell’s behavior. The behavior of a cell (the τ τ τ τ function
of the formal specification) is defined using a set of rules of the form: VALUE DELAY
CONDITION. When an external event is received, the rule evaluation process is trig-
gered to calculate the new cell value. Starting with the first rule, the CONDITION is
evaluated. If it is satisfied, the new cell state is obtained by evaluating the VALUE
expression. The cell will transmit these changes after a DELAY. If the condition is not
valid, the next rule is evaluated repeating this process until a rule is satisfied.

The specification language has a large collection of functions and operators. The
most common operators are included: boolean, comparison, and arithmetic. In addi-
tion, different types of functions are available: trigonometric, roots, power, rounding
and truncation, module, logarithm, absolute value, minimum, maximum, G.C.D. and
L.C.M. Other available functions allow checking if a number is integer, even, odd or
prime. In addition, some common constants are defined.

We will show how to apply Cell-DEVS to simulate different systems. We de-
scribe different models that are implemented and executed using the CD++ tool, fo-
cusing on particular characteristics of each system. We will show how complex appli-
cations can be implemented in a simple fashion.

A model of wave propagation

The state of a wave on water is characterized by its phase, intensity, direction and
frequency. We built a model of wave propagation, which is based on sine waves [7]. If
two waves with the same frequency are combined, there is a constant interference
pattern caused by their superposition. Interference can be either constructive (meaning
that the strength increases), or destructive (strength is reduced). In destructive inter-
ference, after superposition, the resultant wave will correspond to the sum of both
waves. As phases are different, the wave will be canceled in those zones where there is
overlap. The amount of interference depends of the phase difference in a point.

When a wave encounters a change in the medium, some or all the changes can
propagate into the new medium (or it can be reflected from it). The part that enters the
new medium is called the transmitted portion, and the other the reflected portion. The
reflected portion depends on the characteristic of the incident medium: if this has a
lower index of refraction, the reflected wave has an 180˚ phase shift upon reflection.
Conversely, if the incident medium has a larger index of refraction, the reflected wave
has no phase shift. In order to simulate the interference between waves and the propa-
gation in CD++, we defined a multidimensional model, in which each plane was de-
fined by every direction of wave spread (four directions for this example). We defined
an integration plane, which is a composition of the direction planes, and contains the
value or intensity of the wave corresponding to this position. Every cell in the cell
space represents the minimal possible portion of the medium in which the wave
propagates. Each cell has two values, phase and intensity. An integer value between
zero and eight represent phase and a fractional value between zero and one (intensity).

rule: {0} 100 {trunc(0,0,0)=#maxFase or (fractional(0,0,0)<.0001 and
 fractional((0,0,0))>0)}
rule: {trunc(1,0,0)+fractional(1,0,0)*#attenuation} 100 {(1,0,0)!=0}
rule: {trunc(0,0,0)+1+fractional(0,0,0)} 100 { (0,0,0)!=0}

Fig. 1. Rules for wave propagation.

Figure 1 shows the rules used in CD ++ to specify the spread behavior. The first
rule governs the attenuation of the wave. If the wave intensity is below of 0.0001 the
wave propagation stops. The second rule contemplates the spread of the wave towards
its neighbors, which preserve the phase of the wave but attenuate the intensity. The
third rule contemplates the spread of the wave in the current cell. In this case, the cell
intensity value does not change (only the phase).

rule: {((sin(PI/4*trunc((0,0,1))) * fractional((0,0,1)) + sin(PI/4 *
trunc((0,0,2))) * fractional((0,0,2)) + sin(PI/4 * trunc((0,0,3))) *
fractional((0,0,3)) + sin(PI/4*trunc((0,0,4))) * fractional((0,0,4))
)) * 10 } 100 {(0,0,1)!=0 or (0,0,2)!=0 or (0,0,3)!=0 or (0,0,4)!=0}

Fig. 2. Integration Rule.

Figure 2 shows the rule describing the values of the direction planes used in order
to obtain the wave value in the medium in which is traveling (the value corresponds to
the discretization in eight phases of sine wave).

(a) (b) (c)

Fig. 3. Result of wave propagation. (a) A wave traveling from left to right. (b) The wave re-
flects with the right border. (c) The wave before reflecting with the left border.

Figure 3 shows the simulation results of the wave model. Only the integration
plane is showed (direction and intensity). It is possible to appreciate that the wave
propagating produce attenuation.

Predator-Prey model

In this model, a predator seeks a prey, which tries to escape [8]. With predators al-
ways searching, prey must constantly avoid being eaten. A predator detects prey by
smelling, as prey leave their odor when moving. The predator moves faster than the
prey, and when there is a prey nearby, it senses the smell, and moves silently towards
the prey. Each cell in the space represents an area of land (with vegetation, trees, etc.).
Dense vegetation does not allow animals to advance, and thick vegetation form a
labyrinth. When a prey is in a cell, it leaves a track of smell, which can be detected for
a specific period (depending on weather conditions).

The cell’s states are summarized in the following table. For example, the cell
value 214 represents a prey following vegetation to find the exit in E direction.

Table 1. The following table describes the cell state codification using a natural number

Cell
Value

Description

1..4 An animal moving towards N (1), W (2), S (3) or E (4).
200 Prey looking for the labyrinth’s exit.
210 Prey following the forest to find the exit.
300 Predator looking for the labyrinth’s exit.
310 Predator following the forest to find the exit.
400 Thick forest (does not allow animal movement).
0 Thin forest (allows animal movement).
101..104 Smell.

Figure 4 shows the specification of the model using CD++.

[pred-prey]
type : cell dim : (20,20) delay : inertial
neighbors: (-1,-1)(-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
border : nowrapped localtransition : movement

[movement]
rule : { (0,0) } 100000 { (0,0)=400}

%Predator moving towards N
rule: 0 800 {(-1,0)>100 and (-1,0)<250 and ((0,0)=311 or (0,0)=301)}
rule: 311 800 {(0,0)>100 and (0,0)<250 and ((1,0)=311 or (1,0)=301)}

%Predator moving towards East
rule: 0 800 {(0,1)>100 and (0,1)<250 and ((0,0)=313 or (0,0)=303)}
rule: 313 800 {(0,0)>100 and (0,0)<250 and((0,-1)=311 or (0,-1)=301)}
...
%Rules from smell path
rule: {(0,0)-1} 1000 {(0,0)>101 and (0,0)<105}
rule: 0 1000 {(0,0)<=101}
rule: {(0,0)} 100 {t}

Fig. 4. Specification of prey-predator’s model.

In Table 1, cell’s value equals to 400 represents forest where the prey and preda-
tor can’t move (labyrinth). To specify this cell behavior we use a special rule (first
rule in Figure 4), which is evaluated if only if the cell’s value is equal to 400. The
second and third rules govern the predator movement towards N. In this model the
cell’s value from 200, 210, 300 and 310 finished in 1 represents toward N, finished in
2 represents toward East, finished in 3 represents toward S and finally cell’s value
finished in 4 represents toward W. So, as you can see in the second rule, a cell’s value
equals to 301 o 311 represents a predator following the labyrinth toward N. In this
model, the movements rules are in pairs, because one rule is used to move the prey o
predator to the new position and the other is used to actualize the cell where the ani-
mals was. In the movement rules we use a 800 msec delay, which represents the speed
of the predator moving in the forest. The last 2 rules represent the smell path for a
prey. As weather conditions disperse the smells, so we use four different values to
represent different dispersion phases. The first line in the smell rules govern the smell
attenuation by subtracting 1 to the actual cell’s value every second. The last rule
change the actual cell’s value to zero (no smell in the cell).

Fig. 5. Execution result of prey-predator’s model [8].

Figure 5 shows the execution results of the model. A prey is trying to escape from
the predator. Finally, the predator eats the prey.

Evacuation processes model

The simulation of evacuation processes has originally been applied to buildings or the
aviation industry. Recently, however, the models have been transferred to ship evacua-
tion taking into account special circumstances [9,10,11]. Our model represents people
moving through a room or group of rooms, trying to gather their belongings or related
persons and to get out through an exit door. The goal is to understand where the bot-
tlenecks can occur, and which solutions are effective to prevent congestion [12].

The basic idea was to simulate the behavior and movement of every single person
involved in the evacuation process. A Cell-DEVS model was chosen with a minimum
set of rules to characterize a person's behavior:
• A normal person goes to the closest exit.
• A person in panic goes in opposite direction to the exit.
• People move at different speeds.
• If the way is blocked, people can decide to move away and look for another way.

Figure 6 shows the main rules of evacuation model. We have to different planes
to separate the rules that govern the people moving among walls or isles from the
orientation guide to an exit.

[deck]
dim : (18,18,2) delay : inertial border : wrapped
localtransition : EvaRule
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0) (0,-1,0) (0,0,0) (0,1,0)
(1,-1,0) (1,0,0) (1,1,0) (-1,-1,1) (-1,0,1) (-1,1,1) (0,-1,1) ...

[EvaRule]
% Rules to govern people movement
rule : {trunc((0,0,0)/10)*10+1} {1000 / remainder(trunc((0,0,0)
/10),10) } {((0,0,0)>0 AND remainder(trunc((0,0,0)/1),10) =0 AND
remainder(trunc((0,0,0)/100000),10) =0 AND ((0,-1,0)=0 OR (0,-1,0)=-
2) AND cellPos(2)=0)AND (((0,-1,1) <= (1,-1,1) OR (1,-1,0)>0 OR (1,-
1,0)=-1 OR (randint(5)=0)) AND ((0,-1,1) <= (1,0,1) OR (1,0,0)>0 OR
(1,0,0)=-1 OR (randint(5)=0)) AND ((0,-1,1) <= (1,1,1) OR (1,1,0)>0
OR (1,1,0)=-1 OR (randint(5)=0)) AND ((0,-1,1) <= (0,1,1) OR
(0,1,0)>0 OR (0,1,0)=-1 OR (randint(5)=0)) AND ((0,-1,1) <= (-1,1,1)
OR (-1,1,0)>0 OR (-1,1,0)=-1 OR (randint(5)=0)) AND ((0,-1,1) <= (-
1,0,1) OR (-1,0,0)>0 OR (-1,0,0)=-1 OR (randint(5)=0)) AND ((0,-1,1)
<= (-1,-1,1) OR (-1,-1,0)>0 OR (-1,-1,0)=-1 OR (randint(5)=0)))}
...

% Rules to control panic behavior
rule : {trunc((0,0,0)/10)*10+1} {1000/remainder(trunc((0,0,0)/10),10)
} {((0,0,0)>0 AND remainder(trunc((0,0,0)/1),10)=0 AND remain-
der(trunc((0,0,0)/100000),10)>0 AND ((0,-1,0)=0 OR (0,-1,0)=-2) AND
cellPos(2)=0)AND (((0,-1,1)>= 1,-1,1) OR (1,-1,0)>0 OR (1,-1,0)=-1)
AND ((0,-1,1)>=(1,0,1) OR (1,0,0)>0 OR (1,0,0)=-1) AND ((0,-1,1)>=
(1,1,1) OR (1,1,0)>0 OR (1,1,0)=-1) AND ((0,-1,1)>=(0,1,1) OR
(0,1,0)>0 OR (0,1,0)=-1) AND ((0,-1,1)>=(-1,1,1) OR (-1,1,0)>0 OR (-
1,1,0)=-1) AND ((0,-1,1)>=(-1,0,1) OR (-1,0,0)>0 OR (-1,0,0)=-1) AND
((0,-1,1)>=(-1,-1,1) OR (-1,-1,0)>0 OR (-1,-1,0)=-1))}

Fig. 6. Specification of evacuation model.

The following table describes the encoding of the cell state, in which each position
of the state is represented by natural number, in which each digit represent:

Digit Meaning

6 Next movement direction. 1:W; 2:SW; 3:S; 4:SE; 5:E; 6:NE; 7:N; 8:NW
5 Speed (cells per second: 1 to 5)
4 Last movement direction, it can vary from 1 to 8 (as digit #6)
3 Emotional state: the higher this value is the lower the probability that a

person gets in panic and find a wrong path.
2 Number of Movement that increase the potential of a cell
1 Panic Level, represent the number of cells that a person will move increas-

ing the cell potential.

We used two planes: one for the floor plan of the structure and the people mov-
ing, and the other for orientation to an exit. Each cell in the grid represents 0.4 m2
(one person per cell). The orientation layer contains information that serves to guide
persons towards emergency exits. We assigned a potential distance to an exit to every
cell of this layer. The persons will move for the room trying to minimize the potential
of the cell in which they are (see Figure 6)

Fig. 7. Orientation layer: potential value (people try to use a path decreasing the potential).

The first set of rules in Figure 8 serves to define what path a person should follow
using the orientation plane. The basic idea is to take the direction that decrease the
potential of a cell, building a path following the lower value of the neighbors. We
used the remainder and trunc functions to split the different parts of a cell’s value.
Also, we use the CD++ function randint to generate integer random values. We have 8
rules to control the people’s movement, one for each direction. In all cases the rule
analyze the 8 near neighbors to understand what direction the person should take. We
use randint for the case that all the 8 near neighbors has the same value.

The second set of rules governs the panic behavior: a person will take a wrong
path or will not follow the orientation path. In that case, the direction will be calcu-
lated taking the path where the cell’s potential is increased. In this case also we ana-
lyze the 8 near neghibors. This model doesn’t allow people collitions, so every time
that a person move, the destination cell must be empty.

Figure 7 shows the simulation results. The gray cells represent people who want
to escape using the exit doors. The black cells represent walls. Note that the leftmost
part in the figure shows people waiting in the exit door.

 (a) (b)

Fig. 8. (a) People seeking an exit. (b) after 15 seconds, people found the exit.

Flock of birds

The motion of a flock of birds seems fluid, because of the interaction between the
behaviors of individual birds. To simulate a flock we simulate the behavior of an indi-
vidual bird (or at lE that portion of the bird’s behavior that allows it to participate in a
flock), based on the following behavior rules [13]:

• Collision Avoidance: avoid collisions with nearby flock mates.
• Velocity Matching: attempt to match velocity with nearby flock mates.
• Flock Centering: attempt to stay close to nearby flock mates
Characteristics of the birds:
• The birds fly in certain direction at a certain speed.
• The field of vision of the birds is 300 grades, but only they have good sight

forward (in a zone from 10 to 15 grades)
Based on those rules we built a Cell-DEVS model to simulate the birds’ fly [14].

Each cell of the model represents a space of 4 m2, which can fit a medium size bird
(~18-23 cm.). A second of simulation’s time represents a second of real time. There-
fore, a bird that moves in the simulation with a speed of 7 cells per second, represents
to a bird that flies to 14 m/s. The cell state codification represents with a natural num-
ber the direction of the bird (1:NW; 2:N; 3:NE; 4:W; 6:E; 7:SW; 8:S; 9:SE) and the
speed. For example, the cell value 10004 represents a bird flying to W (unit value
equal to 4) at 1 second per cell.

To avoid the collision of birds, when two or more birds want to move to the same
place, they change their direction using a random speed variable. Figure 10 describes
the model specification in CD++.

[boids]
type : cell dim : (20,20) delay : transport
border : wrapped
neighbors : (-2,-2) (-2,-1) (-2,0) (-2,1) (-2,2) (-1,-2) (-1,-1) (-
1,0) (-1,1) (-1,2) (0,-2) (0,-1) (0,0) (0,1) (0,2) (1,-2) (1,-1)
(1,0) (1,1) (1,2) (2,-2) (2,-1) (2,0) (2,1) (2,2)
...
[fly-rule]
rule : { 1+if(((-2,-2)>100000),1,0)+if(((-2,-1)>100000),1,0)+
if(((-2,0)>100000),1,0)+if(((-2,1)>100000),1,0)+
if(((-2,2)>100000),1,0)+if(((-1,-2)>100000),1,0)+
if(((-1,-1)>100000),1,0)+if(((-1,0)>100000),1,0)+
if(((-1,1)>100000),1,0)+if(((-1,2)>100000),1,0)+
if(((0,-2)>100000),1,0)+if(((0,-1)>100000),1,0)+
if(((0,1)>100000),1,0)+if(((0,2)>100000),1,0)+
if(((1,-2)>100000),1,0)+if(((1,-1)>100000),1,0)+
if(((1,0)>100000),1,0)+if(((1,1)>100000),1,0)+if(((1,2)>100000),1,0)+
if(((2,-2)>100000),1,0)+if(((2,-1)>100000),1,0)+
if(((2,0)>100000),1,0)+if(((2,1)>100000),1,0)+if(((2,2)>100000),1,0)}
{90+trunc((0,0)/10-10000)*10} {(0,0)>100000 AND (((-1,-1)>100 AND
(-1,-1)=9100) OR ((-1,0)>100 AND (-1,0)=8100) OR ((-1,1)>100 AND
(-1,1)=7100) OR ((0,-1)>100 AND (0,-1)=6100) OR ((0,1)>100 AND
(0,1)=4100) OR ((1,-1)>100 AND (1,-1)=3100) OR ((1,0)>100
AND (1,0)=2100) OR ((1,1)>100 AND (1,1)=1100))}
...

Fig. 10. Specification of the Flock of birds model.

Figure 10 shows the execution of the model using CD++. Basically the rules
represents the fly behavior. Birds fly in a freedom way, instinctively when a bird de-
tect others birds, try to follow them. The bird change the direction and the velocity to
avoid collitions or lost the flock. In this model, we using different time conditions to
simulate the change of bird’s velocity.

We show the birds flying, and when one bird sees the other, they start flying to-
gether.

(a) (b)

Fig. 11. Joining behavior (a) four birds flying isolated; (b) birds flying together.

Conclusion

Cell–DEVS allows describing physical and natural systems using an n-dimensional
cell-based formalism. Input/output port definitions allow defining multiple intercon-
nections between Cell-DEVS and DEVS models. Complex timing behavior for the
cells in the space can be defined using very simple constructions. The CD++ tool,
based on the formalism entitles the definition of complex cell-shaped models. We also
can develop multidimensional models, making the tool a general framework to define
and simulate complex generic models.

The tool and the examples are the public domain and they can be obtained in:
http://www.sce.carleton.ca/faculty/wainer/

References

1. M. Sipper. "The emergence of cellular computing". IEEE Computer. July 1999. Pp. 18-26.
2. D. Talia. "Cellular processing tools for high-performance simulation". IEEE Computer.

September 2000. Pp. 44 –52.
3. S. Wolfram. “Theory and applications of cellular automata”. Vol. 1, Advances Series on

Complex Systems. World Scientific, Singapore, 1986.
4. G. Wainer; N. Giambiasi,. "Timed Cell-DEVS: modelling and simulation of cell spaces". In

Discrete Event Modeling & Simulation: Enabling Future Technologies. 2000. Springer-
Verlag.

5. B. Zeigler, H. Praehofer, T. Kim. Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. 2000. Academic Press.

6. Wainer, G. "CD++: a toolkit to define discrete-event models". Software, Practice and Ex-
perience. Wiley. Vol. 32, No.3. pp. 1261-1306. November 2002.

7. D’Abreu, M.; Dau, A.; Ameghino, J. "A wave collision model using Cell-DEVS". Internal
report, Computer Science Department. Universidad de Buenos Aires. 2002.

8. Baranek, A.; Riccillo, M.; Ameghino, J. "Modelling prey-predator using Cell-DEVS". Inter-
nal report, Computer Science Department. Universidad de Buenos Aires. 2002.

9. Klüpfel, H.; Meyer-König, T.; Wahle J.; Schreckenberg, M. “Microscopic Simulation of
Evacuation Process on Passenger Ships”. In "Theoretical and Practical Issues on Cellular
Automata”, Springer-verlag 2001.

10. Meyer-König, T.; Klüpfel, H.; Schreckenberg, M. “A microscopic model for simulating
mustering and evacuation processes onboard passenger ships”. In Proceedings of TIEMS
2001, Oslo, Norway. 2001.

11. Hongtae Kim, Dongkon Lee, Jin-Hyoung Park, Jong-Gap Lee, Beom-Jim Park and Seung-
Hyun Lee. “Establishing the Methodologies for Human Evacuation Simulation in Marine
Accidents”. Proceedings of 29th Conference on Computers and Industrial Engineering.
Montréal, QC. Canada. 2001.

12. Brunstein, M; Ameghino, J. “Modeling evacuation processes using Cell-DEVS”. Internal
report. Computer Science Department. Universidad de Buenos Aires. 2003.

13. Reynolds Craig, W. “Flocks, Herds, and Schools: A Distributed Behavioral Model”. Com-
puter Graphics 21(4), pp. 25-34, July 1987.

14. Dellasopa J; Ameghino, J. “Modelling a Flock of birds using Cell-DEVS”. Internal report.
Computer Science Department. Universidad de Buenos Aires. 2003.

