
On the Construction of Complex Models Using Reusable Components

Peter MacSween
Defence R&D Canada Ottawa

3701 Carling Avenue
Ottawa, ON. K1A 0Z4. Canada.

pattyandpete@ieee.org

Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.
gwainer@sce.carleton.ca

Keywords: DEVS, Cell-DEVS, reusable components.

ABSTRACT: We show how to apply a development technique to build complex simulation models using a systematic
method in which a model evolves incrementally. The method relies on a modular, hierarchical view, in which a higher-
level model consists of a set of lower-level interactions. This view enables the reuse of simulations and components,
where the integration. The approach relies on the use of DEVS methodology and it is supported by the use of CD++, a
DEVS tool that has been built following the formal definitions of DEVS and Cell-DEVS. We will show how to use
CD++ for common understanding, sharing and interoperability of model implementations, focusing in different model
examples in the area of Defence. We will introduce means of developing independent models that can be integrated at
the level of DEVS interactions, and will discuss how CD++ models can be composed into simulations that can execute
in distributed environments.

1. Introduction

In recent years, we have witnessed tremendous advances
in model building and simulation execution thanks to the
improvements in software and hardware technology. The
definition of the High Level Architecture (HLA) standard
[1] put into discussion fundamental issues, such as model
credibility and interoperation.

The HLA focuses the on interoperation of existing
geographically dispersed simulation assets. However, the
HLA is not addressing how to solve the problem on
creating the models to be executed in the simulation
environment. Current practices in development still use
ad-hoc techniques, trying to encapsulate models,
simulators and experimental frames into tightly coupled
packages. As a result, testing, maintenance and software
reuse become a hard task.

At present, there is a need to solve these problems,
enabling interoperability (including computer-based and
analog-based simulations), model reuse (using centralized
or distributed repositories), while keeping high
performance in the model execution. There are different
efforts addressing these issues, for instance, the Base
Object Model specifications, C4ISR, Extensible Modeling
and Simulation Framework, Simulation Conceptual

Modeling, etc. [2]. Other efforts consider the use of
widely used standards like the UML, or simulation
languages including support for execution on the RTI.
Our proposal, instead, is based on the use of the DEVS
formalism [3].

DEVS (Discrete Event systems Specifications) allows
modular description of models that can be integrated
using a hierarchical approach. DEVS has been
successfully used in previous efforts in model
interoperability (see, for instance, [4, 5]) providing ease
for reuse of simulation models. Another advantage of
using DEVS is that different existing techniques (Bond
Graphs, Cellular Automata, State Charts, Partial
Differential Equations, Petri Nets, Queuing models,
Timed Automata, etc.) have been mapped to DEVS. This
permits sharing information at the level of the model, and
different submodels can be specified using different
techniques, while keeping independence at the level of the
simulation engine. Existing DEVS tools have showed
their ability to execute such wide variety of models with
high performance in standalone or distributed
environments.

We will show how to integrate different models defined
independently within a DEVS framework. We will
incrementally build such a model with support for

interoperability at the level of the model. A first model
shows synchronization effects between radar receivers
and transmitters. A second example describes the
behavior of a simple vehicle, which seeks a target. This
cellular model was defined using Cell-DEVS [6], a
technique created to describe cell spaces as a DEVS
models including explicit timing delays.

Our experiences were carried out on the CD++
environment [7, 8], which implements the DEVS and
Cell-DEVS concepts. CD++ has been recently extended,
and a CD++ wrapper enables executing these models on
top of the HLA [9], enabling distributed simulation of
DEVS models using the HLA as the enabling platform for
distribution and coordination. We will show how two
models built independently can be easily integrated,
improving the facilities for reuse and interoperation, using
CD++ as the development environment for the
experiences.

2. Background

DEVS is an increasingly accepted framework for
understanding and supporting the activities of modeling
and simulation. DEVS is a sound formal framework based
on generic dynamic systems, including well defined
coupling of components, hierarchical, modular
construction, support for discrete event approximation of
continuous systems and support for repository reuse.
DEVS theory provides a rigorous methodology for
representing models, and it does present an abstract way
of thinking about the world with independence of the
simulation mechanisms, underlying hardware and
middleware.

A real system modeled with DEVS is described as a
composite of submodels, each of them being behavioral
(atomic) or structural (coupled). A DEVS atomic model is
can be informally described as in Figure 1.

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 1. Informal description of an atomic model.

Each atomic model can be seen as having an interface
consisting of input (x) and output (y) ports to
communicate with other models. Every state (s) in the
model is associated with a time advance (ta) function,
which determines the duration of the state. Once the time

assigned to the state is consumed, an internal transition is
triggered. At that moment, the model execution results are
spread through the model’s output ports by activating an
output function (λλλλ). Then, an internal transition function
(δδδδint) is fired, producing a local state change. Input
external events (those events received from other models)
are collected in the input ports. An external transition
function (δδδδext) specifies how to react to those inputs.

A DEVS coupled model is composed by several atomic or
coupled submodels, as seen in Figure 2.

Figure 2. Informal description of a coupled model.

Coupled models are defined as a set of basic components
(atomic or coupled), which are interconnected through the
model's interfaces. The model’s coupling defines how to
convert the outputs of a model into inputs for the others,
and to inputs/outputs to the exterior of the model.

Cell-DEVS [6] has extended the DEVS formalism,
allowing the implementation of cellular models with
timing delays. A cellular model is a lattice of cells
holding state variables and a computing apparatus, which
is in charge of update the cell state according to a local
rule. This is done using the present cell state and those of
a finite set of nearby cells (called its neighborhood). Cell-
DEVS improves execution performance of cellular
models by using a discrete-event approach. It also
enhances the cell’s timing definition by making it more
expressive [10]. Each cell is defined as a DEVS atomic
model, and it can be later integrated to a coupled model
representing the cell space. Cell-DEVS atomic models are
informally defined as in Figure 3.

Figure 3. Description of a Cell-DEVS atomic model.

Each cell uses N inputs to compute its next state. These
inputs, which are received through the model's interface,

activate a local computing function (ττττ). A delay (d) can
be associated with each cell. The state (s) changes can be
transmitted to other models, but only after the
consumption of this delay. Two kinds of delays can be
defined: transport delays model a variable commuting
time (using a queue to keep every cell change), and
inertial delays, which have preemptive semantics
(scheduled events can be discarded).

Once the cell behavior is defined, a coupled Cell-DEVS
can be created by putting together a number of cells
interconnected by a neighborhood relationship. A Cell-
DEVS coupled model is informally presented in Figure 4.

Figure 4. Description of a Cell-DEVS atomic model.

A coupled Cell-DEVS is composed of an array of atomic
cells, with given size and dimensions. Each cell is
connected to its neighborhood through standard DEVS
input/output ports. Border cells have a different behavior
due to their particular locations, which result in a non-
uniform neighborhood. Finally, the model’s couplings can
be defined.

3. The CD++ toolkit

CD++ [7, 8] is a modeling tool that was defined using the
specifications presented in the previous section, and the
basic simulation techniques introduced in [3, 6]. The
toolkit includes facilities to build DEVS and Cell-DEVS
models. DEVS Atomic models can be programmed and
incorporated onto a class hierarchy programmed in C++.
Coupled models can be defined using a built-in
specification language. Cell-DEVS models are built
following the formal specifications for DEVS models
(informally presented in the previous section), and a built-
in language is provided to describe them. CD++ makes
use of the independence between modeling and
simulation provided by DEVS, and different simulation
engines have been defined for the platform: a stand-alone
version [7], a Real-Time simulator [11], and a Parallel
simulator [12]. At present, a CD++ wrapper has been
built, enabling CD++ simulations to run as HLA federates
[9, 13], and the simulation engine is being extended to

support distributed simulation of atomic models using the
HLA. Another current effort is focused in providing
support for development of real-time simulation in
embedded platforms [14].

CD++ is built as a class hierarchy of models related with
simulation processing entities. DEVS Atomic models can
be programmed and incorporated onto the Model basic
class hierarchy using C++. A new atomic model is created
as a new class that inherits from the Atomic base class.
The state of a model is defined in the AtomicState class.
When creating a new atomic model, a new class derived
from Atomic has to be created.

class Atomic : public Model {
public:
virtual ~Atomic(); // Destructor

protected:
//Kernel services
Time nextChange();
Time lastChange();
holdIn(AtomicState::State &, Time &);
passivate();
ModelState* getCurrentState() ;
sendOutput(Time &time, Port &port, Value value);

//User defined functions.
initFunction();
externalFunction(ExternalMessage &);
internalFunction(InternalMessage &);
outputFunction(CollectMessage &);
string className() const
}; // class Atomic

Figure 5. The Atomic Class

Atomic is an abstract class that declares a model’s API
and defines some service functions the user can use to
write the model. The Atomic class provides a set of
services and requires a set of functions to be redefined:

- nextChange()/lastChange(): return the time until the
next internal transition/since the last state change.

- holdIn(state, Time): tells the simulator that the model
remains in a state during a given Time. It corresponds to
the ta(s) function of DEVS.

- passivate(): sets the next internal transition time to
infinity. The model will only be activated again if an
external event is received.

- getCurrentState(): returns the current model’s phase.

- sendOutput(Time, port, value): sends an output
message through the specified port.

The new class should override the following functions:

- initFunction(): method invoked by the simulator at
the beginning the simulation.

- externalFunction(ExternalMessage &): method
invoked when an external event arrives to a port. It
corresponds to the δext function of the DEVS formalism.

- internalFunction(InternalMessage &): method
defining the δint function of the DEVS formalism.

- outputFunction(const CollectMessage &): in charge
of transmitting the output events of the model. It
corresponds to the λ function of the DEVS formalism.

Once an atomic model is defined, it can be combined with
others into a multicomponent model using a specification
language specially defined with this purpose. The coupled
model at the higher level is always named [top]. Four
properties must be configured: components, output ports,
input ports and links between models. The following
syntax is used:

Components: name1[@atomicClass1] name2 ...
Lists the components of the coupled model (atomic or
coupled). For atomic models, an instance and a class

name must be specified, allowing a coupled model to use
more than one instance of a given atomic class. For
coupled models, only the model name must be given, and
it must be defined as another group in the same file.

Out: portname1 portname2 ...
Enumerates the model’s output ports (optional clause).

In: portname1 portname2 ...
Enumerates the input ports (optional clause).

Link: source[@model] destination[@model].
It describes the internal and external coupling scheme. If
the name of the model is not included, the default will be
the coupled model currently being defined.

The following figure shows a sample coupled model and
its specification in CD++. It defines a simple queuing
system consisting of three models: a generator, in charge
of creating requests for service, a consumer servicing
them, and a transducer, in charge of computer metrics for
the system. The consumer is also a coupled model,
composed by an entity processing them, and a queue to
keep waiting jobs.

[top]
components : Transd@Transducer Gen@Generator Consum
Out : out
Link : out@generator arrived@transducer
Link : out@generator in@Consumer
Link : out@Consumer solved@transducer
Link : out@transducer out

[Consum]
components : Qu@Queue Proc@CPU
in : in
out : out
Link : in in@qu
Link : out@qu in@Proc
Link : out@Proc done@qu
Link : out@Proc out

Figure 6. Definition of a DEVS coupled model in CD++.

In the top level of this example, the Generator outputs
will be converted into inputs for the Transducer and the
Consumer. The Consumer also generates outputs for the
Transducer. Likewise, the Consumer and the Processor
influences the Queue, which influences the Processor.
Finally, the Transducer influences the top model.

CD++ also includes an interpreter for Cell-DEVS models.
The language is based on the formal specifications of

Cell-DEVS [6]. The model specification includes the
definition of the size and dimension of the cell space, the
shape of the neighborhood and borders, as presented in
figure 4. The cell’s local computing function is defined
using a set of rules with the form:

POSTCONDITION DELAY { PRECONDITION }

These indicate that when the PRECONDITION is
satisfied, the state of the cell will change to the designated
POSTCONDITION, whose computed value will be
transmitted to other components after consuming the
DELAY. If the precondition is false, the next rule in the
list is evaluated until a rule is satisfied or there are no
more rules. The following figure shows the definition of a
very simple example implementing the "Life" game [15].

[life]
type : cell
width : 20 height : 20
delay : transport
border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1)
neighbors : (0,-1) (0,0) (0,1)
neighbors : (1,-1) (1,0) (1,1)
localtransition : new-life-rule

[new-life-rule]
Rule: 1 10 { (0,0) = 1 and (truecount = 3
 or truecount = 4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

Figure 7. Definition of the Life game.

The rules in this example say that a cell remains active
when the number of active neighbors is 3 or 4 (truecount
indicates the number of active neighbors) using a
transport delay of 10 ms.. If the cell is inactive ((0,0) =
0) and the neighborhood has 3 active cells, the cell
activated (represented by a value of 1 in the cell). In every
other case, the cell remains inactive (t indicates that
whenever the rule is evaluated, a True value is returned).

Complex cellular models can be defined with simple rules
(see, for instance, [16, 17, 18, 19, 20]), using the various
operations included in the language.

4. Incremental development of a DEVS
simulation model

We have built a simulation model to integrate components
of a Radar system model. The first stage in the definition
of this example consisted on building a model to examine
the synchronization effects between radar receivers and
transmitters. When using a scanning radar receiver, the
interception of radar signals can be severely limited if the
scan rate of the receiver becomes synchronized with a
radar transmitter. Every effort must be made to generate a
receiver scan pattern that limits this effect, as it seriously
degrades the Probability of Intercept (POI) for the
receiver.

Synchronization occurs when a particular transmitter
sends out radar pulses periodically, with the receiver
scheduled to scan periodically in such a manner that the
receiver is never ‘listening’ when the transmitter is

transmitting. This can lead to the transmitter not being
detected by the receiver, even though it may be
transmitting. Radar transmitters transmit on a particular
frequency, with a particular pulse rate, azimuth, and beam
width. Scanning Radar Receivers receive on a tuned
frequency (for a specified duration), with a particular
azimuth and beam width, and have a ‘tuning time’
associated with the change from one listening frequency
to another. The sequential operation of the receiver that
defines the tuned-frequency, listening-time, azimuth, and
beam width are specified by a ‘scan pattern’.

Receivers can communicate with each other, with each
receiver notifying the other receivers about radar
transmitters that have been detected. Each receiver is
connected to a simple communications bus, and it
maintains a tracking table containing all the information
about the currently known transmitters.

In order to analyze the behavior or this system, we built a
DEVS model, whose structure is the one presented in the
following figure.

Figure 8. Structure of the Radar Tx/Rx model.

The first step was to identify and define each one of the
model components. Once identified, a DEVS atomic
model was built for each subcomponent. Following, we
exemplify the definition of one of these models by
showing the Tracking Table atomic model. The Tracking
Table model is responsible for maintaining the list of
transmitters that are ‘known’ to the local receiver.

Tracking Table = < S, X, Y, �int, �ext, ta, � >
S = { Receive_Update_From_Bus,

Wait,
New_Signal_Detected,
Send_Update_To_Bus,
Notify_New_Freq }

X = { signal_props,

bus_receive_freq,
bus_receive_id }

Y = { bus_send_freq,

bus_send_id,

new_freq }

�int = { �int(Receive_Update_From_Bus) =

Notify_New_Freq,
�int(Notify_New_Freq) = Wait,
�int(New_Signal_Detected) =

Send_Update_To_Bus,
�int(Send_Update_To_Bus) = Wait }

�ext = { �ext(Wait, signal_props) = New_Signal_Detected,

�ext(Wait,bus_receive_freq) =
Receive_Update_From_Bus }

ta = { ta(Receive_Update_From_Bus) =

UPDATE_TIME,
ta(New_Signal_Detected) = PROCESS_TIME,
ta(Send_Update_To_Bus) = BUS_TIME,
ta(Notify_New_Freq) = NOTIFY_TIME }

�(S) = { �(New_Signal_Detected) =

(bus_send_freq,bus_send_id),
�(Receive_Update_From_Bus) = new_freq }

This model evolves through different states (S): Receive
an update from the bus, wait, detection of a new signal,

transmission of an update to the bus, or notification of a
new frequency. The model changes from one state to the
other by executing the transition functions. As seen in the
external transition (�ext), from a wait state, the tracking
table receives information from either the local receiver
(signal props, one of the external input events) or the
communication bus (receive freq). If the local receiver
detects a new signal, the signal is appended to the local
tracking table, and an update is sent over the bus for use
by any remote tracking tables. If the local tracking table
receives an update from the bus, it appends the
information to the local tracking table and notifies the
local receiver. The Tracking Table then returns to a wait
state.

The model was subsequently built in CD++ using the
state machine specification presented in the following
figure. CD++ shows two views of the state machine: the
left side of the GUI contains a sorted tree diagram, and
the right side contains a visual representation of the
model. The five states of the tracking table are
immediately apparent. External transitions are displayed
as dashed lines, with internal transitions as solid lines.
The input and output ports are visible in the tree diagram.

Figure 9. Specification of the Tracking Table model.

Each of the models presented in Figure 8 were thoroughly
tested, and they performed as described in their
conceptual model specifications (further details about the
definition of each of the models can be found in [21]). A
problem with the specification of the network receiver
was revealed while testing (the tracing of the signals that
are received by the network receivers became very
difficult when numerous signals are transmitted, and the
receivers start to share information).

[top]
components: tr1@Transmitter tr2@Transmitter
 tr3@Transmitter netrx1 netrx2
out: notify1 notify2 notify3
Link: pulse_out@tr1 ext_signal@netrx1
Link: pulse_out@tr1 ext_signal@netrx2
...
Link: notify@netrx1 notify1
Link: notify@netrx2 notify2
...

[netrx1]
components:tt1@Tracking_Table
rx1@Scanning_Receiver
in: ext_signal brf brid
out: notify bs_id bs_freq
Link: ext_signal ext_signal@rx1
Link: brf bus_receive_freq@tt1
Link: brid bus_receive_id@tt1
...
Link: bus_send_freq@tt1 bs_freq

[rx1]
freq_lower_bound: 18000
freq_upper_bound: 20000

[tt1]
table_id: 1

[netrx2]
components:tt2@Tracking_Table
rx2@Scanning_Receiver
in: ext_signal brf brid
out: notify bs_id bs_freq
Link: ext_signal ext_signal@rx2
Link: brf bus_receive_freq@tt2
Link: brid bus_receive_id@tt2
Link:detected_signal_properties@rx2
signal_props@tt2
Link: new_freq@tt2 ext_signal@rx2
Link: notify@rx2 notify
Link: bus_send_id@tt2 bs_id
Link: bus_send_freq@tt2 bs_freq

[rx2]
freq_lower_bound : 21000
freq_upper_bound : 22000

[tt2]
table_id : 2

[tr1]
frequency : 19000
pulseDuration : 00:00:00:5
pulsePeriod : 00:00:00:40
...

Figure 10. Coupled model definition: Radar Tx/Rx.

The use of the formal specification defining the atomic
and coupled model behavior was very useful in debugging
the models when they were implemented. The iterative
procedure of updating the formal specification, then
updating the implementation was quite efficient.
Following these iterations resulted in the models
matching the specifications.

Once this stage was completed, a Coupled Model was
built, integrating all of the systems’ components. The
description of this model can be found in Figure 10. This
coupled model defines the situation as described in Figure
8. Three Transmitter atomic models are configured with
different frequencies and pulse characteristics (tr1, tr2,
and tr3). Two network receivers (another coupled model
containing a scanning receiver and tracking table) are
configured (netrx1, netrx2), each listening to different
frequency bands.

The various atomic models contained in the previously
defined coupled model were tested using different
scenarios, including the following:
• Transmitter: pulse sent at 22kHz, Pulse Width = 3

ms, Pulse Interval = 30 ms.
• Scanning Receiver set to listen for pulses between

18kHz and 25kHz.
• Tracking table: test that a signal is recorded and a bus

message is sent, then test that bus messages are
received correctly.

• Network Receiver: Test the reaction to a signal and to
bus messages.

• Net_Of_ Network_Receiver_With_Transmitter:
- Transmitters send on frequencies which are not

being scanned:
- Transmitters send on frequencies which are

scanned by Network Receiver #1 only
- Transmitters send on frequencies which are

scanned by Network Receiver #2 only
- Transmitters send on frequencies which are

scanned by both Network Receivers

The following figure shows the result of the testing
scenario for the network with a transmitter. In this case,
the transmitter sends out pulses at 24kHz, Pulse width of
5 ms, Pulse interval of 40 ms. Bus Message at t=20 ms.
Receiver listening between 22kHz and 25kHz.

As we can see in the figure, the receiver gets a signal
from the transmitter every 40 ms, and a bus message at
t=20ms. The bus message is ignored because it is not
within the listening range of the receiver (19 kHz and the
receiver is listening from 22 to 25 kHz). Note that the
model does not queue received pulses or bus messages.
For each pulse received by the local transmitter, a bus
message is generated after a delay of 15 ms.. The bus
message stays active for 40ms.

Events Outputs
00:00:20 brf 19000
00:00:20 brid 3

00:00:001 notify 1
00:00:016 bs_id 1
00:00:016 bs_freq 24000
00:00:026 bs_id 0
00:00:026 bs_freq 0
00:00:041 notify 0
00:00:081 notify 1
00:00:096 bs_id 1
00:00:096 bs_freq 24000
00:00:106 bs_id 0
00:00:106 bs_freq 0
00:00:121 notify 0
00:00:161 notify 1
00:00:176 bs_id 1
00:00:176 bs_freq 24000
00:00:186 bs_id 0
00:00:186 bs_freq 0
00:00:201 notify 0
00:00:241 notify 1
00:00:256 bs_id 1
00:00:256 bs_freq 24000
00:00:266 bs_id 0
00:00:266 bs_freq 0
00:00:281 notify 0

Figure 11. Testing scenario: network with transmitter.

During this phase, we were able to detect a problem with
the specification of the network receiver: the signal
information received by the bus was sent to the scanning
receiver, which treated it like an external signal (thus
causing a second bus transmission). The specification was
corrected so that signal information is not re-sent over the
bus.

A different model, built using Cell-DEVS, describes the
behavior of a simple vehicle, which seeks a target [22].
As showed in the following figure, the seeker acts to steer
a vehicle towards a specified position in global space.
This behavior adjusts the vehicle so that its velocity is
radially aligned towards the target [22].

Figure 12. Informal behavior of the Seek model.

Using the hierarchy of motion behaviors defined in [22],
the “Action Selection” of the seek behavior is specified
by dictating the destination location. The Simple Vehicle
Model has the following attributes:

{mass scalar, position vector, velocity vector, max_force
scalar, max_speed scalar, orientation, N basis vectors},
where N=2

The motion of the model is defined by:
steering_force = truncate (steering_direction, max_force)
acceleration = steering_force / mass
velocity = truncate (velocity + acceleration, max_speed)
position = position + velocity

and the new basis vectors by:
new_forward = normalize (velocity)
approximate_up=normalize (approximate_up) // if needed
new_side = cross (new_forward, approximate_up)
new_up = cross (new_forward, new_side)

The seek behavior motion is defined by:
desired_velocity=normalize (position-target)*max_speed
steering = desired_velocity - velocity

To model the seek behavior using Cell-DEVS, it was
necessary to create discrete states to represent the
‘current’ behavior of the simple vehicle. The following
state variable was used:

State Description
Current
Velocity

A state indicating a vehicle with no
velocity, or motion in one of 8 directions:
moving diagonally up and left (value=1),
up (2), diagonally up and right (3), left
(4), stationary (5), right (6), diagonally
down and left (7), down(8), diagonally
down and right(9)

The model uses the following neighborhood definition:

N = { (-2,-2) (-2,-1) (-2, 0) (-2,1) (-2,2) (-1,-2) (-1,-1)
(-1,0) (-1,1) (-1,2) (0,-2) (0,-1) (0, 0) (0,1) (0,2) (1,-2)
(1,-1) (1, 0) (1,1) (1,2) (2,-2) (2,-1) (2, 0) (2,1) (2,2) }

Figure 13. Definition of update rules.

An input was provided to each cell to specify the Desired
Velocity of the vehicle. The model rules detail the
discrete motion that was implemented to simulate the
effect of a desired velocity on a vehicle. Multiple
combinations of actual and desired velocity could result in
the same destination cell for a vehicle.

With the many combinations of velocities, the possibility
for collisions is great. The neighborhood for each cell is
dependant on its velocity. A simple priority is used when
multiple cells want move into the same cell. Stationary
vehicles have the highest priority , “Up and left” have the
lowest, and “Down and right” have the second highest.

The model was completely implemented in CD++
following the previous rule specifications, and it and first
tested using a single vehicle, with different initial
velocities and different desired velocities. After all the
rules were implemented, all possible velocities were
tested in all possible desired velocities. Following that,
collisions were tested using multiple vehicles.

The following figures display the two state variables
employed in the definition of the Cell-DEVS model
(displayed side-by-side). The left-hand plane (mostly
white) displays the current location and velocity of the
three vehicles. The right-hand plane describes the ‘desired
velocity vector field’ of the vehicles. The ‘desired
location’ for all three vehicles is the center of the plane,
and the ‘desired velocity vectors’ steer them to that point.

Figure 14. Three vehicles seeking the desired location.

As we can see, the three vehicles enter from the top-right
corner of the plane, and they stop when they cannot move
any closer to the ‘desired location’.

The vehicles enter (at time 0, 500, and 900 ms) with a
velocity different from the desired velocity, and each acts
in accordance with the state transitions to ‘turn’ to the
desired velocity. At 1.2 seconds, the first vehicle enters a

region with a different desired velocity. Note that the
vehicle (and each subsequent vehicle) ‘turns’ to the
desired velocity.

The first vehicle reaches the target cell at 1.5 seconds, and
stops. The other vehicles follow the same path, and once
they cannot move any closer to the target cell, they stop
moving.

The following figures display a snapshot of the test where
vehicles enter the plane from various locations and with
different velocities (each must respond to the desired
velocity in accordance with each current velocity).

(a)

(b)

Figure 15. Seekers with collision avoidance.

Initially (Figure 15.a), the vehicles moving towards the
center. Then, a second set of vehicles (with different
initial velocity) enters the plane. They are space closely
together to generate collisions. The final steps present a
vehicle ‘jam’ as the vehicles move towards the desired
location.

The final stage of development consisted in showing how
to provide interoperation of these models by allowing
interaction of the components. This interaction is done at

the level of the model, and no contact with the simulation
engine is needed, as the models only communicate at the
level of their interfaces. Let us consider, for instance, the
existence of a new model, Radar. The radar model is
prepared to scan a cell space according to a given
frequency. The following figure shows how to integrate
this new model with the two other models defined earlier
in this section. These three models were built
independently, but they can be easily integrated thanks to
the definition of DEVS interfaces.

Figure 16. Multimodel integration.

The Transmitter/Receiver model is used to start radar
scanning activities. Upon activation, the Radar will scan
the field defined by the Seek Cell-DEVS model, and will
generate two outputs: a reception signal for the
Transmitter/Receiver, and a number of Operator
Messages according to the values received in the field.
The Seek model advances independently of the execution
of the radar, because these models are built as discrete-
event specifications, and each subcomponent progresses
according its own internal time base. In CD++, the
coupled model defining the composition of the submodels
can be defined as in Figure 17.

As we can see, our top model is now integrated by the
three original components. We initially define the model's
coupling using the description presented in Figure 16.
Then, we show the definition of the seek model (which is
the one previously used to produce the simulation results
presented in figures 14 and 15). The model produces
outputs that can be used by the Radar model.

We have defined a zone in which the cells will generate
outputs (by using the out-rule definition). Finally, the Tx-
Rx model, defined earlier in Figure 10, includes two new
input/output ports in order to provide interaction with the
Radar model. This model is not defined in the file, as it
has been defined as a DEVS atomic models, and we just
need to define the coupling between this model and the
remaining components.

[top]
components : seek Tx-Rx radar@Radar
out : op-msg
link : seek-out@seek seek-out@radar
link : op-msg@radar op-msg
link : scan@tx-rx scan@radar
link : receive@radar receive@tx-rx

[seek]
type : cell
dim : (20,30)
delay : transport
border : wrapped
out : seek-out
neighbors : (-2,-2) (-2,-1) (-2,0) (-2,1) (-2,2)
neighbors : (-1,-2) (-1,-1) (-1,0) (-1,1) (-1,2)
neighbors : (0,-2) (0,-1) (0,0) (0,1) (0,2)
neighbors : (1,-2) (1,-1) (1,0) (1,1) (1,2)
neighbors : (2,-2) (2,-1) (2,0) (2,1) (2,2)

% Cells producing outputs
zone : out-rule { (10,0)..(19,19) }
link : outTRP@seek(10,0)..(10,19) seek-out
localtransition : out-rule

[out-rule]
rule : {(send(1, y-t-room)} 0 { t }

localtransition : move-rule

[move-rule]
% Rules which do not allow a move to occur
(collision avoidance)
rule : 5 100 {
 % Moving up and left
 (
 (((0)=1) and ((0,1)=1)) or
 (((0,0)=5) and ((0,1)=1)) or
 (((0,0)=2) and ((0,1)=1)) or
 (((0,0)=2) and ((0,1)=4)) or
 (((0,0)=2) and ((0,1)=7)) or
 (((0,0)=4) and ((0,1)=1)) or
 (((0,0)=4) and ((0,1)=2)) or
 (((0,0)=4) and ((0,1)=3))
)
... % Remaining moving rules

 [Tx-Rx]
components: tr1@Transmitter tr2@Transmitter
 tr3@Transmitter netrx1 netrx2
out : notify1 notify2 notify3 scan
in : receive
...
% Same as the previously defined model

Figure 17. Defining a multimodel in CD++.

This model can be executed in parallel Cell-DEVS by just
defining a partition file as follows:

0 : Tx-Rx

1 : radar

2 : seek(0,0)..(9, 19)

3 : seek(10,0)..(19,19)

4 : seek(20,0)..(29,19)

Figure 18. Partition file for distributed execution.

This model will be split in 5 processors, which will
execute different parts of the model driven by the CD++
simulator [6]. We can also split the three submodels and
execute them using a CD++ HLA wrapper [13]. The
wrapper is in change of creating a federate for each
component, launch the execution of the federation, and
synchronize the timing of the subcomponents using the
RTI timing services (further information on how to use
this wrapper can be found in [14]).

Figure 19. A multimodel in CD++/HLA wrapper [14].

5. Conclusion

We have showed a development technique to build
complex simulation evolving incrementally from simple
subcomponents to complex simulations. The method
relies on the use of DEVS, which provides an
incremental, hierarchical view. This view enables the
reuse of simulations and components, where the
integration of simulations and components is seamless.

The experiments were carried out using CD++, a DEVS
tool that has been built following the formal definitions of
DEVS and Cell-DEVS. The models were developed
independently, and were later integrated at the modeling
level. These models can be integrated into simulations
that can execute in distributed environments. At present,
we are working on an extension of CD++ that will be able
to run distributed models on top of the RTI.

The use of DEVS can improve the security and cost in the
development of the simulations. The main gains are in the
testing and maintenance phases, the more expensive for
these systems. The use of a formal approach like DEVS
made easy the development of the applications.

We are currently working on a standardized version of
DEVS models within a DEVS Study Group [23], whose
goal is to provide a standardized version of DEVS
models, enabling the multiple existing DEVS
environments to interact, and to include non-DEVS
models in larger simulations. In this way, we will be able
to shorten the gap existing between academic versions of

DEVS, and industrial/government needs. Having
standardized means of defining models will enable
defining standard libraries that can be integrated in user-
friendly modeling and simulation environments.

References

[1] “IEEE Standard for Modeling and Simulation High

Level Architecture (HLA)”, IEEE Std. 1516-2000.

[2] SISO Product Development Activity. URL:

http://www.sisostds.org/stdsdev/index.cfm.
Checked Feb. 1, 2004.

[3] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. Theory of

Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems.
Academic Press. 2000.

[4] SARJOUGHIAN, H.S., ZEIGLER, B.P. "DEVS and

HLA: Complimentary Paradigms for M&S?"
Transactions of the SCS, (17), 4, pp. 187-197, 2000.

[5] KIM, Y. J., KIM, and T.G. “ A Heterogeneous

Simulation Framework Based on the DEVS BUS and
the High Level Architecture”. In Proceedings of the
Winter Simulation Conference. Washington, DC.
1998.

[6] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS:

modeling and simulation of cell spaces ". In "Discrete
Event Modeling & Simulation: Enabling Future
Technologies", Springer-Verlag. 2001.

[7] WAINER, G. "CD++: a toolkit to define discrete-

event models". G. Wainer. Software, Practice and
Experience. Wiley. Vol. 32, No.3. pp. 1261-1306.
November 2002.

[8] CHRISTEN, G.; DOBNIEWSKI, A.; WAINER, G.

"Defining DEVS models with the CD++ toolkit". In
Proceedings of European Simulation Symposium.
Marseilles, France. 2001.

[9] PEARCE, T. “Simulation-Driven Architecture in the

Engineering of Real-Time Embedded Systems”. Real-
Time Systems Symposium. Work-in-Progress Session.
Cancun, Mexico. 2003.

[10] WAINER, G.; GIAMBIASI, N. "Application of the

Cell-DEVS paradigm for cell spaces modeling and
simulation". G. Wainer, N. Giambiasi. Simulation,
Vol. 71, No. 1. January 2001. pp. 22-39.

[11] Glinsky, E.; Wainer, G. 2002. "Performance

Analysis of Real-Time DEVS models". In

Proceedings of 2002 Winter Simulation Conference.
San Diego, U.S.A.

[12] TROCCOLI, A.; WAINER, G. “Implementing

Parallel Cell-DEVS”. In Proceedings of Annual
Simulation Symposium. Orlando, FL. U.S.A. 2003.

[13] PEARCE, T.; ZHANG, C. “Federate Wrappers for

the HLA”. Carleton University Technical Report
SCE-02-04. 2004.

[14] YU, H.; WAINER, G. “Embedded CD++”. Carleton

University Technical Report SCE-03-04. 2004.

[15] GARDNER, M. "The fantastic combinations of John

Conway's New Solitaire Game 'Life'.". Scientific
American. 23 (4). pp. 120-123. April 1970.

[16] AMEGHINO, J.; WAINER, G. "Application of the

Cell-DEVS paradigm using CD++". In Proceedings of
the 32nd SCS Summer Computer Simulation
Conference. Vancouver, Canada. 2000.

[17] AMEGHINO, J.; TROCCOLI, A.; WAINER, G.

"Modeling and simulation of complex physical
systems using Cell-DEVS". In Proceedings of the 33rd
SCS Summer Computer Simulation Conference.
Seattle, WA. USA. 2001.

[18] AMEGHINO, J.; GLINSKY, E.; WAINER, G.

“Applying Cell-DEVS in Models of Complex
Systems”. In Proceedings of Summer Simulation
Multiconference. Montreal, QC. Canada. 2003.

[19] MUZY, A.; WAINER, G.; INNOCENTI, E.;

AIELLO, A.; SANTUCCI, J.F. "Cell-DEVS
quantization techniques in a Fire Spreading
application". In Proceedings of 2002 Winter
Simulation Conference. San Diego, CA. USA. 2002.

[20] LO TARTARO, M.; TORRES, C.; WAINER, G.

“Defining models of urban traffic using the TSC tool".
In Proceedings of 2001 Winter Simulation
Conference. Arlington, VA. USA. 2001.

[21] MacSWEEN, P.; WAINER, G. "Definition of DEVS

and Cell-DEVS models for defence applications".
Carleton University Technical Report SCE-06-04.
2004.

[22] REYNOLDS, C. W. “Steering Behaviors for Autonomous

Characters”. http://www.red.com/cwr/steer/gdc99.
Checked on December 2, 2003.

[23] The DEVS Standardization Study Group.

http://www.sce.carleton.ca/faculty/wainer/sta

ndard. Checked February 1, 2004.

Peter MacSween is a Captain in the Canadian Forces
(Defence R&D Canada) and is a M.A.Sc. student in the
School of Information Technology and Engineering at the
University of Ottawa. His research interests include the
modelling and simulation of electronic signals. His email
address is <pattyandpete@hotmail.com>.

Gabriel Wainer received the M.Sc. (1993) and Ph.D.
degrees (1998, with highest honors) of the Universidad de
Buenos Aires, Argentina, and Université d’Aix-Marseille
III, France. He is Assistant Professor in the Dept. of
Systems and Computer Engineering, Carleton University
(Ottawa, ON, Canada). He was Assistant Professor at the
Computer Sciences Dept. of the Universidad de Buenos
Aires, and a visiting research scholar at the University of
Arizona and LSIS, CNRS, France. He is author of a book
on real-time systems and another on Discrete-Event
simulation and more than 70 research articles. He is
Associate Editor of the Transactions of the SCS. He is
Associate Director of the Ottawa Center of The McLeod
Institute of Simulation Sciences and a coordinator of an
international group on DEVS standardization. His email
and web addresses are gwainer@sce.carleton.ca and
<www.sce.carleton.ca/faculty/wainer>.

