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Abstract: We propose a method to analyze complex physical 
systems (like engineering systems or structures) using 
two-dimensional Cell-DEVS models. These problems are usually 
modeled as one or more Partial Differential Equations and solved 
through numerical methods, and our goal is to improve the defi-
nition of such problems by mapping them into the Cell-DEVS 
formalism. We used two methods for solving PDEs, and deduced 
the discrete event updating rules for their mapping to Cell-DEVS. 
In our simulation results, the accuracy of the Cell-DEVS solution 
was same of these previous methods, showing that we can use 
Cell-DEVS as a tool to solve systems of equations resulting from 
approximating the solution of PDEs. Simultaneously, we are 
provided with a simpler mechanism for model definition, auto-
mated parallelism, and faster execution. 
 
1. INTRODUCTION 
 
In recent years, there has been a trend in studying complex natural 
or man-made physical systems using modeling and simulation 
techniques. These problems were usually modeled with differen-
tial equations, and by traditional analysis, these equations were 
solved analytically, an approach that works only for very simple 
systems. Invention of digital computers permitted the use of 
advanced numerical methods. One of such methods, the finite 
element analysis [1] has been used successfully to analyze com-
plex engineering and physical systems. The Finite Elements 
Method (FEM) defines a solution satisfying the partial differential 
equation on average over a finite element, which is connected to 
neighboring elements, and the field under study is analyzed by 
propagating the current values from one element to another 
through connection points. 
 
We have explored the use of the Cell-DEVS formalism [2][3] to 
model and solve problems usually tackled by FEM. We intend to 
use FEM as a very precise technique for defining the problem, 
while having the simplicity of a cellular approach to facilitate 
model definition. The use of Cell-DEVS also enables integration 
with other existing DEVS [4] and Cell-DEVS models permitting 
to define multi-paradigm models. An advantage of this approach 
is that in real life systems are often composed of continuous and 
discrete components interacting together. This dictates the need to 

integrate both models and simulate their global behavior. DEVS 
provides means for modeling discrete event systems, while 
Cell-DEVS enables modeling different continuous systems. Fi-
nally, in building these models as Cell-DEVS, we can make use of 
existing infrastructure, including parallel simulators and distrib-
uted environments. We describe a method for mapping problems 
modeled by partial differential equations and solved by finite 
differences or FEM, into a Cell-DEVS specification. We first 
describe the physical system modeled, and show how to obtain 
the cell update rules from an approximate solution. 
 
2. BACKGROUND 
 
FEM was originally created to solve problems of structural me-
chanics, and it was later applied to many other problems in engi-
neering. FEM provides piecewise approximation of a partial 
differential equation over a continuum. A finite element is a dis-
crete piece of that continuum. In FEM problems, we usually find 
two major components that can be identified within each element: 
field, and potential. The field is a quantity that varies with position 
within structure analyzed. The fields are related to the potentials 
as their derivatives with respect to position. The potential can be 
thought as the driving force for the spread of the field in the ma-
terial. For example, temperature difference would cause a heat 
flux from one point to another through a material. The heat flux 
direction and quantity is related with the difference in temperature 
(temperature gradient).  
 
FEM is a mathematical procedure for satisfying a partial differ-
ential equation over an element. If the field variable is following a 
simple function over the finite element, we can approximate the 
solution of the partial differential equation over that element. 
Elements in the structure are connected together through the 
vertices on boundaries of each element, which are called nodes. 
Solving the problem using FEM includes the following: 
1. Divide the structure under study into a large number of 

simple geometry elements. 
2. The spatial solution in that element would be represented 

with an assumed simple interpolation or shape function over 
the element.  

3. The differential equations can be solved for that particular 
simple element using the assumed shape function of the 
change of potential in that element.  



 

4. As all the elements in the structure are connected together 
through their nodes, we obtain a system of equations repre-
sented in a form of N x N matrices for the whole structure 
(where N represents the number of elements in that struc-
ture). These values would be used to get the unknown 
potential inside the structure.  

5. The global equations are solved using a suitable mathe-
matical method. The final solution would give the distribu-
tion of the potential over the structure, represented by the 
values obtained at the nodes of each element.  

 
Cell-DEVS is a novel approach to represent models of real sys-
tems as cell spaces. Cell-DEVS uses the DEVS (Discrete EVents 
systems Specifications) formalism [4] to define a cell space where 
each cell is defined as a DEVS model. This technique permits to 
build discrete-event cell spaces, and it improves their definition 
by making the timing specification more expressive.  

 
In Cell-DEVS, each cell of a cellular model is defined as an 
atomic DEVS model. Cell-DEVS atomic models use N inputs to 
compute the future state S using the function ττττ. The new value of 
the cell is transmitted to the neighbors after the consumption of the 
delay function. Delay defines the kind of delay, and d its duration.  
 

 
Figure 1: Informal Definition of Cell-DEVS [3]. 

 
Once the atomic cell model is defined, a number of cells can be 
put together to form a coupled model, built as an array of atomic 
cells. A Cell-DEVS coupled model is defined as an array of 
atomic cells with size {t1 x...x tn}. Each cell in the space is con-
nected to the cells defined by the neighborhood N. The border B 
cells can use a different behavior than the remaining cells. The Z 
function allows one to define the internal and external coupling of 
cells in the model. Xlist and Ylist are input/output coupling lists can 
be used to interchange data with other models. 
 
The CD++ tool [5] was developed following the formal defini-
tions of the Cell-DEVS formalism. CD++ is a tool to simulate both 
DEVS and Cell-DEVS models. DEVS models can be written in 
C++, and Cell-DEVS models are described using a built-in speci-
fication language. The language provides a set of primitives to 
define the size of the cell-space, the type of borders, a cell’s in-
terface with other DEVS models and a cell’s behavior.  
 
FEM models resembles to a large extent Cell-DEVS models, in 
which changes of a cell value would trigger its neighboring cells to 

change themselves, as though a field is propagating through all of 
them. The following sections will be devoted to show how 
Cell-DEVS can be used to describe FEM models. The idea is to 
describe the model in terms of cell behavior, discrete event inter-
action and timing delays. 
  
3. 2-D CELL-DEVS TRANSFER MODELS 
 
In order to define a Cell-DEVS model, we need to describe every 
cell’s local transition function (τ ) as explained in the previous 
section. Let us consider the heat transfer model originally pre-
sented in [1]. This example represents a steady state 2-D heat 
transfer in a bar of rectangular cross section with thermal con-
ductivity coefficient k =1.5 W/m2 oC. Two opposite sides are kept 
at constant temperature of 180o C; one side is insulated and the 
other is exposed to a fluid with temperature of 25 oC and convec-
tion heat transfer coefficient h = 50 W/m2 oC. A graphical repre-
sentation of the problem is depicted in Figure 2.  
 

 
Figure 2: Steady-State heat transfer in a long bar. 

 
In order to define this model using Cell-DEVS, we define a finite 
grid in the bar, and we map the equations for each node on the 
grid into a set of rules for updating the value of a corresponding 
cell at a Cell-DEVS model. We have deduced the Cell-DEVS 
updating rules by considering two methods for numerical solution: 
finite differences and finite elements. With the aim of deducing 
equations from Finite Differences, we wrote the general partial 
differential equations for a steady-state heat transfer through a 
material, and then we approximated these equations using finite 
differences, obtaining the updating rules for our Cell-DEVS 
model. 
 
Heat transfer occurs when there is a temperature difference within 
a body or between a body and its surrounding medium. Heat 
flows from hot spots towards cooler ones. Heat conduction in two 
dimensions steady state isotropic medium is given by: 
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where q is the heat flux (W/m2 ), k is the thermal conductivity of 
the material (W/m. oC), T = T(x,y) is the Temperature field in the 



 

medium, and xT ∂∂ / , yT ∂∂ / are the temperature gradients over x 
and y respectively. The minus sign is to indicate that the direction 
of heat flux is opposite to direction of increasing temperature. 

 
In convection heat transfer, the heat flux is given by: 

)( sTThq −= ∞      (2) 

where h (W/m2.oC) is the film coefficient is a property of the fluid 
around the surface, ∞T  and sT  are fluid and surface tempera-
ture respectively. 

 
Here we apply these equations to a small one-dimensional ele-
ment, assuming a linear temperature distribution along its length, 
the resulting heat flux equation would be: 

)( lh TTkq −= , where Th,and Tl are the high and low tempera-

tures of its ends respectively. A steady heat transfer without heat 

generation in the body in 2D is represented by the following 

diffusion equation [6]: 
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To solve the above equation, we need to get the second derivative 
of the temperature gradient. To do so, we study a steady-state heat 
transfer in a long rod as represented in Figure 3. In this figure, we 
study a very small section of one-dimensional rod. Points A, B 
and C along the rod have corresponding temperatures of T1, T2, 
and T3 respectively. Distances between points in the section are 
as indicated on the figure. To get the temperature gradient along 
small section, we assume a linear temperature change in x direc-
tion over the very small finite space �x. 

 

 
Figure 3: Heat transfer in one dimension. 
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temperature gradient at point C is: 
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By applying the previous result in a two-dimensional space, we 
can approximate the solution of the previous PDE as: 
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From which we obtain:  T1 + T2 + T3 + T4 – 4T0 = 0 
This equation relates nodes temperatures of the grid. Thus, it 
gives us the updating rule for an internal node as node 0 in to be: 
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These results are for a steady-state heat transfer in a homogeneous 
medium with constant coefficient of thermal conductivity k in all 
directions. We still need the updating rules for a point on the 
insulated surface, or on the convective side of the rod. Using a 
similar procedure (described in detail in [7]), we have deduced 
the rules for a node on the insulated boundary and on the convec-
tive boundary as follows: 
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We have defined a method to deduce Cell-DEVS model updating 
rules from Finite Elements model for 2-Dimensional problems 
and we applied them to a 2-D triangular finite element with 
equations of steady state heat transfer. We used a linear change 
function of the field under study over the triangular element. After 
getting the matrix equation for one element, we construct a mesh 
of elements connected together to apply equilibrium equations 
over those elements, and thus can deduce a node temperature as a 
function of its surrounding nodes. This function would be the 
updating rule for cells in our Cell-DEVS model that represents 
2-D Finite Elements model of steady-state heat transfer. These 
updating rules would be used for internal nodes inside the bar. 
Similarly, we would need to construct another mesh to study 
boundary nodes on the convective side. We have used the fol-
lowing triangular element. 
 

 
Figure 4. Triangular Element. 

 
The element in Figure 4 has three nodes; each at a vertex of the 
triangle, and this would contain a value for the field under study, 
for example temperature values. This type of element (called 
Constant Strain Triangular) was used historically to analyze body 
strain problems. Any internal point in the element as P can be 
evaluated as a function of the three nodes values. We use here a 
simple triangular element that assumes a linear function over the 
element for the field under study. That is: Tp = N1T1 + N2T2 + 
N3T3, where N1, N2, N3 are linear shape functions.  



 

With further manipulations, we can get temperature gradient 
inside the element as  
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y2-y3, x32 = x2-x3,..., and A is the area of the triangular element. 
 
The final steady state equations for the element can be repre-
sented in a matrix format as: K T = R, where K is the stiffness 
matrix that contains the thermal coefficients of the element, T is 
the nodes temperatures vector, and R is the heat Rate vector at 
each node (the underline denotes a Matrix). For detailed ma-
nipulations, please refer to [1] and [10]. In order to get the up-
dating rules for the Cell-DEVS, we construct a mesh of elements 
to represent a recurring pattern inside the structure under study. 
The mesh is shown in Figure 5. 

 
Figure 5. Internal mesh of triangular elements. 

 
The figure shows a mesh composed of six elements marked as E1, 
E2,...,E6. Those elements have their nodes numbered as shown 
from zero to six. The middle node 0 is shared among all the ele-
ments, thus its value would be a function in all other elements. By 
studying this structure, we would be able to deduce the updating 
rules for node 0, which would then repeat again for all similar 
internal nodes. Doing a similar mathematical manipulation of 
these equations (as explained in [7]), we were able to find the 
equations corresponding to the local rules of our Cell-DEVS 
models:  
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the finite differences method for an internal node. In order to get 
the updating rules for boundary conditions, we would need to 
construct the mesh in the same way at the insulated and convec-
tive boundaries. The mesh would then be studied using the same 
procedure. 
 
4. CELL-DEVS IMPLEMENTATION 
 
In this section, we will present the definition of some of the pre-
vious examples as Cell-DEVS models in the CD++ environment. 
We start by solving the problem introduced in Figure 2. To do so, 
we divide the bar as shown in Figure 6 into a grid of 6 rows X 4 
columns that contains 7 X 5 nodes. Nodes are located at every 
lines intersection in the grid. We use the updating rules obtained 

previously to model this grid with Cell-DEVS in which, each cell 
in the model would represent a node on the grid 

 

Figure 6: 7 X 5 nodes Grid of Finite Differences. 
 
Figure 7 represents the model definition in CD++, considering 
that cells on constant temperature boundaries are initialized with 
value of 180 oC.  
 
[heatcond] 

type : cell          dim : (7,5) 

delay : transport   border : nowrapped  

neighbors : (-1,0) (0,0) (0,1) (1,0) (0,-1)    

localtransition : conduction-rule 

zone : Insulated-Boundary { (1,0)..(5,0) } 

zone : Constant-Temp  { (0,0)..(0,4) } 

zone : Constant-Temp { (6,0)..(6,4) } 

zone : Convective { (1,4)..(5,4) } 

 

[conduction-rule] 

rule : { ((0,1)+(-1,0)+(0,-1)+(1,0)) / 4  } 1 { t }  

 

[Insulated-Boundary] 

rule : {((-1,0)+(1,0)+2*(0,1)) / 4} 1 {t} 

 

[Constant-Temp] 

rule : {(0,0)} 1 {t} 

 

[Convective] 

rule : {( ((1,0)/2)+((-1,0)/2)+(0,-1)+ (25 * 

(10/3)) )/(2 + (10/3)) }  1 {t} 

% Fluid temperature: 25, and h.a/k is (10/3) 
Figure 7: Model definition in CD++ for 7 X 5 nodes grid. 

 
In the figure, heatcond is a two-dimensional Cell-DEVS space 
with 7 rows and 5 columns using transport delays. The border 
is nowrapped, hence, border cells are not connected to the 
opposite side border cells. Then, we define the neighborhood 
shape for each cell. Localtransition specifies the name used 
for the local computing function, and it is defined as a set of 
updating rules for each cell depending on its location on the grid. 
By default, each cell would follow the conduction-rule, unless it 



 

is located at one of the defined zones, which define the border 
conditions. Therefore, [conduction-rule] uses updating 
rule 1 defined above. Likewise, [Insulated-Boundary] uses 
updating rule 2, and [Convective] uses updating rule 3. CD++ 
provides many built-in functions and constructs. A more detailed 
description of these facilities can be found at [3], [7] and [9]. 
 
Line : 91 - Time: 00:00:00:000 

         0    1    2    3    4  

    +--------------------------------+ 

   0|  180.0 180.0 180.0 180.0 180.0 | 

   1|   20.0  20.0  20.0  20.0  20.0 | 

   2|   20.0  20.0  20.0  20.0  20.0 | 

   3|   20.0  20.0  20.0  20.0  20.0 | 

   4|   20.0  20.0  20.0  20.0  20.0 | 

   5|   20.0  20.0  20.0  20.0  20.0 | 

   6|  180.0 180.0 180.0 180.0 180.0 | 

    +--------------------------------+ 

     .  .  . 
Line : 29358 - Time: 00:00:00:204 

          0    1    2    3    4  

    +-------------------------------+ 

   0|  180.0 180.0 180.0 180.0 180.0| 

   1|  158.4 155.3 144.1 118.7  58.7| 

   2|  143.3 138.4 122.6  92.0  42.1| 

   3|  137.9 132.6 115.6  84.8  39.4| 

   4|  143.3 138.5 122.6  92.0  42.1| 

   5|  158.4 155.3 144.1 118.7  58.7| 

   6|  180.0 180.0 180.0 180.0 180.0| 

    +-------------------------------+ 
Figure 8: Results for 7 X 5 nodes grid of finite differences. 

 
When we executed this model in CD++, we have obtained the 
results shown in Figure 8. In Figure 10, we show CD++ outputs 
on grid like the one in Figure 6 for easy reading. The results 
shown in Figure 8 include the simulation time and cell’s values at 
each time step. In this output file, each cell value is printed at its 
corresponding row and column. Thus, at the start of the simula-
tion, cells (0,0) to (0,4) and (6,0) to (6,4) all had a value of 180, 
and the rest of the cells have a value of 20. At the final two steps, 
cell values do not change, causing the simulation to end (there is 
no cell that would be triggered by a changing neighbor). At this 
step, cell values would represent the solution of the problem, 
namely, the temperature distribution though the bar.  
 
The type of diffusion problems as defined with previous PDE is 
practically solved using numerical methods such as FEM or finite 
differences for the reason that exact analytical solutions can only 
be obtained for simple geometries and boundary conditions. Such 
an analytical exact solution would be an ideal choice to compare 
precision of results obtained from CD++. For the difficulty of 
obtaining exact solution for this problem, we have compared 
results obtained from CD++ solution with those obtained by FEM. 
We have solved the problem with FEM to show convergence of 
its results with those of our Cell-DEVS method. In first solution, 
we divided the bar into six elements (we show the execution 
results in Figure 9). The heat diffusion problem as defined by the 

PDE in section 3.1 has been solved to get closed form solution, 
only in very simple cases and shapes. Therefore, we used a 
proven software tool to solve the same problem, and used the 
results to validate our simulation. To do this, we used the FEM 
software included in [1]. We divided the bar into six triangular 
Finite Elements as shown in Figure 9. Execution results are 
shown besides each node.  

 
Figure 9: Results for a mesh of 6 Triangular Finite elements. 

 
In order to enhance the precision of our validation results, and to 
capture the steep temperature gradient over the convective side, 
we solved the same problem using more Finite elements. Using 
the sample program provided with [1], the same example was 
solved by using 192 triangular elements with 117 distinct nodes.  
 
180 180 180 180 180 180 180 180 180 
169 168.6 167.3 164.8 160.8 154.3 143.7 118.7 68.1 
158.9 158 155.6 151.2 144 132.5 122 94.9 52 * 
150.3 149.3 146 140.3 131.6 119.2 103.2 79 45.1 
143.9 142.6 138.9 132.4 122.7 109.6 92.9 72.5 37.3 * 
139.9 138.5 134.5 127.6 117.4 103.7 86 63.3 42.6 
138.5 137.1 133 126 115.7 101.8 84.1 62.6 39.6 * 

Table 1. Tabular form of simulation results for FEM mesh. 
 
The result of this simulation is shown in Table 1 for half of the bar 
(as it is symmetric around its middle horizontal line). Every cell 
in the table contains the corresponding node temperature.  

 
Figure 10: 7 X 5 nodes grid using Finite Differences. 



 

To compare the results shown in Figure 10 and those in Table 1 
we marked corresponding rows of nodes with an asterisk (*). 
Corresponding cells in the table to those in the figure are further 
written in bold font. Temperature values from Table 1 and Figure 
10 match on most nodes; nevertheless, there is a slight deviation 
between the two results for nodes on the convective side of the bar. 
As this side has the steepest temperature gradient, we expect that 
more elements are needed to capture details of this steep gradient. 

 
To enhance Cell-DEVS Finite Differences results, and to verify 
the conversion of our Cell-DEVS simulation with that of FEM 
software, we ran another simulation with Cell-DEVS increasing 
the number of nodes to 13 X 9. The results of this simulation are 
shown in Table 2. The corresponding cells (representing node 
temperatures) are marked with bold font for comparing the re-
sults.  
 

180 180 180 180 180 180 180 180 180 
169 168.6 167.3 165 161.1 154.9 144.1 123.5 76.9 
158.9 158.1 155.7 151.4 144.6 134.1 118.2 93.0 53.4* 
150.3 149.3 146.0 140.3 131.6 119 101.4 77.1 45.4 
143.8 142.6 138.8 132.3 122.5 109.0 91.2 68.6 41.7* 
139.8 138.5 134.4 127.4 117.2 103.4 85.7 64.3 40 
138.5 137.1 132.9 125.8 115.4 101.5 84 63 39.5* 
139.8 138.5 134.4 127.4 117.2 103.4 85.7 64.3 40 
143.8 142.6 138.8 132.3 122.5 109.0 91.2 68.6 41.7 
150.3 149.3 146.0 140.3 131.6 119 101.4 77.1 45.4 
158.9 158.1 155.7 151.4 144.6 134.1 118.2 93.0 53.4 
169 168.6 167.3 165 161.1 154.9 144.1 123.5 76.9 
180 180 180 180 180 180 180 180 180 

Table 2. 96 Cell-DEVS finite differences cells with 117 nodes. 
 
The difference in values between FEM software results, our 
Cell-DEVS Finite Differences results in Table 1 and those in 
Table 2 on the convection side comes from the fact that we used 
constant temperature Finite triangular elements, which are a 
rough estimate for the varying field. These elements are good to 
study a slow varying filed over the material. Other types of ele-
ments can capture the steep variation more precisely. 
 
5. CONCLUSION 
 
We showed how to use the Cell-DEVS formalism to model prob-
lems that traditionally have been solved with other methods as 
Finite Elements and Finite Differences. We showed that modeling 
physical and engineering problems with Cell-DEVS have some 
advantages over traditional methods. 
• Cell-DEVS enables building coupled systems that are com-

posed of many atomic or coupled components. These com-
ponents can simulate discrete or continuous systems. This 
property can be very useful when simulating engineering 
systems as they often compose of many continuous and dis-
crete components. 

• Simulation of large and complex models can use the ability 

of Cell-DEVS models to execute in parallel. This can be 
advantageous over other methods of solving continuous 
systems as FEM, as their parallel execution may not be 
straightforward. Parallel execution of Cell-DEVS does not 
need to be specified by the user, but it comes as a result of 
the asynchronous nature of Cell-DEVS technique. 

• Advantages in modeling and improved development facili-
ties. Definition of complex equations can be easily done us-
ing the rule specification techniques of CD++, as it could be 
seen with the examples presented here. This highly reduces 
the effort spent by the users in developing the applications. 
Automated verification facilities in the toolkit improve test-
ing and reduce delivery time. Likewise, applying changes to 
the model only results in slight changes in the model speci-
fications, without any need for code rewriting, which en-
ables easy analysis of more complex system conditions. 
 

Engineering disciplines could benefit from using Cell-DEVS 
formalism to build reusable components that can be used as 
building blocks to build models for their products. Those models 
can then be executed to study system behavior. One or more 
components in the model can then be replaced with other alterna-
tive designs to reach a desired optimum system behavior.  
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