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Abstract 
 

Simulation-based analysis can help to design, 
study and configure computer networks, in order to 
assess the best possible solution to particular prob-
lems. We propose the creation of a tool for modeling 
and simulation (M&S) of networks built on the DEVS 
formalism. DEVS allows for the formal definition of 
discrete event models interacting together, which can 
be used to analyze properties about the systems we 
model. These models can be executed under different 
simulation environments, and they can be easily inte-
grated with models of other phenomena, described 
with different techniques. Here, we present the defini-
tion and implementation of a library of DEVS models 
constructed as the initial building block for such a 
network simulator based on the CD++ tool. 

  
1. Introduction 

 
Scale and heterogeneity brings two major sources of 

stress to the design of protocol in networking tech-
nologies. Scale affects both the correctness and per-
formance of a network, while heterogeneity of applica-
tions translates into a large number of interacting pro-
tocols and traffic patterns, with varied requirements [1].  

In order to produce robust and evolvable network-
ing technologies, we need to analyze the dynamic be-
havior of the underlying protocols. The complexity of 
this task has made M&S a widely used technique for 
addressing a variety of problems in this field. Although 
various discrete-event simulators are readily available 
(both academic and commercial such as NS-2 [2], 
OPNET [3], and OMNet++ [4]), a new M&S tool based 
on the DEVS formalism [5] could add different advan-
tages. DEVS provides a formal foundation to M&S that 
proved to be successful in different complex systems. 
DEVS combines the advantages of a simulation-based 

approach with the rigor of a formal methodology. The 
formalism is based on sound theoretical grounds, allow-
ing for an abstract design of models that are independ-
ent from the implementation platform and running con-
ditions. The creation of a DEVS-based network simula-
tor could provide: 

- Facilities to carry out formal tests. 
- Seamless model sharing between different DEVS-

based toolkits [6]. 
- High-performance execution of the same mo dels in 

a parallel simulation environment [7]. 
- Remote execution using client-server services, al-

lowing remote interaction between users [8]. 
- The ability to execute the models on a distributed 

platform based on the HLA, Corba or other tech-
nologies [9],[10],[11]. 

- The possibility to define models using different 
techniques interacting within the same environ-
ment [12]. This could allow including non-network 
entities that affect network operation, providing 
results that are more realistic. 

- The potential to automatically deploy mo dels that 
have been tested on the simulation environment 
into the actual networking hardware, converting 
them into the real application [13], [14]. 

We will discuss the design and implementation of 
such a simulator as a library for CD++ [6], a DEVS-
based toolkit. The library is able to simulate user-
defined topologies to assess network functionality; 
modular design allows the addition of new models eas-
ily, while the models themselves are flexible to permit 
future enhancements. We will present the general ideas 
about the design and discuss different issues about the 
implementation of this library. 

 
2. Background 

 



 

DEVS (Discrete-Event system Specifications) is a 
systems theoretic approach to M&S, which allows the 
definition of hierarchical modular models [5]. A system 
modeled with DEVS is described as a composite of 
atomic or coupled sub-models. DEVS atomic models are 
described as: 

M = < X, S, Y, δint, δext, λ, ta > 
 

where X is a set of input events, S is a set of discrete 
states, Y is a set of output events, δint is an internal 
transition function, δext is an external transition func-
tion, λ is an output function, and ta is a lifetime func-
tion. Every state has a lifetime. When this time is con-
sumed, the model activates λ (providing outputs), and 
changes to a new state determined by δint. If a model re-
ceives an input event, δext is triggered. This function 
uses the input value, the current state and the time 
elapsed since the last event in order to determine which 
is the next model’s state. 

A DEVS coupled model is defined as: 
 

CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 
 
where X is a set of input events, Y is a set of out-

put events, D is an index of components, and for each i 
∈ D, Mi is a basic DEVS model (atomic or coupled), and 
Ii is a set of influencees of model i (which determines 
the destination models for the outputs). For each j ∈ Ii, 
Zij is an i to j translation function, which converts the 
outputs of a model into inputs for its influencees.  

CD++ [6] is an M&S toolkit based on DEVS specifi-
cations. Atomic models are programmed in C++, and 
coupled models are defined with a built-in specification 
language. CD++ is built as a class hierarchy of models 
related with simulation processing entities. DEVS 
Atomic models can be programmed and incorporated 
onto a Model base class hierarchy in C++. A new 
atomic model is created as a new class that inherits from 
the Atomic base class. The state of a model is defined 
in the AtomicState class.  

 
class Atomic : public Model  { 
public: 
virtual ~Atomic(); // Destructor 
 
protected: 
//Kernel services 
Time nextChange(); 
Time lastChange(); 
holdIn(AtomicState::State &, Time &); 
passivate(); 
ModelState* getCurrentState() ; 
sendOutput(Time &time,Port &port,Value 
value); 

 
//User defined functions. 
initFunction(); 
externalFunction(ExternalMessage & ); 
internalFunction(InternalMessage & ); 
outputFunction(CollectMessage & ); 
string className() const 
}; // class Atomic 
Figure 1. The Atomic class in CD++ 
 

The Atomic abstract class defines some service 
functions: nextChange/lastChange return the time 
until/from the next/last event; holdIn defines DEVS ta 
function; passivate sets the next internal transition 
time to infinity (the model will only be activated again if 
an external event is received); getCurrentState re-
turns the current model’s phase; sendOutput sends an 
output message through the specified port.  

A newly defined atomic mo del should override the 
following methods: initFunction, invoked at the first 
activation of the model; externalFunction, the δext 
function of the DEVS; internalFunction, which de-
fines the δint function; and outputFunction, the DEVS 
λ function. 

Once an atomic model is defined, it can be combined 
with others into a coupled model, as follows: 

 
[top] 
components : router_out@RouterOutput 
out  : out 
in   : from_RPU interfaceNum 
link : out@router_out out 
link : interfaceNum inter-
faceNum@router_out 
link : from_RPU from_RPU@router_out 
 
[router_out] 
preparation : 050 
Figure 2. RouterOut coupled model 

 
This figure shows how to define one of the comp o-

nents of the Router model, introduced later in section 
3.2. The topmost coupled component is called top. Af-
ter a model’s name is defined, a list of sub-components 
(either an instance of an atomic model or another com-
ponent) is defined using the components keyword. 
Then, a list of input and output ports is defined for the 
model, using the keywords in and out respectively. 
Once the models’ ports are defined, their coupling can 
be described using the link  keyword, followed by the 
output port for the event, and the input port that will 
receive it. 

 
3. Library Components  

 



 

The simulator has been built as a library of models in 
CD++, and it consists of two major units: data genera-
tors and inter-networking devices. Data generators are 
modeled with a model (named host), which is based on 
emulation of the TCP/IP protocol stack. Inter-
networking devices mo dels include a router and a hub, 
which gives the library the initial depth needed to simu-
late complex topologies. The models are built in a 
modular fashion to maintain a high degree of flexibility 
and customizability for future development of the tool. 
Furthermore, the mo dels are built to be as generic as 
possible, so as to leave a space for development of 
other network devices and protocols using the existing 
models as templates and guidelines. We started by for-
mally specifying each model, and by studying its basic 
behavior through the formal specifications. In the fol-
lowing subsections, we will include a brief explanation 
about each component. Detailed model specification 
and implementation details can be found in [15]. 

 
3.1. Host 

 
The Host coupled model simulates the layers of the 

TCP/IP protocol stack, and it is thus comprised of dis-
tinct models representing the Application, Transport, 
Network, Data Link, and physical layers. The structure 
of the coupled model is shown in Figure 3. Host Cou-
pled Model. 

We will start by discussing the definition of the 
Transport layer, which contains some of the most com-
plex models. As we can see in Figure 3, the TCP model 
was broken in two (to facilitate full-duplex communica-
tions). The Transmitter module is responsible for re-
ceiving data from the Application layer model, adding 
sequence and acknowledgment numbers, a window size 
and a checksum to the original data received (fields re-
quired for Service Level Agreement  simulations). 

 

 
Figure 3. Host Coupled Model 
 

The data received is transformed to the format 
shown in Figure 4, conforming the protocol require-
ments [16].  

 
Port #

Sequence# 
Acknowledge
#

Window # 
Checksum # Data

2 digits 2 digits4 digits 4 digits

 

Figure 4. TCP Packet format 



 

 
Packet creation is split between two atomic mo dels; 

datagramCreator and checksumCreator. Data received 
(from the Application layer) is routed to the datagram-
Creator, which will create an initial packet and forward 
it to the checksumCreator to compute a checksum. 
Then, the completed packet will be forwarded to the 
datagramCreator, and sent to the next layer in the pro-
tocol stack. Before the packet is sent, a copy is saved 
to accommodate the connection manager, which will re-
send packets in case they are not received. Each of the 
models was formally specified, as follows:  

 
datagramCreator = < X, S, Y, dint, dext, λ, D> 

 
X = { in: receives data; Checkin: receives packets 

after the checksum has been created; ackPort: receives 
acknowledgments; ackSender: receives requests to 
send ACKs (the data received) };  

 
S = { phase, packet, saved packet, delay} 
 
Y = { gocheck : sends data packets to request the 

creation of a checksum; datagramCreator: sends com-
plete output data packets; resend used to retransmit 
packets }; 

 
δint(s,e) :  
Case phase 
 active: passivate;  
 
δext(s,e,x) : 
    Case msg.port 
 In: Create packet; 

Checkin: packet received, checksum added 
ackPort: check acknowledgement 

  correct?: delete saved packet 
  else: resend saved packet 

ackSender: send received data as ACK. 
phase = active; holdIn(delay); 

 
λ(s) : 
If message = packet and no checksum yet 
   Send packet through gocheck (checksum = 0)  
If message = data and checksum created 

        Send data on datagramCreator  
If message = ack  

Check ACK to be correct or not. 
Incorrect? Discard ack; resend packet. 

If message = request to send ack 
         Send message on resend.  

 

On the receiver side, we created a model to receive 
data from the Network layer. The model is made of two 
atomic components: a datagramStripper and a check-
sumValidator. The datagramStripper receives data 
and forwards it to the checksumValidator to test the 
checksum. If valid, the datagramStripper checks the 
packet type (data or ack). If it is data, the headers are 
stripped, the data is forwarded, and a request to the 
datagramCreator to send an ack to the source of the 
packet is issued. On the other hand, if the data is an 
ack, the datagramStripper forwards it to the data-
gramCreator to check if the ack is expected (either de-
leting the saved packet or resending it). If the checksum 
is incorrect, the packet is discarded.  

After careful study of the model’s specifications, 
every model was coded using the CD++ services pre-
sented in Figure 1. Models were individually tested, 
and coupled models were created using the notation 
presented in Figure 2. Finally, integration testing was 
carried out. Figure 5 shows a detailed execution log of 
the Transport Layer model, in which we present the 
data being manipulated by its various models (more in-
formation on the internal structure and design of the 
layer can be found in [15]).  

 
X/00:10:000/top/in/1280 to datagramcreator 
D/00:10:000/datagramcreator/005 to top 
*/00:10:005/top to datagramcreator 
Y/00:10:005/datagramcreator/gocheck/  
             1200000000080 to top 
D/00:10:005/datagramcreator/... to top 
X/00:10:005/top/in/1200000000080  
            to checksumcreator 
D/00:10:005/checksumcreator/005 to top 
*/00:10:010/top to checksumcreator 
Y/00:10:010/checksumcreator/checksum-
creatorout/1200000009280 to top 
D/00:10:010/checksumcreator/... to top 
X/00:10:010/top/checkin/1200000009280  
              to datagramcreator 
D/00:10:010/datagramcreator/005 to top 
*/00:10:015/top to datagramcreator 
Y/00:10:015/datagramcreator/datagram-
creatorout/1200000009280 to top 
... 
Figure 5. Transport layer log file 

 
The first event (X) is an input carrying the value 12 

through the HTTP port 80. This is transmitted to data-
gramcreator, which executes the external transition 
function (adding the window size, acknowledgment, 
and sequence number to the data - for testing pur-
poses, the values = 0). Then, it schedules an internal 
transition (D) in 5 ms (reflecting the delay of the circuit). 
When this time is consumed, an internal transition (*) is 



 

fired. The first step involves executing the output func-
tion (Y), which transmits the packet through the 
gocheck  port. The model then passivates (“…” repre-
sents time=∞). This event is converted into an input (X) 
for checksumcreator, which receives the Application 
data and computes the checksum (also taking 5 ms). 
Once the checksum is computed, it is sent to the data-
gramcreator to signal that it is ready to be sent. 

The data presented on the previous example arrived 
to the Transport layer through the higher level Applica-
tion layer. This layer models a host generating and re-
ceiving data routed from various inter-networking de-
vices, and different services and protocols. The data 
generated is depicted in Figure 6. The Application layer 
receiving this data adds Application port variable, and 
then to outputs the information to the Transport layer 
(for instance, the HTTP request generated at 09:500 is 
the one originating the sequence presented in Figure 5). 

 
INPUT 
// data input on HTTP input port  
00:07:000 infromHTTPuser 11    
00:09:500 infromHTTPuser 12 
... 
// data input on Port 25 
03:00:00 infromSMTPuser 13 
03:10:00 infromSMTPuser 14 
 
OUTPUT 
//Application data sent on HTTP Port  
00:07:500 outtoTransport 1180   
00:10:000 outtoTransport 1280 
... 
// Application data sent on Port 25 
03:00:480 outtoTransport 1325 
03:10:530 outtoTransport 1425 
Figure 6. Application output file 

 
The Network layer is usually where most of the de-

lay and stochastic operation occurs due to the nature 
of IP being a connectionless protocol. The layer adds a 
source and destination IP fields to the packet to enable 
routing, creating subnets, local networks, and many 
other Network artifacts, as showed in the following fig-
ure. 

 
Figure 7: Header Format 

 
The headers for the Internet Protocol are based on 

RFC # 791 [16]. They contain the full addressing 
information (source and destination IP) as well as other 
Quality of Service parameters such as Time To Live 
(TTL), identification, and a checksum. The traffic pack-
ets are made of four values: the source address, the 
destination address, and the TCP field. The options in 
each field are chosen from the IPV4 packet format. As 
seen in Figure 3, the Network model consists of a 
transmitter and a receiver, which add/extract the corre-
sponding information using the header format in Figure 
7. Figure 8 shows an input example for this model. 

 
010 infromTransport 1122334455580  // data 
020 DestinationIP 192168111223     // IP 
value 
Figure 8. IP test values 

 
The information sent to the Network layer is used to 

create a checksum value, which is used to verify the 
data sent over the network. The model outputs the re-
quired four fields, as follows: 
  
Y/00:13:020/netwXmit1/out/4850000155000 to 
top 
Y/00:13:020/netwXmit1/out/1921681162240 to 
top 
Y/00:13:020/netwXmit1/out/1921681162240 to 
top 
Y/00:13:020/netwXmit1/out/122233343180800 
to top 
Figure 9. Network layer log file  

 
The Data Link layer in our model implements the 

CRC operations of the Logical Link Control (LLC) sub 
layer (which calculates a frame, checks the sequence, 
and uses it to detect errors when a frame is received), 
and the Carrier Sense Multiple Access with collision 
detection (CSMA) algorithm in the Medium Access 
Control (MAC) sub layer, which would senses the car-



 

rier by sending a senseCarrier port message to the 
Physical layer, and waits for a response.  

The Physical layer model simulates the wiring con-
necting different devices, using a list to save the incom-
ing data, and outputting them at a specific time inter-
vals, modeling the link delays. As seen in Figure 3, the 
model interacts with others through the Data link Layer 
and the sensing port. The layer can have one of four 
states (idle, busy, jammed, collision) that determine 
how data is handled. 

Data is received seamlessly through the same set of 
layers in the reverse direction with each layer stripping 
the extra variables added by its counterpart. The follow-
ing figures show the results of one of the integration 
tests for a host whose source IP address is 111222333. 

 
00:10:00 FTP_In 11 
00:10:00 Destination 192168111 
00:10:01 statusCarrier 1 
00:40:02 FTP_In 1001214 
00:40:02 Destination 192168001 
00:40:03 statusCarrier 1 
00:80:04 FTP_In 1001215 
00:80:04 Destination 192168001 
00:80:06 statusCarrier 1 
01:90:07 Telnet_In 1001216 
01:90:07 Destination 192168001 
01:90:11 statusCarrier 1 
Figure 10. Integration test suite 
   

The event file shows FTP data from the host to an-
other end on the network. Simple values where chosen 
here, to ease the process of reviewing the results. The 
host reacted to these events, as shown in the following 
figure.  
 
Y/49:010/netwXmit1/out/2000000000 to top 
Y/49:010/netwXmit1/out/111222333 to top 
D/49:010/netwXmit1/... to top 
Y/49:010/top/outtoData Link/2000000000 to 
Root 
Y/49:010/top/outtoData Link/111222333 to 
Root 
Figure 11. Host log file section 
 

This section of the host log file shows two events, 
the first represents the host sending the received data, 
throughout the network (after adding the appropriate 
headers), forwarding it to the and that the Data Link 
layer. The Data Link actually responded as in the fol-
lowing figure 
 
Y/06:000/internet/outtoData Link/ 20000 to 
top 
Y/06:000/internet/outtoData 

Link/192168116224 to top 
D/06:000/internet/... to top 
X/06:000/top/getpacket/ 20000 to Data Link 
X/06:000/top/getpacket/192168116224 to 
Data Link 
Figure 12. Data link interaction. 
 

Figure 12 shows the output of data from the Network 
layer to the Data Link layer, it also shows that the Data 
Link layer has actually stored the data, until it checks 
the Physical layer. As the response arrives from the 
Physical layer, data is sent to the other host. 

  
3.3 Hub 

 
Hubs are simple layer one devices that simply re-

generate received data to all connected devices. The 
decision to include a model of a Hub into the initial li-
brary design was to make use of its simplicity to ex-
periment. The coupled model design is as follows  

 

 
Figure 13. Hub structure 

 
The Hub Atomic Model specification is: 

 
Hub = < X, S, Y, dint, dext, λ, D> 

 
X = { In: receives data from interconnected devices; 

Set: sets hub specific information }; 
 
S = {Sigma, X, Preparation Time} 
 
Y = { Out1..n: 1st…nth connected device  };  
 
dint (e, s): { 
 case phase: 
  active: passivate 
} 
dext(s, e, x): { 
 case msg.port: 
    In: set localvalue to msg.value 

   Set: set local data field (hub identifier)  
  to msg.value  

} 
  



 

λ (s): { 
 Output data to all output ports  
} 
 
Any connected device can send data onto the hub 

to be broadcasted to all other devices, however one 
must pay close attention to the timing at which events 
are sent otherwise data might be lost. The model 
proved successful in linking multiple Hosts together 
providing simple local networks and proved useful in 
creating subnets. 

 
3.2 Router 

 
The router model defines how to interconnect net-

work devices. We used an abstract look in the routing 
process, considering three main functionalities: receiv-
ing and forwarding traffic, processing IP packets, and 
maintaining a routing table. 
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Figure 14. Router's coupled module 
 
In order to simulate the three functions, two models 

were created; the RouterInterface and the RouterProc-
essor, which in turn is made of the ProcessingUnit 
model and a ripTable. The router coupled model is 
shown in Figure 14 (each of the models is even subdi-
vided in lower levels of abstraction that are not dis-
cussed here). Every router has a number of interfacing 
cards receive/forward traffic from/to the network. The 
RouterInterface model was developed to receive and 
send packets with the format discussed in  Figure 7. To 
handle the traffic going in/out of the router, the Router-
Interface was designed as a coupled model consisting 
of one model receiving packets from the network, and a 
second one forwarding packets out of the router. After 
packets are received by the RouterInterface, they are 
processed to see if they are messages to the router (re-
quests or updates), or just data packets to be forwarded 
to their destinations. 

The ProcessingUnit is responsible for reading in the 
packets from the interfaces, processing them, and mak-

ing routing decisions regarding their destinations. 
Upon receiving a packet, it looks at the packet's header, 
extracts from it the TTL value, and checks if it is valid. 
In that case, it will read the packet's type, and it will re-
act according to type.  

Three types of packets are accepted: respond, re-
quest, and data. Request packets carry the destination 
address of the requesting router that wants the update, 
following the RIP protocol [17]. This address value is 
extracted from the packet's header and it is sent along 
with the requesting router reply information to the 
ripTable model, so the proper reply information can be 
prepared and sent to the requesting router. The re-
spond packets carry a network address and a metric 
value (cost) associated with that route. These packets 
are used to update other routers, or to respond to other 
routers’ requests for updates. The router extracts both 
the address and the metric, and it forwards this informa-
tion along with the sending router's data to the ripT-
able. When a data packet is received, the processing 
Unit extracts its destination address, and forwards it to 
the ripTable model (which maintains the routing infor-
mation for forwarding packets). Once the ripTable re-
turns an output interface, the RouterProcessor will 
simply forward the data packet through it. If the desti-
nation address is not found in the routing table, the 
value 0 is returned (and a request packet is issued 
through all interfaces except the one that the packet 
was received through, requesting an update on that 
destination).  

The ripTable is in charge of maintaining the routing 
information that the router needs to forward packets to 
its destinations. The entries in the table have the format 
<Address, Metric, Interface>. Address is a destination 
for the packet; Metric represents the cost of getting to 
that destination, and the output Interface is the one 
through which the router must forward the packet (in 
order to be at least one hop closer to the destination). 

The ripTable receives three events: update, request, 
and request for forwarding information. In the case of 
updates, the model will be receiving the address that 
the update is about, together with a new metric value. If 
the address does not exist, the information will be 
added. Otherwise, the associated metric is compared 
with the newly received one, and it will replace the out-
put interface number with that of the new update, if the 
new metric value is smaller than the one in the table. For 
the request events, the ripTable model will prepare the 
required information from its table, and redirects it as 
responds. Finally, for the forward information request, 
the model will search its table for the destination ad-
dress and send the output interface that should be 
used to forward the packet. 



 

The router's behavior was tested using different sce-
narios, as showed in Figure 15. 
 
INPUTS 
00:00:010 in1 2000001  // update with met-
ric 1 
00:00:010 in1 111101101  // address 
... 
00:00:100 in1 3010012 // data, ttl=10, 
CRC=12 
00:00:100 in1 121117001 // source address 
00:00:100 in1 133303303 // destination ad-
dress 
00:00:100 in1 15 
00:01:010 in1 2000000   // update metric 0 
00:01:010 in1 133303303 
... 
00:02:000 in1 3008011 // data,ttl=8, CRC = 
11 
00:02:000 in1 114124201 
00:02:000 in1 123456789 // unknown desti-
nation 00:02:010 in2 2000007   // update 
metric 7 
00:02:010 in2 122202202 
00:02:010 in1 3000007  // data, TTL = 0 
00:02:010 in1 122202202 
 
OUTPUTS 
00:00:018 out2 2000001  // update  
00:00:018 out2 111101101  // address 
... 
00:00:109 out2 3010012 // data forward 
00:00:109 out2 121117001 
00:00:109 out2 133303303 
00:00:109 out2 15 
00:01:018 out2 2000000   // update  
00:01:018 out2 133303303 
... 
00:02:009 out2 1000000// request 
00:02:009 out2 123456789 
Figure 15. Router Input/Output events  

 
  The first packet is an update. The router passes the 

related values to its table and the table is updated. The 
message arrived at the router from interface 1, and a 
corresponding update message was created and sent 
through interface 2 (out2). For every update packet, an 
update to the neighbor nodes is sent thought the other 
router interface. Then, we show a packet representing 
data injected into the router. The packet option field 
shows a TTL value of 10. The router knew the address 
since it received an update on it before. The router for-
wards the packet using the right output interface. After, 
another update with a smaller metric for an address that 
the router has in its table is sent through interface 1. 
We can see that the router did update its table with the 

better metric value and sent an update through inter-
face 2. 

No output was sent in response to the last two pack-
ets. The reason is that the first one was an update with 
a metric higher than the existing one in the routing 
table. The second was a data packet with a TTL value 
of 0 (expired). In both cases, the router discarded the 
packets.  

  
4. Conclusion  

 
We have showed how to define models of internet-

working devices such as routers and hubs, and studied 
the operation of TCP/IP using a DEVS-based approach. 
We created a library of models capable of building to-
pologies as a first step for building a more complex li-
brary.  

The models chosen are sufficient to create network 
topologies with an acceptable level of accuracy in ser-
vices, and customization in terms of Quality of Service 
and Service Level Agreements. The models created 
provide the backbone for a larger model library, since all 
components chosen, represented different fields and 
layers of a typical packet switched network. 

A DEVS Network simulator advantages from the 
point of view of scalability and ease of use in terms of 
creating and adding new components to the library. 
The selected set of protocols and devices can be used 
as a template, since they cover all aspects of packet 
switched networks with enough details to allow for cus-
tomization and variation.    
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