
M/CD++: modeling continuous systems using Modelica and DEVS

Mariana C. D’Abreu

Computer Science Department
Universidad de Buenos Aires

 Pabellón I, Ciudad Universitaria
(1428) Buenos Aires, ARGENTINA.

mdabreu@ciudad.com.ar

Gabriel A. Wainer

Dept. of Systems and Computer
Engineering. Carleton University

1125 Colonel By Drive.
Ottawa, ON, K1S 5B6, CANADA.

gwainer@sce.carleton.ca

Abstract

DEVS theory (originally defined for modeling and

simulation of discrete event systems) was extended for
modeling and simulation of continuous/hybrid sys-
tems. We present the M/CD++, a tool to build such
models using a subset of Modelica, a modular and
acausal specification language for physical systems.
Models are created using Modelica standard nota-
tion, and a translator converts them into DEVS mod-
els. We show how to model these dynamic systems un-
der the discrete event abstraction, including different
execution results.

1. Introduction

Continuous Variable Dynamic Systems are repre-

sented by continuous variables on a continuous time
basis. Analysis of these complex systems has usually
been tackled using different mathematical formalisms,
including Differential Algebraic Equations (DAEs), Or-
dinary Differential Equations (ODEs), or Partial Differ-
ential Equations (PDEs). Most existing simulation tools
implement numerical methods based on the discretiza-
tion of time to find approximate solutions to these equa-
tions, which are based on discretization of time. In the
last few years, different approaches developed tried to
simulate continuous systems under the discrete event
paradigm. This presents some advantages over discrete
time simulation, including reduction of the number of
calculations for a given accuracy [1] and seamless inte-
gration of complex systems composed by both con-
tinuous time and discrete event paradigms. These solu-
tions are based on the DEVS (Discrete Event Specifica-
tion) formalism [2], originally created for specifying dis-
crete event models. The idea of this method, called
Quantized Systems theory (Q-DEVS), is to provide

quantization of the state variables obtaining a discrete
event approximation of the continuous system [3]. The
state variables of the system are converted into a
piecewise constant function via a quantization function
[3]. The Quantized State System (QSS) method [4] is an
extension to Q-DEVS in which the trajectory of each
state variable is converted into a piecewise constant
function via a quantization function equipped with hys-
teresis .

We will present a toolkit to simulate physical sys-
tems based on these methods. The tool, called
M/CD++, is based on Modelica [5] and CD++ [6], a
modeling and simulation (M&S) tool implementing
DEVS theory. Modelica is an object-oriented language
created for modeling physical systems, which support
library development and model exchange. Models in
Modelica are described by differential, algebraic and
discrete equations. Modelica provides libraries of stan-
dard components in different ODEs, block diagrams,
and electrical and mechanical models. M/CD++ allows
the creation of dynamic systems belonging to the elec-
trical domain. Internally, the models are represented us-
ing the Bond Graph (BG) formalism [7], which permit to
reuse models created by the toolkit to support simula-
tion of physical systems in different domains. These
models are used to check for algebraic loops and singu-
larities, and to generate an optimized BG corresponding
to the electrical circuit, which, in turn, is used to gener-
ate a DEVS model specification according to the rules
used by CD++.

2. Background

Continuous systems are usually described using
DAEs, ODEs and PDEs, and simulators based on these
formalisms usually solve numerically the set of differen-
tial equations. Recently, some authors have tried to
model these systems via system decomposition, divid-

ing the system into a number of smaller subsystems,
using Object-oriented modeling to promote model
specification in a more natural way [7][8]. Modelica [5]
is one of such languages, intended for modeling within
many application domains such as electrical circuits,
hydraulics, mechanics, etc. Modelica is built on non-
causal modeling with mathematical equations and ob-
ject-oriented constructs , allowing library development
and model exchange. The semantic of these models is
specified by a set of rules used to translate the model to
its corresponding flat hybrid DAE. A model is repre-
sented using classes that can be developed hierarchi-
cally, allowing components reuse. An example of an
electrical circuit specified using the electrical library
provided by Modelica is presented below:

encapsulated model ChuaCircuit
 "Chua's circuit, ns, V, A"
 import Modelica.Electrical.Analog.Basic;
 import Modelica.Electrical.Analog.
 Examples.Utilities;
 Basic.Inductor L(L=18);
 Basic.Resistor Ro(R=12.5e-3);
 Basic.Conductor G(G=0.565);
 Basic.Capacitor C1(C=10, v(start=4));
 Basic.Capacitor C2(C=100);
 Utilities.NonlinearResistor Nr(Ga(min=-
1) =-0.757576,Gb(min=-1)=-
0.409091,Ve=1);
 Basic.Ground Gnd;

 equation
 connect(L.p, G.p);
 connect(G.n, Nr.p);
 connect(Nr.n, Gnd.p);
 connect(C1.p, G.n);
 connect(L.n, Ro.p);
 connect(G.p, C2.p);
 connect(C1.n, Gnd.p);
 connect(C2.n, Gnd.p);
 connect(Ro.n, Gnd.p);
 end ChuaCircuit;
Figure 1. Chua’s circuit [9] in Modelica.

The tool we implemented is able to simulate electrical

circuit models defined using a subset of the Modelica’s
language specification (a complete description of the
grammar supported, check [10]). M/CD++ models are
converted into Bond Graphs (BG), a modeling formalism
that allows domain-independent description of the dy-
namic behavior of the physical systems we model. Sys-
tems can be described in a hierarchical way, using BG
submodels connected via ports. BG represent continu-
ous systems as a set of elements that can interact with
each other by exchanging energy and information, and
this exchange determines the dynamics of the system.

Power (energy time derivative) is the product of effort
and flow. In electrical systems, power is the product of
voltage and current; in hydraulics, it is the product of
pressure and volume flow rate, etc. A generalized effort
variable and a generalized flow variable can be defined
whose product gives the power exchanged by the ele-
ments of a system. In BG, physical processes are repre-
sented as vertices in a directed graph, and the edges
represent the ideal exchange of energy between the ver-
tices [8]. The energy flow is represented via bonds with
direction and the elements exchange effort and flow
through them. The exchange of power is assumed to
occur through abstract entities called energy ports. A
fundamental concept to understand how information
flows between components is causality: no component
can determine the two power variables, effort and flow,
at the same time. Given a pair of elements connected
through a bond, causality determines which component
causes the flow information and which causes the ef-
fort.

In M/CD++, we generate intermediate BG that are
subsequently translated into DEVS, a formalism for
M&S of discrete-event dynamic systems. DEVS can be
seen as a mechanism to specify systems whose inputs,
states and outputs are piecewise constant, and whose
transitions are identified as discrete events [1]. DEVS
models can be described using atomic and coupled
components. Atomic models are independent modular
objects that specify behavior; these can be composed
in order to form coupled components. A coupled model
is composed by several atomic or coupled submodels.

DEVS has been used recently for continuous sys-
tems simulation by different research teams [1][3]
[4][11][12][13][14][15][16]. In these articles, it has been
shown that discrete event methods in general and
DEVS in particular, present several advantages:

- Computational time reduction: for a given accuracy,
the number of calculations can decrease

- Hierarchical modular modeling
- Seamless integration with models defined with

other modeling techniques mapped to DEVS
- Simulation of discrete time models: can be seen as

particular cases of discrete event methods
- Hybrid systems modeling: the discrete event para-

digm provides the theory to develop a uniform ap-
proach to model and simulate systems with continuous
and discrete components.

Most of these techniques are based on Q-DEVS [3],
whose main idea is to represent continuous signals by
the crossing of an equal spaced set of boundaries. This
approach requires a fundamental shift in thinking about
the system: instead of determining what value a de-

pendant variable will have at a given time, we must de-
termine at what time a dependant variable will enter a
given state. QSS (Quantized State Systems) [4][11] is an
extension to Q-DEVS, which allows continuous sys-
tems simulation based on quantization and hysteresis.
In [4] it was proved that differential equation systems
can be approximated by legitimate DEVS models with
QSS, and the existence of a minimum time interval be-
tween events constitutes a sufficient condition to ob-
tain legitimate mo dels [4].

Figure 2. Signal Quantization.

CD++ is a toolkit that implements DEVS theories [6].

Atomic models are implemented using a built-in specifi-
cation language or C++. New atomic models extend the
behavior of the basic atomic model and they must in-
herit from the Atomic class, provided by the tool. Cou-
pled models are described in a configuration file using a
specification language provided by the tool.

3. M/CD++

M/CD++ allows simulating dynamic systems in the

electrical domain using CD++. The electrical circuits can
be modeled using an Object-Oriented methodology,
and then simulated through a discrete event simulator.
Three main features were added to extend CD++:

Modelica v2.1 language support for electrical cir-
cuits construction: a subset of Modelica v2.1 [5] was
implemented, and the components needed to allow elec-
trical circuits construction included the basic compo-
nents provided by the Modelica Electrical library.

Electrical circuit modeling and compilation utilities:
several techniques were developed to translate the ob-
ject-oriented representation of the electrical circuit into
a valid DEVS model, capable to be simulated with
CD++. Electrical circuit simulation capabilities based on
the implementation of QSS concepts: the resulting
CD++ model represents the equations system associ-
ated to the electrical circuit that has to be solved. Based
on QSS and QBG theory, atomic models were con-
structed and added to CD++, approximating the solu-
tion using a discrete event approach.

The objects defined in the Modelica Electrical library
supported on M/CD++ are: Mode-
lica.Electrical.Analog.Basic: Ground, .Resistor,
.Conductor, .Capacitor, .Inductor; Modelica. Electri-
cal.Analog.Ideal: .IdealTransformer, .IdealGyrator;
Modelica.Electrical.Analog.Sources: ConstantVolt-
age, .StepVoltage, .SineVoltage, .PulseVoltage,
.ConstantCurrent, .StepCurrent, .SineCurrent and
.PulseCurrent. These components are described ac-
cording Modelica’s specifications [5]. The following
figure shows one of these components (further details
can be found in [10]).

model SineVoltage "Sine voltage source"
parameter SI.Voltage V=1 "Amplitude";
parameter SI.Angle phase=0 "Phase ";
parameter SI.Frequency freqHz=1"Frequency
";
extends Inter-
faces.VoltageSource(redeclare

 Modelica.Blocks.Sources.Sine
 signalSource(amplitude={V},
 freqHz={freqHz}, phase={phase}));

end SineVoltage;
Figure 3. Definitions: Modelica.Electrical.
Analog.Sources.SineVoltage

The sine voltage defines the amplitude, phase and
frequency (in Hz) of the sine wave (defaults: 1, 0, 1),
and generates a voltage/time. M/CD++ is defined by
several core components related to file parsing, model
generation, compilation and CD++ simulator invocation.
The compiling process starts with an electrical circuit
model specified using Modelica, and finishes with a log
file including the simulation results [10]. The following
sections describe each step.

4. Modelica Parser & Checker

This component checks and parses the input file,

building and validating the electrical circuit model. We
built a parser using a general-purpose parser generator
that takes an LALR context -free grammar, and describe

the actions that accompany the syntactic rules. These
actions were implemented to build the input file syntax
tree; which is in turn used to perform semantic valida-
tion and electrical circuit construction, checking:

- Specification of valid and supported packages
- Specification of valid and supported types/classes
- Undeclared symbols checking
- Specification of valid component attribute
Only if the complete syntax tree is successfully vali-

dated the electrical circuit model is built. Several verifi-
cations preserve the model properties; these restric-
tions are checked during the electrical circuit building
phase accomplished by the parser, e.g.:

- Valid specification of pin references
- connections between existing elements
- No connections from a component to i tself
- specification of at least one source component

(a)

model circuit Mode-
lica.Electrical.Analog.

Sources.PulseVoltage V(V=200, pe-
riod=1,

 width=10);
Mode-
lica.Electrical.Analog.Basic.Capacitor
 C(C=200);
Mode-
lica.Electrical.Analog.Basic.Resistor
 R(R=1.5);
Mode-
lica.Electrical.Analog.Basic.Inductor
 I(L=40);
Modelica.Electrical.Analog.Basic.Ground
 Gnd;

equation

connect(V.p, R.p);
connect(R.n, I.p);
connect(R.n, C.p);
connect(I.n, V.n);
connect(C.n, V.n);
connect(C.n, Gnd.p);

end circuit;
(b)

9 � S

9 � Q

5 � S 5 � Q

&�S

&�Q

,�S

,�Q

* QG�S
(c)

EC : ECircuit

C : Capacitor I : Inductor

R : Resistance

Gnd : Ground

«usos»

«usos»

«usos»«usos»

V : VoltageSource

«usos»

(d)

Figure 4. (a) Electrical circuit model (b) Electri-
cal circuit input file (b) Electrical circuit graph
representation on M/CD++ (d) Objects model
generated by the M/CD++ parser

A class hierarchy was implemented to model the
electrical circuit objects, its components and attributes.
The definitions of pin (positive and negative), port,
one-port element, two-port element, electrical compo-
nent (resistance, capacitor, source, etc) and circuit
generate the model associated to these concepts
[10][12].

Figure 4 shows the electrical circuit objects con-
structed by the parser given the corresponding Mode-
lica specification file. The electrical circuit object, EC, is
modeled as the composition of the following objects:

- R: instance of Resistance (resistor component;
one-port element)

- V: instance of VoltageSource (voltage source
component with signal s; one-port element.

- C: instance of Capacitor (capacitor component;
one-port element).

- I: instance of Inductor (inductor component; one-
port element).

- Gnd: instance of Ground (ground component; one
positive pin).

The electrical circuit is modeled using an OO ab-
straction, which uses an internal representation based
on a graph notation, as showed in Figure 4 (c). Every
electrical component on the circuit is represented in the

graph using n nodes, where n corresponds to the num-
ber of pins of the element. One-port elements are repre-
sented by two nodes on the graph, element.port1.p
(positive pin) and element.port1.n (negative pin). Gen-
eralizing, k-port elements will be represented by 2.k
nodes as: element.port1.p, element.port1.n, ele-
ment.portk.p and element.portk.n. There are two types
of connections between nodes: physical and logical.
The former type corresponds to the physical coupling
between the elements of the circuit. Logical connec-
tions correspond to the associations between pins and
ports of an element.

These implementation decisions were made having
in mind the BG generation algorithm, developed for the
mapping phase. The idea was using a suitable data
structure and model representation to optimize the gen-
eration process of the BG associated to the electrical
circuit, as discussed next.

5. Mapping electrical circuits to BG

Our BG generation algorithm is based on the Kar-

nopp’s circuit construction method [17]. The basic ap-
proach is to construct a BG resembling the circuit struc-
turally, and to simplify the BG based on selected circuit
properties. The construction method is:

-For each node in the circuit with a distinct poten-
tial write a 0-junction.

-Insert each one-port circuit element by adjoining it
to a 1-junction and inserting the 1-junction between
the appropriate 0-junctions (C, I, R, Se, Sf elements)

-Assign power directions to all bonds
-If the circuit has an explicit ground potential, de-

lete those 0-junctions and their bonds from the graph.
If no explicit ground potential is shown, choose any 0-
junction and delete it.

-Simplify the resulting BG
After, a causalization process is applied, as de-

scribed in [10]. After this process, the signal direction
of the bonds is determined. Once this process is ap-
plied to the graph, each bond can be interpreted as a bi-
directional signal flow. The causal BG can then be seen
as a compact block diagram. Structural singularities and
algebraic loops within a model are detected following
the procedure defined in [10], but not corrected. In
these cases, processing is aborted and an exception is
raised. Only integral causalities are assigned to the
storage components. In presence of structural singular-
ity, i.e. coupled storages, one of the elements should be
assigned the derivative causality, causing the toolkit to
generate an exception. The error message informed will
contain the name of the component causing the pre-

ferred causality violation. That can be used to detect
dependent storages, which are storages that do not
represent a state variable of the system. Figure 5 shows
a graphical of an electrical circuit, and its transforma-
tion.

Figure 5. (a) circuit, (b) generated BG.

6. Quantized BG implementation on CD++

A Quantized BG (QBG) is a BG where all the storages

and sources are quantized elements. Given that QSS
modifies the original system, only the storage elements
(capacitor and inertia) need to change in order to use
the QSS method on QBG [4]. Several atomic DEVS mo d-
els where developed on CD++, implementing the QSS
and QBG concepts on the toolkit. Each component of
the QBG was implemented as an atomic DEVS model,
using BG and QSS definitions. For each model, we de-
fined a DEVS formal specification, and built a model in
CD++ based on such specification. Following, we pre-
sent the formal definition of the QBGCapacitorFlowIn
model (the remaining constructs were built using a simi-
lar approach, and details can be found in [10]). This is
an atomic DEVS model corresponding to a QBG capaci-
tor, which was developed following QSS definitions,
implementing the capacitor as a quantized function ap-
plied to the displacement, q(t), being the integrator’s
output.

Figure 6. Constitutive relation of a storage
element; quantization with hysteresis [K03]

The QBGCapacitor is defined as in [4]:

M = < X, S, Y, δint, δext, λ, ta >

X = ℜ ; Y = ℜ x N; S = ℜ 2 x Z x ℜ+
δint(s) =δint(x, dx, j, σ)=(x + σ. dx , dx , j+sgn(dx), σ1)
δext(s,e,xu) = δext((x, d x, j, σ), e, xv) =

 (x+e.dx, ,xv , j, σ2)
λ(s) = λ(x, dx, j, σ) = (Qj+sgn(dx),1)

ta(s) = ta(x, d x, j, σ)= σ















=∞

<
−−+

>
+−

=
−

+

0

0
||

)().(

0
).(

1

2

1

x

x
x

jx

x
x

xj

dif

dif
d

Qdx

dif
d

dxQ

εσ

σ

σ















=∞

<
−−+

>
+−

=

+

0

0
||

)().(

0
).(1

2

v

v
v

jx

v
v

xi

xif

xif
x

Qdex

xif
x

dexQ

ε
σ

The simulation of this atomic DEVS model is based

on the detection of effort value changes, regarding that
the input flow and the output effort are piecewise con-
stant, and the displacement trajectory is piecewise lin-
ear. This time is calculated dividing the distance of the
displacement value to the next quantum crossing and
the flow value. In case of input flow variations, the time
to the next effort change must be recalculated. The cur-
rent displacement is then computed according the
elapsed time and the previous flow value and then used
as the new initial value. Therefore, the new ta function
value is calculated as it was already described. Input
flow changes are associated to external events.

7. BG Compiler for CD++

Once the BG model has been generated and com-

pletely causalized, it compiled into CD++ notation. As
the input to CD++ must be a valid DEVS model, the BG
generated must be transformed into its corresponding
DEVS representation. Thus, we built a BG Compiler for
CD++. The first step done during the BG compilation is
the transformation to its equivalent Quantized BG
model explained in the previous section.

For each component u of the QBG, add u to the dec-
laration section within the CD++ coupled model file. Se-
lect a valid implementation class for the comp onent. For
each bond b = (u,v) of the QBG, generate the coupling
information between u and v on the links section within
the CD++ coupled model, using DEVS formal coupling
definitions. For each component u of the QBG, generate
the component’s configuration information within the

parameterization section on the CD++ coupled model
file.

components : $PJ2@QBGParallelJunction
$PJ3@QBGParallelJunction
C@QBGCapacitorFlowIn
$SJ2@QBGSerialJunction
$SJ3@QBGSerialJunction ...

link : e2n@$PJ2 e2p@$SJ2
link : f2p@$SJ2 f2n@$PJ2
...
link : e1n@V e3p@$SJ3
link : e3n@$PJ2 e1p@I1
[C] quantum : 0.0002 hystWindow : 0.01
C : 10.000 initialLoad : 0.000
[L1] quantum : 0.0002 hystWindow : 0.01
I : 500.000 initialLoad : 0.000
[L2] quantum : 0.0002 hystWindow : 0.01
I : 2000.000 initialLoad : 0.000
[R1] R : 0.001
[R2] R : 1000.000
[V] quantum : 0.0002 hystWindow : 0.01
signal : Pulse offset : 000 startTime :
000
amplitude : 010 period : 2.5 width :
050
Figure 7. Coupled DEVS model representation
and CD++ notation

8. M/CD++ execution examples

In this section, we present the simulation results of a

simple electrical circuit using the tools. Different stud-
ies were carried out, using different examples (details
can be found in [10] and [18]). The goal of this section
is to show the results obtained when compiling a
M/CD++ model, and comparing it with the actual model
behavior. We present the simulation results of the cir-
cuit introduced in Figure 5, whose Modelica definition
can be seen in Figure 8.

model circuit
Modelica.Electrical.Analog.Sources.
 PulseVoltage V(V=10,width=50, pe-
riod=2.5);
Modelica.Electrical.Analog.Basic.Resistor
 R1(R=0.001);
Modelica.Electrical.Analog.Basic.Inductor
 I1(L=500);
Modelica.Electrical.Analog.Basic.Inductor
 I2(L=2000);
Modelica.Electrical.Analog.Basic.Capacitor
 C(C=10);
Modelica.Electrical.Analog.Basic.Resistor
 R2(R=1000);

Modelica.Electrical.Analog.Basic.Ground
Gnd;

equation
 connect(V.p, R1.p); connect(R1.n, I1.p);

 connect(R1.n, I2.p); connect(I2.n, C.p);
 connect(I2.n, R2.p); connect(C.n, I1.n);
 connect(R2.n, C.n); connect(I1.n, V.n);
 connect(V.n, Gnd.p);
end circuit;
Figure 8. Modelica specification of the circuit

The simulation of the example circuit was run for 1

minute of simulated time, using a quantum value equal
to 0.0002 and an hysteresis window size of 0.01, applied
to all of the quantizable components within the circuit
(I1, I2, C1).

Figure 9. (a) Pulse Voltage Source (b) Current
on inductor I1 (c) Voltage on Capacitor C

Figure 9 shows the simulation results for the model
executed. For the given pulse voltage source, we ob-
tained the desired voltage on capacitor C, and the ex-
pected current on the inductor Ii. In order to validate
our simulation results, we compared them with results
obtained using Dymola [19], a commercial toolkit with
full support for Modelica. The idea about using Dymola
was comparing the results given by M/CD++ with
those calculated by an advanced commercial tool with
Modelica support. The test cases here presented were
executed using both M/CD++ and Dymola simulators,
varying simulation parameters in order to compare the
results and calculate the error between them.

We simulated the previous example circuit using the
DASSL integration method on Dymola during 10 sec-
onds of simulation time (using intervals of 500 time

units, and a tolerance of 0.0001). We compared the re-
sults with those obtained by M/CD++ using a quantum
size q=0.0001 and a hysteresis window of a/2.

Capacitor.v curves comparison

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (sec)

C
ap

ac
ito

r.
v

MCD++ interpolated by Dymola MCD++

Inductor1.i curves comparison

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

0.00 2.00 4.00 6.00 8.00 10.00

Time (sec)

In
d
u
ct

o
r1

.i
MCD++ interpolated by Dymola MCD++

Figure 10. Comparison for voltage on Capaci-
tor and current on Inductor1

The following figures show the error between the

capacitor (C) and inductor (I1) state trajectories on
M/CD++ and Dymola for the given simulation
parameters. In Figure 10 we can see that the relative er-
ror is minimum (the highest error was obtained when
values are close to zero, because, as the quantum size
used during the simulation is fixed value for all the
points on the curve, smaller values will produce greater
relative errors). The error curve decreases when time
advances. The results were even better when we de-
creased the quantum and hysteresis window size on
M/CD++ (using q(C)=0.000005, and q (L1)=0.00005, and
hysteresis = q/2).The following figures show the
relative error between the capacitor (C) and inductor
(L1) state trajectories on M/CD++ and Dymola for the
given simulation parameters. This test case was
simulated with the DASSL method on Dymola, as the
previous case, but now decreasing the quantum and
hysteresis window size used on M/CD++ simulation.

Relative error between L1.i on MCD++ and L1.i
interpolated by Dymola (case 1.2)

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%

0.00 2.00 4.00 6.00 8.00 10.00

Time (sec)

R
el

at
iv

e
er

ro
r
(%

)

Relative error between C.v on MCD++ and C.v

interpolated by Dymola (case 1.2)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (sec)

R
el

at
iv

e
er

ro
r
(%

)

Figure 11. Relative error: (a) current on Induc-
tor1 (b) voltage on Capacitor

The figure shows how the relative error is decreased
for values near to zero. Finally, we repeated the tests
using the same quantum size, but changing the
integration method on Dymola (Euler, integration step
0.05). The following figures show the error between the
capacitor (C) and inductor (L1) state trajectories on
M/CD++ and Dymola for the given simulation
parameters.

Relative error between C.v on MCD++ and C.v

interpolated by Dymola (case 1.3)

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (sec)

R
el
at
iv
e
er

ro
r (
%

)

Relative error between L1.i on MCD++ and
L1.i interpolated by Dymola (case 1.3)

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%
0.00 2.00 4.00 6.00 8.00 10.00

Time (sec)

R
el
at
iv
e
er

ro
r (
%

)

Figure 12. Relative error: (a) voltage on Ca-
pacitor (b) current on Inductor1

The first two test cases were used to compare the
results given by M/CD++ with those generated by a
higher order and variable step-size method, DASSL.
Given that M/CD++ uses a first order method to inte-
grate the state trajectories (QSS), a first order method
was also used on Dymola simulation in order to make
comparisons.

 Relative error average

Curve Case 1 Case 2 Case 3
C.v 2.75 % 0.87 % 0.42 %
L1.i 0.28 % 0.11 % 0.11 %

9. Conclusion

DEVS is a formalism defined for M&S of discrete

event systems, which has been recently used for simu-
lation of continuous and hybrid systems. We intro-
duced a tool for M&S of continuous systems , in which
models are described using Modelica. The simulation
results generated by MCD++ were compared with those
produced by a complex physical system simulation en-
vironment with Modelica support called Dymola. It was
shown that a higher relative error is obtained for values
near to zero on a trajectory. This is related with the fixed
quantum size used by the quantization function over a
state trajectory. Then, for smaller values, greater differ-
ences are given. An approach to improve the simulation
results could be developed using an adaptive quantiza-
tion function, making the quantum vary according to
the trajectory evolution. It is important to have in mind
that MCD++ approximates the system solution based
on the QSS method, which uses a simple first order in-
tegration approach. Most of the results produced by
MCD++ were contrasted with results generated using a
higher order and variable step-size integration method,
DASSL. It was shown that, in general, choosing ade-
quate quantization parameters produce accurate solu-
tions and decrease error.

In the long term, we want to attack the development
of hybrid systems based on the DEVS formalism and its
extensions, building libraries to make easy to use com-
ponents developed on top of DEVS modeling tools.
One of the benefits is that for a given accuracy, the
number of transitions can be reduced, decreasing the
execution time of simulations. Discrete time models can
be simulated under discrete event paradigm, thus allow-
ing the development of a simulation environment for
complex systems, modeled as hybrid systems, where all
paradigms merge together (continuous time, discrete
time, discrete event).

References

[1] Zeigler, B. "Continuity and Change (Activity) are Fun-

damentally Related in DEVS Simulation of Continuous
Systems", LNCS, Vol. 3397, Springer-Verlag, 2005.

[2] Zeigler, B; Kim, T; Praehofer, H. “Theory of M&S”.
New York, 2000.

[3] Zeigler, B. DEVS. “Theory of Quantization”. DARPA
Contract N6133997K-007. University of Arizona, 1998.

[4] Kofman, E. “Discrete Event Based Simulation and Con-
trol of Continuous Systems”. Ph.D. thesis. Universidad
Nacional de Rosario, Argentina. August 2003.

[5] Modelica Language Specification, version 2.1,
http://www.modelica.org. March 2004.

[6] Wainer, G. CD++: a toolkit to define discrete-event mod-
els. Software, Practice and Experience. Wiley. Vol. 32,
No. 3. pp. 1261-1306. 2002.

[7] Åström, K. J; Elmqvist, H.; Mattsson, S. E. “Evolution
of continuous-time M&S”. European Simulation Multi-
conference, Manchester, UK, 1998.

[8] Cellier, F.E.; Elmqvist, H. “Automated formula manipula-
tion supports object-oriented continuous-system model-
ing”. IEEE Control Systems, 13(2), pp. 28-38, 1993.

[9] L.O. Chua. "The Genesis of Chua's Circuit" , AEU 46,
250. 1992.

[10] D’Abreu, M. “Defining a compiler for discrete-event
simulation of continous systems”. M. Sc. Thesis. Com-
puter Science Dept. Universidad de Buenos Aires, Argen-
tina. 2004.

[11] Kofman, E.; Junco, S. “Quantized State Systems. A
DEVS Approach for Continuous System simulation”.
Transactions of the SCS, 18(3), pp. 123-132, 2001.

[12] D'Abreu, M.; Wainer G. “Defining hybrid system mod-
els using DEVS quantization techniques”. Winter Simula-
tion Conference. New Orleans, LA. U.S.A., 2003.

[13] Wainer, G., B.P. Zeigler, “Experimental Results of
Timed Cell-DEVS Quantization, AI and Simulation,” AIS
2000, pp. 203-208, Tucson, AZ, March 2000.

[14] James J. Nutaro, Bernard P. Zeigler, R. Jamma-
lamadaka, S. Akerkar. “Discrete Event Solution of Gas
Dynamics within the DEVS Framework”. International
Conference on Computational Science, pp. 319-328,
2003.

[15] Jean-Sébastien Bolduc and Hans Vangheluwe. Mapping
ODEs to DEVS: Adaptive Quantization. Summer Com-
puter Simulation Conference, pp. 401-407. Montréal,
Canada. 2003.

[16] Giambiasi, N.; Escude, B.; Ghosh, S. “GDEVS: A Gen-
eralized Discrete Event Specification for Accurate Model-
ing of Dynamic systems”. Transactions of the SCS, 17(3)
pp. 120-134, 2000.

[17] Karnopp, D.; Margolis, D.; Rosenber R. “System Dy-
namics: A Unified Approach”. Wiley, 1990.

[18] L. Chechiu, G. Wainer. “Experimental results on the use
of M/CD++”. Proceedings of SummerSim. Philadelphia,
PA. 2005.

[19] Dynasim Laboratories. “Dymola”. [online]. Avail-
able online via: http://www.dynasim.com/dymola.htm
[Accessed June 13 2004]

