
MODELING ROUTING IN WIRELESS AD-HOC NETWORKS USING CELL-DEVS

Umar Farooq Bengu Balya Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University. 1125 Colonel By Dr. Ottawa, ON. K1S 5B6. Canada
{ufarooq, bengu, gwainer}@sce.carleton.ca

Keywords: DEVS, Cell-DEVS, ad-hoc networks, AODV.

Abstract
Ad-hoc networks are self-organizing systems conformed by
wireless cooperating nodes that use the concept of neighbor-
ing nodes to build networks with variable topology. Analyz-
ing these networks is a complex task due to the irregular
nature of their behavior. Cell-DEVS is an extension to Cel-
lular Automata in which each cell in the system is consid-
ered a DEVS model. The approach permits defining models
with asynchronous behavior, and to execute them with high
efficiency. Here we show how these techniques can be used
to model ad-hoc networks, easing model definition, and
developing new experiments and to define new routing
techniques.

1. INTRODUCTION
In recent years, we have witnessed a large number of re-
search efforts in the area of ad-hoc networks. Ad-Hoc net-
works are characterized by several wireless nodes (mobile
or static) communicating with each other without an infra-
structure. Each node can act as a router, forwarding data
from one neighboring node to another. These networks are
decentralized, with temporary interconnections, and arbi-
trary behavior of the nodes. Due to the complex characteris-
tics, modeling and simulation is a natural choice to analyze
the behavior of the components, and to study the execution
results of new algorithms [1].

One of the challenging aspects in the study of ad-hoc
networks is the routing algorithm for data transmission be-
tween the nodes. Several algorithms were developed, and
some of them consider power a cost metric rather than
physical distance or shortest path in order to determine best
route path. Any routing algorithm has to take into account
the highly dynamic nature of the mobile nodes in the net-
work and unreliable and bandwidth-limited wireless links.
Different modeling and simulation tools have been devel-
oped [2][3], but in recent years, different authors [4][5] de-
cided to represent this problem using Cellular Automata
(CA) [6]. CA are discrete-time discrete models described as
cells organized as n-dimensional infinite lattices, and they
evolve executing a local transition function, which uses the
present value for the cell and a finite set of neighbors.

The use of a discrete time base constrain the precision
of these model; consequently, executing complex CA usu-

ally requires large amounts of CPU time, primarily due to
its synchronous nature. Cell-DEVS [7] solved these prob-
lems using the DEVS (Discrete Events systems Specifica-
tion) formalism [8] to define a cell space where each cell is
defined as a DEVS model. Cell-DEVS permits building
discrete-event cell spaces, and it improves their definition
by making the timing specification more expressive. DEVS
is used to formally specify discrete events systems using a
modular description. This strategy allows the reuse of tested
models, improving the safety of the simulations and allow-
ing to reduce the development time. As it is a discrete event
formalism, it uses a continuous time base, which allows
accurate timing representation, and reduces CPU time re-
quirements.

The CD++ tool [9] was built to implement DEVS and
Cell-DEVS theory. Our goal was to build models of ad-hoc
networks using the improved advantages of Cell-DEVS.
Defining new models using this method is relatively simple
compared with other traditional methods. The use of Cell-
DEVS also enables integration with other existing models,
permitting to define multi-formalism applications. An ad-
vantage of this approach is that in ad-hoc models are often
composed of different subcomponents (for instance, the
routing algorithm and the city topology) interacting to-
gether. We can also make use of existing infrastructure,
including parallel simulators and distributed environments,
and a variety of visual tools.

We used a variant of Lee’s Algorithm [10] to find
out the shortest path between two communicating nodes on
a network plane, implementing it easily and efficiently using
CD++. We will show the definition of the Ad-hoc on De-
mand Distance Vector (AODV) [11] routing algorithm in
CD++, and different extensions proposed. We will also
show how to model the mobility behavior of mobile nodes.
A basic routing algorithm is implemented to determine the
minimum distance of mobile nodes from the gateway. This
algorithm is useful for networks where the main traffic is
through the gateway. Finally, a network coverage model is
implemented, to determine the cells with potential to reach
to the gateway. Every cell, which has potential to reach to
the gateway, is considered to be within the coverage area.

2. BACKGROUND
Ad-Hoc networks are characterized by dynamic topology
changes, severe power constraints and unpredictable wire-

less environment [1]. There is no infrastructure, and routers
are mobile themselves, depending on battery power. Nodes
are connected with wireless links, which are prone to envi-
ronment factors (fading, shadowing and noise). Therefore,
link failures or congestion are not considered problems, but
the normal behavior of the network.

Several ad-hoc routing algorithms are proposed in re-
cent years, such as Destination-Sequenced Distance Vector
(DSDV) [12], Dynamic Source Routing (DSR) [13], AODV
[11] and Temporally Ordered Routing Algorithm (TORA)
[14]. DSDV is a table driven routing algorithm as traditional
routing protocols. On the other hand, DSR, TORA and
AODV are on demand algorithms. We used AODV, which
is one of the first ad-hoc routing algorithms chosen by IETF
as an experimental RFC standard. While having low proc-
essing and memory overhead, AODV offers quick adapta-
tion to dynamic link conditions.

Cell-DEVS [7] was defined as a combination of DEVS
[8] and CA with timing delays. This approach allows de-
scribing cell spaces as discrete events models, where each
cell is seen as a DEVS atomic model that can be delayed
using several constructions. In Cell-DEVS, each cell is de-
fined as a DEVS model, and a procedure to couple cells is
depicted (as showed in Figure 1). The delay functions allow
to define, complex behavior for each cell, improving the
definition for each of the submodels: transport delays have
anticipatory semantics (every output event is transmitted
after a delay), and inertial delays have preemptive semantics
(a scheduled event will not necessary be executed).

Figure 1. Informal definition of Cell-DEVS.

A DEVS model [8] is seen as composed by behavioral
(atomic) submodels than can be combined into structural
(coupled) models. A DEVS atomic model can be described
as M = < X, S, Y, δint, δext, λ, D >. Input external events are
considered to be received in input ports (X). When an event
arrives, the model executes the external transition function
δδδδext to produce a state change. Each state has an associated
duration D. When this lifetime is consumed, the internal
transition function δδδδint is activated to produce internal state
changes. The internal state S can be used to provide model
outputs, which are sent through the output ports (Y). They

are sent by the output function λλλλ, which executes before the
internal transition.

An atomic model can be combined with other DEVS
models to build a structural model. These models are called
coupled, and they are defined as: CM = < X, Y, D, {Mi},
{Ii}, {Zij} >. Each coupled model consists of a set of D basic
models Mi connected through input/output ports. The list of
influencees Ii of a given model is used to determine the
models to which outputs must be sent. These sets are used to
build the translation function Zij, which is in charge of
translating outputs of a model into inputs for the others. An
index of influencees is created for each model (Ii). For every
j in the index, outputs of model Mi are connected to inputs
in model Mj.

CD++ [9] is a modeling tool that was defined using the
DEVS and Cell-DEVS specifications. CD++ makes use of
the independence between modeling and simulation pro-
vided by DEVS, and different simulation engines have been
defined for the platform: a stand-alone version, a Real-Time
simulator, and a Parallel simulator. DEVS Atomic models
can be programmed and incorporated onto a class hierarchy
programmed in C++. Coupled models can be defined using
a built-in specification language. Cell-DEVS models are
built using a specification language provided to describe
them. The model specification includes the definition of the
size and dimension of the cell space, the shape of the
neighborhood and borders. The cell’s local computing func-
tion is defined using a set of rules with the form: POST-
CONDITION DELAY {PRECONDITION}. These indicate
that when the PRECONDITION is satisfied, the state of the
cell will change to the designated POSTCONDITION,
whose value will be transmitted to other components after
consuming the DELAY.

We have used CD++ to model the core functionality of
the AODV Protocol using Cell-DEVS. In the following sec-
tions, we will describe how to analyze the execution behav-
ior of these applications.

3. MODELING AODV
The AODV protocol assumes bi-directional links, and cre-
ates routes on demand. Whenever a node needs to commu-
nicate with another one, it broadcasts a Route Request mes-
sage (RREQ) to its neighbors. They re-broadcast the mes-
sage and set up a reverse path pointing towards the source.
When the intended destination receives a RREQ message, it
replies by sending a Route Reply (RREP) that travels along
the reverse path set up by RREQ.

Our model considered a network plane in which nodes
are spread at random. The network plane does not make any
assumptions about the physical location of the nodes in the
area; thus, each cell may have a different size in terms of the
physical area represented. Data movement between two
cells represent one hop, as routing takes into account the
shortest hop count instead of the actual physical. Each node

can communicate to the nodes to the N, S, E and W. How-
ever, if each neighbor is not a node, we have a dead cell
through which communication cannot take place. These
cells represent physical obstacles (such as a high rise build-
ing) or simply the absence of a communication link. Two
nodes with a dead cell in between cannot communicate di-
rectly. If we assume the cost of the communication links
between any two nodes that can directly communicate is the
same, modeling AODV using Cell-DEVS involves finding
the shortest path between two nodes.

We used of a variant of the classical Lee’s Algorithm
[10]. Figure 2 shows a simple example of a network plane.
Here, S represents a sender node and D, a destination node,
while black cells represent dead cells. In order to find a
route from S to D, the node S broadcasts a RREQ message
to all its neighbors (called the wave nodes). The wave nodes
re-broadcast the message to their neighbors, and set up a
reverse path to the sender. These nodes further re-broadcast
this message and set up a reverse path to the nodes from
which they received the message. This process continues
until the message reaches the destination node D.

Figure 2. AODV Routing in Cell-DEVS.

Since there is more than one path, the destination may

receive multiple RREQ messages for the same sender.
However, the route through which the destination node re-
ceives the RREQ message first is the shortest path between
the sender and the destination. The destination thus ignores
all RREQ messages for the same sender except the first one,
and it replies sending a RREP message using the reverse
path. All the wave nodes on this route become path nodes
(represented with circles containing arrows in the figure).
All other wave nodes move to a clear state (not shown in
the figure). This model can be formally defined using Cell-
DEVS specifications as follows:
CD=< X, Y, S, N, d, δint, δext, τ, λ, D >, X=�, Y=�, S= dead,
init, initD (initial state of the destination), DR (Destination
Ready; state after receiving a send request), InitS (Initial
State of the Sender), WaveU (Wave Up), WaveD (Down),
WaveR (Right), WaveL (Left), PathU (Path Up), PathD
(Down), PathR (Right), PathL (Left), Clear and Found
(destination found; final state of Sender).
N={(-1,0), (0,-1), (0,0), (0,1), (1,0)}, d=100ms
τ: N �→ �S are the rules defined according to the algorithm
discussed, and �, ��δint, δext, λ, D are defined according to the

definitions of Cell-DEVS atomic models. Using this specifi-
cation as a base, the model was implemented in CD++, as
presented in Figure 3.

[path]
type : cell width : 20 height : 28 delay : transport
neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)
localtransition : path-rule border : nowrapped

[path-rule]
rule: DR 100 { (0,0) = InitD and stateCount(PathU) > 0}
rule: DR 100 { (0,0) = InitD and stateCount(PathD) > 0}
rule: DR 100 { (0,0) = InitD and stateCount(PathR) > 0}
rule: DR 100 { (0,0) = InitD and stateCount(PathL) > 0}
rule:WaveU 100{(0,0)=Init and(-1,0)>DR and (-1,0)< PathU}
rule: WaveD 100 {(0,0)=Init and (1,0)>DR and (1,0)<PathU}
rule: WaveR 100 {(0,0)=Init and(0,1)>DR and (0,1)<PathU}
rule: WaveL 100 {(0,0)=Init and(0,-1)>DR and(0,-1)<PathU}
rule: PathU 100 {(0,0)=WaveU and stateCount(InitD) = 1}
rule: PathD 100 {(0,0)=WaveD and stateCount(InitD) = 1}
rule: PathR 100 {(0,0)=WaveR and stateCount(InitD) = 1}
rule: PathL 100 {(0,0)= WaveL and stateCount(InitD) = 1}
rule: PathU 100 { (0,0) = WaveU and (0,-1)= PathR}
rule: PathU 100 { (0,0) = WaveU and (0,1) = PathL}
rule: PathU 100 { (0,0) = WaveU and (1,0) = PathU}
rule: PathD 100 { (0,0) = WaveD and (0,-1)= PathR}
rule: PathD 100 { (0,0) = WaveD and (0,1) = PathL}
rule: PathD 100 { (0,0) = WaveD and (-1,0)= PathD}
rule: PathR 100 { (0,0) = WaveR and (0,-1)= PathR}
rule: PathR 100 { (0,0) = WaveR and (-1,0)= PathD}
rule: PathR 100 { (0,0) = WaveR and (1,0) = PathU}
rule: PathL 100 { (0,0) = WaveL and (0,1) = PathL}
rule: PathL 100 { (0,0) = WaveL and (-1,0)= PathD}
rule: PathL 100 { (0,0) = WaveL and (1,0) = PathU}
rule: clear 100 { (0,0) = Init and stateCount(clear) > 0}
rule: clear 100 { (0,0)>InitS and (0,0)<PathU and
 stateCount(clear) > 0}
rule: clear 100 {(0,0)>InitS and (0,0)<PathU and
 stateCount(DR) > 0}
rule: clear 100 { (0,0) > InitS and (0,0) < PathU and
 stateCount(found) > 0}
rule: clear 100 { (0,0) > InitS and (0,0) < PathU and
 (-1,0) >WaveL and (-1,0)<clear and (-1,0)!=PathD}
rule: clear 100 { (0,0) > InitS and (0,0) < PathU and
 (1,0) > WaveL and (1,0) < clear and (1,0)!=PathU}
rule: clear 100 { (0,0) > InitS and (0,0) < PathU and
 (0,-1) >WaveL and (0,-1)<clear and (0,-1)!=PathR}
rule: clear 100 { (0,0) > InitS and (0,0) < PathU and
 (0,1) > WaveL and (0,1) < clear and (0,1)!=PathL}
rule: found 100 {(0,0)=InitS and stateCount(PathU)>0}
rule: found 100 {(0,0)=InitS and stateCount(PathD)>0}
rule: found 100 {(0,0)=InitS and stateCount(PathR)>0}
rule: found 100 {(0,0)=InitS and stateCount(PathL)>0}
rule: {(0,0)} 100 {t}

Figure 3. Implementing AODV Routing in CD++.

A number of tests were conducted on the model (de-
tailed results can be found in [15]). shows screen shots taken
from execution on CD++ (dead cells are in black cells that
have not received any message are white). We used 20 x 28
cells. Initially, the sender (shown in gray in the lower-left
part of the figure) broadcasts a RREQ message to the desti-
nation (shown in the top-right part of the figure). This is
defined by rules Wave{U, D, L, R} in Figure 3. After 50
steps of execution, we see the light gray nodes representing
those nodes that have received a RREQ message while es-
tablishing a reverse path to the sender. The dark gray node
(close to the source) carries a RREP (in accordance with the
rules Path{D, R, L, U}).

(a) (b) (c) (d)

Figure 4. AODV simulation (a) Initial distribution (b) State after 50 steps (c) after 100 steps (d) Final state after 106 steps.

After 100 steps, a successful route has been established.
Clear are represented in light gray (rule clear in Figure 3).
The final state after 106 steps successfully established the
shortest route between the sender and the receiver and all
wave nodes end up in clear state.

4. ADVANCED AODV MODELS
We extended the above model to 3 dimensions, as a way to
represent inter-network routing. This is useful if, for exam-
ple, if one of the planes represents a wireless ad-hoc net-
work and the other a wired network, it would make sense to
transmit the data in the ad-hoc plane to the wired plane
through the nearest gateway (because the cost in a wired
network is generally less than in a wireless one). Implemen-
tation details of this model can be found in [15]. Figure 5
shows some of the execution results.

(a) (b)

Figure 5. 3D AODV simulation (a) Initial (b) Final state.

We also extended the model in section 3.1 to provide
multicasting in AODV. The construction of multicast trees
on cellular planes is complex, and Hochberger [4] has
shown that as the number of receiver and/or sender nodes on
a plane increases, the number of states for each cell goes
beyond practical limits. Another to take into account during
the construction of multicast trees is its optimality (i.e., the
tree should duplicate data as less as possible). Consider for
example the distribution of nodes in Figure 6: S represents a
sender that wants to multicast data to R1 and R2. The short-

est path between S and R1 is shown in light gray. For R2,
there are two shortest paths. As the data is being multicast, it
would make more sense to send data through Path 1 (data
would be duplicated only for the last 4 hops from S to R2).
On the other hand, if the data is sent through Path 2, it is
duplicated right in the beginning.

Figure 6. Optimal Multicast Trees Concept.

We proposed the following algorithm:

1. Establish the shortest route using Section 3.
2. All the path nodes become tree nodes, and a tree is
formed between the sender and the receiver. Note that the
sender and a receiver belong to the multicast group but the
tree nodes are not a part of the group. During this step, all
clear state nodes are re-initialized to their initial value.
3. A new node wanting to join a multicast group broadcasts
a RREQ message to join the group.
4. A path is established between the new node and the near-
est tree node, following the algorithm in step 1.
5. Since step 4 may generate more than one path between
the tree and the new node, all non-optimal paths are purged.
6. We have now the optimal path from the new node to the
tree. This path becomes the tree during this step.
7. For each subsequent node that wants to join a multicast
group, steps 3 to 6 are repeated.

The formal specifications of this model are similar to
the one presented in Section 3, with the addition of three
states: Tree (nodes belonging to the multicast tree), MS
(final state of the sender after building the tree), and MR
(final state of the receiver after the construction of the tree).

 [path]
type : cell width : 20 height : 28 delay : transport
neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)
border : nowrapped localtransition : path-rule

[path-rule]
% Remaining DR, Wave, Clear and Path rules: see Figure 3
rule: PathU 100 {(0,0)=WaveU and (stateCount(initD)=1 or
 stateCount(tree)=1) and (stateCount(PathU)+stateCount
 (PathD)+stateCount(PathR)+stateCount(PathL)= 0)}
rule: PathD 100 {(0,0)=WaveD and (stateCount(initD)=1 or
 stateCount(tree)=1) and (stateCount(PathU)+ stateCount
 (PathD)+stateCount(PathR)+stateCount(PathL)= 0)}
rule: PathR 100 {(0,0)=WaveR and (stateCount(initD)=1 or
 stateCount(tree)=1) and (stateCount(PathU)+stateCount
 (PathD)+ stateCount(PathR)+ stateCount(PathL) = 0)}
rule: PathL 100 {(0,0)=WaveL and (stateCount(initD)= 1 or
 stateCount(tree)=1) and (stateCount(PathU)+stateCount
 (PathD)+ stateCount(PathR)+ stateCount(PathL)= 0)}
...
rule: clear 100 { (0,0) = PathU and (-1,0) = clear }
rule: clear 100 { (0,0) = PathD and (1,0) = clear }
rule: clear 100 { (0,0) = PathR and (0,1) = clear }
rule: clear 100 { (0,0) = PathL and (0,-1) = clear }
rule: found 100 {(0,0) = initS and stateCount(PathU) > 0}
rule: found 100 {(0,0) = initS and stateCount(PathD) > 0}
rule: found 100 {(0,0) = initS and stateCount(PathR) > 0}
rule: found 100 {(0,0) = initS and stateCount(PathL) > 0}
rule: init 100 {(0,0)=clear and (stateCount(initS)+
 stateCount(WaveU)+ stateCount(WaveD) + stateCount(WaveR)
 + stateCount(WaveL) = 0) }
rule: tree 100 {(0,0)>WaveL and (0,0)<clear and
 stateCount(found) > 0 }
rule: tree 100 {(0,0)> WaveL and (0,0)<clear and
 stateCount(tree)>0 and ((0,1)=PathL or (0,-1)=PathR
 or (-1,0) = PathD or (1,0) = PathU)}
rule: tree 100 {(0,0)>WaveL and (0,0)<clear and
 (stateCount(DR) + stateCount(tree) > 1)}
rule: MS 100 { (0,0) = found }
rule: MR 100 { (0,0) = DR and stateCount(tree) > 0 }

Figure 7. Implementing Multicast AODV Routing in CD++

CD++ implementation is showed in Figure 7. Figure 8

shows screen shots taken from execution of a sample model
at different intervals during the test, which consists of a

25x25 space. Initially there are only two nodes(one at the
top and the other at the bottom). Subsequent nodes join the
group after successful completion of tree construction.

After 80 steps of execution, the path between the two
nodes has been established and that path is becoming a tree
according to rule tree in Figure 7. All clear state nodes have
been re-initialized. A new node (near the left center of the
figure) joins the multicast group. In Figure 8.c) the new
node has broadcasted a RREQ message. As there are multi-
ple tree nodes, multiple (non-optimal) paths are being
formed. However, the algorithm logic is detecting and purg-
ing all such non-optimal paths (rule clear in Figure 7). The
new node finds the shortest optimal route, which becomes a
tree (rule tree). All non-optimal paths are purged and all the
clear state nodes re-initialized. The final state of the model
after 217 steps of execution is shown in Figure 8 (d): 3 new
nodes have been successfully added to the multicast tree.

The example shows how the model successfully built
an optimal multicast tree. Many non-optimal paths are gen-
erated during the addition of every new node, but the model
successfully detects and builds the shortest path and purges
the non-optimal paths.

We have also defined models for routing among multi-
ple pairs of senders and receivers. The variant of Lee’s Al-
gorithm used in Section 3, fails for multiple pairs of senders
and receivers: it generates deadlocks and may prevent the
generation of routing path between pairs of nodes that can
communicate [4]. To overcome this problem, we have ex-
ploited the inherent parallelism in Cell-DEVS and have
found a simple solution to the problem: each pair of
sender/receiver is allocated a plane in a 3D Cell-DEVS. The
total number of planes thus depends on the total number of
pairs of receivers and senders to be routed in parallel.

(a) (b) (c) (d)

Figure 8. AODV Multicast Modeling (a) Initial (b) After 93 steps (c) After 125 steps (d) Final state after 217 Steps.

In each plane, we run the variant of Lee’s Algorithm
discussed in Section 3 (with a total of 15 states for each
cell). The scheme permits to route multiple pairs of senders
and receivers without having to define more states. As each
pair is routed separately in each plane, routing messages for

each pair do not interfere with each other. By avoiding this
interference, we can successfully prevent the generation of
deadlocks. Moreover, our approach exploits the inherent
parallelism in the Cell-DEVS model as multiple pairs are
routed simultaneously. we present here a simple test as a

sample, in order to facilitate the understanding of the execu-
tion results obtained. Figure The test consists of a 5x5 cells
space having 2 planes and thus routes two pairs of senders
and receivers, one in each plane. Since the two planes repre-
sent the same network, we can assume the distribution of the
nodes on the two planes to be the same. However, to show
that our model works even if we assume different distribu-
tion of nodes in each plane, the example chosen has differ-
ent distribution of nodes in plane 1 and plane 2 as shown in
Figure 9 (a) and Figure 9 (b) respectively. The state of the
model after 10 steps of execution in plane 1 and plane 2 is
shown in Figure 9 (c) and Figure 9 (d) respectively. In plane
1, a successful route has been established between the

sender and the receiver while in plane 2 RREQ message has
not yet reached the destination. The final state of the model
in plane 1 and plane 2 after 25 steps of execution is shown
in Figure 9 (e) and Figure 9 (f) respectively. The figures
show that the model has successfully established the short-
est path between the sender and the receiver in each of the
planes. The model thus is capable of routing among multiple
pairs of senders and receivers simultaneously without hav-
ing to define more states. Although we have shown an ex-
ample in which two pairs are routed simultaneously, an arbi-
trary number of pairs can be routed simultaneously by defin-
ing each pair in a separate plane.

 (a) (b) (c)

(d) (e) (f)

Figure 9. AODV Routing among Multiple Pairs of Senders and Receivers (a) Initial Distribution of the nodes in Plane 1 (b)
In Plane 2 (c, d) State after 10 steps (e, f) Final state after 25 Steps

4. MODELING MOBILE NODES.
We implemented mobility behavior of ad-hoc nodes, allow-
ing the mobile nodes to move in diagonal directions and to
bounce back when they reach to the edges of the plane. Col-
lision avoidance is implemented by checking the cell that is
in the moving direction of the mobile node. If that cell is not
empty, then reverse the direction of the mobile node. If it is
empty, then check if there is any other mobile node ap-
proaching to the same cell from other directions. If there is
any, then reverse the direction of the mobile node. Other-
wise, assign the direction value of the mobile node to the
new cell.

There are both static and mobile nodes in the model,
and one or more gateways. The coupled model as presented
in Figure 10 have 20x20 cells, and the surrounding 25 cells

will form the neighborhood. The mobilenode model imple-
ments all the desired behavior: mobility, routing and cover-
age; however, in Figure 10 we only show partial mobility
and coverage related rules (please refer to [15] for further
details).

Numerical values are used to represent the model's state
variables as follows: S= 0 (Empty), 1 (Moves to SE), 2
(Moves to NE), 3 (Moves to SW), 4 (Moves to NW), 5
(Static Node), 6 (Gateway), 10 (1 hop), 20 (2 hops), 30 (3
hops), 40 (4 hops), 50 (5 hops), 60 (cannot reach the gate-
way), 7 (within coverage).

[mobilenode]
type : cell width: 20 length : 20 height : 3
delay : transport border : nowrapped
neighbors : (-2,-2,0) (-2,-1,0) (-2,0,0) (-2,1,0)
(-2,2,0) (-1,-2,0) (-1,-1,0) (-1,0,0)(-1,1,0)(-1,2,0)
...
(0,1,-1) (0,2,-1) (1,-2,-1) (1,-1,-1) (1,0,-1) (1,1,-1)
(1,2,-1) (2,-2,-1) (2,-1,-1) (2,0,-1) (2,1,-1) (2,2,-1)
zone : cornerUL-rule { (0,0) }
zone : cornerUR-rule { (0,19) }
zone : cornerDL-rule { (19,0) }
zone : cornerDR-rule { (19,19) }
zone : top-rule { (0,1)..(0,18) }
zone : bottom-rule { (19,1)..(19,18) }
zone : left-rule { (1,0)..(18,0) }
zone : right-rule { (1,19)..(18,19) }
[mobility_CA-rule]
rule: 1 1000 {(0,0)=4 and ((-1,-1)!=0 or (-2,-2)=1 or
 (-2,0)=3 or (0,-2)=2)}
rule: 4 1000 {(0,0)=1 and ((1,1) != 0 or (0,2)=3 or
 (2,2)=4 or (2,0)=2)}
rule: 3 1000 {(0,0)=2 and ((-1,1) != 0 or (-2,0)=1 or
 (-2,2)=3 or (0,2)=4)}
rule: 2 1000 {(0,0)=3 and ((1,-1) != 0 or (2,-2)=2 or
 (2,0)=4 or (0,-2)=1)}
[coverage-rule]
rule: 7 1000 { statecount(6) > 0 }
rule: 7 1000 { statecount(10) > 0 }
rule: 7 1000 { statecount(20) > 0 }
rule: 7 1000 { statecount(30) > 0 }
rule: 7 1000 { statecount(40) > 0 }
rule: 0 1000 {statecount(40)=0 and statecount(30)=0 and
statecount(20)=0 and statecount(10)=0 and statecount(6)=
0 }

Figure 10. Implementing Mobility Model in CD++.

Nine different collision scenarios are created. 4 of them
are between static and mobile nodes: 3 of them are between
two mobile nodes and 2 of them are between a mobile node
and a gateway. All mobile nodes change their directions at
the next time unit, in order to avoid collision.

Figure 11. Collision Avoidance Scenarios.

We incorporated a hop-count sub model in which every
node determines the next neighbor that can reach to the
gateway with smallest number of hops. We created a topol-
ogy for routing (hop count) plane as follows: there are be 2
gateways, 22 static nodes and 4 mobile nodes, each with
different initial directions, as shown in Figure 12. When
preparing the initial layout of nodes, loops are created be-

tween nodes and gateways, in order to observe if the par-
ticular node can choose the path with lowest number of hop
counts.

Figure 12. Mobility (left) and hop Count (right).

In Figure 12, the node located at the rightmost end of
hop count plane has paths to both gateways. This node
chooses the one with lowest hop count and sets its value as
30. Figure 12 shows both the mobility (to the left) and the
hop count values (to the right). First, all nodes within the
neighborhood of gateways set their hop count value to 10.
Then, all nodes within the neighborhood with value 10 set
their value to 20, etc. At the fifth iteration, all nodes 5 hops
away from the gateway set their values to 50.

A node in the neighborhood of another node that can
reach to the gateway, can also reach it. All cells occupied by
the nodes that can reach the gateway, and all the cells in the
neighborhood of these nodes will be in the coverage area.
This information can be quite useful for network engineers
to decide on whether or not locate new gateways in those
areas. Figure 13 shows the coverage values for the hop
count plane values presented in Figure 12. As it can be seen,
there are two areas totally out of coverage. As service de-
mand increases in these areas, network engineers should
install more gateways in these regions.

Figure 13. Mobility, hop count and coverage.

5. CONCLUSION
We presented modeling mobility, network coverage and
routing in wireless ad-hoc networks using Cell-DEVS. Our
research shows that routing protocols, such as AODV can
be successfully mapped onto Cell-DEVS.

We extended the AODV routing algorithm to represent
inter-network routing and multicasting. We not only suc-
cessfully modeled AODV multicast for ad-hoc networks but
also ensure the optimality in multicast tree construction (i.e.,
the multicast trees are constructed in such a way that ensure
least duplication of data). We also modeled routing using
AODV among multiple pairs of senders and receivers. Ho-
chberger [4] showed that multiple pairs of senders/ receivers
on a plane, might generate deadlocks. We have found a very
simple solution to the problem by exploiting the inherent
parallelism in Cell-DEVS. We introduced a new algorithm
to overcome this problem, and by introducing the notion of
trees model AODV multicast with a small number of states
for each cell. Moreover, in our implementation, the number
of states for each cell is independent of the number of nodes
in the tree

We also built models of mobile nodes. Our model
works correctly and transients occur when mobile nodes
move in or out of a neighborhood. This is the characteristic
of wireless mobile ad-hoc networks and happens in real life.
As nodes can be either static or mobile, collision avoidance
techniques were implemented

As a future work, the models can be easily improved by
adding extra features, such as terrain or wireless media
modeling. Mobility model can be further improved by in-
cluding mobility in all directions. In addition, collision
avoidance may further be defined by taking into account,
giving right of way or waiting. Addition of such phenomena
is straightforward in Cell-DEVS.

REFERENCES
[1] T.S. Rappaport. “Wireless Communications: Principles

and Practice”, Second Ed., Prentice Hall, 2002.
[2] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia,

and M. Gerla. "GloMoSim: A Scalable Network Simu-
lation Environment". UCLA Computer Science De-
partment Technical Report 990027, May 1999.

[3] Kevin Fall, Kannan Varadhan, Eds. "The ns Manual
(formerly ns Notes and Documentation)".
http://www.isi.edu/nsnam/ns/. Accessed February 2004.

[4] C. Hochberger; R. Hoffmann. “Solving routing prob-
lems with cellular automata”, in Proceedings of the
Second Conference on Cellular Automata for Research
and Industry, Milan, Italy. 1996.

[5] R. Subrata and A.Y. Zomaya. "Evolving Cellular
Automata for Location Management in Mobile Com-
puting Networks". IEEE Trans. on Parallel and Dis-
tributed Systems 14:1 (Jan 2003), 13- 26.

[6] S. Wolfram "A new kind of science". Wolfram Media,
Inc. 2002.

[7] G. Wainer, N. Giambiasi. "Timed Cell-DEVS: model-
ling and simulation of cell spaces ". In Discrete Event
Modeling & Simulation: Enabling Future Technologies.
Springer-Verlag. 2001.

[8] B. Zeigler, T. Kim, H. Praehofer. "Theory of Modeling
and Simulation: Integrating Discrete Event and Con-
tinuous Complex Dynamic Systems". Academic Press.
2000.

[9] G. Wainer "CD++: a toolkit to define discrete-event
models". G. Wainer. Software, Practice and Experi-
ence. Wiley. Vol. 32, No.3. pp. 1261-1306. November
2002.

[10] C. Y. Lee, “An algorithm for path connections and its
applications”, in IRE Transaction on Electronic Com-
puters, Sep. 1961. pp. 345-365.

[11] C. Perkins, E. Belding-Royer, S. Das, “Ad-hoc On De-
mand Distance Vector (AODV) Routing”, IETF Net-
work Working Group, RFC 3561, July 2003.

[12] C. E. Perkins, P. Bhagwat, “Highly Dynamic DSDV for
Mobile Computers”, Communications Architectures,
Protocols and Applications Conference Proceeding,
Pages 234-244, August 1994.

[13] D. Johnson, D. Maltz, Y. Hu, “The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR)”,
IETF MANET Working Group Internet Draft, April
2003.

[14] J. Raju and J. J. Garcia-Luna-Aceves. “A New Ap-
proach to On-demand Loop-Free Multipath Routing”.
In Proceedings of the Int'l Conf. on Computer Commu-
nications and Networks (IC3N), pp. 522-527, 1999.

[15] U. Farooq, B. Balya, G. Wainer. " Routing in Mobile
Ad-hoc Networks using Cell-DEVS". Technical Report.
Dept. of Systems and Computer Engineering. Carleton
University. 2003.

