
Experimental Results On the Use of Modelica/CD++

Laurentiu Checiu

School of Information
Technology and Engineering

University of Ottawa.
800 King Edward Avenue

Ottawa, ON, K1N 6N5, Canada
Email: lchec097@uottawa.ca

Gabriel Wainer

Department of Systems and
Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, ON, K1S 5B6, Canada
Email: gwainer@sce.carleton.ca

ABSTRACT: The DEVS formalism was defined as a
method for modeling and discrete event systems. DEVS
theory evolved and it was recently upgraded in order to
permit modeling of continuous and hybrid systems. We
have built a compiler of a subset of Modelica, and built a
translator into DEVS models. We show how to model these
dynamic systems under the discrete event abstraction.
Examples of model simulations with their execution results
are included. An experimental analysis on quantization
methods within the Modelica models created is also
presented in this paper.

1. INTRODUCTION

Complex systems analysis has usually been tackled using
different mathematical formalisms, Partial Differential
Equations (PDE) being one of the preferred tools of choice.
Continuous dynamic systems are usually analyzed in terms
of Differential Algebraic Equations (DAEs), Ordinary
Differential Equations (ODEs), or Partial Differential
Equations (PDEs). In most complex systems, solutions to
these equations are very difficult or impossible to find. A
variety of numerical methods finds approximate solutions to
these equations, being successful in studying many different
phenomena. Simulation-based approaches succeeded in
providing a means of analyzing particular problems (instead
of the general solutions obtained by solving PDEs).

Modelica [2] is an object-oriented language that permits
attacking these problems. Modelica was created for
modeling physical systems, designed to support library
development and model exchange. Models in Modelica are
mathematically described by differential, algebraic and
discrete equations. Modelica has many libraries of standard
components in different ODEs, block diagrams, electrical
and mechanical models.

Simulation of continuous systems on digital computers
requires discretization. Classical methods are based on
discretization of time resulting in a discrete time simulation
model. Instead, methods like DEVS (Discrete Event System

specification) formalism [3] were built in order to allow the
specification of discrete event models. The DEVS
formalism was defined as a method for modeling and
discrete event systems. DEVS theory evolved and it was
recently upgraded in order to permit modeling of continuous
and hybrid systems [4] [5]. This presents some advantages,
including greater accuracy in modeling continuous systems
and the ability to develop a uniform approach to model
hybrid systems, i.e. composed of both continuous and
discrete components. The idea beyond this method is to
provide quantization of the state variables obtaining a
discrete event approximation of the continuous system. This
formalism is known as Q-DEVS and quantization is done
using a piecewise constant function.

In the long term, we want to attack the development of
hybrid systems based on the DEVS formalism and its
extensions, building libraries to make easy to use
components developed on top of DEVS modeling tools. In
this article, we show our first results on the creation of a
Modelica compiler able to create Q-DEVS models [6][7].
One of the benefits is that for a given accuracy, the number
of transitions can be reduced, decreasing the execution time
of simulations. Discrete time models can be simulated under
discrete event paradigm, thus allowing the development of a
simulation environment for complex systems, modeled as
hybrid systems, where all paradigms merge together
(continuous time, discrete time, discrete event). The
experience was developed using the CD++ toolkit [8], a
modeling and simulation framework that was developed in
order to implement the theoretical concepts specified by the
DEVS formalism.

2. BACKGROUND

DEVS (Discrete EVents Systems Specification) [3] defines
a way to specify systems whose states change either upon
the reception of an input event or due to the expiration of a
time delay. It allows hierarchical decomposition of the
model by defining a way to couple DEVS models. A DEVS
atomic model is described as:

M = < X, S, Y, δint, δext,?λ, ta >

X is the set of external events
Y is the set of internal events
S is the set of sequential states
δext: Q x X → S is the external state transition function
δint: S → S is the internal state transition function
λ: S →?Y is the output function
ta: S → R0+ U ∞ ?is the time advance function

A DEVS coupled model is composed of several atomic

or coupled submodels. It is formally defined by:

CM = <X, Y, D, {Mi}, {Ii}, {Zij}, select >

D is a set of components; for each i in D,
Mi is a basic DEVS component; for each i in D,
Ιi is the set of influencees of i; for each j in Ιi,
Ζi, j is the i-to-j output-input translation function
select is the tiebreaker function.

Continuous time ODE systems with initial conditions have
traditionally been simulated by discretizing the time
domain, and solving the ODE over each discrete time
interval. Recently quantized DEVS models [4] permitted to
solve this problem using a different approach, depicted in
Figure 1. A curve is represented by the crossing of an equal
spaced set of boundaries, separated by a quantum size. A
quantizer, checks for boundary crossing whenever a change
in a model takes place. Only when a crossing occurs, a new
value is sent to the receiver. This operation reduces
substantially the frequency of message updates.

Figure 1: Signal Quantization

This approach requires a fundamental shift in thinking about
the system as a whole. Instead of determining what value a
dependant variable will have (its state) at a given time, we
must determine at what time a dependant variable will enter
a given state, namely the state above or below it’s current
state. This approach may yield results as accurate as a
discrete time approach.

CD++ [8] is a modeling and simulation tool based on
implementing DEVS theory. The tool provides a

specification language that allows describing model
coupling; additionally, atomic models can be developed
using C++. CD++ was built as a hierarchy of classes in
C++, each corresponding to a simulation entity using the
basic concepts defined in [3]. The Atomic class implements
the behavior of an atomic component, whereas the Coupled
class implements the mechanisms of a coupled model. We
used CD++ to build a Bond-Graph [9] library as a set of
independent models in which the components are developed
using Q-DEVS [6].

Modelica is an object-oriented language, which was created
for modeling physical systems, designed to support library
development and model exchange. Models in Modelica are
mathematically described by differential, algebraic and
discrete equations. Modelica has many libraries of standard
components in different ODEs, block diagrams, electrical
and mechanical models. A model in Modelica is defined
using classes, as described following:

class A
outer Real T0;
...
end A;
class B
inner Real T0;
A a1, a2; // B.T0, B.a1.T0 and B.a2.T0 is the same
variable
...
end B;

Figure 2. A model in Modelica

For instance, the representation of model of an electrical
circuit is hierarchical; the electrical circuit can be
decomposed into standard (basic) sub-models defined in the
electrical library. The electrical library we defined for
Modelica/CD++ starts by converting Modelica models into
Bond Graphs [9]. Bond Graphs represent continuous
systems as a set of elements that can interact with each other
by exchanging energy and information, and this exchange
determines the dynamics of the system. Energy is the
fundamental feature that is exchanged between elements of
a system during interaction. Power (energy time derivative)
is the product of two factors: the effort and the flow. In
electrical systems, power is the product of voltage and
current; in hydraulic systems, power is the product of
pressure and volume flow rate and so on. A generalized
effort variable and a generalized flow variable can be
defined whose product gives the power exchanged by the
elements of a system. The idea of bond graphs came up
because the exchange of energy and information between
elements can be represented in a graphical form. Finally,
Bond Graphs can be used to prove properties of the model,
and then to translate them into DEVS models, following the
method presented in [10].

The user must provide a source code file as input to the
Modelica compiler. The result is the corresponding model of
the circuit in a Bond Graph representation. In this Bond
Graph, we check for algebraic loops and singularities
(elements that have discontinuities e.g. diode): if there is
any, the process is stopped. Then, we generate an optimized
Bond Graph corresponding to the electrical circuit, which is
used to generate a coupled DEVS model specification
according to the rules used by CD++.

There are different Bond Graph atomic models that we
invoke with this purpose: SerialJunction, ParallelJunction,
SourceEffort (constant, step, pulse, sine), SourceFlow
(constant, step, pulse, sine), Capacitor, Inductance,
Resistance.

3. CREATING MODELS IN MODELICA/CD++

In this section, we will present the definition of different
Modelica/CD++ test cases, and their simulation execution
results. We will present several simulations of electrical
circuits (R, RC, RL) using sinusoidal and pulse voltage
source. The results of our simulations are consistent with the
real behaviour of the electrical circuits in discussion.

Our first example will consider the simulation of an
electrical circuit with sine voltage. This model is presented
in Figure 3 (where V generates a sine voltage).

Model circuit
Modelica.Electrical.Analog.Sources.SineVoltage
 V(V=15,freqHz=60);
Modelica.Electrical.Analog.Basic.Resistor
 R1(R=10);
Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
 connect(V.p, R1.p);
 connect(R1.n, V.n);
 connect(R1.n, Gnd.p);
end circuit1;

Figure 3. An electrical model, and its corresponding
representation in Modelica source code.

After the complete model is generated and executed, we
obtain the following results:

Voltage

-20
-15

-10
-5
0
5

10
15
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

time

V

Voltage

Current and Voltage on R1

-20
-15
-10
-5
0
5

10
15
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

time

V,
C

Current Voltage

Figure 4. Electrical model with sine signal: (a) voltage; (b)
current and voltage on R1.

The first graph (a) shows the voltage on the voltage source
V, which is a sine wave with amplitude 15V. The second
graph (b) shows the voltage and the current on resistor R.
The resistor is a passive element in the oscillating electrical
circuit so the current and the voltage on the resistor are in
phase; the amplitude of electrical current is I=V/R1.

Our second example defines a simulation of an electrical
circuit with pulse voltage. The structure of the model is
similar to the one presented in Figure 4. Here, we show the
Modelica/CD++ specification of the model (where V now
provides a pulse voltage and we also added a capacitor).

model circuit
Modelica.Electrical.Analog.Sources.PulseVoltage
V(V=10,width=50,period=2);
 Modelica.Electrical.Analog.Basic.Resistor
R1(R=10);
 Modelica.Electrical.Analog.Basic.Capacitor
C(C=15);
 Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
 connect(V.p, R1.p);
 connect(R1.n, C.p);
 connect(C.n, V.n);
 connect(V.n, Gnd.p);
end circuit;

Figure 5. An electrical model, and its corresponding
representation in Modelica source code.

After the complete model is generated and executed, we
obtain the following results:

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

time

C
,V

0

1

2

3

4

5

6

0

34
92

4

80
19

9

1E
+0

5

2E
+0

5

2E
+0

5

3E
+0

5

4E
+0

5

5E
+0

5

6E
+0

5

8E
+0

5

1E
+0

6

1E
+0

6

time (ms)

C
,V

Current voltage

Figure 6. Electrical model with pulse signal: (a) Current and
voltage on R1; (b) current and voltage on the Capacitor.

The resistor is a passive circuit element and, as described in
previous example, current I=V/R1- in case (a). The voltage
on capacitor – case (b) - will increase till the maximum
value (10V) and the current will become zero, the capacitor
will be fully charged. The voltage source provides only
positive pulses so capacitor will not be discharged and the
current on the capacitor remains zero.

In our next test, we added an inductor to the original circuit,
using a pulse voltage again:

model circuit
 Modelica.Electrical.Analog.Sources.PulseVoltage
V(V=10,width=50,period=2);
 Modelica.Electrical.Analog.Basic.Resistor
R1(R=10);
 Modelica.Electrical.Analog.Basic.Inductor
I1(L=48);
 Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
 connect(V.p, R1.p);
 connect(R1.n, I1.p);
 connect(I1.n, V.n);
 connect(V.n, Gnd.p);
end circuit;

Figure 7. An electrical model and its corresponding
representation in Modelica source code.

-10

-5

0

5

10

15

0
24

77
14

87
3
23

86
5
32

80
2

37
92

2
40

95
5

43
96

0
46

93
5
49

97
1
52

92
9

55
97

4
58

92
8

time(ms)

C
,V

Current Voltage

Figure 8. Electrical model with pulse signal and Inductor:

Current and voltage on the Inductor.

The inductor is an active circuit element. When the current
varies from zero to its nominal value (transient regime of
the electrical circuit) there is an induction phenomenon on
the inductor - the inductor generates voltage in this
transition stage. The current on the circuit varies then from
its nominal value to zero because the source voltage
provides pulses, so there is again an induction phenomenon
on the inductor which generates voltage. In conclusion, the
voltage on the inductor varies in (-6V, 6V) interval as the
source voltage V varies in the interval [0V, 10V].

4. TESTING Q-DEVS MODEL EXECUTION

In this section, we introduce different models generated
after the results of our intermediate steps. As mentioned in
the Introduction, our Modelica/CD++ models are translated
into Bond Graphs, which are used to test model properties.
These models are then translated into DEVS model
specifications in CD++. Here, we will show different
experimental results obtained through varied simulations
using different quantum sizes for the quantized versions of
the models finally generated. Our first example shows a
model generated by the tool, in which a hybrid model,
mixing a logarithmic, and an attenuated sine signal
(sin(x)/x) are defined. The following figure shows the model
specification generated by Modelica/CD++ for this case.

[top]
components : function@FunctionEvaluator

 quantizer@Quantizer integrator@Integrator
in : in
out : out
Link : out@function in@quantizer
Link : out@quantizer in@integrator

[function]
initialValue : 0.1 lastValue : 50
qValues : 100 function : log
evalFrequency : 0.001
Figure 9. Q-DEVS model generated: Integrator, Quantizer

and FunctionEvaluator: logarithmic

As we can see, Modelica/CD++ generates a coupled model
(top) consisting of three atomic components: Integrator,
Quantizer, and FunctionEvaluator. These models are part of
Modelica/CD++ library, and have been built as DEVS
models executable in CD++. The FunctionEvaluator
receives different parameters (function), in this case, the
type of function to be evaluated (logarithm), the initial/last

values we want to generate, and the evaluation frequency.
The quantizer simply quantizes the input signal using a
predefined value (in this case, q=1). Finally, the integrator
computes the integration of the input value, using the Euler
methods with a time scale of 0.05 time units. Finally, the
link directive shows how the three models are coupled to
each other.

-3
-2
-1
0
1
2
3
4
5

1 10 19 28 37 46 55 64 73 82 91 100

x

lo
g

logarithm Quantized logarithm

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

(a)

-3
-2
-1
0
1
2
3
4
5

1 9 17 25 33 41 49 57 65 73 81 89 97

Logarithm Quantized logarithm

0

0.02

0.04

0.06

0.08

0.1

0.12

1 9 17 25 33 41 49 57 65 73 81 89 97

(b)

-3
-2
-1
0
1
2
3
4
5

1 9 17 25 33 41 49 57 65 73 81 89 97

logarithm Quantized logarithm

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

1 10 19 28 37 46 55 64 73 82 91 100

(c)

Figure 10. Q-DEVS model execution: Logarithm vs. Quantized version and simulation Error charts. (a) q=1; (b) q=0.1; (c)
q=0.01.

In the previous figure, we show the execution results of the
model, and the error obtained at each step of the execution.
As we can see, the approximation improves highly while the
quantum size is reduced. This is because more messages are

involved in the simulation, and higher precision can be
obtained. In the worst possible case, the error is 0 when
compared to the original signal, but we have to pay the cost
of increased execution time for the model).

We executed this model varying the size of the quantum
size, and obtained the results presented following.

800

1000

1200

1400

1600

1800

2000

0.01 0.1 1

Number of messages

lo
g

0

0.02

0.04

0.06

0.08

0.1

1 4 7 10 13 16 19 22 25 28 31 34 37

Errors for q=0.1 Errors for q=0.01

Figure 11. Q-DEVS model execution: Number of messages
in the simulation, and comparative error

As we can see, the number of messages involved reduces
substantially when the quantum size increases, confirming
the theoretical results presented in [4], and the empirical
results presented in [11].

A second example we will present here shows the execution
of a model generated using an attenuated sine signal
(sin(x)/x). The model generated is the same than the one
presented in Figure 9, but the function chosen has been
changed to:

[function]
initialValue : -0.1
lastValue : 15.0
qValues : 100
function : sinat
evalFrequency : 0.01

Figure 12. Q-DEVS model generated: attenuated sine

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Original value

Quantized
value

0

0.02

0.04

0.06

0.08

0.1

0.12

1 9 17 25 33 41 49 57 65 73 81 89 97

(a)

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Original value Quantized value

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

1 10 19 28 37 46 55 64 73 82 91 100

(b)
Figure 13. Q-DEVS model execution: Attenuated sine vs.

Quantized version; simulation Error. (a) q=0.1; (b) q=0.001.

In this particular case, there is 55% increase in number of
messages (1911 vs. 1228) with 100 times error improved
(decreased). The number of messages increased because, in
this case, there are more crossings of the boundaries defined
by the quantum size (q=0.001). The error doesn’t exceed the
quantum size.

5. CONCLUSIONS

The DEVS formalism is a method defined for modeling and
simulation of discrete event systems. During the last years
the DEVS theory has evolved, and it was recently upgraded
in order to permit simulation of continuous and hybrid
systems. In this work, we present a tool for modeling and
simulation of continuous systems based on the DEVS
formalism. Models are described using Modelica, a modular
and acausal standard specification language for physical
systems modeling.

A hierarchy of models was developed within CD++ to give
support in the simulation of continuous and hybrid systems.
A Q-DEVS base and Bond-Graph elements were
implemented allowing the simulation of dynamic systems in
a context-independent way. The use of quantization
methods was also presented. Tests were executed and results
were analyzed in order to determine when these methods
could yield the appropriate approach. In some cases, this
reduction can be very significant.

It is important to have in mind that Modelica/CD++
approximates the system solution based on the Q-DEVS
method, which uses a simple first order integration
approach. Most of the results produced by Modelica/CD++
were contrasted with results generated using a higher order
and variable step-size integration method, DASSL. It was
shown that, in general, choosing adequate quantization
parameters produce accurate solutions and decrease error.

Different open topics must be considered for future research
in this area. First, an exhaustive comparison between the
simulation models and the corresponding analytical
solutions must be faced. Model complexity must be
considered when using polynomial approximations.
Stability and convergence properties must be analyzed.
Using these approaches, we can benefit of better
performance for a given accuracy, which decreases the
execution time of simulations. Discrete time models can be
simulated under a discrete event paradigm, thus allowing the
development of a simulation environment for complex
systems, modeled as hybrid systems, where all paradigms
merge together (continuous time, discrete time, discrete
event).

REFERENCES

[1] Taylor, M. 1996. Partial Differential Equations: Basic
Theory. Springer Verlag, NY

[2] Åström, K. J; Elmqvist, H.; Mattsson, S. E. “Evolution
of continuous-time modeling and simulation”. The 12th
European Simulation Multiconference, ESM'98,
Manchester, UK, June 1998.

[3] B. Zeigler, T. Kim, and H. Praehofer. Theory of
Modeling and Simulation. Academic Press. 2000.

[4] Zeigler, B. DEVS. “Theory of Quantization”. DARPA
Contract N6133997K-007: ECE Dept., University of
Arizona, Tucson, AZ, 1998.

[5] Kofman, E.; Junco, S. “Quantized State Systems. A
DEVS Approach for Continuous System simulation”.
Transactions of the SCS, 18(3), pp. 123-132, 2001

[6] M. D’Abreu, G. Wainer. “Modelica/CD++: a compiler
for continuous systems on DEVS”. Technical Report SCE-
05-07. Carleton University. Submitted for publication. 2005.

[7] M. D’Abreu. “M/CD++: a tool for hybrid modeling and
simulation”. M. Sc. Thesis. Computer Science Dept.
Universidad de Buenos Aires, Argentina. 2004.

[8] G. Wainer. “CD++: a toolkit to develop DEVS
models”. Software-Practice and Exp. 32, 1261-1306. 2002.

[9] Cellier, F.E.; Elmqvist, H. “Automated formula
manipulation supports object-oriented continuous-system
modeling” IEEE Control Systems, 13(2), pp. 28-38, April
1993.

[10] D'Abreu, M.; Wainer G. “Defining hybrid system
models using DEVS quantization techniques”. In
Proceedings of the Winter Simulation Conference. New
Orleans, LA. U.S.A., 2003.

[11] Wainer, G.; Zeigler, B. "Experimental results of Timed
Cell-DEVS quantization". In Proceedings of AIS'2000.
Tucson, Arizona. U.S.A. 2000.

