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ABSTRACT: We show how to apply a development technique to build complex simulation models using a systematic 
method in which a model evolves incrementally. The method relies on a modular, hierarchical view, in which a higher-
level model consists of a set of lower-level interactions. This view enables the reuse of simulations and components, 
where the integration. The approach relies on the use of DEVS methodology and it is supported by the use of CD++, a 
DEVS tool that has been built following the formal definitions of DEVS and Cell-DEVS. We will show how to use 
CD++ for common understanding, sharing and interoperability of model implementations, focusing in different model 
examples in the area of Defence. We will introduce means of developing independent models that can be integrated at 
the level of DEVS interactions, and will discuss how CD++ models can be composed into simulations that can execute 
in distributed environments. 
 
1. Introduction 
 
In recent years, we have witnessed tremendous advances 
in model building and simulation execution thanks to the 
improvements in software and hardware technology. The 
definition of the High Level Architecture (HLA) standard 
[1] put into discussion fundamental issues, such as model 
credibility and interoperation.  
 
The HLA focuses the on interoperation of existing 
geographically dispersed simulation assets. However, the 
HLA is not addressing how to solve the problem on 
creating the models to be executed in the simulation 
environment. Current practices in development still use 
ad-hoc techniques, trying to encapsulate models, 
simulators and experimental frames into tightly coupled 
packages. As a result, testing, maintenance and software 
reuse become a hard task.  
 
At present, there is a need to solve these problems, 
enabling interoperability (including computer-based and 
analog-based simulations), model reuse (using centralized 
or distributed repositories), while keeping high 
performance in the model execution. There are different 
efforts addressing these issues, for instance, the Base 
Object Model specifications, C4ISR, Extensible Modeling 
and Simulation Framework, Simulation Conceptual 

Modeling, etc. [2]. Other efforts consider the use of 
widely used standards like the UML, or simulation 
languages including support for execution on the RTI. 
Our proposal, instead, is based on the use of the DEVS 
formalism [3]. 
 
DEVS (Discrete Event systems Specifications) allows 
modular description of models that can be integrated 
using a hierarchical approach. DEVS has been 
successfully used in previous efforts in model 
interoperability (see, for instance, [4, 5]) providing ease 
for reuse of simulation models. Another advantage of 
using DEVS is that different existing techniques (Bond 
Graphs, Cellular Automata, State Charts, Partial 
Differential Equations, Petri Nets, Queuing models, 
Timed Automata, etc.) have been mapped to DEVS. This 
permits sharing information at the level of the model, and 
different submodels can be specified using different 
techniques, while keeping independence at the level of the 
simulation engine. Existing DEVS tools have showed 
their ability to execute such wide variety of models with 
high performance in standalone or distributed 
environments. 
 
We will show how to integrate different models defined 
independently within a DEVS framework. We will 
incrementally build such a model with support for 



interoperability at the level of the model. A first model 
shows synchronization effects between radar receivers 
and transmitters. A second example describes the 
behavior of a simple vehicle, which seeks a target. This 
cellular model was defined using Cell-DEVS [6], a 
technique created to describe cell spaces as a DEVS 
models including explicit timing delays. 
 
Our experiences were carried out on the CD++ 
environment [7, 8], which implements the DEVS and 
Cell-DEVS concepts. CD++ has been recently extended, 
and a CD++ wrapper enables executing these models on 
top of the HLA [9], enabling distributed simulation of 
DEVS models using the HLA as the enabling platform for 
distribution and coordination. We will show how two 
models built independently can be easily integrated, 
improving the facilities for reuse and interoperation, using 
CD++ as the development environment for the 
experiences. 
 
2. Background 
 
DEVS is an increasingly accepted framework for 
understanding and supporting the activities of modeling 
and simulation. DEVS is a sound formal framework based 
on generic dynamic systems, including well defined 
coupling of components, hierarchical, modular 
construction, support for discrete event approximation of 
continuous systems and support for repository reuse. 
DEVS theory provides a rigorous methodology for 
representing models, and it does present an abstract way 
of thinking about the world with independence of the 
simulation mechanisms, underlying hardware and 
middleware.  
 
A real system modeled with DEVS is described as a 
composite of submodels, each of them being behavioral 
(atomic) or structural (coupled). A DEVS atomic model is 
can be informally described as in Figure 1.  
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Figure 1. Informal description of an atomic model. 

 
Each atomic model can be seen as having an interface 
consisting of input (x) and output (y) ports to 
communicate with other models. Every state (s) in the 
model is associated with a time advance (ta) function, 
which determines the duration of the state. Once the time 

assigned to the state is consumed, an internal transition is 
triggered. At that moment, the model execution results are 
spread through the model’s output ports by activating an 
output function (λλλλ). Then, an internal transition function 
(δδδδint) is fired, producing a local state change. Input 
external events (those events received from other models) 
are collected in the input ports. An external transition 
function (δδδδext) specifies how to react to those inputs.  
 
A DEVS coupled model is composed by several atomic or 
coupled submodels, as seen in Figure 2.  

 
Figure 2. Informal description of a coupled model. 

 
Coupled models are defined as a set of basic components 
(atomic or coupled), which are interconnected through the 
model's interfaces. The model’s coupling defines how to 
convert the outputs of a model into inputs for the others, 
and to inputs/outputs to the exterior of the model.  
 
Cell-DEVS [6] has extended the DEVS formalism, 
allowing the implementation of cellular models with 
timing delays. A cellular model is a lattice of cells 
holding state variables and a computing apparatus, which 
is in charge of update the cell state according to a local 
rule. This is done using the present cell state and those of 
a finite set of nearby cells (called its neighborhood). Cell-
DEVS improves execution performance of cellular 
models by using a discrete-event approach. It also 
enhances the cell’s timing definition by making it more 
expressive [10]. Each cell is defined as a DEVS atomic 
model, and it can be later integrated to a coupled model 
representing the cell space. Cell-DEVS atomic models are 
informally defined as in Figure 3. 

 
Figure 3. Description of a Cell-DEVS atomic model. 

 
Each cell uses N inputs to compute its next state. These 
inputs, which are received through the model's interface, 



activate a local computing function (ττττ). A delay (d) can 
be associated with each cell. The state (s) changes can be 
transmitted to other models, but only after the 
consumption of this delay. Two kinds of delays can be 
defined: transport delays model a variable commuting 
time (using a queue to keep every cell change), and 
inertial delays, which have preemptive semantics 
(scheduled events can be discarded).  
 
Once the cell behavior is defined, a coupled Cell-DEVS 
can be created by putting together a number of cells 
interconnected by a neighborhood relationship. A Cell-
DEVS coupled model is informally presented in Figure 4. 
 

 
Figure 4. Description of a Cell-DEVS atomic model. 

 
A coupled Cell-DEVS is composed of an array of atomic 
cells, with given size and dimensions. Each cell is 
connected to its neighborhood through standard DEVS 
input/output ports. Border cells have a different behavior 
due to their particular locations, which result in a non-
uniform neighborhood. Finally, the model’s couplings can 
be defined. 
 
3. The CD++ toolkit 
 
CD++ [7, 8] is a modeling tool that was defined using the 
specifications presented in the previous section, and the 
basic simulation techniques introduced in [3, 6]. The 
toolkit includes facilities to build DEVS and Cell-DEVS 
models. DEVS Atomic models can be programmed and 
incorporated onto a class hierarchy programmed in C++. 
Coupled models can be defined using a built-in 
specification language. Cell-DEVS models are built 
following the formal specifications for DEVS models 
(informally presented in the previous section), and a built-
in language is provided to describe them. CD++ makes 
use of the independence between modeling and 
simulation provided by DEVS, and different simulation 
engines have been defined for the platform: a stand-alone 
version [7], a Real-Time simulator [11], and a Parallel 
simulator [12]. At present, a CD++ wrapper has been 
built, enabling CD++ simulations to run as HLA federates 
[9, 13], and the simulation engine is being extended to 

support distributed simulation of atomic models using the 
HLA. Another current effort is focused in providing 
support for development of real-time simulation in 
embedded platforms [14].  
 
CD++ is built as a class hierarchy of models related with 
simulation processing entities. DEVS Atomic models can 
be programmed and incorporated onto the Model basic 
class hierarchy using C++. A new atomic model is created 
as a new class that inherits from the Atomic base class. 
The state of a model is defined in the AtomicState class. 
When creating a new atomic model, a new class derived 
from Atomic has to be created.  
 
class Atomic : public Model  { 
public: 
virtual ~Atomic(); // Destructor 
 
protected: 
//Kernel services 
Time nextChange(); 
Time lastChange(); 
holdIn(AtomicState::State &, Time &); 
passivate(); 
ModelState* getCurrentState() ; 
sendOutput(Time &time, Port &port, Value value); 
 
 
//User defined functions. 
initFunction(); 
externalFunction(ExternalMessage & ); 
internalFunction(InternalMessage & ); 
outputFunction(CollectMessage & ); 
string className() const 
}; // class Atomic 

Figure  5. The Atomic Class 

Atomic is an abstract class that declares a model’s API 
and defines some service functions the user can use to 
write the model. The Atomic class provides a set of 
services and requires a set of functions to be redefined:  
 
- nextChange()/lastChange(): return the time until the 
next internal transition/since the last state change. 
 
- holdIn(state, Time): tells the simulator that the model 
remains in a state during a given Time. It corresponds to 
the ta(s) function of DEVS. 
 
- passivate(): sets the next internal transition time to 
infinity. The model will only be activated again if an 
external event is received. 
 
- getCurrentState(): returns the current model’s phase. 
 
- sendOutput(Time, port, value): sends an output 
message through the specified port.  
 
The new class should override the following functions: 
 



- initFunction(): method invoked by the simulator at 
the beginning the simulation.  
 
- externalFunction(ExternalMessage &): method 
invoked when an external event arrives to a port. It 
corresponds to the δext function of the DEVS formalism.  
 
- internalFunction(InternalMessage &): method 
defining the δint function of the DEVS formalism. 
 
- outputFunction(const CollectMessage &): in charge 
of transmitting the output events of the model. It 
corresponds to the λ function of the DEVS formalism. 
 
Once an atomic model is defined, it can be combined with 
others into a multicomponent model using a specification 
language specially defined with this purpose. The coupled 
model at the higher level is always named [top]. Four 
properties must be configured: components, output ports, 
input ports and links between models. The following 
syntax is used: 
 
Components: name1[@atomicClass1] name2 ... 
Lists the components of the coupled model (atomic or 
coupled). For atomic models, an instance and a class 

name must be specified, allowing a coupled model to use 
more than one instance of a given atomic class. For 
coupled models, only the model name must be given, and 
it must be defined as another group in the same file. 
 
Out: portname1 portname2 ... 
Enumerates the model’s output ports (optional clause). 
 
In: portname1 portname2 ... 
Enumerates the input ports (optional clause). 
 
Link: source[@model] destination[@model]. 
It describes the internal and external coupling scheme. If 
the name of the model is not included, the default will be 
the coupled model currently being defined. 
 
The following figure shows a sample coupled model and 
its specification in CD++. It defines a simple queuing 
system consisting of three models: a generator, in charge 
of creating requests for service, a consumer servicing 
them, and a transducer, in charge of computer metrics for 
the system. The consumer is also a coupled model, 
composed by an entity processing them, and a queue to 
keep waiting jobs. 
 

 

 
[top] 
components : Transd@Transducer Gen@Generator Consum 
Out : out 
Link : out@generator arrived@transducer 
Link : out@generator in@Consumer 
Link : out@Consumer solved@transducer  
Link : out@transducer out 
 

[Consum] 
components : Qu@Queue Proc@CPU 
in : in  
out : out  
Link : in in@qu 
Link : out@qu in@Proc  
Link : out@Proc done@qu 
Link : out@Proc out 

Figure 6. Definition of a DEVS coupled model in CD++. 

 
In the top level of this example, the Generator outputs 
will be converted into inputs for the Transducer and the 
Consumer. The Consumer also generates outputs for the 
Transducer. Likewise, the Consumer and the Processor 
influences the Queue, which influences the Processor. 
Finally, the Transducer influences the top model.  
 
CD++ also includes an interpreter for Cell-DEVS models. 
The language is based on the formal specifications of 

Cell-DEVS [6]. The model specification includes the 
definition of the size and dimension of the cell space, the 
shape of the neighborhood and borders, as presented in 
figure 4. The cell’s local computing function is defined 
using a set of rules with the form:  

 
POSTCONDITION   DELAY  { PRECONDITION } 

 



These indicate that when the PRECONDITION is 
satisfied, the state of the cell will change to the designated 
POSTCONDITION, whose computed value will be 
transmitted to other components after consuming the 
DELAY. If the precondition is false, the next rule in the 
list is evaluated until a rule is satisfied or there are no 
more rules. The following figure shows the definition of a 
very simple example implementing the "Life" game [15].  
 
[life] 
type : cell 
width : 20  height : 20 
delay : transport 
border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1)  
neighbors : (0,-1)  (0,0)  (0,1) 
neighbors : (1,-1)  (1,0)  (1,1) 
localtransition : new-life-rule 
 
[new-life-rule] 
Rule: 1 10 { (0,0) = 1 and ( truecount = 3  
                   or truecount = 4 ) } 
Rule: 1 10 { (0,0) = 0 and truecount = 3 } 
Rule: 0 10 { t } 

Figure 7. Definition of the Life game. 
 
The rules in this example say that a cell remains active 
when the number of active neighbors is 3 or 4 (truecount 
indicates the number of active neighbors) using a 
transport delay of 10 ms..  If the cell is inactive ((0,0) = 
0) and the neighborhood has 3 active cells, the cell 
activated (represented by a value of 1 in the cell). In every 
other case, the cell remains inactive (t indicates that 
whenever the rule is evaluated, a True value is returned). 
 
Complex cellular models can be defined with simple rules 
(see, for instance, [16, 17, 18, 19, 20]), using the various 
operations included in the language.  
 
4. Incremental development of a DEVS 
simulation model 
 
We have built a simulation model to integrate components 
of a Radar system model. The first stage in the definition 
of this example consisted on building a model to examine 
the synchronization effects between radar receivers and 
transmitters. When using a scanning radar receiver, the 
interception of radar signals can be severely limited if the 
scan rate of the receiver becomes synchronized with a 
radar transmitter. Every effort must be made to generate a 
receiver scan pattern that limits this effect, as it seriously 
degrades the Probability of Intercept (POI) for the 
receiver.  
 
Synchronization occurs when a particular transmitter 
sends out radar pulses periodically, with the receiver 
scheduled to scan periodically in such a manner that the 
receiver is never ‘listening’ when the transmitter is 

transmitting. This can lead to the transmitter not being 
detected by the receiver, even though it may be 
transmitting. Radar transmitters transmit on a particular 
frequency, with a particular pulse rate, azimuth, and beam 
width. Scanning Radar Receivers receive on a tuned 
frequency (for a specified duration), with a particular 
azimuth and beam width, and have a ‘tuning time’ 
associated with the change from one listening frequency 
to another. The sequential operation of the receiver that 
defines the tuned-frequency, listening-time, azimuth, and 
beam width are specified by a ‘scan pattern’. 
 
Receivers can communicate with each other, with each 
receiver notifying the other receivers about radar 
transmitters that have been detected.  Each receiver is 
connected to a simple communications bus, and it 
maintains a tracking table containing all the information 
about the currently known transmitters. 
 
In order to analyze the behavior or this system, we built a 
DEVS model, whose structure is the one presented in the 
following figure. 
 

Figure 8. Structure of the Radar Tx/Rx model. 
 

The first step was to identify and define each one of the 
model components. Once identified, a DEVS atomic 
model was built for each subcomponent. Following, we 
exemplify the definition of one of these models by 
showing the Tracking Table atomic model. The Tracking 
Table model is responsible for maintaining the list of 
transmitters that are ‘known’ to the local receiver. 
 

Tracking Table = < S, X, Y, �int, �ext, ta, � > 
S = { Receive_Update_From_Bus, 

Wait, 
New_Signal_Detected, 
Send_Update_To_Bus, 
Notify_New_Freq } 

 
X = { signal_props, 

bus_receive_freq, 
bus_receive_id } 

 
Y = {  bus_send_freq, 

bus_send_id, 



new_freq } 
 
�int = { �int(Receive_Update_From_Bus) =  

Notify_New_Freq, 
�int(Notify_New_Freq) = Wait, 
�int(New_Signal_Detected) =  

Send_Update_To_Bus, 
�int(Send_Update_To_Bus) = Wait } 

 
�ext = { �ext(Wait, signal_props) = New_Signal_Detected, 

�ext(Wait,bus_receive_freq) =  
Receive_Update_From_Bus } 

 
ta = { ta(Receive_Update_From_Bus) =  

UPDATE_TIME, 
ta(New_Signal_Detected) = PROCESS_TIME, 
ta(Send_Update_To_Bus) = BUS_TIME, 
ta(Notify_New_Freq) = NOTIFY_TIME } 

 
�(S) = { �(New_Signal_Detected) =  

(bus_send_freq,bus_send_id), 
�(Receive_Update_From_Bus) = new_freq } 

 
This model evolves through different states (S): Receive 
an update from the bus, wait, detection of a new signal, 

transmission of an update to the bus, or notification of a 
new frequency. The model changes from one state to the 
other by executing the transition functions. As seen in the 
external transition (�ext), from a wait state, the tracking 
table receives information from either the local receiver 
(signal props, one of the external input events) or the 
communication bus (receive freq). If the local receiver 
detects a new signal, the signal is appended to the local 
tracking table, and an update is sent over the bus for use 
by any remote tracking tables. If the local tracking table 
receives an update from the bus, it appends the 
information to the local tracking table and notifies the 
local receiver. The Tracking Table then returns to a wait 
state. 
 
The model was subsequently built in CD++ using the 
state machine specification presented in the following 
figure. CD++ shows two views of the state machine: the 
left side of the GUI contains a sorted tree diagram, and  
the right side contains a visual representation of the 
model. The five states of the tracking table are 
immediately apparent. External transitions are displayed 
as dashed lines, with internal transitions as solid lines. 
The input and output ports are visible in the tree diagram. 

 

 
Figure 9. Specification of the Tracking Table model. 



Each of the models presented in Figure 8 were thoroughly 
tested, and they performed as described in their 
conceptual model specifications (further details about the 
definition of each of the models can be found in [21]). A 
problem with the specification of the network receiver 
was revealed while testing (the tracing of the signals that 
are received by the network receivers became very 
difficult when numerous signals are transmitted, and the 
receivers start to share information). 
 
[top] 
components: tr1@Transmitter tr2@Transmitter     
            tr3@Transmitter netrx1 netrx2 
out: notify1 notify2 notify3 
Link: pulse_out@tr1 ext_signal@netrx1 
Link: pulse_out@tr1 ext_signal@netrx2 
... 
Link: notify@netrx1 notify1 
Link: notify@netrx2 notify2 
... 
 
[netrx1] 
components:tt1@Tracking_Table 
rx1@Scanning_Receiver 
in: ext_signal brf brid 
out: notify bs_id bs_freq 
Link: ext_signal ext_signal@rx1 
Link: brf bus_receive_freq@tt1 
Link: brid bus_receive_id@tt1 
... 
Link: bus_send_freq@tt1 bs_freq 
 
[rx1] 
freq_lower_bound: 18000 
freq_upper_bound: 20000 
 
[tt1] 
table_id: 1 
 
[netrx2] 
components:tt2@Tracking_Table 
rx2@Scanning_Receiver 
in: ext_signal brf brid 
out: notify bs_id bs_freq 
Link: ext_signal ext_signal@rx2 
Link: brf bus_receive_freq@tt2 
Link: brid bus_receive_id@tt2 
Link:detected_signal_properties@rx2 
signal_props@tt2 
Link: new_freq@tt2 ext_signal@rx2 
Link: notify@rx2 notify 
Link: bus_send_id@tt2 bs_id 
Link: bus_send_freq@tt2 bs_freq 
 
[rx2] 
freq_lower_bound : 21000 
freq_upper_bound : 22000 
 
[tt2] 
table_id : 2 
 
[tr1] 
frequency : 19000 
pulseDuration : 00:00:00:5 
pulsePeriod : 00:00:00:40 
... 

Figure 10. Coupled model definition: Radar Tx/Rx. 

The use of the formal specification defining the atomic 
and coupled model behavior was very useful in debugging 
the models when they were implemented. The iterative 
procedure of updating the formal specification, then 
updating the implementation was quite efficient. 
Following these iterations resulted in the models 
matching the specifications. 
 
Once this stage was completed, a Coupled Model was 
built, integrating all of the systems’ components. The 
description of this model can be found in Figure 10. This 
coupled model defines the situation as described in Figure 
8. Three Transmitter atomic models are configured with 
different frequencies and pulse characteristics (tr1, tr2, 
and tr3). Two network receivers (another coupled model 
containing a scanning receiver and tracking table) are 
configured (netrx1, netrx2), each listening to different 
frequency bands. 
 
The various atomic models contained in the previously 
defined coupled model were tested using different 
scenarios, including the following: 
• Transmitter: pulse sent at 22kHz, Pulse Width = 3 

ms, Pulse Interval = 30 ms. 
• Scanning Receiver set to listen for pulses between 

18kHz and 25kHz. 
• Tracking table: test that a signal is recorded and a bus 

message is sent, then test that bus messages are 
received correctly. 

• Network Receiver: Test the reaction to a signal and to 
bus messages. 

• Net_Of_ Network_Receiver_With_Transmitter: 
- Transmitters send on frequencies which are not 

being scanned: 
- Transmitters send on frequencies which are 

scanned by Network Receiver #1 only 
- Transmitters send on frequencies which are 

scanned by Network Receiver #2 only 
- Transmitters send on frequencies which are 

scanned by both Network Receivers 
 
The following figure shows the result of the testing 
scenario for the network with a transmitter. In this case, 
the transmitter sends out pulses at 24kHz, Pulse width of 
5 ms, Pulse interval of 40 ms. Bus Message at t=20 ms. 
Receiver listening between 22kHz and 25kHz. 
 
As we can see in the figure, the receiver gets a signal 
from the transmitter every 40 ms, and a bus message at 
t=20ms. The bus message is ignored because it is not 
within the listening range of the receiver (19 kHz and the 
receiver is listening from 22 to 25 kHz). Note that the  
model does not queue received pulses or bus messages. 
For each pulse received by the local transmitter, a bus 
message is generated after a delay of 15 ms.. The bus 
message stays active for 40ms. 



Events Outputs 
00:00:20 brf 19000 
00:00:20 brid 3 

00:00:001 notify 1 
00:00:016 bs_id 1 
00:00:016 bs_freq 24000 
00:00:026 bs_id 0 
00:00:026 bs_freq 0 
00:00:041 notify 0 
00:00:081 notify 1 
00:00:096 bs_id 1 
00:00:096 bs_freq 24000 
00:00:106 bs_id 0 
00:00:106 bs_freq 0 
00:00:121 notify 0 
00:00:161 notify 1 
00:00:176 bs_id 1 
00:00:176 bs_freq 24000 
00:00:186 bs_id 0 
00:00:186 bs_freq 0 
00:00:201 notify 0 
00:00:241 notify 1 
00:00:256 bs_id 1 
00:00:256 bs_freq 24000 
00:00:266 bs_id 0 
00:00:266 bs_freq 0 
00:00:281 notify 0 

Figure 11. Testing scenario: network with transmitter. 
 
During this phase, we were able to detect a problem with 
the specification of the network receiver: the signal 
information received by the bus was sent to the scanning 
receiver, which treated it like an external signal (thus 
causing a second bus transmission). The specification was 
corrected so that signal information is not re-sent over the 
bus. 
 
A different model, built using Cell-DEVS, describes the 
behavior of a simple vehicle, which seeks a target [22]. 
As showed in the following figure, the seeker acts to steer 
a vehicle towards a specified position in global space. 
This behavior adjusts the vehicle so that its velocity is 
radially aligned towards the target [22].  
 

 
Figure 12. Informal behavior of the Seek model. 

 
Using the hierarchy of motion behaviors defined in [22], 
the “Action Selection” of the seek behavior is specified 
by dictating the destination location. The Simple Vehicle 
Model has the following attributes: 

{mass scalar, position vector, velocity vector, max_force 
scalar, max_speed scalar, orientation, N basis vectors}, 
where N=2 
 
The motion of the model is defined by: 
steering_force = truncate (steering_direction, max_force) 
acceleration = steering_force / mass 
velocity = truncate (velocity + acceleration, max_speed) 
position = position + velocity 
 
and the new basis vectors by: 
new_forward = normalize (velocity) 
approximate_up=normalize (approximate_up) // if needed 
new_side = cross (new_forward, approximate_up) 
new_up = cross (new_forward, new_side) 

 
The seek behavior motion is defined by: 
desired_velocity=normalize (position-target)*max_speed 
steering = desired_velocity - velocity 
 
To model the seek behavior using Cell-DEVS, it was 
necessary to create discrete states to represent the 
‘current’  behavior of the simple vehicle. The following 
state variable was used: 
 

State Description 
Current 
Velocity 

A state indicating a vehicle with no 
velocity, or motion in one of 8 directions: 
moving diagonally up and left (value=1), 
up (2), diagonally up and right (3), left 
(4), stationary (5), right (6), diagonally 
down and left (7), down(8), diagonally 
down and right(9) 

 
The model uses the following neighborhood definition: 
 
N = { (-2,-2) (-2,-1) (-2, 0) (-2,1) (-2,2) (-1,-2) (-1,-1)  
(-1,0) (-1,1) (-1,2) (0,-2) (0,-1) (0, 0) (0,1) (0,2) (1,-2)  
(1,-1) (1, 0) (1,1) (1,2) (2,-2) (2,-1) (2, 0) (2,1) (2,2) } 
 

 
Figure 13. Definition of update rules. 

 



An input was provided to each cell to specify the Desired 
Velocity of the vehicle. The model rules detail the 
discrete motion that was implemented to simulate the 
effect of a desired velocity on a vehicle. Multiple 
combinations of actual and desired velocity could result in 
the same destination cell for a vehicle.  
 
With the many combinations of velocities, the possibility 
for collisions is great. The neighborhood for each cell is 
dependant on its velocity. A simple priority is used when 
multiple cells want move into the same cell. Stationary 
vehicles have the highest priority , “Up and left” have the 
lowest, and “Down and right” have the second highest.  
 
The model was completely implemented in CD++ 
following the previous rule specifications, and it and first 
tested using a single vehicle, with different initial 
velocities and different desired velocities. After all the 
rules were implemented, all possible velocities were 
tested in all possible desired velocities. Following that, 
collisions were tested using multiple vehicles. 
 
The following figures display the two state variables 
employed in the definition of the Cell-DEVS model 
(displayed side-by-side). The left-hand plane (mostly 
white) displays the current location and velocity of the 
three vehicles. The right-hand plane describes the ‘desired 
velocity vector field’ of the vehicles. The ‘desired 
location’ for all three vehicles is the center of the plane, 
and the ‘desired velocity vectors’ steer them to that point. 
 

 
 

 
Figure 14. Three vehicles seeking the desired location. 
 
As we can see, the three vehicles enter from the top-right 
corner of the plane, and they stop when they cannot move 
any closer to the ‘desired location’.   
 
The vehicles enter (at time 0, 500, and 900 ms) with a 
velocity different from the desired velocity, and each acts 
in accordance with the state transitions to ‘turn’ to the 
desired velocity. At 1.2 seconds, the first vehicle enters a 

region with a different desired velocity. Note that the 
vehicle (and each subsequent vehicle) ‘turns’ to the 
desired velocity. 
 
The first vehicle reaches the target cell at 1.5 seconds, and 
stops. The other vehicles follow the same path, and once 
they cannot move any closer to the target cell, they stop 
moving. 
 
The following figures display a snapshot of the test where 
vehicles enter the plane from various locations and with 
different velocities (each must respond to the desired 
velocity in accordance with each current velocity).  
 

 
(a) 

 

 
(b) 

Figure 15. Seekers with collision avoidance. 
  
Initially (Figure 15.a), the vehicles moving towards the 
center. Then, a second set of vehicles (with different 
initial velocity) enters the plane. They are space closely 
together to generate collisions. The final steps present a 
vehicle ‘jam’ as the vehicles move towards the desired 
location.  
 
The final stage of development consisted in showing how 
to provide interoperation of these models by allowing 
interaction of the components. This interaction is done at 



the level of the model, and no contact with the simulation 
engine is needed, as the models only communicate at the 
level of their interfaces. Let us consider, for instance, the 
existence of a new model, Radar. The radar model is 
prepared to scan a cell space according to a given 
frequency. The following figure shows how to integrate 
this new model with the two other models defined earlier 
in this section. These three models were built 
independently, but they can be easily integrated thanks to 
the definition of DEVS interfaces. 
 

 
 

Figure 16. Multimodel integration. 
 
The Transmitter/Receiver model is used to start radar 
scanning activities. Upon activation, the Radar will scan 
the field defined by the Seek Cell-DEVS model, and will 
generate two outputs: a reception signal for the 
Transmitter/Receiver, and a number of Operator 
Messages according to the values received in the field. 
The Seek model advances independently of the execution 
of the radar, because these models are built as discrete-
event specifications, and each subcomponent progresses 
according its own internal time base. In CD++, the 
coupled model defining the composition of the submodels 
can be defined as in Figure 17. 
 
As we can see, our top model is now integrated by the 
three original components. We initially define the model's 
coupling using the description presented in Figure 16. 
Then, we show the definition of the seek model (which is 
the one previously used to produce the simulation results 
presented in figures 14 and 15). The model produces 
outputs that can be used by the Radar model.  
 
We have defined a zone in which the cells will generate 
outputs (by using the out-rule definition). Finally, the Tx-
Rx model, defined earlier in Figure 10, includes two new 
input/output ports in order to provide interaction with the 
Radar model. This model is not defined in the file, as it 
has been defined as a DEVS atomic models, and we just 
need to define the coupling between this model and the 
remaining components. 
 

 
[top] 
components : seek Tx-Rx radar@Radar 
out : op-msg 
link : seek-out@seek seek-out@radar 
link : op-msg@radar op-msg 
link : scan@tx-rx scan@radar 
link : receive@radar receive@tx-rx 
 
[seek] 
type : cell 
dim : (20,30) 
delay : transport    
border : wrapped 
out : seek-out 
neighbors : (-2,-2) (-2,-1) (-2,0) (-2,1) (-2,2) 
neighbors : (-1,-2) (-1,-1) (-1,0) (-1,1) (-1,2) 
neighbors : (0,-2)  (0,-1)  (0,0)  (0,1)  (0,2) 
neighbors : (1,-2)  (1,-1)  (1,0)  (1,1)  (1,2) 
neighbors : (2,-2)  (2,-1)  (2,0)  (2,1)  (2,2) 
 
% Cells producing outputs 
zone : out-rule { (10,0)..(19,19) } 
link : outTRP@seek(10,0)..(10,19) seek-out 
localtransition : out-rule 

 
[out-rule] 
rule : {(send(1, y-t-room)} 0 { t } 
 
localtransition : move-rule 
 
[move-rule] 
% Rules which do not allow a move to occur 
(collision avoidance) 
rule : 5 100 {  
  % Moving up and left  
  (  
    ( ((0)=1) and ((0,1)=1) ) or 
 ( ((0,0)=5) and ((0,1)=1) ) or 
 ( ((0,0)=2) and ((0,1)=1) ) or 
 ( ((0,0)=2) and ((0,1)=4) ) or 
 ( ((0,0)=2) and ((0,1)=7) ) or 
 ( ((0,0)=4) and ((0,1)=1) ) or 
 ( ((0,0)=4) and ((0,1)=2) ) or 
 ( ((0,0)=4) and ((0,1)=3) ) 
  ) 
... % Remaining moving rules 

 
 [Tx-Rx] 
components: tr1@Transmitter tr2@Transmitter     
            tr3@Transmitter netrx1 netrx2 
out : notify1 notify2 notify3 scan 
in : receive 
... 
% Same as the previously defined model 

Figure 17. Defining a multimodel in CD++. 
 
This model can be executed in parallel Cell-DEVS by just 
defining a partition file as follows: 
 
0 : Tx-Rx  

1 : radar 

2 : seek(0,0)..(9, 19) 

3 : seek(10,0)..(19,19) 

4 : seek(20,0)..(29,19) 

Figure 18. Partition file for distributed execution. 



This model will be split in 5 processors, which will 
execute different parts of the model driven by the CD++ 
simulator [6]. We can also split the three submodels and 
execute them using a CD++ HLA wrapper [13]. The 
wrapper is in change of creating a federate for each 
component, launch the execution of the federation, and 
synchronize the timing of the subcomponents using the 
RTI timing services (further information on how to use 
this wrapper can be found in [14]).  
 

 
Figure 19. A multimodel in CD++/HLA wrapper [14]. 

 
5. Conclusion 
 
We have showed a development technique to build 
complex simulation evolving incrementally from simple 
subcomponents to complex simulations. The method 
relies on the use of DEVS, which provides an 
incremental, hierarchical view. This view enables the 
reuse of simulations and components, where the 
integration of simulations and components is seamless.  
 
The experiments were carried out using CD++, a DEVS 
tool that has been built following the formal definitions of 
DEVS and Cell-DEVS. The models were developed 
independently, and were later integrated at the modeling 
level. These models can be integrated into simulations 
that can execute in  distributed environments. At present, 
we are working on an extension of CD++ that will be able 
to run distributed models on top of the RTI. 
 
The use of DEVS can improve the security and cost in the 
development of the simulations. The main gains are in the 
testing and maintenance phases, the more expensive for 
these systems. The use of a formal approach like DEVS 
made easy the development of the applications. 
 
We are currently working on a standardized version of 
DEVS models within a DEVS Study Group [23], whose 
goal is to provide a standardized version of DEVS 
models, enabling the multiple existing DEVS 
environments to interact, and to include non-DEVS 
models in larger simulations. In this way, we will be able 
to shorten the gap existing between academic versions of 

DEVS, and industrial/government needs. Having 
standardized means of defining models will enable 
defining standard libraries that can be integrated in user-
friendly modeling and simulation environments. 
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