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ABSTRACT - We present a model describing the 
electrical behavior of the heart tissue. Previous re-
search in this field have studied this problem using 
PDEs (Partial Differential Equations) and CA (Cellu-
lar Automata). A radically different approach consid-
ers using discrete-event techniques to solve this kind 
of problems, which has showed to be challenging, but 
provided excellent results in terms of simulation exe-
cution times. In this context, a fundamental issue is 
related to how to bridge the gap between a continuous 
variable formalism like PDEs, and a discrete event 
description like DEVS. We show that the GDEVS 
formalism is perfectly suited to attack this problem. 
We will also show that the GDEVS/Cell-DEVS model 
proposed is easily extensible to provide different kind 
of cell-behaviors, while not affecting performance. 
 
Keywords: DEVS models, Cell-DEVS models, G-
DEVS, Cellular Automata, Discrete-event simulation. 

 

1. INTRODUCTION 
The Cell-DEVS formalism [1] allows defining 
asynchronous cell spaces with explicit timing 
delays. This approach permits describing cell 
spaces as discrete events models, based on the 
formal specifications of the DEVS formalism [2]. 
In Cell-DEVS, each cell is seen as a DEVS 
atomic model, and a procedure to couple cells is 
defined based on the neighborhood relationship. 
Explicit timing delay constructions can be used to 
define precise timing in each cell, which is de-
fined by a local computing function combined 
with a delay construction. 

Cell-DEVS enabled us to successfully solve a 
variety of complex problems in different areas [3, 
4, 5]: biology (watersheds, fire spread, ant colo-

nies), physics (crystal growth, lattice gases, heat 
diffusion), chemistry (flow injection analysis), 
and several artificial systems (autonomous ro-
bots, heat seekers, urban traffic, etc.). Our current 
research has been focused in providing better 
mechanisms for model definition, concentrating 
in physical systems that can be described as cel-
lular models. We want to achieve higher preci-
sion and improved resolution in the results ob-
tained when executing cellular models. We also 
want to take advantage of current expertise of 
scientists in different domains, letting them to 
describe individual components of cellular mod-
els using PDEs approximations. This approach 
could result in enhanced model definition and 
smoothing the transition between traditional 
models and cell spaces.  

The idea is to analyze systems using Cell-
DEVS models, in which each component can be 
defined using a PDE. An important issue is re-
lated to how to bridge the gap between a continu-
ous variable formalism like PDEs, and a discrete 
event description like DEVS.  Our thesis is that 
the use of the GDEVS formalism [6] is perfectly 
suited to attack both of these problems simulta-
neously. GDEVS is a formalism for the specifica-
tion of discrete event abstractions and discrete 
event simulation of dynamic systems. The origi-
nality of GDEVS stems from the use of polyno-
mials of arbitrary degree, as opposed to constant 
values, to represent the piecewise input-output 
trajectories.  

Classical discrete event abstraction of a dy-
namic system is based on the mapping of piece-
wise constant input-output segments of (obtained 
perhaps through threshold sensors) into discrete 



events. GDEVS adopted a radically new ap-
proach based on a new definition of the concept 
of event [7, 8]. In GDEVS, the target real-world 
system is modeled through piecewise polynomial 
segments. A coefficient event is considered as an 
instantaneous change of, at least, one of the value 
of the coefficients defining the piecewise poly-
nomial trajectory of the considered variable. An 
event is a list of coefficient values defining the 
polynomial, which describes the trajectory of the 
ariable. Using GDEVS to define the behavior for 
each cell will also enable us to highly improve 
the model precision while incurring in fewer 
timesteps when compared with traditional nu-
merical methods. The use of GDEVS will also 
improve the precision obtained if we compare the 
results obtained by traditional CA (GDEVS of 
order 0), due to the improved precision of model 
states. 

Using this approach, we are able to get the ad-
vantage of traditional CA, v.g., a model that is 
very simple in terms of representation. We have 
successfully tested our approach in different 
complex models, but here we focus on a model 
describing the electrical behavior of the heart 
tissue. Previous research in this field has studied 
this problem using PDEs and CA, and we will 
show that we can provide adequate levels of pre-
cision at a fraction of the computing cost of 
PDEs. We will also show that the model is easily 
extensible to provide different behavior in differ-
ent cells, while not affecting performance.  

 
2. MODELING BEHAVIOR OF 
HEART TISSUE 
The heart is a muscle responsible for the pumping 
blood into the circulatory system. Behavior of the 
phenomena occurring in the heart muscle and 
tissue has been extensively studied and it has 
been reported in almost every existing medical 
treaty (see, for instance [9, 10]). In these docu-
ments, heart behavior is usually analyzed accord-
ing to three kinds of activities: mechanical, elec-
trical and cellular. 

In terms of mechanical activities, the blood 
returns to the heart through the vena cava supe-
rior and inferior, and flows to the right atria. The 
blood flows to the right ventricle, where it is 
pumped to the lungs to return oxygenated to the 
left atria. Then, it flows to the left ventricle, 

which returns the oxygenated blood to the body 
through the aorta. The heart muscle is excitable, 
and it responds to external stimuli by contracting 
itself. If the stimulus is too weak, the muscle does 
not respond; instead, if the voltage received is 
adequate, it contracts at maximum capacity.  

Therefore, mechanical activity is triggered by 
electrical activity in the cells. The electrical con-
duction system of the heart is responsible for the 
control of its regular pumping. This activity is 
originated in the SinoAtrial (SA) node, also 
known as the pacemaker. This is an electrically 
active region of the heart that exhibits automatic-
ity. Cells in the heart tissue are excitable, and 
when an adjacent cell is charged positively, it 
excites the nearby cells, provoking an upstroke of 
its Action Potential (AP). All excitable tissue, 
once activated, exhibits a refractory period before 
returning to rest.  

This electrical activity is triggered by the cel-
lular activities, which consists on the interchange 
of ions of Potassium and Sodium in the walls of 
the cells. This chemical reaction produces poten-
tial differences measurable in millivolts. This 
activity was characterized by Hodgkin and Hux-
ley in [11], who defined the inter-membrane AP 
function. They recognized different phases in this 
function: a) heart tissue relaxed, interior of the 
membrane electrically negative with relation to 
the surface; difference of potential: 50 mV; b) 
surface membrane repolarized, two zones with a 
potential difference; c) electrical activity starts; 
external surface became negative, with a potential 
difference of 30 mV (depolarization); d) negative 
voltage in the surface trespasses the membrane; 
original status is recovered (repolarization). 

The guiding formalism of virtually all 
membrane current models is that the total 
membrane current can be written as a sum of 
individual currents, each carried by a different 
ion, through a specific channel. The calculation is 
based on Sodium ion flow, Potassium ion flow, 
and leakage ion flow. Hodgkin and Huxley com-
puted empirical formulas for the Sodium gate 
activation, Sodium particle activation probability, 
and Potassium gate activation probability. They 
also found the values of the remaining parame-
ters, which where shown to be fixed variables. By 
solving the Hodgkin-Huxley equations, we can 
obtain the AP function for different cells in dif-
ferent tissue in the heart, according to the varia-



tion in the conductivity, length of the fibers, etc. 
For instance, the following figure 1 shows the 
results obtained when solving the equations to 
find the voltage in the atria cells. It has been 
shown that this function is equivalent to the ones 
found in experimental data. We will use this ex-
ample in following sections to build a 
GDEVS/Cell-DEVS model of the hear tissue. 

 
Figure 1. AP in the atria cells. 

The Hodgkin-Huxley model has been exten-
sively used in different studies, as it has been 
shown that this model reproduces adequately the 
behavior of the electrical properties in the myo-
cardium cells. Nevertheless, solving this equation 
using numerical methods can be computationally 
expensive. As a result, different authors tried to 
simplify the complexity. 

As mentioned earlier, we intend to use 
GDEVS of order 1 to describe the behavior of 
each cell in a Cell-DEVS model. Cell-DEVS 
state variables can be continous, but in general, 
representing continous functions in a Cell-DEVS 
model results in defining discrete time versions of 
the PDEs running in this cells. This desvirtuates 
two of the main advantages of using Cell-DEVS: 
the advance of models using discrete events, and 
the specification of cellular models as a 
composite of cells described with very simple 
rules. We will show how to build Cell-DEVS 
models whose components are defined using 
GDEVS. The idea is that a continous local 
computing function ττττ will be approximated by 
piecewise polynomial signals of the desired 
precision. 

In the best possible case, linear approxima-
tions will be able to provide high precision at a 
low cost of execution and easier definition than 
PDEs. Higher precision can be achieved at a cost 
of the complexity of the rules defined. We will 
show these ideas using a well-known problem of 
heart tissue behavior, which has been solved us-

ing multiple approaches. This will permit us to 
show the power of our approach. 

In a GDEVS model an event is an instanta-
neous change in at least one of the values of the 
coefficients of the polynomial describing the 
signal. For the heart tissue modeling we consider 
piecewise linear trajectories, i.e. GDEVS of order 
1. Then, an event is a pair of coefficient values 
with a time stamp. More formally, a piecewise 
linear trajectory, expressed by the symbol w, is a 
collection of individual segments over a continu-
ous time base. For an individual linear segment 
w<ti, tj>, its coefficient value, EL(t), is defined 
by the pair (ai, bi), where bi is the value of the 
segment at time ti, termed intercept or level, and 
ai is its first gradient. Formally, the “Coef” func-
tion associates the coefficient pair of a linear 
function, w(t)<ti, tj>, with all continuous linear 
segments over a time interval <ti, tj>. 

 Thus, Coef: L � AxA, where L represents 
the set of the linear functions, and A represents a 
subset of the real number line. Thus, for a given 
continuous linear segment w<ti, tj>, over the time 
interval <ti, tj>, the components of the coeffi-
cient, EL<ti,tj> are constants. To determine the 
linear input-output trajectory, given the coeffi-
cient value as a function of time, an inverse func-
tion, Coef-1 is defined: 

Coef-1: AxA� L,  Coef-1(ai, bi) = ait + bi 
As a generalization, under GDEVS, events are 

defined for the coefficients obtained from a 
piecewise polynomial trajectory. 

Definition: A coefficient-event for a piece-
wise polynomial trajectory is an instantaneous 
change of at least one of the elements of the tuple 
that defines the coefficient values. 

For a piecewise linear segment w<t0, tn>, 
there exists a coefficient event at time ti if either 
b0≠ bi and/or a0 ≠ ai, where the coefficient value 
is given by (a0, b0). That is, an event exists in the 
coefficient space at time ti, if Coef(w<tk, ti[ ≠ 
Coef(w[ti,tj>). 

Definition: As a part of the generalization, 
GDEVS introduces the notion of order of events 
that is equal to the number of coefficients of the 
underlying polynomial minus one.  

For piecewise linear trajectories, the order of 
the events is 1 while for piecewise constant tra-
jectories (classical discrete event models), the 
order of the events is 0. 

An atomic G-DEVS model is a structure: �



A = < Coef., X, Y, S, δ δ δ δ ext, δ δ δ δ int, λλλλ, D > 
Coef. as defined before, 
X : the set of input events, X = AxA 
Y: the set of output events, Y = AxA 
S: the set of discrete states, 
δδδδext is the external transition function that 

specifies the state changes due to external events 
(as in DEVS), 

δδδδint is the internal transition function (as in 
DEVS). It permits to capture the autonomous 
evolution of the model. When a model is in state 
si at time ti, it will transition to state sj=δδδδint(s) at 
time ti+D(si), provided no external event occurs.  

λλλλ is the output function, and the function  
D: S →→→→R

+
 ∪ ∞ represents the lifetime of a 

state. Thus, for a given state, si, D(si) represents 
the interval during which the model will remain 
in the state si if no external event occurs.  

 
3. G-DEVS FIRST ORDER 
MODEL OF HEART TISSUE 

Having defined the heart tissue model using 
two traditional approaches (i.e., cellular automata 
and PDE equations), we then attacked the prob-
lem using Cell-DEVS/G-DEVS. The first step in 
this study was to find a linear approximation to 
the original PDE defining the cell's behavior, 
showed in figure 2. 

 
Figure 2. AP Linear approximation. 

We approximated the initial equation experi-
mental data using 8 polynomials of degree 1. The 
identification of the parameters in each of the 
polynomials was obtained minimizing a quadratic 
criterion using minimum squares. The polynomi-
als we used in Figure 2 are defined by: 

Pi (t) = ai t + bi   ∀i∈ [1, 8] 
using the following coefficients: 

i ai bi Time (ms) 
1 1.0250 -83.1478 [0, 0.35) 

2 6.4555 -275.5886 [0.35, 0.43) 
3 -0.2765 37.4703 [0.48, 1.48) 
4 -0.0661 8.7840 [1.48, 2.48) 
5 -0.0073 -8.6492 [2.48, 9.98) 
6 -0.0022 -12.1344 [9.98, 17.48) 
7 -0.0143 10.6898 [17.48, 60) 
8 -0.0016 -64.0617 [60, +∝ ) 

Table 1. Polynomial coefficients for AP model 
Even the original function has an appearance 

to be simple, we needed to use eight polynomials. 
This was because, when analyzing the Hodgkin-
Huxley model, the signal obtained when it is 
triggered, it is highly non-linear. Thus, between 0 
and 2 ms we needed to approximate the AP using 
four different polynomials (as shown in Table 1). 
We also need a polynomial ending in the first 
positive value, which will trigger activity in the 
neighboring cells (polynomial P2 is in charge of 
this). 

When using GDEVS for this model, we need 
to transform the coefficients in the polynomials 
into discrete event signals, as explained in section 
2. Each cell will use polynomial coefficients to 
compute the current state, and to inform the cell's 
state to the neighbors. The specification of the 
local computing function included in each of the 
cells will now receive the coefficient-events from 
the neighboring cells. The cell's outputs will now 
be the current cell states specified as polynomial 
coefficients. Timing of activation for each poly-
nomial can be easily defined using the model 
delay functions. 

 Figure 3. GDEVS specification of a cell. 
Using the polynomial definitions in Table 1, 

we can now define the behavior of each of the 
cell's local computing functions, which is 
described by the GDEVS state graph in the figure 



3. Internal transitions are in dotted lines, and 
external transitions in full lines. As we see, the 
cell is inactive until it receives an external stimuli 
from a neighboring cell. In that case, the cell is 
activated, and it produces internal state changes 
generating the current state (represented by the 
coefficient in the polynomials). This is repeated 

in every step. This specification will generate an 
output trajectory as the one described by the 
linear approximation. As we can see, this highly 
improves model precision at a low cost, in terms 
of both execution time and ease of modeling. We 
used the cell's specification in Figure 3 to define 
this model using the CD++ toolkit [12]. 

 
[heart-GDEVS] 
type : cell  dim : (6,6)   delay : transport  border : nowrapped 
neighbors : (0,-1) (0,0) (-1,0) (-1,-1) (0,1)  (1,0) (-1,1) (1,1) (1,-1) 
localtransition : heart-rule-GDEVS 
 
[heart-rule-GDEVS] 
rule : { S0 }  0 { (0,0)=-83 and volts(0,-1)>0 or volts(-1,-1)>0 or volts(-1,0)>0 } 
rule : { S1, send(1.0250,-83.1478) }  0.35  { (0,0) = S0 } 
rule : { S2, send(6.4555,275.5886) }  0.08  { (0,0) = S1 } 
rule : { S3, send(-0.2765,37.47)  }  0.05  { (0,0) = S2 } 
rule : { S4, send(-0.0661,8.784)  }  1   { (0,0) = S3 } 
rule : { S5, send(-0.0073,-8.6492) }  1   { (0,0) = S4 } 
rule : { S6, send(-0.0022,-12.1344) }  7.50  { (0,0) = S5 } 
rule : { S7, send(-0.0143,10.6898) }  7.50  { (0,0) = S6 } 
rule : { S8, send(-0.0016,-64.0617) }  4.25  { (0,0) = S7 } 
rule : { S0, send(-0.0016,-64.0617) }  4.15  { (0,0) = S8 } 
rule : { (0,0) }         0     { t } 
 
[voltage-function] 
volt(cellpos) = cell.ai * time + cell.bi 

Figure 4. Cell-DEVS/GDEVS implementation of the heart tissue model. 
This specification starts by defining the size of 

the cell space (6 x 6), and the remaining parame-
ter needed by GDEVS/Cell-DEVS specifications. 
In this case, transport delays, a non-wrapped 
model (cells in the border will use a different 
neighborhood), and the neighborhood shape, 
which includes all the adjacent cells. Then, we 
define the local computing function, heart-rule-
GDEVS. This local computing function follows 
the specification in Figure 3 for a cell. If a stimu-
lus is received when the cell is inactive ((0,0)=-
83), it will check the voltage received from the 
cells in the neighborhood (which is received 
through ports ai and bi, and it is computed by the 
voltage function) and will react to positive volt-
age in any of them. It will change to the corre-
sponding state (Si, to the left of the specification), 
and will send the current ai, bi coefficients to the 
neighboring cells after the consumption of the 
delay. Each of the rules represents a cell's state 
change, and the spread of the coefficient to the 
neighbors.  

The GDEVS simulation gives output trajecto-
ries more precise than the one obtained with clas-
sical discrete event Cellular Automata. This gain 

of precision involved only a low extra cost in 
terms of computing time. Likewise, the complex-
ity added to the cellular model developed in Cell-
DEVS is reduced, moreover when compared with 
the solution using PDE (which required imple-
mentation the Hodgkin -Huxley functions).  

The results of our experience are summarized 
in the following. In Figure 5, we show the num-
ber of messages involved in simulating the heart 
tissue model using different approaches. We 
computed the number of messages issued in a 
Cell-DEVS model using a simple set of rules and 
a second Cell-DEVS model with a larger number 
of intermediate states. We also compared the 
result with the ones obtained with a traditional 
CA, and with two numerical approximations for 
the Hodgkin-Huxley PDEs. The logarithmic scale 
shows exponential growth with the number of 
cells, but we can see that GDEVS, which pro-
vides a much more precise signal, only reduces 
performance in less than 5% when compared with 
traditional Cell-DEVS models. Cellular Automata 
take longer, as we have to execute every cell in 
every time step. Therefore, for a small number of 
cells, the execution time keeps controlled. How-



ever, when large cell spaces are considered, the 
performance approaches the one of cell spaces 
running partial differential equations in each of 
the cells. 

 
Figure 5. Comparing simulation models (loga-

rithmic scale) 
Furthermore, GDEVS approximation highly 

improves performance when compared with 
traditional numerical methods, while improving 
precision. This can be seen in Figure 6, where we 
include a comparison of the average error in the 
heart tissue model when we compare CA, Cell-
DEVS models with different number of interme-
diate states, and GDEVS.  
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(b) comparing output trajectories 
Figure 6. Analyzing model error  

We see that the cost of running Cell-
DEVS/GDEVS models is minimum when com-
pared with Cell-DEVS or CA models. As we can 
see, GDEVS approximates adequately the origi-
nal signal, whereas discrete variable models (like 
CA) introduce a larger amount of error. These 

discrete values simplify the basic definition of the 
model, but can make it difficult to detect state 
values with significance for other phenomena, 
avoiding the provision of good modeling results. 

Furthermore, our approach has several other 
advantages. First, we can approximate the func-
tion by a higher degree polynomial to achieve 
higher precision, if needed. Second, we can easily 
modify the model to identify different phenom-
ena. For instance, a bad behavior in certain cells 
can obtain by changing parameter values and 
defining a Cell-DEVS zone with that behavior. 
Likewise, we can define a more general model by 
making the slope and gradient (ai, bj) of each 
state to be define as external parameters. Finally, 
in this particular definition of the model, we are 
reacting to external voltages, but we could easily 
modify the model specification to analyze more 
complex circumstances, for instance, arrhythmia 
problems (which are related with inadequate 
excitation of a cell due to deformation to the AP), 
detailed analysis of the Na/K channels, etc. This 
new behavior can be achieved by simply modify-
ing the rules described in figure 4 accordingly. 

 
4. CONCLUSION 
We showed how to combine Cell-DEVS and 
GDEVS to build very complex systems. The 
Cell-DEVS formalism allows (based on the 
DEVS formalism) defining asynchronous cell 
spaces with timing delays. Here, we combined 
Cell-DEVS with GDEVS models, permitting 
defining complex continuous systems easily. 

We focused on the Hodgkin-Huxley model of 
electrical behavior of the heart tissue, and com-
pared the results obtained against those originally 
built with PDEs and cellular automata. We 
showed that we can provide adequate levels of 
precision at a fraction of the computing cost of 
differential equations.We proved that the GDEVS 
formalism is perfectly suited to attack problems 
like this one, improving complex systems analy-
sis. Cell-DEVS permits enhancing the modeling 
activities, as the automatic definition of cell 
spaces is allowed, simplifying the construction of 
new models, and easing the automatic verifica-
tion of the structural models. In this way, effi-
cient development of complex models can be 
achieved. The hierarchical nature of the DEVS 
formalism permits attack different levels of ab-



straction permitting, for instance, build more 
detailed models about the behavior of ion inter-
change within each of the cells in the system. 
Likewise, the definition of different phenomena 
in groups of cells is straightforward, in terms of 
both Cell-DEVS and GDEVS specifications. 

At present, we are working on the definition 
of other complex models using this approach 
(mainly, a fire spread model, and a watershed 
formation system). This will provide us with a 
variety of different models enabling us to start 
detailed studies on characterization of the error of 
this approach. We are also starting some work in 
related areas, namely Quantized DEVS models 
[13] and derived research, as we obtained good 
results in modeling continuous systems using 
quantized Cell-DEVS [14]. Nevertheless, at this 
stage there is still much research to do in terms of 
simplify the definition of rule definition for quan-
tized models (for instance, we are working in 
finding quantized versions of the Hodgkin-
Huxley equations, which proved not to be as 
simple as finding GDEVS approximations). This 
particular area requires a great deal of effort in 
order to facilitate any future developments in 
building complex continuous systems using 
DEVS-based approaches. 
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