

Design and Implementation of a Library of Network Protocols in CD++

Mohamed Abd El-Salam Ahmed Khalil Yonis
 Abdul-Rahman Elshafei Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University. 1125 Colonel By Dr. Ottawa, ON. K1S 5B6. Canada

{maesalam, kyonis, abdul}@connect.carleton.ca
gwainer@sce.carleton.ca

Abstract

Simulation-based analysis can help to design,
study and configure computer networks, in order to
assess the best possible solution to particular prob-
lems. We propose the creation of a tool for modeling
and simulation (M&S) of networks built on the DEVS
formalism. DEVS allows for the formal definition of
discrete event models interacting together, which can
be used to analyze properties about the systems we
model. These models can be executed under different
simulation environments, and they can be easily inte-
grated with models of other phenomena, described
with different techniques. Here, we present the defini-
tion and implementation of a library of DEVS models
constructed as the initial building block for such a
network simulator based on the CD++ tool.

1. Introduction

Scale and heterogeneity brings two major sources of

stress to the design of protocol in networking tech-
nologies. Scale affects both the correctness and per-
formance of a network, while heterogeneity of applica-
tions translates into a large number of interacting pro-
tocols and traffic patterns, with varied requirements [1].

In order to produce robust and evolvable network-
ing technologies, we need to analyze the dynamic be-
havior of the underlying protocols. The complexity of
this task has made M&S a widely used technique for
addressing a variety of problems in this field. Although
various discrete-event simulators are readily available
(both academic and commercial such as NS-2 [2],
OPNET [3], and OMNet++ [4]), a new M&S tool based
on the DEVS formalism [5] could add different advan-
tages. DEVS provides a formal foundation to M&S that
proved to be successful in different complex systems.
DEVS combines the advantages of a simulation-based

approach with the rigor of a formal methodology. The
formalism is based on sound theoretical grounds, allow-
ing for an abstract design of models that are independ-
ent from the implementation platform and running con-
ditions. The creation of a DEVS-based network simula-
tor could provide:

- Facilities to carry out formal tests.
- Seamless model sharing between different DEVS-

based toolkits [6].
- High-performance execution of the same mo dels in

a parallel simulation environment [7].
- Remote execution using client-server services, al-

lowing remote interaction between users [8].
- The ability to execute the models on a distributed

platform based on the HLA, Corba or other tech-
nologies [9],[10],[11].

- The possibility to define models using different
techniques interacting within the same environ-
ment [12]. This could allow including non-network
entities that affect network operation, providing
results that are more realistic.

- The potential to automatically deploy mo dels that
have been tested on the simulation environment
into the actual networking hardware, converting
them into the real application [13], [14].

We will discuss the design and implementation of
such a simulator as a library for CD++ [6], a DEVS-
based toolkit. The library is able to simulate user-
defined topologies to assess network functionality;
modular design allows the addition of new models eas-
ily, while the models themselves are flexible to permit
future enhancements. We will present the general ideas
about the design and discuss different issues about the
implementation of this library.

2. Background

DEVS (Discrete-Event system Specifications) is a
systems theoretic approach to M&S, which allows the
definition of hierarchical modular models [5]. A system
modeled with DEVS is described as a composite of
atomic or coupled sub-models. DEVS atomic models are
described as:

M = < X, S, Y, δint, δext, λ, ta >

where X is a set of input events, S is a set of discrete
states, Y is a set of output events, δint is an internal
transition function, δext is an external transition func-
tion, λ is an output function, and ta is a lifetime func-
tion. Every state has a lifetime. When this time is con-
sumed, the model activates λ (providing outputs), and
changes to a new state determined by δint. If a model re-
ceives an input event, δext is triggered. This function
uses the input value, the current state and the time
elapsed since the last event in order to determine which
is the next model’s state.

A DEVS coupled model is defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

where X is a set of input events, Y is a set of out-

put events, D is an index of components, and for each i
∈ D, Mi is a basic DEVS model (atomic or coupled), and
Ii is a set of influencees of model i (which determines
the destination models for the outputs). For each j ∈ Ii,
Zij is an i to j translation function, which converts the
outputs of a model into inputs for its influencees.

CD++ [6] is an M&S toolkit based on DEVS specifi-
cations. Atomic models are programmed in C++, and
coupled models are defined with a built-in specification
language. CD++ is built as a class hierarchy of models
related with simulation processing entities. DEVS
Atomic models can be programmed and incorporated
onto a Model base class hierarchy in C++. A new
atomic model is created as a new class that inherits from
the Atomic base class. The state of a model is defined
in the AtomicState class.

class Atomic : public Model {
public:
virtual ~Atomic(); // Destructor

protected:
//Kernel services
Time nextChange();
Time lastChange();
holdIn(AtomicState::State &, Time &);
passivate();
ModelState* getCurrentState() ;
sendOutput(Time &time,Port &port,Value
value);

//User defined functions.
initFunction();
externalFunction(ExternalMessage &);
internalFunction(InternalMessage &);
outputFunction(CollectMessage &);
string className() const
}; // class Atomic
Figure 1. The Atomic class in CD++

The Atomic abstract class defines some service
functions: nextChange/lastChange return the time
until/from the next/last event; holdIn defines DEVS ta
function; passivate sets the next internal transition
time to infinity (the model will only be activated again if
an external event is received); getCurrentState re-
turns the current model’s phase; sendOutput sends an
output message through the specified port.

A newly defined atomic mo del should override the
following methods: initFunction, invoked at the first
activation of the model; externalFunction, the δext
function of the DEVS; internalFunction, which de-
fines the δint function; and outputFunction, the DEVS
λ function.

Once an atomic model is defined, it can be combined
with others into a coupled model, as follows:

[top]
components : router_out@RouterOutput
out : out
in : from_RPU interfaceNum
link : out@router_out out
link : interfaceNum inter-
faceNum@router_out
link : from_RPU from_RPU@router_out

[router_out]
preparation : 050
Figure 2. RouterOut coupled model

This figure shows how to define one of the comp o-

nents of the Router model, introduced later in section
3.2. The topmost coupled component is called top. Af-
ter a model’s name is defined, a list of sub-components
(either an instance of an atomic model or another com-
ponent) is defined using the components keyword.
Then, a list of input and output ports is defined for the
model, using the keywords in and out respectively.
Once the models’ ports are defined, their coupling can
be described using the link keyword, followed by the
output port for the event, and the input port that will
receive it.

3. Library Components

The simulator has been built as a library of models in
CD++, and it consists of two major units: data genera-
tors and inter-networking devices. Data generators are
modeled with a model (named host), which is based on
emulation of the TCP/IP protocol stack. Inter-
networking devices mo dels include a router and a hub,
which gives the library the initial depth needed to simu-
late complex topologies. The models are built in a
modular fashion to maintain a high degree of flexibility
and customizability for future development of the tool.
Furthermore, the mo dels are built to be as generic as
possible, so as to leave a space for development of
other network devices and protocols using the existing
models as templates and guidelines. We started by for-
mally specifying each model, and by studying its basic
behavior through the formal specifications. In the fol-
lowing subsections, we will include a brief explanation
about each component. Detailed model specification
and implementation details can be found in [15].

3.1. Host

The Host coupled model simulates the layers of the

TCP/IP protocol stack, and it is thus comprised of dis-
tinct models representing the Application, Transport,
Network, Data Link, and physical layers. The structure
of the coupled model is shown in Figure 3. Host Cou-
pled Model.

We will start by discussing the definition of the
Transport layer, which contains some of the most com-
plex models. As we can see in Figure 3, the TCP model
was broken in two (to facilitate full-duplex communica-
tions). The Transmitter module is responsible for re-
ceiving data from the Application layer model, adding
sequence and acknowledgment numbers, a window size
and a checksum to the original data received (fields re-
quired for Service Level Agreement simulations).

Figure 3. Host Coupled Model

The data received is transformed to the format
shown in Figure 4, conforming the protocol require-
ments [16].

Port #

Sequence#
Acknowledge
#

Window #
Checksum # Data

2 digits 2 digits4 digits 4 digits

Figure 4. TCP Packet format

Packet creation is split between two atomic mo dels;

datagramCreator and checksumCreator. Data received
(from the Application layer) is routed to the datagram-
Creator, which will create an initial packet and forward
it to the checksumCreator to compute a checksum.
Then, the completed packet will be forwarded to the
datagramCreator, and sent to the next layer in the pro-
tocol stack. Before the packet is sent, a copy is saved
to accommodate the connection manager, which will re-
send packets in case they are not received. Each of the
models was formally specified, as follows:

datagramCreator = < X, S, Y, dint, dext, λ, D>

X = { in: receives data; Checkin: receives packets

after the checksum has been created; ackPort: receives
acknowledgments; ackSender: receives requests to
send ACKs (the data received) };

S = { phase, packet, saved packet, delay}

Y = { gocheck : sends data packets to request the

creation of a checksum; datagramCreator: sends com-
plete output data packets; resend used to retransmit
packets };

δint(s,e) :
Case phase
 active: passivate;

δext(s,e,x) :
 Case msg.port
 In: Create packet;

Checkin: packet received, checksum added
ackPort: check acknowledgement

 correct?: delete saved packet
 else: resend saved packet

ackSender: send received data as ACK.
phase = active; holdIn(delay);

λ(s) :
If message = packet and no checksum yet
 Send packet through gocheck (checksum = 0)
If message = data and checksum created

 Send data on datagramCreator
If message = ack

Check ACK to be correct or not.
Incorrect? Discard ack; resend packet.

If message = request to send ack
 Send message on resend.

On the receiver side, we created a model to receive
data from the Network layer. The model is made of two
atomic components: a datagramStripper and a check-
sumValidator. The datagramStripper receives data
and forwards it to the checksumValidator to test the
checksum. If valid, the datagramStripper checks the
packet type (data or ack). If it is data, the headers are
stripped, the data is forwarded, and a request to the
datagramCreator to send an ack to the source of the
packet is issued. On the other hand, if the data is an
ack, the datagramStripper forwards it to the data-
gramCreator to check if the ack is expected (either de-
leting the saved packet or resending it). If the checksum
is incorrect, the packet is discarded.

After careful study of the model’s specifications,
every model was coded using the CD++ services pre-
sented in Figure 1. Models were individually tested,
and coupled models were created using the notation
presented in Figure 2. Finally, integration testing was
carried out. Figure 5 shows a detailed execution log of
the Transport Layer model, in which we present the
data being manipulated by its various models (more in-
formation on the internal structure and design of the
layer can be found in [15]).

X/00:10:000/top/in/1280 to datagramcreator
D/00:10:000/datagramcreator/005 to top
*/00:10:005/top to datagramcreator
Y/00:10:005/datagramcreator/gocheck/
 1200000000080 to top
D/00:10:005/datagramcreator/... to top
X/00:10:005/top/in/1200000000080
 to checksumcreator
D/00:10:005/checksumcreator/005 to top
*/00:10:010/top to checksumcreator
Y/00:10:010/checksumcreator/checksum-
creatorout/1200000009280 to top
D/00:10:010/checksumcreator/... to top
X/00:10:010/top/checkin/1200000009280
 to datagramcreator
D/00:10:010/datagramcreator/005 to top
*/00:10:015/top to datagramcreator
Y/00:10:015/datagramcreator/datagram-
creatorout/1200000009280 to top
...
Figure 5. Transport layer log file

The first event (X) is an input carrying the value 12

through the HTTP port 80. This is transmitted to data-
gramcreator, which executes the external transition
function (adding the window size, acknowledgment,
and sequence number to the data - for testing pur-
poses, the values = 0). Then, it schedules an internal
transition (D) in 5 ms (reflecting the delay of the circuit).
When this time is consumed, an internal transition (*) is

fired. The first step involves executing the output func-
tion (Y), which transmits the packet through the
gocheck port. The model then passivates (“…” repre-
sents time=∞). This event is converted into an input (X)
for checksumcreator, which receives the Application
data and computes the checksum (also taking 5 ms).
Once the checksum is computed, it is sent to the data-
gramcreator to signal that it is ready to be sent.

The data presented on the previous example arrived
to the Transport layer through the higher level Applica-
tion layer. This layer models a host generating and re-
ceiving data routed from various inter-networking de-
vices, and different services and protocols. The data
generated is depicted in Figure 6. The Application layer
receiving this data adds Application port variable, and
then to outputs the information to the Transport layer
(for instance, the HTTP request generated at 09:500 is
the one originating the sequence presented in Figure 5).

INPUT
// data input on HTTP input port
00:07:000 infromHTTPuser 11
00:09:500 infromHTTPuser 12
...
// data input on Port 25
03:00:00 infromSMTPuser 13
03:10:00 infromSMTPuser 14

OUTPUT
//Application data sent on HTTP Port
00:07:500 outtoTransport 1180
00:10:000 outtoTransport 1280
...
// Application data sent on Port 25
03:00:480 outtoTransport 1325
03:10:530 outtoTransport 1425
Figure 6. Application output file

The Network layer is usually where most of the de-

lay and stochastic operation occurs due to the nature
of IP being a connectionless protocol. The layer adds a
source and destination IP fields to the packet to enable
routing, creating subnets, local networks, and many
other Network artifacts, as showed in the following fig-
ure.

Figure 7: Header Format

The headers for the Internet Protocol are based on

RFC # 791 [16]. They contain the full addressing
information (source and destination IP) as well as other
Quality of Service parameters such as Time To Live
(TTL), identification, and a checksum. The traffic pack-
ets are made of four values: the source address, the
destination address, and the TCP field. The options in
each field are chosen from the IPV4 packet format. As
seen in Figure 3, the Network model consists of a
transmitter and a receiver, which add/extract the corre-
sponding information using the header format in Figure
7. Figure 8 shows an input example for this model.

010 infromTransport 1122334455580 // data
020 DestinationIP 192168111223 // IP
value
Figure 8. IP test values

The information sent to the Network layer is used to

create a checksum value, which is used to verify the
data sent over the network. The model outputs the re-
quired four fields, as follows:

Y/00:13:020/netwXmit1/out/4850000155000 to
top
Y/00:13:020/netwXmit1/out/1921681162240 to
top
Y/00:13:020/netwXmit1/out/1921681162240 to
top
Y/00:13:020/netwXmit1/out/122233343180800
to top
Figure 9. Network layer log file

The Data Link layer in our model implements the

CRC operations of the Logical Link Control (LLC) sub
layer (which calculates a frame, checks the sequence,
and uses it to detect errors when a frame is received),
and the Carrier Sense Multiple Access with collision
detection (CSMA) algorithm in the Medium Access
Control (MAC) sub layer, which would senses the car-

rier by sending a senseCarrier port message to the
Physical layer, and waits for a response.

The Physical layer model simulates the wiring con-
necting different devices, using a list to save the incom-
ing data, and outputting them at a specific time inter-
vals, modeling the link delays. As seen in Figure 3, the
model interacts with others through the Data link Layer
and the sensing port. The layer can have one of four
states (idle, busy, jammed, collision) that determine
how data is handled.

Data is received seamlessly through the same set of
layers in the reverse direction with each layer stripping
the extra variables added by its counterpart. The follow-
ing figures show the results of one of the integration
tests for a host whose source IP address is 111222333.

00:10:00 FTP_In 11
00:10:00 Destination 192168111
00:10:01 statusCarrier 1
00:40:02 FTP_In 1001214
00:40:02 Destination 192168001
00:40:03 statusCarrier 1
00:80:04 FTP_In 1001215
00:80:04 Destination 192168001
00:80:06 statusCarrier 1
01:90:07 Telnet_In 1001216
01:90:07 Destination 192168001
01:90:11 statusCarrier 1
Figure 10. Integration test suite

The event file shows FTP data from the host to an-
other end on the network. Simple values where chosen
here, to ease the process of reviewing the results. The
host reacted to these events, as shown in the following
figure.

Y/49:010/netwXmit1/out/2000000000 to top
Y/49:010/netwXmit1/out/111222333 to top
D/49:010/netwXmit1/... to top
Y/49:010/top/outtoData Link/2000000000 to
Root
Y/49:010/top/outtoData Link/111222333 to
Root
Figure 11. Host log file section

This section of the host log file shows two events,
the first represents the host sending the received data,
throughout the network (after adding the appropriate
headers), forwarding it to the and that the Data Link
layer. The Data Link actually responded as in the fol-
lowing figure

Y/06:000/internet/outtoData Link/ 20000 to
top
Y/06:000/internet/outtoData

Link/192168116224 to top
D/06:000/internet/... to top
X/06:000/top/getpacket/ 20000 to Data Link
X/06:000/top/getpacket/192168116224 to
Data Link
Figure 12. Data link interaction.

Figure 12 shows the output of data from the Network
layer to the Data Link layer, it also shows that the Data
Link layer has actually stored the data, until it checks
the Physical layer. As the response arrives from the
Physical layer, data is sent to the other host.

3.3 Hub

Hubs are simple layer one devices that simply re-

generate received data to all connected devices. The
decision to include a model of a Hub into the initial li-
brary design was to make use of its simplicity to ex-
periment. The coupled model design is as follows

Figure 13. Hub structure

The Hub Atomic Model specification is:

Hub = < X, S, Y, dint, dext, λ, D>

X = { In: receives data from interconnected devices;

Set: sets hub specific information };

S = {Sigma, X, Preparation Time}

Y = { Out1..n: 1st…nth connected device };

dint (e, s): {
 case phase:
 active: passivate
}
dext(s, e, x): {
 case msg.port:
 In: set localvalue to msg.value

 Set: set local data field (hub identifier)
 to msg.value

}

λ (s): {
 Output data to all output ports
}

Any connected device can send data onto the hub

to be broadcasted to all other devices, however one
must pay close attention to the timing at which events
are sent otherwise data might be lost. The model
proved successful in linking multiple Hosts together
providing simple local networks and proved useful in
creating subnets.

3.2 Router

The router model defines how to interconnect net-

work devices. We used an abstract look in the routing
process, considering three main functionalities: receiv-
ing and forwarding traffic, processing IP packets, and
maintaining a routing table.

RouterInterface

RouterInterface

RouterInterface

Routerout

out

out

out

out

out

in

in

in

in

in

in

in

out

out

out

in

in

in

out

RouterProcessor

pr
oc

es
si

ng
U

ni
t

rip
T

ab
le

dist

interface

update

request

tableData

in

out

Figure 14. Router's coupled module

In order to simulate the three functions, two models

were created; the RouterInterface and the RouterProc-
essor, which in turn is made of the ProcessingUnit
model and a ripTable. The router coupled model is
shown in Figure 14 (each of the models is even subdi-
vided in lower levels of abstraction that are not dis-
cussed here). Every router has a number of interfacing
cards receive/forward traffic from/to the network. The
RouterInterface model was developed to receive and
send packets with the format discussed in Figure 7. To
handle the traffic going in/out of the router, the Router-
Interface was designed as a coupled model consisting
of one model receiving packets from the network, and a
second one forwarding packets out of the router. After
packets are received by the RouterInterface, they are
processed to see if they are messages to the router (re-
quests or updates), or just data packets to be forwarded
to their destinations.

The ProcessingUnit is responsible for reading in the
packets from the interfaces, processing them, and mak-

ing routing decisions regarding their destinations.
Upon receiving a packet, it looks at the packet's header,
extracts from it the TTL value, and checks if it is valid.
In that case, it will read the packet's type, and it will re-
act according to type.

Three types of packets are accepted: respond, re-
quest, and data. Request packets carry the destination
address of the requesting router that wants the update,
following the RIP protocol [17]. This address value is
extracted from the packet's header and it is sent along
with the requesting router reply information to the
ripTable model, so the proper reply information can be
prepared and sent to the requesting router. The re-
spond packets carry a network address and a metric
value (cost) associated with that route. These packets
are used to update other routers, or to respond to other
routers’ requests for updates. The router extracts both
the address and the metric, and it forwards this informa-
tion along with the sending router's data to the ripT-
able. When a data packet is received, the processing
Unit extracts its destination address, and forwards it to
the ripTable model (which maintains the routing infor-
mation for forwarding packets). Once the ripTable re-
turns an output interface, the RouterProcessor will
simply forward the data packet through it. If the desti-
nation address is not found in the routing table, the
value 0 is returned (and a request packet is issued
through all interfaces except the one that the packet
was received through, requesting an update on that
destination).

The ripTable is in charge of maintaining the routing
information that the router needs to forward packets to
its destinations. The entries in the table have the format
<Address, Metric, Interface>. Address is a destination
for the packet; Metric represents the cost of getting to
that destination, and the output Interface is the one
through which the router must forward the packet (in
order to be at least one hop closer to the destination).

The ripTable receives three events: update, request,
and request for forwarding information. In the case of
updates, the model will be receiving the address that
the update is about, together with a new metric value. If
the address does not exist, the information will be
added. Otherwise, the associated metric is compared
with the newly received one, and it will replace the out-
put interface number with that of the new update, if the
new metric value is smaller than the one in the table. For
the request events, the ripTable model will prepare the
required information from its table, and redirects it as
responds. Finally, for the forward information request,
the model will search its table for the destination ad-
dress and send the output interface that should be
used to forward the packet.

The router's behavior was tested using different sce-
narios, as showed in Figure 15.

INPUTS
00:00:010 in1 2000001 // update with met-
ric 1
00:00:010 in1 111101101 // address
...
00:00:100 in1 3010012 // data, ttl=10,
CRC=12
00:00:100 in1 121117001 // source address
00:00:100 in1 133303303 // destination ad-
dress
00:00:100 in1 15
00:01:010 in1 2000000 // update metric 0
00:01:010 in1 133303303
...
00:02:000 in1 3008011 // data,ttl=8, CRC =
11
00:02:000 in1 114124201
00:02:000 in1 123456789 // unknown desti-
nation 00:02:010 in2 2000007 // update
metric 7
00:02:010 in2 122202202
00:02:010 in1 3000007 // data, TTL = 0
00:02:010 in1 122202202

OUTPUTS
00:00:018 out2 2000001 // update
00:00:018 out2 111101101 // address
...
00:00:109 out2 3010012 // data forward
00:00:109 out2 121117001
00:00:109 out2 133303303
00:00:109 out2 15
00:01:018 out2 2000000 // update
00:01:018 out2 133303303
...
00:02:009 out2 1000000// request
00:02:009 out2 123456789
Figure 15. Router Input/Output events

 The first packet is an update. The router passes the

related values to its table and the table is updated. The
message arrived at the router from interface 1, and a
corresponding update message was created and sent
through interface 2 (out2). For every update packet, an
update to the neighbor nodes is sent thought the other
router interface. Then, we show a packet representing
data injected into the router. The packet option field
shows a TTL value of 10. The router knew the address
since it received an update on it before. The router for-
wards the packet using the right output interface. After,
another update with a smaller metric for an address that
the router has in its table is sent through interface 1.
We can see that the router did update its table with the

better metric value and sent an update through inter-
face 2.

No output was sent in response to the last two pack-
ets. The reason is that the first one was an update with
a metric higher than the existing one in the routing
table. The second was a data packet with a TTL value
of 0 (expired). In both cases, the router discarded the
packets.

4. Conclusion

We have showed how to define models of internet-

working devices such as routers and hubs, and studied
the operation of TCP/IP using a DEVS-based approach.
We created a library of models capable of building to-
pologies as a first step for building a more complex li-
brary.

The models chosen are sufficient to create network
topologies with an acceptable level of accuracy in ser-
vices, and customization in terms of Quality of Service
and Service Level Agreements. The models created
provide the backbone for a larger model library, since all
components chosen, represented different fields and
layers of a typical packet switched network.

A DEVS Network simulator advantages from the
point of view of scalability and ease of use in terms of
creating and adding new components to the library.
The selected set of protocols and devices can be used
as a template, since they cover all aspects of packet
switched networks with enough details to allow for cus-
tomization and variation.

Acknowledgments

This work has been partially supported by NSERC (Na-
tional Science and Engineering Research Council of
Canada) and the Intel IXA University program.

References

[1] C. Hedrick. “Routing Information Protocol,” Network
Working Group, Request for Comments: 1058, June 1988.

[2] “The Network Simulator-NS-2”.
http://www.isi.edu/nsnam/ns/, last visited: 28/11/03.

[3] X. Chang. “Network Simulations with OPNET”. Pro-
ceedings of the 31st Winter Simulation Conference. Phoenix,
AZ. 1999.

[4] A. Varga. “The OMNeT++ Discrete Event Simulation
System”. Proceedings of the European Simulation Multicon-
ference. Prague, Czech Republic. 2001.

[5] B. Zeigler, T. Kim, and H. Praehofer. Theory of Model-
ing and Simulation. Academic Press. 2000.

[6] G. Wainer. “CD++: a toolkit to develop DEVS mod-
els”. Software-Practice and Exp. 32, 1261-1306. 2002.

[7] A. Troccoli and G. Wainer. “Implementing Parallel Cell-
DEVS”. Proceedings of Annual Simulation Symposium. Or-
lando, FL. U.S.A. 2003.

[8] G. Wainer and W. Chen. "A framework for remote exe-
cution and visualization of Cell-DEVS models". Simulation.
Vol. 79, pp. 626-647. November 2003.

[9] B. Zeigler, H. Cho, J. Lee and H. Sarjoughian. The
DEVS/HLA Distributed Simulation Environment And Its Sup-
port for Predictive Filtering. DARPA Contract N6133997K-
0007: ECE Dept., UA, Tucson, AZ. 1998.

[10] C. Zhang Integrating existing DEVS simulations with
the HLA. M.A.Sc. Thesis. Carleton University. 2004.

[11] Y.W. Cho, X. Hu, and B. Zeigler. “The
RTDEVS/CORBA Environment for Simulation-Based Design
of Distributed Real-Time Systems”. Simulation, Vol. 79, No.
4, 197-210. 2003.

[12] P. MacSween and G. Wainer. "On the Construction of
Complex Models Using Reusable Components". In Proceed-
ings of SISO Spring Interoperability Workshop. Arlington,
VA. U.S.A. 2004.

[13] E. Glinsky and G. Wainer. Modeling and simulation of
systems with hardware-in-the-loop". In Proceedings of the
Winter Simulation Conference. Washington, DC. 2004.

[14] G. Wainer, E. Glinsky and P. MacSween. “Model-
Driven Architecture of Real-Time Systems”. Accepted for
publication in Model-driven Software Development - Volume
II of Research and Practice in Software Engineering. S.
Beydeda and V. Gruhn eds., Springer-Verlag (expected date of
publication: April 2005).

[15] M. Ahmed, A.-R. Elsahfei and K. Yonis. “Building a li-
brary for parallel simulation of networking protocols”. [On-
line]. Dept. of Systems and Computer Engineering.
http://www.sce.carleton.ca/faculty/wainer/students/DEVSnet/
index.html. Carleton University. 2004.

[16] RFC-editor “Official Internet Protocol Standards”,
[Online]. ftp://ftp.rfc-editor.org/in-notes/rfc791.txt . Accessed:
[2003 Sep. 24].

[17] G. Malkin. “RIP Version 2,” Network Working Group,
Request for Comments: 2453, November 1998.

