
Improved Cell-DEVS model definition in CD++

Alejandro López 1, Gabriel Wainer2

1Computer Science Department. Universidad de Buenos Aires
Ciudad Universitaria (1428). Buenos Aires. Argentina.

2Department of Systems and Computer Engineering. Carleton University
1125 Colonel By Dr. Ottawa, ON. K1S 5B6. Canada.

Abstract. We describe two improvements made to CD++, a tool for modeling
and simulation of cellular models based on the Cell-DEVS formalism. The
modifications described in this work remove some limitations existing in the
previous implementation. These modifications allow the cells to use multiple
state variables and multiple ports for inter-cell communication. The cellular
model specification language has been extended to cover these cases, making
CD++ a more powerful tool.

Introduction

The Cell-DEVS formalism [1] was defined as an extension to Cellular Automata
combined with DEVS (Discrete Event systems Specification) [2], a formalism for
specification of discrete-event models. The DEVS formalism provides a framework
for the construction of hierarchical modular models, allowing for model reuse, reduc-
ing development and testing times. In DEVS, basic models (called atomic) are speci-
fied as black boxes, and several DEVS models can be integrated together forming a
hierarchical structural model (called coupled). DEVS not only proposes a framework
for model construction, but also defines an abstract simulation mechanism that is in-
dependent of the model itself. A DEVS atomic model defined as:

DEVS = < X, Y, S, δext,δ int, λ, ta>

In the absence of external events, a DEVS model will remain in state s∈S during
ta(s). Transitions that occur due to the expiration of ta(s) are called internal trans i-
tions. When an internal transition takes place, the system outputs the value λ(s) ∈ Y,
and changes to the state defined by δint (s). Upon reception of an external event, δext(s,
e, x) is activated using the input value x∈X, the current state s and the time elapsed
since the last transition e. Coupled models are defined as:

DN = < X, Y, D, {M i}, {Ii}, {Zi,j}>

Coupled models consist of a set of basic models (Mi, atomic or coupled) connected
through the models' interfaces. Component identifications are stored into an index
(D). A translation function (Zij) is defined by using an index of influencees created
for each model (Ii). The function defines which outputs of model Mi are connected to
inputs in model Mj.

Cell-DEVS defines a cell as a DEVS atomic model and a cell space as a coupled
model. Each cell of a Cell-DEVS model holds a state variable and a computing func-
tion, which updates the cell state by using its present state and its neighborhood. A
Cell-DEVS atomic model is defined as:

TDC=< X, Y, S, N, delay, d, δINT, δEXT, τ, λ, D >

A cell uses a set of N input values to compute its future state, which is obtained by
applying the local function τ. A delay function is associated with each cell, after
which, the new state value is sent out. There are two types of delays: inert ial and
transport. When a transport delay is used, every value scheduled for output will be
transmitted. Inertial delays use a preemptive policy: any previous scheduled output
will be preempted unless its value is the same as the new computed one. After the
basic behavior for a cell is defined, a complete cell space can be built as a coupled
Cell-DEVS:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z >

A coupled Cell -DEVS is composed of an array of atomic cells (C), each of which
is connected to the cells in the neighborhood (N). The border cells (B) can have a
different behavior than the rest of the space. The Z function defines the internal and
external coupling of cells in the model. This function translates the outputs of m th
output port in cell Cij into values for the mth input port of cell Ckl. Each output port
will correspond to one neighbor and each input port will be associated with one cell in
the inverse neighborhood. The Xlist and Ylist are used for defining the coupling with
external models.

Fig. 1. Informal definition of a Cell-DEVS model [3]

Using Cell-DEVS has different advantages. First, we have asynchronous model

execution, which, as showed in [3], results in improved execution times. Timing con-
structions permit defining complex conditions for the cells in a simple fashion, as
showed in [4, 5]. As DEVS models are closed under coupling, seamless integration
with other types of models in different formalisms is possible. The independent simu-
lation mechanisms permit these models to be executed interchangeably in single-
processor, parallel or real-time simulators without any changes.

T he CD++ tool [6] was created for the simulation of DEVS and Cell-DEVS mod-
els based on the formal specifications in [1]. This version of the tool and the formal-
ism was used to study a variety of models including traffic, forest fires, bi ological
systems and experiments in chemistry [4, 5, 7, 8]. While developing these models, we
found that Cell-DEVS formal specifications and CD++ implementation lacked on
expressiveness when defining very complex applications. We were able to solve some

of these problems with the n-dimensional Cell-DEVS definition presented in [9],
whi ch permitted us to store different state variables in each dimension of a cell space.
Nevertheless, as this organization require extra work from the modelers, and is time-
consuming, we decided to add new facilities to CD++. We will show how to define
different state variables for each cell, and to declare and use multiple inter-cell ports
to communicate with the neighbors, which permitted to improve the definition of
complex models.

Other cellular automata languages as CARPET [10] and Cellang [11] include these
features which are new to CD++. However, these languages use different approaches
from the one used in CD++. CARPET is a procedural language while CD++ is logical
(as Prolog is) and Cellang is a mix. With the new extensions to CD++, it is leveraged
in capabilities to these two languages.

The CD++ toolkit

CD++ [6] is a tool built to implement DEVS and Cell-DEVS theory. The tool allows
defining models according to the specifications introduced in the previous section.
DEVS atomic models can be incorporated into a class hierarchy in C++, while cou-
pled models are defined using a built -in specification language. The tool also includes
an interpreter for a specification language that allows describing Cell-DEVS models.

The behavior specification of a Cell-DEVS atomic model is defined using a set of
rules, each indicating the future value for the cell's state if a precondition is satisfied.
The local computing function evaluates the first rule, and if the precondition does not
hold, the following rules are evaluated until one of them is satisfied or there are no
more rules. The behavior of the local computing function is defined using a set of
rules with the form: VALUE DELAY { CONDITION }. These indicate that when
the CONDITION is satisfied, the state of the cell changes to the designated VALUE ,
and its output is DELAYed for the specified time. The main operators available to de-
fine rules and delays include: boolean, comparison, arithmetic, neighborhood values,
time, conditionals, angle conversion, pseudo-random numbers, error rounding and
constants (i.e., gravitation, acceleration, light, Planck, etc.) [12].

[ex]
width : 20 height : 40 border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1)
neighbors : (1,-1) (1,0) (1,1)
localtransition : tau-function

[tau-function]
rule: 1 100 {(0,0)=1 and (truecount=8 or truecount=10)}
rule: 1 200 {(0,0) = 0 and truecount >= 10 }
rule: (0,0) 150 { t }

Fig. 2. A Cell-DEVS specification in CD++

Figure 2 shows the specification of a Cell-DEVS model in CD++. The specifica-
tion follows Cell-DEVS coupled model's formal definitions. In this case, Xlist = Ylist

= { ∅ }. The set {m , n} is defined by width-height, which specifies the size of the cell
space (in this example, m=20, n=40). The N set is defined by the lines starting with
the neighbors keyword. The border B is wrapped. Using this information, the tool
builds a cell space, and the Z translation function following Cell-DEVS specifica-
tions. The local computing function executes very simple rules. The first one indicates
that, whenever a cell state is 1 and the sum of the state values in N is 8 or 10, the cell
state remain in 1. This state change is spread to the neighboring cells after 100 ms.
The second rule states that, whenever a cell state is 0 and the sum of the inputs is lar-
ger or equal to 10, the cell value changes to 1. In any other case (t = true), the result
remains unchanged, and it is spread to the neighbors after 150 ms.

Expanding CD++ Architecture

CD++ only supported one state variable per cell. To work around this problem,
modelers usually defined extra planes in their cell space, creating as many layers as
state variables needed. For instance, when one state variable was needed in a planar
cell space, the solution was to create a three-dimensional cell space with two planar
layers [7]. State variables are declared as follows:

StateVariables: pend temp vol
StateValues: 3.4 22 -5.2
InitialVariablesValue: initial.var

The first line declares the list of state variables for every cell, the second one the

default initial values, and the last one provides the name of a file where the initial
values for some particular cells are stored, using the following format:

(0,0,1) = 2.8 21.5 -6.7
(2,3,7) = 6 20.1 8

The values are assigned to the state variables following the order in which they are

listed in the sentence StateVariables . Here, the first line assigns 2.8 to pend, 21.5 to
temp, and -6.7 to vol in the cell (0,0,1). The second line will assign respectively the
values 6, 20.1 and 8, to the variables pend, temp and vol in the cell (2,3,7).

State variables can be referenced from within the rules that define the cells’ behav-
ior by using its name preceded by a $.

rule: {(0,0,0)+$pend} 10 { (0,0,0)>4.5 and $vol<22.3 }

The identifier ‘:=’ is used to assign values to a state variable. Assignments must be

placed in a new section in the rules (a list of assignments, separated by semi-colons).

% <value> [{ <assignments> }] <delay> <condition>
rule: { (0,0,0)+1 } { $temp:=$vol/2; $pend:=(0,1,0); }
 10 { (0,1,0) > 5.5 }

In the example, if the condition (0,1,0)>5.5 is true, the variable temp will be as-
signed half of vol value, and pend will be assigned the value of the neighbor cell
(0,1,0). These assignments are executed immediately (they are not delayed).

A second limitation was that the previous implementation of CD++ only used one
port for inputs (neighborChange) and one for outputs (out), which are automatically
created with the cell. The use of different I/O ports provides a more flexible definition
of the cell behavior, as the rules can react in different ways according to inputs arriv-
ing in different ports. Therefore, our second extension supports the use of multiple
I/O ports, which are defined as follows:

NeighborPorts: alarm weight number

The input and output ports share the names, making possible to automatically cre-

ate the translation function: an output from a cell will influence exclusively the input
port with the same name in every cell in its neighborhood. When a cell outputs a
value through one of the ports, it will be received by all its neighbors through the in-
put ports with the same name. A cell can read the value sent by one of its neighbors,
specifying both the cell and port name, separated by a tilde (~), as follows:

rule : 1 100 { (0,1)~alarm != 0 }

In this case, if the cell receives an input in the alarm port from the cell to the right,

and that value is not 0, the cell status will change to 1, and this change will be sent
through the default output port 100 ms after. As one might need to output values
through many ports at the same time, the assignment can be used as many times as
needed (each followed by a semi-colon), as follows:

% <port_assigns> [<assignments>] <delay> <condition>
rule: { ~alarm := 1; ~weight := (0,-1)~weight; } 100
 { (0,1)~number > 50 }

In this example, if we receive a value larger than 50 in the port number on the cell

to the right, we wait 100 ms, we generate an output of 1 in the alarm port, and we
copy the weight value received from the cell to the left to the weight output port.

The rules defining the models are translated int o an executable definition. Each of
the rules is represented with a structure <value, assignations, delay, condition>, each
represented by a tree. Rules are evaluated recursively form the tree that represents the
condition. If the result of the evaluation is True, it then evaluates the trees correspond-
ing to the value and the delay, and the result of these evaluations are the values used
by the cell. The complete language grammar and details about the tool implement a-
tion are described in [13].

Using the extensions in a model of fire spread

In [14], we described a fire model using Cell-DEVS. Figure 3 represents the specifi-
cation of this model in CD++.

[ForestFire]
dim : (100,100,2) border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (1,0,0)
neighbors : (0,1,0)(0,0,0)(0,0,-1)(0,0,1)
zone : ti { (0,0,1)..(99,99,1) }
localTransition : FireBehavior

[ti]
rule:{ time/100 } 1 { cellpos(2)=1 AND (0,0,-1)>=573
 AND (0,0,0) = 1.0 }

[FireBehavior]
rule: {#unburned} 1 {(0,0,0)<300 AND (0,0,0)!=26
 AND (#unburned>(0,0,0) OR time<=20)} %Unburned
rule: {#burning} 1 {cellpos(2)=0 AND (((0,0,0) >
 #burning AND (0,0,0)>333) OR (#burning> (0,0,0)
 AND (0,0,0)>=573)) AND (0,0,0)!=209 } %Burning
rule: {26} 1 { (0,0,0)<=60 AND (0,0,0)!=26 AND
 (0,0,0)>#burning } %Burned
rule : { (0,0,0) } 1 { t } %Stay Burned or constant

#BeginMacro(unburned)
(0.98689 * (0,0,0) + 0.0031 * ((0,-1,0) + (0,1,0) +
(1,0,0) + (-1,0,0)) + 0.213)
#EndMacro

#BeginMacro(burning)
(0.98689*(0,0,0)+.0031*((0,-1,0)+(0,1,0)+(1,0,0)+
 (-1,0,0))+2.74*exp(-.19*((time+1)*.01-(0,0,1)))+.213)
#EndMacro

Fig. 3. Fire spread model specification.

We first define the Cell-DEVS coupled model (including neighborhood, dimen-
sion, etc.). Then, the ti rules show how to store ignition times: if a cell in plane 0
starts to burn, we record the current simulation time in plane 1. To make this happen,
we include a clause specifying to identify the layer in which the current cell is located
(cellpos(2)=x). Then, we show the rules used to compute the cells’ temperatures. The
model specification was simplified using macros containing rules corresponding to
the temperature calculus when the cell is in unburned or burning phase.

(0,0,0)

Plane 0

Plane 1

(0,-1,0)

(1,0,0)

(0,1,0)

(-1,0,0)

(0,0,0)

(0,0,1)

Fig. 4.. Cell’s neighborhood specification

As described in Figure 4, we used two planes representing the different variables in
our model. The first plane stores the cell’s temperature. The second plane stores the
ignition time of the cells in the propagation plane.

In the example, we need n x m x 2 cells (double the size of simulated field). Using
the new simulator, the temperature is stored as the cell’s value and the ignition time in
a state variable (temperature is stored in the cell’s value because it must be passed to
the neighbor cells, while the ti value is only used internally to the cell). The first step
was to add a state variable ti, to remove the higher layer of cells and to replace all the
references to this layer by references to the state variable. The original burning and ti
rules in Figure 5 were replaced as follows:

rule: {#burning} 1 {((0,0)>#burning AND (0,0)>333) OR
 (#burning>(0,0) AND (0,0)>=573) AND (0,0)!=209}

rule : { (0,0) } { $ti := time/100; } 1 { (0,0)>=573
 AND $ti = 1.0 }

The direct translation has a problem: in some cases, both conditions can be true at

the same time. For instance, when $ti = 1.0, (0,0) >=573 and #burning > (0,0), both
rules apply. In order to solve this problem, the burning rule was factorized into two
simpler rules, as follows:

rule : { #burning } 1 { (0,0) > #burning AND (0,0)> 333
 AND (0,0) != 209 }
rule : { #burning } 1 { #burning > (0,0) AND (0,0)>=
 573 AND (0,0)!= 209 }

We can see that in both rules we need (0,0) != 209, and (0,0) > 333 and (0,0) ≥ 333

⇒ (0,0) ≠ 209. Hence, (0,0) != 209 is redundant, and so it can be removed. Rule ti
overlaps with the second part of the rule burning, so they were merged. To shorten
the execution time, the number of rules was reduced and the clauses in the rules’ con-
dition reordered. The two rules were merged in one rule that will assign the new value
to $ti depending on $ti’s original value:

rule : { #burning } 1 { (0,0)> 333 AND ((0,0)< 573 OR

 $ti != 1.0) AND (0,0)>#burning }
rule : { #burning }{ $ti := if($ti = 1.0, time/100,
 $ti); } 1{ (0,0)>=573 AND #burning>=(0,0) }
rule : { #burning } { $ti := time / 100; } 1 { $ti=1.0
 AND (0,0)>=573 AND #burning<(0,0) }

A second step optimization is based on the fact that CD++ is capable of using

short-cut evaluation (in the same style as the C programming language). When the left
expression of an and operation evaluates to false, the whole operation will evaluate to
false, so it is useless to evaluate the right expression. Similarly, when the left expres-
sion of an or operation evaluates to true, the whole operation will evaluate to true,
and so there is no need to evaluate the right expression of the op eration. By simply
reordering the operations and their parameters, we can save execution time. The idea
is to execute the simplest conditions first, while leaving the more complex ones to the
end.

%Unburned
rule : { #macro(unburned) } 1
 { (0,0) != 209 AND (0,0) < 573 AND
 (time <= 20 OR #macro(unburned) > (0,0)) }
%Burning and ti
rule : { #macro(burning) } 1
 { (0,0) > 333 AND ((0,0) < 573 OR $ti != 1.0)
 AND (0,0) > #macro(burning) }
rule : { #macro(burning) }
 { $ti := if($ti = 1.0, time / 100, $ti); } 1
 { (0,0) >= 573 AND #macro(burning) >= (0,0) }
rule : { #macro(burning) } { $ti := time / 100; } 1
 { $ti = 1.0 AND (0,0) >= 573 AND
 #macro(burning) < (0,0) }
%Burned
rule : { 209 } 100
 { (0,0) != 209 AND (0,0) <= 333 AND
 (0,0) > #macro(burning) }
%Stay Burned or constant
rule : { (0,0) } 1 { t }

In the FireSpread model the cells can be in one of four phases: inactive, unburned,

burning and burned. An unburned cell's temperature is lower than 573 degrees. A cell
starts burning at 573 degrees and its temperature increases for a while and then start
decreasing as the fuel mass is consumed. When the temperature gets lower than 333
degrees, the cell enters the burned phase. In the simulation this is signaled by a con-
stant temperature of 209 degrees.

 The first rule applies to unburned cells, whose temperature in the next step will be
higher than its current one or the simulation time is smaller than twenty (transient
period). The second rule is based on the same principles but applies to burning cells.
The third rule is used when the cells start burning to modify the temperature and the
ignition time (depending on its value). Fourth rule updates the ignition time and the

temperature of burning cells when their temperature is decreasing. The fifth rule sets
the burned flag (temperature equals 209 degrees) when a burning cell crosses down
the 333-degrees threshold, and the sixth rule keeps the burned cells constant.

This problem can also be solved using multiple ports to replace the extra plane.
When we use multiple ports we do not need to store internally the values, but to
transmit them through the ports. So, there is not need to set values, but just send them
out though the port. In this case, two ports are declared: temp and ti. The port temp
exports the cell s temperature (the old lower layer), while the port ti exports the ign i-
tion time (the higher layer).

%Unburned
rule : { ~temp := #unburned; } 1
 { (0,0)~temp!=209 AND (0,0)~temp<573 AND
 (time<=20 OR #unburned>(0,0)~temp) }
%Burning and ti
rule : { ~temp := #burning; } 1 { (0,0)~temp>333 AND
 ((0,0)~temp<573 OR (0,0)~ti!=1.0) AND
 (0,0)~temp > #burning }
rule : { #burning } 1
 { (0,0)> 333 AND ((0,0)< 573 OR $ti != 1.0) AND
 (0,0)>#burning }
rule : { #burning }
 { $ti := if($ti = 1.0, time/100, $ti); } 1
 { (0,0)>=573 AND #burning>=(0,0) }
rule : { #burning } { $ti := time / 100; } 1
 { $ti=1.0 AND (0,0)>=573 AND #burning<(0,0) }
%Burned
rule : { ~temp := 209; } 100
 { (0,0)~temp > #macro(burning) AND
 (0,0)~temp <= 333 AND (0,0)~temp != 209 }
%Stay Burned or constant
rule : { } 1 { t }

This model behaves exactly the same as the previous one. As the initial value for

both ports is the same and this model needs different values, it can solved by assign-
ing negative initial value that will never appear during the simulation and adding two
rules that generate the real initial state when the cell has this special values.

Conclusions

A new implementation of CD++ was presented, which allows using state variables
and multiple neighbor ports in each cell of a cellular model. These new features add
great power to the specification language to the simulator, simplifying the modeling
task.

Cell-DEVS simplifies the construction of complex cellular models by allowing
simple and intuitive model specification. The CD++ logic rules facilitate the debug-
ging phase and, consequently, reduces development time. Complex model modifica-

tions can now be easily and quickly integrated to the current model of fire spread
even by a non-computer specialist.

Models can now be written more clearly, and their simulation consume less mem-
ory and file descriptors (than those models with extra cell layers), which allow for
larger cell spaces to be simulated.

References

1. Wainer, G.; Giambiasi, N., 2000. "Timed Cell-DEVS: modelling and simulation of cell
spaces". Discrete Event Modeling & Simulation: Enabling Future Technologies, to be
published by Springer-Verlag.

2. Zeigler, B.; Kim, T.; Praehofer, H. "Theory of Modeling and Simulation: Integrating Dis-
crete Event and Continuous Complex Dynamic Systems". Academic Press. 2000.

3. Wainer, G.; Giambiasi, N. "Application of the Cell-DEVS paradigm for cell spaces model-
ing and simulation.". Simulation; Vol. 76, No. 1. January 2001.

4. Ameghino, J.; Troccoli, A.; Wainer, G. "Modeling and simulation of complex physical
systems using Cell-DEVS". Proceedings of 34th IEEE/SCS Annual Simulation Symposium.
Seattle, U.S.A. 2001.

5. Muzy, A.; Wainer, G.; Innocenti, E.; Aiello, A.; Santucci, J.-F. "Dynamic and discrete
quantization for simulation time improvement: fire spreading application using the CD++
tool". Proceedings of 2002 Winter Simulation Conference. San Diego, U.S.A. 2002.

6. Wainer, G. "CD++: a toolkit to define discrete-event models". Software, Practice and
Experience. Wiley. Vol. 32, No.3. pp. 1261-1306. November 2002.

7. Ameghino, J.; Wainer, G. "Application of the Cell-DEVS paradigm using CD++". Pro-
ceedings of the 32nd SCS Summer Computer Simulation Conference. Vancouver, Canada.
2000.

8. Ameghino, J.; Troccoli, A.; Wainer, G. “Applying Cell-DEVS Models of Complex Sy s-
tems”. Proceedings of Summer Simulation Multiconference. Montreal, QC. Canada. 2003.

9. Wainer, G.; Giambiasi, N. “N-dimensional Cell-DEVS”. Discrete Events Systems: Theory
and Applications, Kluwer, Vol. 12 N° 1, January 2002. pp 135-157.

10. Spezzano, G.; Talia, D. “CARPET: A Programming Language for Parallel Cellular
Processing”. In Proceedings of the European School on Parallel Programming
Environments for HPC'96 . April 1996.

11. Eckart, D. “A Cellular Automata Simulation System”. SIGPLAN Notices, 26(8):80--85,
August 1991.

12. D. Rodríguez, G. Wainer. "New Extensions to the CD++ tool". In Proceedings of SCS
Summer Multiconference on Computer Simulation. 1-7. 1999.

13. López, A.; Wainer, G. “Extending CD++ for Cell-DEVS model definition”. Technical
Report SCE-04-11. Dept. of Systems and Computer Engineering. Carleton University.
2004.

14. Muzy, A.; Wainer, G.; Innocenti, E.; Aiello, A.; Santucci, J.F. "Cellular Discrete-event
modeling and simulation of fire spreading across a fuel bed". Accepted for publication in
Simulation: Transactions of the Society for Modeling and Simulation International (A c-
cepted: September 2003).

