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ABSTRACT:  The DEVS formalism was defined as a 
method for modeling and discrete event systems. DEVS 
theory evolved and it was recently upgraded in order to 
permit modeling of continuous and hybrid systems. We 
have built a compiler of a subset of Modelica, and built a 
translator into DEVS models. We show how to model these 
dynamic systems under the discrete event abstraction. 
Examples of model simulations with their execution results 
are included. An experimental analysis on quantization 
methods within the Modelica models created is also 
presented in this paper. 
 
1. INTRODUCTION 
 
Complex systems analysis has usually been tackled using 
different mathematical formalisms, Partial Differential 
Equations (PDE) being one of the preferred tools of choice. 
Continuous dynamic systems are usually analyzed in terms 
of Differential Algebraic Equations (DAEs), Ordinary 
Differential Equations (ODEs), or Partial Differential 
Equations (PDEs). In most complex systems, solutions to 
these equations are very difficult or impossible to find. A 
variety of numerical methods finds approximate solutions to 
these equations, being successful in studying many different 
phenomena. Simulation-based approaches succeeded in 
providing a means of analyzing particular problems (instead 
of the general solutions obtained by solving PDEs). 
 
Modelica [2] is an object-oriented language that permits 
attacking these problems. Modelica was created for 
modeling physical systems, designed to support library 
development and model exchange. Models in Modelica are 
mathematically described by differential, algebraic and 
discrete equations. Modelica has many libraries of standard 
components in different ODEs, block diagrams, electrical 
and mechanical models.  
 
Simulation of continuous systems on digital computers 
requires discretization. Classical methods are based on 
discretization of time resulting in a discrete time simulation 
model. Instead, methods like DEVS (Discrete Event System 

specification) formalism [3] were built in order to allow the 
specification of discrete event models. The DEVS 
formalism was defined as a method for modeling and 
discrete event systems. DEVS theory evolved and it was 
recently upgraded in order to permit modeling of continuous 
and hybrid systems [4] [5]. This presents some advantages, 
including greater accuracy in modeling continuous systems 
and the ability to develop a uniform approach to model 
hybrid systems, i.e. composed of both continuous and 
discrete components. The idea beyond this method is to 
provide quantization of the state variables obtaining a 
discrete event approximation of the continuous system. This 
formalism is known as Q-DEVS and quantization is done 
using a piecewise constant function.  
 
In the long term, we want to attack the development of 
hybrid systems based on the DEVS formalism and its 
extensions, building libraries to make easy to use 
components developed on top of DEVS modeling tools. In 
this article, we show our first results on the creation of a 
Modelica compiler able to create Q-DEVS models [6][7]. 
One of the benefits is that for a given accuracy, the number 
of transitions can be reduced, decreasing the execution time 
of simulations. Discrete time models can be simulated under 
discrete event paradigm, thus allowing the development of a 
simulation environment for complex systems, modeled as 
hybrid systems, where all paradigms merge together 
(continuous time, discrete time, discrete event). The 
experience was developed using the CD++ toolkit [8], a 
modeling and simulation framework that was developed in 
order to implement the theoretical concepts specified by the 
DEVS formalism. 
 
2. BACKGROUND 
 
DEVS (Discrete EVents Systems Specification) [3] defines 
a way to specify systems whose states change either upon 
the reception of an input event or due to the expiration of a 
time delay. It allows hierarchical decomposition of the 
model by defining a way to couple DEVS models. A DEVS 
atomic model is described as: 



M = < X, S, Y, δint, δext,?λ, ta > 

X is the set of external events 
Y is the set of internal events 
S is the set of sequential states 
δext: Q x X → S is the external state transition function 
δint: S → S is the internal state transition function 
λ: S →?Y is the output function 
ta: S → R0+ U ∞ ?is the time advance function 
 
A DEVS coupled model is composed of several atomic 

or coupled submodels. It is formally defined by: 
 

CM = <X, Y, D, {Mi}, {Ii}, {Zij}, select > 
 
D is a set of components; for each i in D, 
Mi is a basic DEVS component;  for each i in D, 
Ιi is the set of influencees of i; for each j in Ιi, 
Ζi, j is the i-to-j output-input translation function 
select is the tiebreaker function. 

 
Continuous time ODE systems with initial conditions have 
traditionally been simulated by discretizing the time 
domain, and solving the ODE over each discrete time 
interval. Recently quantized DEVS models [4] permitted to 
solve this problem using a different approach, depicted in 
Figure 1. A curve is represented by the crossing of an equal 
spaced set of boundaries, separated by a quantum size. A 
quantizer, checks for boundary crossing whenever a change 
in a model takes place. Only when a crossing occurs, a new 
value is sent to the receiver. This operation reduces 
substantially the frequency of message updates.  
 

 
Figure 1: Signal Quantization 

 
This approach requires a fundamental shift in thinking about 
the system as a whole. Instead of determining what value a 
dependant variable will have (its state) at a given time, we 
must determine at what time a dependant variable will enter 
a given state, namely the state above or below it’s current 
state. This approach may yield results as accurate as a 
discrete time approach. 
 
CD++ [8] is a modeling and simulation tool based on 
implementing DEVS theory. The tool provides a 

specification language that allows describing model 
coupling; additionally, atomic models can be developed 
using C++. CD++ was built as a hierarchy of classes in 
C++, each corresponding to a simulation entity using the 
basic concepts defined in [3]. The Atomic class implements 
the behavior of an atomic component, whereas the Coupled 
class implements the mechanisms of a coupled model. We 
used CD++ to build a Bond-Graph [9] library as a set of 
independent models in which the components are developed 
using Q-DEVS [6].  
 
Modelica is an object-oriented language, which was created 
for modeling physical systems, designed to support library 
development and model exchange. Models in Modelica are 
mathematically described by differential, algebraic and 
discrete equations. Modelica has many libraries of standard 
components in different ODEs, block diagrams, electrical 
and mechanical models. A model in Modelica is defined 
using classes, as described following: 
 
class A 
outer Real T0; 
... 
end A; 
class B 
inner Real T0; 
A a1, a2; // B.T0, B.a1.T0 and B.a2.T0 is the same 
variable 
... 
end B; 

Figure 2. A model in Modelica 
 
For instance, the representation of model of an electrical 
circuit is hierarchical; the electrical circuit can be 
decomposed into standard (basic) sub-models defined in the 
electrical library. The electrical library we defined for 
Modelica/CD++ starts by converting Modelica models into 
Bond Graphs [9]. Bond Graphs represent continuous 
systems as a set of elements that can interact with each other 
by exchanging energy and information, and this exchange 
determines the dynamics of the system. Energy is the 
fundamental feature that is exchanged between elements of 
a system during interaction. Power (energy time derivative) 
is the product of two factors: the effort and the flow. In 
electrical systems, power is the product of voltage and 
current; in hydraulic systems, power is the product of 
pressure and volume flow rate and so on. A generalized 
effort variable and a generalized flow variable can be 
defined whose product gives the power exchanged by the 
elements of a system. The idea of bond graphs came up 
because the exchange of energy and information between 
elements can be represented in a graphical form. Finally, 
Bond Graphs can be used to prove properties of the model, 
and then to translate them into DEVS models, following the 
method presented in [10]. 
 



The user must provide a source code file as input to the 
Modelica compiler. The result is the corresponding model of 
the circuit in a Bond Graph representation. In this Bond 
Graph, we check for algebraic loops and singularities 
(elements that have discontinuities e.g. diode): if there is 
any, the process is stopped. Then, we generate an optimized 
Bond Graph corresponding to the electrical circuit, which is 
used to generate a coupled DEVS model specification 
according to the rules used by CD++. 
 
There are different Bond Graph atomic models that we 
invoke with this purpose: SerialJunction, ParallelJunction, 
SourceEffort (constant, step, pulse, sine), SourceFlow 
(constant, step, pulse, sine), Capacitor, Inductance, 
Resistance. 
 
3. CREATING MODELS IN MODELICA/CD++ 
 
In this section, we will present the definition of different 
Modelica/CD++ test cases, and their simulation execution 
results. We will present several simulations of electrical 
circuits (R, RC, RL) using sinusoidal and pulse voltage 
source. The results of our simulations are consistent with the 
real behaviour of the electrical circuits in discussion. 
 
Our first example will consider the simulation of an 
electrical circuit with sine voltage. This model is presented 
in Figure 3 (where V generates a sine voltage). 

 

 
Model circuit  
Modelica.Electrical.Analog.Sources.SineVoltage  
          V(V=15,freqHz=60); 
Modelica.Electrical.Analog.Basic.Resistor  
          R1(R=10); 
Modelica.Electrical.Analog.Basic.Ground Gnd; 
equation 
  connect(V.p, R1.p); 
  connect(R1.n, V.n); 
  connect(R1.n, Gnd.p); 
end circuit1; 

Figure 3. An electrical model, and its corresponding 
representation in Modelica source code. 

 
After the complete model is generated and executed, we 
obtain the following results: 

Voltage

-20
-15

-10
-5
0
5

10
15
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

time

V

Voltage
           

Current and Voltage on R1

-20
-15
-10
-5
0
5

10
15
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

time

V,
C

Current Voltage
 

Figure 4. Electrical model with sine signal: (a) voltage; (b) 
current and voltage on R1. 

 
The first graph (a) shows the voltage on the voltage source 
V, which is a sine wave with amplitude 15V. The second 
graph (b) shows the voltage and the current on resistor R. 
The resistor is a passive element in the oscillating electrical 
circuit so the current and the voltage on the resistor are in 
phase; the amplitude of electrical current is I=V/R1. 
 
Our second example defines a simulation of an electrical 
circuit with pulse voltage. The structure of the model is 
similar to the one presented in Figure 4. Here, we show the 
Modelica/CD++ specification of the model (where V now 
provides a pulse voltage and we also added a capacitor). 
 
model circuit 
Modelica.Electrical.Analog.Sources.PulseVoltage 
V(V=10,width=50,period=2); 
  Modelica.Electrical.Analog.Basic.Resistor 
R1(R=10); 
  Modelica.Electrical.Analog.Basic.Capacitor 
C(C=15); 
  Modelica.Electrical.Analog.Basic.Ground Gnd; 
equation 
  connect(V.p, R1.p); 
  connect(R1.n, C.p); 
  connect(C.n, V.n); 
  connect(V.n, Gnd.p); 
end circuit; 

Figure 5. An electrical model, and its corresponding 
representation in Modelica source code. 

 



After the complete model is generated and executed, we 
obtain the following results: 
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Figure 6. Electrical model with pulse signal: (a) Current and 
voltage on R1; (b) current and voltage on the Capacitor. 

 
The resistor is a passive circuit element and, as described in 
previous example, current I=V/R1- in case (a). The voltage 
on capacitor – case (b) - will increase till the maximum 
value (10V) and the current will become zero, the capacitor 
will be fully charged. The voltage source provides only 
positive pulses so capacitor will not be discharged and the 
current on the capacitor remains zero. 
 
In our next test, we added an inductor to the original circuit, 
using a pulse voltage again: 
 
model circuit 
  Modelica.Electrical.Analog.Sources.PulseVoltage 
V(V=10,width=50,period=2); 
  Modelica.Electrical.Analog.Basic.Resistor 
R1(R=10); 
  Modelica.Electrical.Analog.Basic.Inductor 
I1(L=48); 
  Modelica.Electrical.Analog.Basic.Ground Gnd; 
equation 
  connect(V.p, R1.p); 
  connect(R1.n, I1.p); 
  connect(I1.n, V.n); 
  connect(V.n, Gnd.p); 
end circuit; 

Figure 7. An electrical model and its corresponding 
representation in Modelica source code. 
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Figure 8. Electrical model with pulse signal and Inductor: 

Current and voltage on the Inductor. 
  
The inductor is an active circuit element. When the current 
varies from zero to its nominal value (transient regime of 
the electrical circuit) there is an induction phenomenon on 
the inductor - the inductor generates voltage in this 
transition stage. The current on the circuit varies then from 
its nominal value to zero because the source voltage 
provides pulses, so there is again an induction phenomenon 
on the inductor which generates voltage. In conclusion, the 
voltage on the inductor varies in (-6V, 6V) interval as the 
source voltage V varies in the interval [0V, 10V]. 
 
4. TESTING Q-DEVS MODEL EXECUTION 
 
In this section, we introduce different models generated 
after the results of our intermediate steps. As mentioned in 
the Introduction, our Modelica/CD++ models are translated 
into Bond Graphs, which are used to test model properties. 
These models are then translated into DEVS model 
specifications in CD++. Here, we will show different 
experimental results obtained through varied simulations 
using different quantum sizes for the quantized versions of 
the models finally generated. Our first example shows a 
model generated by the tool, in which a hybrid model, 
mixing a logarithmic, and an attenuated sine signal 
(sin(x)/x) are defined. The following figure shows the model 
specification generated by Modelica/CD++ for this case. 
 
[top] 
components : function@FunctionEvaluator 

 quantizer@Quantizer  integrator@Integrator 
in : in        
out : out 
Link : out@function in@quantizer 
Link : out@quantizer in@integrator 
 
[function] 
initialValue   : 0.1  lastValue     : 50  
qValues  : 100  function  : log  
evalFrequency  : 0.001  
Figure 9. Q-DEVS model generated: Integrator, Quantizer 

and FunctionEvaluator: logarithmic 
 



As we can see, Modelica/CD++ generates a coupled model 
(top) consisting of three atomic components: Integrator, 
Quantizer, and FunctionEvaluator. These models are part of 
Modelica/CD++ library, and have been built as DEVS 
models executable in CD++. The FunctionEvaluator 
receives different parameters (function), in this case, the 
type of function to be evaluated (logarithm), the initial/last 

values we want to generate, and the evaluation frequency. 
The quantizer simply quantizes the input signal using a 
predefined value (in this case, q=1). Finally, the integrator 
computes the integration of the input value, using the Euler 
methods with a time scale of 0.05 time units. Finally, the 
link directive shows how the three models are coupled to 
each other. 
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(c) 

Figure 10. Q-DEVS model execution: Logarithm vs. Quantized version and simulation Error charts. (a) q=1; (b) q=0.1; (c) 
q=0.01. 

 
In the previous figure, we show the execution results of the 
model, and the error obtained at each step of the execution. 
As we can see, the approximation improves highly while the 
quantum size is reduced. This is because more messages are 

involved in the simulation, and higher precision can be 
obtained. In the worst possible case, the error is 0 when 
compared to the original signal, but we have to pay the cost 
of increased execution time for the model).  



We executed this model varying the size of the quantum 
size, and obtained the results presented following. 
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Figure 11. Q-DEVS model execution: Number of messages 
in the simulation, and comparative error 

 
As we can see, the number of messages involved reduces 
substantially when the quantum size increases, confirming 
the theoretical results presented in [4], and the empirical 
results presented in [11]. 
 
A second example we will present here shows the execution 
of a model generated using an attenuated sine signal  
(sin(x)/x). The model generated is the same than the one 
presented in Figure 9, but the function chosen has been 
changed to: 
 
[function] 
initialValue  : -0.1 
lastValue     : 15.0 
qValues       : 100 
function      : sinat 
evalFrequency : 0.01 

Figure 12. Q-DEVS model generated: attenuated sine 
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Figure 13. Q-DEVS model execution: Attenuated sine vs. 

Quantized version; simulation Error. (a) q=0.1; (b) q=0.001. 
 



In this particular case, there is 55% increase in number of 
messages (1911 vs. 1228) with 100 times error improved 
(decreased). The number of messages increased because, in 
this case, there are more crossings of the boundaries defined 
by the quantum size (q=0.001). The error doesn’t exceed the 
quantum size.  
 
5. CONCLUSIONS 
 
The DEVS formalism is a method defined for modeling and 
simulation of discrete event systems. During the last years 
the DEVS theory has evolved, and it was recently upgraded 
in order to permit simulation of continuous and hybrid 
systems. In this work, we present a tool for modeling and 
simulation of continuous systems based on the DEVS 
formalism. Models are described using Modelica, a modular 
and acausal standard specification language for physical 
systems modeling. 
 
A hierarchy of models was developed within CD++ to give 
support in the simulation of continuous and hybrid systems. 
A Q-DEVS base and Bond-Graph elements were 
implemented allowing the simulation of dynamic systems in 
a context-independent way. The use of quantization 
methods was also presented. Tests were executed and results 
were analyzed in order to determine when these methods 
could yield the appropriate approach. In some cases, this 
reduction can be very significant.  
 
It is important to have in mind that Modelica/CD++ 
approximates the system solution based on the Q-DEVS 
method, which uses a simple first order integration 
approach. Most of the results produced by Modelica/CD++ 
were contrasted with results generated using a higher order 
and variable step-size integration method, DASSL. It was 
shown that, in general, choosing adequate quantization 
parameters produce accurate solutions and decrease error. 
 
Different open topics must be considered for future research 
in this area. First, an exhaustive comparison between the 
simulation models and the corresponding analytical 
solutions must be faced. Model complexity must be 
considered when using polynomial approximations. 
Stability and convergence properties must be analyzed. 
Using these approaches, we can benefit of better 
performance for a given accuracy, which decreases the 
execution time of simulations. Discrete time models can be 
simulated under a discrete event paradigm, thus allowing the 
development of a simulation environment for complex 
systems, modeled as hybrid systems, where all paradigms 
merge together (continuous time, discrete time, discrete 
event). 
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