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Abstract 
 
DEVS theory (originally defined for modeling and 

simulation of discrete event systems) was extended for 
modeling and simulation of continuous/hybrid sys-
tems. We present the M/CD++, a tool to build such 
models using a subset of Modelica, a modular and 
acausal specification language for physical systems. 
Models are created using Modelica standard nota-
tion, and a translator converts them into DEVS mod-
els. We show how to model these dynamic systems un-
der the discrete event abstraction, including different 
execution results.  

 
1. Introduction 

 
Continuous Variable Dynamic Systems are repre-

sented by continuous variables on a continuous time 
basis. Analysis of these complex systems has usually 
been tackled using different mathematical formalisms, 
including Differential Algebraic Equations (DAEs), Or-
dinary Differential Equations (ODEs), or Partial Differ-
ential Equations (PDEs). Most existing simulation tools 
implement numerical methods based on the discretiza-
tion of time to find approximate solutions to these equa-
tions, which are based on discretization of time. In the 
last few years, different approaches developed tried to 
simulate continuous systems under the discrete event 
paradigm. This presents some advantages over discrete 
time simulation, including reduction of the number of 
calculations for a given accuracy [1] and seamless inte-
gration of complex systems composed by both con-
tinuous time and discrete event paradigms. These solu-
tions are based on the DEVS (Discrete Event Specifica-
tion) formalism [2], originally created for specifying dis-
crete event models. The idea of this method, called 
Quantized Systems theory (Q-DEVS), is to provide 

quantization of the state variables obtaining a discrete 
event approximation of the continuous system [3]. The 
state variables of the system are converted into a 
piecewise constant function via a quantization function 
[3]. The Quantized State System (QSS) method [4] is an 
extension to Q-DEVS in which the trajectory of each 
state variable is converted into a piecewise constant 
function via a quantization function equipped with hys-
teresis .  

We will present a toolkit to simulate physical sys-
tems based on these methods. The tool, called 
M/CD++, is based on Modelica [5] and CD++ [6], a 
modeling and simulation (M&S) tool implementing 
DEVS theory. Modelica is an object-oriented language 
created for modeling physical systems, which support 
library development and model exchange. Models in 
Modelica are described by differential, algebraic and 
discrete equations. Modelica provides libraries of stan-
dard components in different ODEs, block diagrams, 
and electrical and mechanical models. M/CD++ allows 
the creation of dynamic systems belonging to the elec-
trical domain. Internally, the models are represented us-
ing the Bond Graph (BG) formalism [7], which permit to 
reuse models created by the toolkit to support simula-
tion of physical systems in different domains. These 
models are used to check for algebraic loops and singu-
larities, and to generate an optimized BG corresponding 
to the electrical circuit, which, in turn, is used to gener-
ate a DEVS model specification according to the rules 
used by CD++. 

 
2. Background 
 

Continuous systems are usually described using 
DAEs, ODEs and PDEs, and simulators based on these 
formalisms usually solve numerically the set of differen-
tial equations. Recently, some authors have tried to 
model these systems via system decomposition, divid-



ing the system into a number of smaller subsystems, 
using Object-oriented modeling to promote model 
specification in a more natural way [7][8]. Modelica [5] 
is one of such languages, intended for modeling within 
many application domains such as electrical circuits, 
hydraulics, mechanics, etc. Modelica is built on non-
causal modeling with mathematical equations and ob-
ject-oriented constructs , allowing library development 
and model exchange. The semantic of these models is 
specified by a set of rules used to translate the model to 
its corresponding flat hybrid DAE. A model is repre-
sented using classes that can be developed hierarchi-
cally, allowing components reuse. An example of an 
electrical circuit specified using the electrical library 
provided by Modelica is presented below: 
 
encapsulated model ChuaCircuit  
 "Chua's circuit, ns, V, A"  
  import Modelica.Electrical.Analog.Basic; 
  import Modelica.Electrical.Analog. 
   Examples.Utilities; 
  Basic.Inductor L(L=18); 
  Basic.Resistor Ro(R=12.5e-3); 
  Basic.Conductor G(G=0.565); 
  Basic.Capacitor C1(C=10, v(start=4)); 
  Basic.Capacitor C2(C=100); 
  Utilities.NonlinearResistor Nr(Ga(min=-
1)   =-0.757576,Gb(min=-1)=-
0.409091,Ve=1); 
  Basic.Ground Gnd; 
 
 equation  
  connect(L.p, G.p);  
  connect(G.n, Nr.p); 
  connect(Nr.n, Gnd.p); 
  connect(C1.p, G.n); 
  connect(L.n, Ro.p); 
  connect(G.p, C2.p); 
  connect(C1.n, Gnd.p); 
  connect(C2.n, Gnd.p); 
  connect(Ro.n, Gnd.p); 
 end ChuaCircuit; 
Figure 1. Chua’s circuit [9] in Modelica. 

 
The tool we implemented is able to simulate electrical 

circuit models defined using a subset of the Modelica’s 
language specification (a complete description of the 
grammar supported, check [10]). M/CD++ models are 
converted into Bond Graphs (BG), a modeling formalism 
that allows domain-independent description of the dy-
namic behavior of the physical systems we model. Sys-
tems can be described in a hierarchical way, using BG 
submodels connected via ports. BG represent continu-
ous systems as a set of elements that can interact with 
each other by exchanging energy and information, and 
this exchange determines the dynamics of the system. 

Power (energy time derivative) is the product of effort 
and flow. In electrical systems, power is the product of 
voltage and current; in hydraulics, it is the product of 
pressure and volume flow rate, etc. A generalized effort 
variable and a generalized flow variable can be defined 
whose product gives the power exchanged by the ele-
ments of a system. In BG, physical processes are repre-
sented as vertices in a directed graph, and the edges 
represent the ideal exchange of energy between the ver-
tices [8]. The energy flow is represented via bonds with 
direction and the elements exchange effort and flow 
through them. The exchange of power is assumed to 
occur through abstract entities called energy ports. A 
fundamental concept to understand how information 
flows between components is causality: no component 
can determine the two power variables, effort and flow, 
at the same time. Given a pair of elements connected 
through a bond, causality determines which component 
causes the flow information and which causes the ef-
fort. 

In M/CD++, we generate intermediate BG that are 
subsequently translated into DEVS, a formalism for 
M&S of discrete-event dynamic systems. DEVS can be 
seen as a mechanism to specify systems whose inputs, 
states and outputs are piecewise constant, and whose 
transitions are identified as discrete events [1]. DEVS 
models can be described using atomic and coupled 
components. Atomic models are independent modular 
objects that specify behavior; these can be composed 
in order to form coupled components. A coupled model 
is composed by several atomic or coupled submodels.  

DEVS has been used recently for continuous sys-
tems simulation by different research teams [1][3] 
[4][11][12][13][14][15][16]. In these articles, it has been 
shown that discrete event methods in general and 
DEVS in particular, present several advantages: 

- Computational time reduction: for a given accuracy, 
the number of calculations can decrease 

- Hierarchical modular modeling 
- Seamless integration with models defined with 

other modeling techniques mapped to DEVS 
- Simulation of discrete time models: can be seen as 

particular cases of discrete event methods 
- Hybrid systems modeling: the discrete event para-

digm provides the theory to develop a uniform ap-
proach to model and simulate systems with continuous 
and discrete components. 

Most of these techniques are based on Q-DEVS [3], 
whose main idea is to represent continuous signals by 
the crossing of an equal spaced set of boundaries. This 
approach requires a fundamental shift in thinking about 
the system: instead of determining what value a de-



pendant variable will have at a given time, we must de-
termine at what time a dependant variable will enter a 
given state. QSS (Quantized State Systems) [4][11] is an 
extension to Q-DEVS, which allows continuous sys-
tems simulation based on quantization and hysteresis. 
In [4] it was proved that differential equation systems 
can be approximated by legitimate DEVS models with 
QSS, and the existence of a minimum time interval be-
tween events constitutes a sufficient condition to ob-
tain legitimate mo dels [4]. 

 
Figure 2. Signal Quantization. 

 
CD++ is a toolkit that implements DEVS theories [6]. 

Atomic models  are implemented using a built-in specifi-
cation language or C++. New atomic models extend the 
behavior of the basic atomic model and they must in-
herit from the Atomic class, provided by the tool. Cou-
pled models  are described in a configuration file using a 
specification language provided by the tool.  

 
3. M/CD++ 

 
M/CD++ allows simulating dynamic systems  in the 

electrical domain using CD++. The electrical circuits can 
be modeled using an Object-Oriented methodology, 
and then simulated through a discrete event simulator. 
Three main features were added to extend CD++:  

Modelica v2.1 language support for electrical cir-
cuits construction: a subset of Modelica v2.1  [5] was 
implemented, and the components needed to allow elec-
trical circuits construction included the basic compo-
nents provided by the Modelica Electrical library. 

Electrical circuit modeling and compilation utilities: 
several techniques were developed to translate the ob-
ject-oriented representation of the electrical circuit into 
a valid DEVS model, capable to be simulated with 
CD++. Electrical circuit simulation capabilities based on 
the implementation of QSS concepts: the resulting 
CD++ model represents the equations system associ-
ated to the electrical circuit that has to be solved. Based 
on QSS and QBG theory, atomic models were con-
structed and added to CD++, approximating the solu-
tion using a discrete event approach. 

The objects defined in the Modelica Electrical library 
supported on M/CD++ are: Mode-
lica.Electrical.Analog.Basic: Ground, .Resistor, 
.Conductor, .Capacitor, .Inductor; Modelica. Electri-
cal.Analog.Ideal: .IdealTransformer, .IdealGyrator; 
Modelica.Electrical.Analog.Sources: ConstantVolt-
age, .StepVoltage, .SineVoltage, .PulseVoltage, 
.ConstantCurrent, .StepCurrent, .SineCurrent and 
.PulseCurrent. These components are described ac-
cording Modelica’s specifications [5]. The following 
figure shows one of these components (further details 
can be found in [10]).  

 
model SineVoltage "Sine voltage source"  
parameter SI.Voltage V=1 "Amplitude"; 
parameter SI.Angle phase=0 "Phase "; 
parameter SI.Frequency freqHz=1"Frequency 
"; 
extends Inter-
faces.VoltageSource(redeclare  

  Modelica.Blocks.Sources.Sine  
   signalSource(amplitude={V},  
     freqHz={freqHz}, phase={phase})); 

end SineVoltage; 
Figure 3. Definitions: Modelica.Electrical.   
Analog.Sources.SineVoltage 
 

The sine voltage defines the amplitude, phase and 
frequency (in Hz) of the sine wave (defaults: 1, 0, 1), 
and generates a voltage/time. M/CD++ is defined by 
several core components related to file parsing, model 
generation, compilation and CD++ simulator invocation. 
The compiling process starts with an electrical circuit 
model specified using Modelica, and finishes with a log 
file including the simulation results [10]. The following 
sections describe each step. 
 
4. Modelica Parser & Checker 

 
This component checks and parses the input file, 

building and validating the electrical circuit model. We 
built a parser using a general-purpose parser generator 
that takes an LALR context -free grammar, and describe 



the actions that accompany the syntactic rules. These 
actions were implemented to build the input file syntax 
tree; which is in turn used to perform semantic valida-
tion and electrical circuit construction, checking: 

- Specification of valid and supported packages 
- Specification of valid and supported types/classes 
- Undeclared symbols checking 
- Specification of valid component attribute  
Only if the complete syntax tree is successfully vali-

dated the electrical circuit model is built. Several verifi-
cations preserve the model properties; these restric-
tions are checked during the electrical circuit building 
phase accomplished by the parser, e.g.: 

- Valid specification of pin references 
- connections between existing elements 
- No connections from a component to i tself 
- specification of at least one source component 

 
(a) 

model circuit  Mode-
lica.Electrical.Analog. 

Sources.PulseVoltage V(V=200, pe-
riod=1, 

     width=10); 
Mode-
lica.Electrical.Analog.Basic.Capacitor  
     C(C=200); 
Mode-
lica.Electrical.Analog.Basic.Resistor  
     R(R=1.5); 
Mode-
lica.Electrical.Analog.Basic.Inductor  
     I(L=40); 
Modelica.Electrical.Analog.Basic.Ground  
      Gnd; 

 
equation  

connect(V.p, R.p); 
connect(R.n, I.p); 
connect(R.n, C.p); 
connect(I.n, V.n); 
connect(C.n, V.n); 
connect(C.n, Gnd.p); 

end circuit; 
(b) 

9 � S

9 � Q

5 � S 5 � Q

&�S

&�Q

,�S

,�Q

* QG�S  
(c) 

EC : ECircuit

C : Capacitor I : Inductor

R : Resistance

Gnd : Ground

«usos»

«usos»

«usos»«usos»

V : VoltageSource

«usos»

 
(d) 

Figure 4. (a) Electrical circuit model (b) Electri-
cal circuit input file (b) Electrical circuit graph 
representation on M/CD++ (d) Objects model 
generated by the M/CD++ parser  

A class hierarchy was implemented to model the 
electrical circuit objects, its components and attributes. 
The definitions of pin (positive and negative), port, 
one-port element, two-port element, electrical compo-
nent (resistance, capacitor, source, etc) and circuit 
generate the model associated to these concepts 
[10][12]. 

Figure 4 shows the electrical circuit objects con-
structed by the parser given the corresponding Mode-
lica specification file. The electrical circuit object, EC, is 
modeled as the composition of the following objects: 

- R: instance of Resistance (resistor component; 
one-port element) 

- V: instance of VoltageSource (voltage source 
component with signal s; one-port element. 

- C: instance of Capacitor (capacitor component; 
one-port element). 

- I: instance of Inductor (inductor component; one-
port element). 

- Gnd: instance of Ground (ground component; one 
positive pin). 

The electrical circuit is modeled using an OO ab-
straction, which uses an internal representation based 
on a graph notation, as showed in Figure 4 (c). Every 
electrical component on the circuit is represented in the 



graph using n nodes, where n corresponds to the num-
ber of pins of the element. One-port elements are repre-
sented by two nodes on the graph, element.port1.p 
(positive pin) and element.port1.n (negative pin). Gen-
eralizing, k-port elements will be represented by 2.k  
nodes as: element.port1.p, element.port1.n, ele-
ment.portk.p and element.portk.n. There are two types 
of connections between nodes: physical and logical. 
The former type corresponds to the physical coupling 
between the elements of the circuit. Logical connec-
tions correspond to the associations between pins and 
ports of an element.  

These implementation decisions were made having 
in mind the BG generation algorithm, developed for the 
mapping phase. The idea was using a suitable data 
structure and model representation to optimize the gen-
eration process of the BG associated to the electrical 
circuit, as discussed next. 
 
5. Mapping electrical circuits to BG 

 
Our BG generation algorithm is based on the Kar-

nopp’s circuit construction method [17]. The basic ap-
proach is to construct a BG resembling the circuit struc-
turally, and to simplify the BG based on selected circuit 
properties. The construction method is: 

-For each node in the circuit with a distinct poten-
tial write a 0-junction. 

-Insert each one-port circuit element by adjoining it 
to a 1-junction and inserting the 1-junction between 
the appropriate  0-junctions (C, I, R, Se, Sf elements) 

-Assign power directions to all bonds 
-If the circuit has an explicit ground potential, de-

lete those 0-junctions and their bonds from the graph. 
If no explicit ground potential is shown, choose any 0-
junction and delete it. 

-Simplify the resulting BG 
After, a causalization process is applied, as de-

scribed in [10]. After this process, the signal direction 
of the bonds is determined. Once this process is ap-
plied to the graph, each bond can be interpreted as a bi-
directional signal flow. The causal BG can then be seen 
as a compact block diagram. Structural singularities and 
algebraic loops within a model are detected following 
the procedure defined in [10], but not corrected. In 
these cases, processing is aborted and an exception is 
raised. Only integral causalities are assigned to the 
storage components. In presence of structural singular-
ity, i.e. coupled storages, one of the elements should be 
assigned the derivative causality, causing the toolkit to 
generate an exception. The error message informed will 
contain the name of the component causing the pre-

ferred causality violation. That can be used to detect 
dependent storages, which are storages that do not 
represent a state variable of the system. Figure 5 shows 
a graphical of an electrical circuit, and its transforma-
tion. 

 

 
Figure 5. (a) circuit, (b) generated BG. 
 
6. Quantized BG implementation on CD++ 

 
A Quantized BG (QBG) is a BG where all the storages 

and sources are quantized elements. Given that QSS 
modifies the original system, only the storage elements 
(capacitor and inertia) need to change in order to use 
the QSS method on QBG [4]. Several atomic DEVS mo d-
els where developed on CD++, implementing the QSS 
and QBG concepts on the toolkit. Each component of 
the QBG was implemented as an atomic DEVS model, 
using BG and QSS definitions. For each model, we de-
fined a DEVS formal specification, and built a model in 
CD++ based on such specification. Following, we pre-
sent the formal definition of the QBGCapacitorFlowIn  
model (the remaining constructs were built using a simi-
lar approach, and details can be found in [10]). This is 
an atomic DEVS model corresponding to a QBG capaci-
tor, which was developed following QSS definitions, 
implementing the capacitor as a quantized function ap-
plied to the displacement, q(t), being the integrator’s 
output. 

 

 
Figure 6. Constitutive relation of a storage 
element; quantization with hysteresis [K03] 

 
The QBGCapacitor is defined as in [4]: 
 

M = < X, S, Y, δint, δext, λ, ta > 
 



X = ℜ ; Y = ℜ x N; S = ℜ 2 x Z x ℜ+ 
δint(s) =δint(x, dx, j, σ)=(x + σ. dx , dx , j+sgn(dx), σ1) 
δext(s,e,xu) = δext((x, d x, j, σ), e, xv) = 

 (x+e.dx, ,xv , j, σ2) 
λ(s) = λ(x, dx, j, σ) = (Qj+sgn(dx),1) 

ta(s) = ta(x, d x, j, σ)= σ 
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The simulation of this atomic DEVS model is based 

on the detection of effort value changes, regarding that 
the input flow and the output effort are piecewise con-
stant, and the displacement trajectory is piecewise lin-
ear. This time is calculated dividing the distance of the 
displacement value to the next quantum crossing and 
the flow value. In case of input flow variations, the time 
to the next effort change must be recalculated. The cur-
rent displacement is then computed according the 
elapsed time and the previous flow value and then used 
as the new initial value. Therefore, the new ta function 
value is calculated as it was already described. Input 
flow changes are associated to external events. 
 
7. BG Compiler for CD++ 

 
Once the BG model has been generated and com-

pletely causalized, it compiled into CD++ notation. As 
the input to CD++ must be a valid DEVS model, the BG 
generated must be transformed into its corresponding 
DEVS representation. Thus, we built a BG Compiler for 
CD++. The first step done during the BG compilation is 
the transformation to its equivalent Quantized BG 
model explained in the previous section.  

For each component u of the QBG, add u to the dec-
laration section within the CD++ coupled model file. Se-
lect a valid implementation class for the comp onent. For 
each bond b = (u,v) of the QBG, generate the coupling 
information between u and v on the links section within 
the CD++ coupled model, using DEVS formal coupling 
definitions. For each component u of the QBG, generate 
the component’s configuration information within the 

parameterization section on the CD++ coupled model 
file. 

 
components : $PJ2@QBGParallelJunction 
$PJ3@QBGParallelJunction 
C@QBGCapacitorFlowIn 
$SJ2@QBGSerialJunction 
$SJ3@QBGSerialJunction ...  
 
link : e2n@$PJ2 e2p@$SJ2 
link : f2p@$SJ2 f2n@$PJ2 
... 
link : e1n@V    e3p@$SJ3 
link : e3n@$PJ2 e1p@I1    
[C]  quantum : 0.0002   hystWindow : 0.01   
C : 10.000  initialLoad : 0.000 
[L1] quantum : 0.0002   hystWindow : 0.01   
I : 500.000  initialLoad : 0.000 
[L2] quantum : 0.0002   hystWindow : 0.01   
I : 2000.000  initialLoad : 0.000 
[R1]  R :      0.001   
[R2]  R :   1000.000 
[V]  quantum : 0.0002   hystWindow : 0.01  
signal : Pulse  offset : 000  startTime : 
000 
amplitude : 010    period : 2.5  width : 
050  
Figure 7. Coupled DEVS model representation 
and CD++ notation 
 
8. M/CD++ execution examples 

 
In this section, we present the simulation results of a 

simple electrical circuit using the tools. Different stud-
ies were carried out, using different examples (details 
can be found in [10] and [18]). The goal of this section 
is to show the results obtained when compiling a 
M/CD++ model, and comparing it with the actual model 
behavior. We present the simulation results of the cir-
cuit introduced in Figure 5, whose Modelica definition 
can be seen in Figure 8. 
 
model circuit 
Modelica.Electrical.Analog.Sources.  
   PulseVoltage V(V=10,width=50, pe-
riod=2.5); 
Modelica.Electrical.Analog.Basic.Resistor  
    R1(R=0.001); 
Modelica.Electrical.Analog.Basic.Inductor  
    I1(L=500); 
Modelica.Electrical.Analog.Basic.Inductor  
    I2(L=2000); 
Modelica.Electrical.Analog.Basic.Capacitor  
    C(C=10); 
Modelica.Electrical.Analog.Basic.Resistor  
    R2(R=1000); 



Modelica.Electrical.Analog.Basic.Ground 
Gnd; 
 
equation 
 connect(V.p, R1.p); connect(R1.n, I1.p);
  
 connect(R1.n, I2.p); connect(I2.n, C.p); 
 connect(I2.n, R2.p); connect(C.n, I1.n); 
 connect(R2.n, C.n); connect(I1.n, V.n);  
 connect(V.n, Gnd.p); 
end circuit; 
Figure 8. Modelica specification of the circuit 

 
The simulation of the example circuit was run for 1 

minute of simulated time, using a quantum value equal 
to 0.0002 and an hysteresis window size of 0.01, applied 
to all of the quantizable components within the circuit 
(I1, I2, C1). 

 

   

  
Figure 9. (a) Pulse Voltage Source (b) Current 
on inductor I1 (c) Voltage on Capacitor C 
 

Figure 9 shows the simulation results for the model 
executed. For the given pulse voltage source, we ob-
tained the desired voltage on capacitor C, and the ex-
pected current on the inductor Ii. In order to validate 
our simulation results, we compared them with results 
obtained using Dymola [19], a commercial toolkit with 
full support for Modelica. The idea about using Dymola 
was comparing the results given by M/CD++ with 
those calculated by an advanced commercial tool with 
Modelica support. The test cases here presented were 
executed using both M/CD++ and Dymola simulators, 
varying simulation parameters in order to compare the 
results and calculate the error between them. 

We simulated the previous example circuit using the 
DASSL integration method on Dymola during 10 sec-
onds of simulation time (using intervals of 500 time 

units, and a tolerance of 0.0001). We compared the re-
sults with those obtained by M/CD++ using a quantum 
size q=0.0001 and a hysteresis window of a/2.  
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Inductor1.i curves comparison
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Figure 10. Comparison for voltage on Capaci-
tor and current on Inductor1 

 
The following figures show the error between the 

capacitor (C) and inductor (I1) state trajectories on 
M/CD++ and Dymola for the given simulation 
parameters. In Figure 10 we can see that the relative er-
ror is minimum (the highest error was obtained when 
values are close to zero, because, as the quantum size 
used during the simulation is fixed value for all the 
points on the curve, smaller values will produce greater 
relative errors). The error curve decreases when time 
advances. The results were even better when we de-
creased the quantum and hysteresis window size on 
M/CD++ (using q(C)=0.000005, and q (L1)=0.00005, and 
hysteresis = q/2).The following figures show the 
relative error between the capacitor (C) and inductor 
(L1) state trajectories on M/CD++ and Dymola for the 
given simulation parameters. This test case was 
simulated with the DASSL method on Dymola, as the 
previous case, but now decreasing the quantum and 
hysteresis window size used on M/CD++ simulation. 



Relative error between L1.i on MCD++ and L1.i 
interpolated by Dymola (case 1.2)
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Relative error between C.v on MCD++ and C.v 

interpolated by Dymola (case 1.2)
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Figure 11. Relative error: (a) current on Induc-
tor1 (b) voltage on Capacitor 
 

The figure shows how the relative error is decreased 
for values near to zero. Finally, we repeated the tests 
using the same quantum size, but changing the 
integration method on Dymola (Euler, integration step 
0.05). The following figures show the error between the 
capacitor (C) and inductor (L1) state trajectories on 
M/CD++ and Dymola for the given simulation 
parameters.  

 
Relative error between C.v on MCD++ and C.v 

interpolated by Dymola (case 1.3)

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (sec)

R
el
at
iv
e 
er

ro
r (
%

)

Relative error between L1.i on MCD++ and 
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Figure 12. Relative error: (a) voltage on Ca-
pacitor (b) current on Inductor1 

 

The first two test cases were used to compare the 
results given by M/CD++ with those generated by a 
higher order and variable step-size method, DASSL. 
Given that M/CD++ uses a first order method to inte-
grate the state trajectories (QSS), a first order method 
was also used on Dymola simulation in order to make 
comparisons.  

 
 Relative error average 

Curve Case 1  Case 2  Case 3  
C.v 2.75 % 0.87 % 0.42 % 
L1.i 0.28 % 0.11 % 0.11 % 

 
9. Conclusion 

 
DEVS is a formalism defined for M&S of discrete 

event systems, which has been recently used for simu-
lation of continuous and hybrid systems. We intro-
duced a tool for M&S of continuous systems , in which 
models are described using Modelica. The simulation 
results generated by MCD++ were compared with those 
produced by a complex physical system simulation en-
vironment with Modelica support called Dymola. It was 
shown that a higher relative error is obtained for values 
near to zero on a trajectory. This is related with the fixed 
quantum size used by the quantization function over a 
state trajectory. Then, for smaller values, greater differ-
ences are given. An approach to improve the simulation 
results could be developed using an adaptive quantiza-
tion function, making the quantum vary according to 
the trajectory evolution. It is important to have in mind 
that MCD++ approximates the system solution based 
on the QSS method, which uses a simple first order in-
tegration approach. Most of the results produced by 
MCD++ were contrasted with results generated using a 
higher order and variable step-size integration method, 
DASSL. It was shown that, in general, choosing ade-
quate quantization parameters produce accurate solu-
tions and decrease error. 

In the long term, we want to attack the development 
of hybrid systems based on the DEVS formalism and its 
extensions, building libraries to make easy to use com-
ponents developed on top of DEVS modeling tools. 
One of the benefits is that for a given accuracy, the 
number of transitions can be reduced, decreasing the 
execution time of simulations. Discrete time models can 
be simulated under discrete event paradigm, thus allow-
ing the development of a simulation environment for 
complex systems, modeled as hybrid systems, where all 
paradigms merge together (continuous time, discrete 
time, discrete event). 
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