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Abstract 
 
DEVS is a sound, formal modeling and simulation 

(M&S) framework that supports hierarchical, modu-
lar model composition. DEVS-based M&S environ-
ments have been used successfully to understand, ana-
lyze, and develop a wide variety of systems. As the sys-
tems under study become larger and more complex, the 
performance of the simulator becomes critical. Never-
theless, evaluating the performance of such simulators 
is a complex process that requires the execution of 
large numbers of models with different characteristics. 
We present DEVStone, a synthetic benchmark devoted 
to automate the evaluation of DEVS-based simulation 
approaches, which generates models similar to those 
existing in the real world. DEVStone facilitates per-
formance analysis for successive versions (e.g., up-
grades or fixes) of the same simulation engine, and 
provides a common metric to compare different M&S 
environments. 
 
1. Introduction 

DEVS (Discrete EVents systems Specification) [1] is 
a sound formal framework for discrete-event modeling 
based on generic dynamic systems concepts, which 
supports provably correct, efficient, event-based, dis-
tributed simulation. A real system modeled with DEVS 
is described as a composite of submodels that can be 
behavioral (atomic) or structural (coupled). The frame-
work supports the construction of models in a hierar-
chical, modular fashion, allowing component reuse and 
reducing development and testing time. There is a 

common preconception that the hierarchical nature of 
DEVS models may degrade the efficiency of model exe-
cution. These arguments are based primarily on intui-
tion, as no study has compared the efficiency of DEVS 
simulators, nor the different versions of a particular 
simulation engine. Instead of limiting our effort solely 
to testing individual models, we developed a synthetic 
benchmark to aid not only this but also future initia-
tives in the area. To do so, we introduced the 
DEVStone benchmark, a synthetic generator that auto-
matically creates models according to our goals. 
DEVStone generates models with different size, com-
plexity and behavior, resembling different kinds of ap-
plications. Hence, it is possible to analyze the efficiency 
of a simulation engine with relation to the characteris-
tics of a category of models of interest. The tool can be 
used to assess the efficiency of several DEVS simula-
tion engines, and it provides a common metric to com-
pare the results using different tools. 

DEVS is a mathematical formalism with well-defined 
concepts of hierarchical and modular model construc-
tion, coupling of components, and support for discrete 
event model approximation of continuous systems. The 
hierarchical nature of DEVS allows coupling existing 
models in a mo dular fashion in order to build larger sys-
tems. An atomic DEVS model is: 

M = < X, S, Y, δint, δext, λ, ta > 
The model is in state s ∈ S for the time specified by 

ta(s). When that time is consumed, the system outputs 
the value λ(s) and changes immediately to the state s’ = 
δint(s). If an external event x ∈ X is received before the 
expiration time ta(s), the new state s’ of the system is 
determined by δext(s, e, x), where e is the time elapsed 



since the last transition. A DEVS coupled model  is de-
scribed as: 

CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 
where X is the set of input events; Y is the set of 

output events; D is an index for the components of the 
coupled model, and ∀ i ∈ D, Mi is a basic DEVS (i.e., an 
atomic or coupled model), Ii is the set of influencees of 
model i. The influencees of a model define to which 
model outputs must be sent. and ∀ j ∈ Ii, Zij is the i to j 
translation function, which converts the outputs of a 
model into inputs for other models.  

Our particular implementation of DEVStone was 
used to test the performance of CD++ [2], a tool that 
implements DEVS theory. CD++ was revised and ex-
tended several times, and it supports stand-alone [2], 
parallel [3] and Real-Time simulation [4]. CD++ and has 
also been successfully used to model a variety of appli-
cations: urban traffic [5], [6], [7]; complex physical sys-
tems [8], [9]; computer architectures [10]; and different 
artificial, and biological systems [9]. 

We used the synthetic generator to analyze the per-
formance of different simulation techniques in CD++, 
which allowed us to show the feasibility of our ap-
proach. Moreover, the performance results permitted us 
to characterize execution time of a standard DEVS simu-
lator. The benchmark can be used to determine which 
directions and decisions should be taken when updat-
ing the tool’s simulation techniques. Furthermore, 
DEVStone can be used to aid the measurement and im-
provement of other existing simulation tools. 
 
2. Devstone: A synthetic model generator 

When analyzing previous studies on the perform-
ance of DEVS environments, we can see that they were 
only focused on performance results for a given tool, 
and were limited to a given type of models of interest. 
However, those studies do not provide a thorough 
analysis for the execution of models with different char-
acteristics, neither do they give a common metric to 
compare results among different DEVS simulators. 

We propose a method to compare not only different 
versions of a particular simulation engine but also dif-
ferent DEVS-based software. Varied model structures 
permit obtaining prototypes representative of those 
found in real world applications. In order to provide a 
complete and thorough evaluation, we created the 
DEVStone synthetic model generator, which produces a 
variety of models with diverse structure and behavior 
performing a mix of common operations. We focus in 
the aspects that impact performance: the size of the 
model and the workload carried out in the transition 
functions. DEVStone produces models using various 

parameters: type (different structure and interconnec-
tion schemes between the components), depth (number 
of levels in the modeling hierarchy), width (number of 
components in each intermediate coupled model), in-
ternal transition time  (execution time spent by internal 
transition functions), and external transition time (exe-
cution time spent by external transition functions). 

We build an artificial coupled model with d coupled 
components, all of which consist of w-1 atomic models, 
with the exception of the lower level of the hierarchy, 
which is composed of a single atomic model. In addi-
tion, internal and external transition functions are pro-
grammed to execute a fixed amount of time, consuming 
CPU clocks by running Dhrystones [11], which con-
sists of a mix of instructions using integer arithmetics. 
DEVStone uses three different types of models with 
variations in their internal and external structure:  

- LI, with a low level of interconnections; 
- HI, with a high level of input couplings; and  
- HO, HI models with numerous outputs.  
In LI models, every coupled component includes 

only one input and one output port. The input port is 
connected to each component, and only one comp o-
nent generates an output through the output port in the 
external component. Fig. 1 shows a sample LI model. 
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Fig. 1. Example of a LI model: (a) top level. 

 
As we know the model structure and the time spent 

by each component in executing transition functions, 
we can compute the theoretical execution time for the 
model. First, we devise the number of atomic and cou-
pled models in the structure, which is:  

# Atomic Models = (width – 1) * (depth – 1) + 1 
Since models follow a predefined interconnection 

pattern, we can anticipate message routes triggered by 
external events and time spent in transition functions: 

# Internal Transitions = # Atomic Models 
# External Transitions = # Atomic Models 

(1) 
 

HI models have the same number of atomic comp o-
nents, but more interconnections. Each component k  
connects its output to the input port of component k+1 
(with the exception of one atomic component on each 
level, which does not have any output port). Therefore,  



# Atomic Models = (w – 1) * (d – 1) + 1  
# Internal Transitions=Σ (i=1 .. w-1) i * (d–1)+1 
#External Transitions=Σ (i=1 ..w-1) i * (d–1)+1 

(2) 

HO type models have a more complex interconnec-
tion scheme (two input and two output ports in each 
level. The second input port in the coupled component 
is connected to its first atomic component. That atomic 
model connects its output to the second output of its 
parent). The increased number of interconnections re-
sults in more transition functions, and consequently 
more overhead. For this type,  
# Atomic Models = (w – 1) * (d – 1) + 1  
# Internal Transitions = Σ (i=1 .. w-1) i * (d–1)+ 1 
# External Transitions = Σ (i=1 .. w-1) i * (d–1)+1 

(3) 

DEVStone can be used in any simulator with capa-
bilities for defining and executing Dhrystone code. We 
can use single-layered models to compare tools with 
non-hierarchical structure. Likewise, if the chosen mo d-
eling technique does not support the execution of in-
ternal transitions, we can compare them with DEVS 
models without internal transitions scheduled. 

 
3. Performance of Virtual-time Simulators 

CD++ has different simulation engines. A stand-
alone simulator is used in single-processor simulations, 
while the parallel version (based on [12]) was built on 
top of Warped [13], which provides different optimistic 
synchronization algorithms and a non-synchronized 
protocol (called NoTime). We will present the results 
obtained when DEVStone was applied to characterize 
the overhead of these simulators.  

 
 Type Depth Width δint δext 

E HI 3 6 50 ms 50 ms 
F HI 6 3 50 ms 50 ms 
G HI 5 5 50 ms 50 ms 
H HI 6 6 50 ms 50 ms 
I HO 3 6 100 ms 0 ms 
J HO 6 3 0 ms 100 ms 
K HO 5 5 50 ms 50 ms 
L HO 6 6 50 ms 50 ms 

Fig. 2. Simulation parameters 
 
The first tests are devoted to compare the overhead 

of three CD++ simulators: (i) original, (ii) parallel with 
unsynchronized kernel, and (iii) parallel with optimistic 
kernel. We compared the execution results with the 
theoretical execution time for each type.These models 
were executed using 10 external events at a constant 
rate, each of them triggering a known number of exter-

nal and internal transition functions. We use the Dhry-
stone code to compute the time spent on each of these 
functions, which is used to calculate the time required 
to process a single event.  
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Fig. 3. Execution times with (a) HI, (b) HO; 
Overhead (c)HI (d) HO. 

 
We report the worst execution case from the group 

(variation for the best execution cases was less than 
1%, mainly due to overhead of the OS). The experi-
ments were executed in a single processor, allowing us 
to measure the pure overhead incurred by the parallel 
simulator. As expected, the original version provided 
the best execution time, whereas the parallel unsyn-
chronized kernel (NoTime) version always outper-



formed the parallel optimistic (TimeWarp) version. The 
amount of overhead for the original version is only be-
tween 1% and 3% in every case. Likewise, the overhead 
of the parallel versions is below 5.5% for the most com-
plex problems (a promising result, as the amount of 
speedup time achievable by these simulators is consid-
erable). When we analyze HI models E (3x6) and F (6x3), 
we can see the greater impact over efficiency when exe-
cuting models with larger number of levels. Here, both 
models execute the same number of transition functions 
(F creates a larger number of intermediate coordinators). 
Despite these results, we obtained worse overhead for 
models with a very large number of components (ap-
proximately 10,000), due to the number of messages in-
terchanged. CD++ uses the abstract simulator pre-
sented in [11], which create a one-to-one correspon-
dence between models and execution engines (called 
processors): simulators execute atomic models, and co-
ordinators execute coupled models. 
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Fig. 4. Sample model and processor hierar-
chy 

 
The number of these intermediate coordinators can 

be arbitrarily large depending on the model under 
study. Fig. 5 shows the number of simulators, coordina-
tors, and the number of messages involved in the proc-
essing of a single external event for large models . 

  
 R S T U 

# Components/level 100  100  150  150  
# of levels  100  100  75  75  
Type LI HO LI HO 
# of atomic models  9.8K 9.8K 11K 11K 

# of simulators 9.8K 9.8K 11K 11K 

# of coupled models  99 99 74 74 

# of coordinators 99 99 74 74 
# of root-coordinators 1 1 1 1 

# of messages 79K 3.5M 89K 3M 
Execution overhead 9.96% 10.8% 9.4% 10.3% 
Fig. 5. Hierarchical simulation results 

R and S have identical structure, resulting in a re-
markable difference in the number of messages in-
volved. The same for T and U: the overhead is approxi-
mately 10%. Model U has 12.50% more comp onents 
than S, although the overhead incurred by CD++ on 
executing the former is lower. The same happens with 
models T and R. These results provided a hint to opti-
mize the simulation technique: reducing intermediate 
coordinators would improve time spent routing mes-
sages. A new simulation technique flattens the simula-
tor [14], reducing the number of messages exchanged. 
The idea is to create only one root coordinator and one 
flat coordinator. The flat coordinator executes the δint, 
δext and λ(s) functions for each atomic component, map-
ping the ports for all atomic and coupled comp onents in 
the hierarchy.  

 
 Root Coordinator 

Flattened Coordinator 

Atomic data #1 Atomic data #2 Atomic data #3 Atomic data #4 Atomic data #5  
Fig. 6. Flat simulator approach for Fig.4 

 
We applied DEVStone to this new version of CD++, 

and compared the results with the hierarchical version. 
Figure 7 shows the execution results for the parameters 
presented in Figure 5. As simulators and coordinators 
disappeared, and one flat coordinator is created regard-
less of the number of components, the resulting over-
head is close to 5%.  

 
 R S T U 

# Components /level 100 100 150 150 
# of levels  100 100 75 75 
Type LI HO LI HO 
# of atomic models  9.8K 9.8K 11K 11K 

# of simulators 0 0 0 0 

# of coupled mo dels  99 99 74 74 
# of coordinators 0 0 0 0 
# of root-coordinators 1 1 1 1 

# of flat coordinators 1 1 1 1 
# of messages per sin-
gle external event 

4 9.8K 77 11K 

Execution overhead 4.5% 5.6% 4.4% 5.2% 
Fig. 7. Flat simulation results 



 
Figure 8 compares both simulators, showing the dif-

ference between actual and theoretical execution times 
for different models with variable depth (width 6), and 
with variable width (depth 7). Each components has a 
workload of 50 ms for the transition functions, and 
models receive 100 events at a fixed frequency.  

 

0 
100 
200 300 
400 
500 
600 
700 
800 900 

1000 

10 11 12 13 14 
Depth 

Hierarchical 
simulation 
Flat 
simulation 

T
im

e 
(m

s)
 

 
 

0 
500 

1000 
1500 
2000 
2500 
3000 

5 6 7 8 9 
Width 

Hierarchical 
simulation 
Flat 
simulation 

T
im

e 
(m

s)
 

 
 

0 
0,05 
0,1 0,15 
0,2 0,25 
0,3 

0,35 
0,4 0,45 
0,5 

10 11 12 13 14 
Depth 

Hierarchical 
simulation 
Flat 
simulation 

O
ve

rh
ea

d 
(%

) 

 
 

0 
0,05 
0,1 0,15 
0,2 0,25 
0,3 

0,35 
0,4 0,45 
0,5 

5 6 7 8 9 
Width 

Hierarchical 
simulation 
Flat 
simulation 

O
ve

rh
ea

d 
(%

) 

 
Fig. 8. Difference theoretical/ execution 
times: (a) LI, (b) HO;  Overhead comparison of 
hierarchical and flat simulators: (c) LI, (d) HO 
 

Regardless of the type of model (LI or HO) and the 
structure (deeper or wider), we can see a clear improve-
ment in execution times when using the flat approach. 

W hen executing a small LI model (10x6) the difference 
between theoretical and execution time is reduced in 
38.3%. For larger LI models the reduction remains stable 
or even rises marginally (e.g., for the a 14x6 model, it is 
39.6%). Similar results can be seen in the execution of 
these HO models, which are more complex and have 
approximately the same size. In general, the reduction 
obtained for these HO models is in the range of 39.4%-
47.7%. The overhead is always less than 0.16% for the 
hierarchical simulator, and 0.1% for the flat simulator.  

Even though models in Figure 8 (a) are larger than 
those in Figure 8 (b), the latter ones have more complex 
structures that compensate the differences in size, re-
sulting in similar percentages of overhead. The flat 
simulator reduces the overhead in 40%-56% depending 
on the depth, width, and complexity of the model, al-
though it is important to note that the overhead is sta-
ble for both techniques. 
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Fig. 9. Hierarchical/flat simulators: (a)LI (b)HO 

 
In order to analyze the performance degradation 

purely due to overhead in the simulation engine, we 
executed several examples with empty transition func-
tions (total execution time is solely depending on the 
message exchange). Figures 9 (a) and (b) show the exe-
cution of several LI models with variable width and 
fixed depth of 8, and HO models with variable depth 
and fixed width of 8 (i.e., models that have between 36 
and 92 comp onents). Figure 9 (a) shows that regardless 
of the model’s width, the flat simulator reduces the exe-
cution time in 52.4%-54.7%. Figure 9 (b) shows that for 
HO models the improvement in performance becomes 
more noticeable when the depth of the model increases. 



The impact of the intermediate coordinators that are 
eliminated from the hierarchy results in fewer messages 
being exchanged, and more efficient simulation. The ob-
tained results are similar to those presented before; the 
flat approach provides a reduction of 52%-58% in the 
total execution time depending on the size and type of 
the model 

 
5. Performance analysis of RT simulators  

CD++ was extended to allow RT execution [4]. In RT 
systems, a correct answer after a deadline is regarded 
as unsuccessful. RT CD++ allows the execution of 
events triggered by the RT clock, enabling interaction 
between the models and their environments. In order to 
analyze the performance of the new simulator, we used 
DEVStone to study the performance of different mo d-
els. We started comparing the virtual-time and RT tech-
niques. Our approach consisted in executing virtual-
time and RT simulations using DEVStone, and compar-
ing the time required to process a single event in virtual 
time against their worst-case response.  

Figure 10 shows a comparison for sample LI models 
M (5x10), N (10x5), O (8x8), and P (10x10), with internal 
and external functions executing 50 ms of Dhrystone 
code. In all cases, models received 100 events at a con-
stant rate, and we measured the worst-case response 
time. Since the new functionality that deals with dead-
lines adds a small amount of additional overhead in the 
RT version, it was expected to observe some degrada-
tion in performance. Nevertheless, the experiments 
showed that the added overhead is actually impercepti-
ble. In general, we see that the RT results are in the 
same level of those obtained with the parallel unsyn-
chronized version (incurring overheads in the range of 
2%-3.5%) and outperforming optimistic TimeWarp (with 
overheads in the range of 3%-4.6%). 
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Fig. 10. Comparing RT and virtual-time simula-
tors: (a) Execution times (b) overhead 

 
We used DEVStone to measure the ability of CD++ 

to execute models with different structure under very 
demanding situations. Simulations received a fixed 
number of external events generated at a constant rate. 
Each model was expected to deliver responses for each 
event before a given deadline, and the percentage of 
success and worst-case response time: 

% success = ( # events – # missed deadlines ) * 100 
          number of events 

Worst-case response time  = max ( r1, r2, …, rN ) 
where ri is the response time for the i-th event, and 

N is the number of events. 
The models used in the following experiments had 

different sizes ranging from 10 to 35 components in to-
tal (width and depth are in the range of 4 to 11). There is 
no Dhrystone code generated in the internal or external 
functions (all the time spent is overhead ). The results 
are grouped in four categories: (1) LI models with vari-
able depth, (2) LI models with variable width, (3) HO 
models with variable depth, and (4) HO models with 
variable width. In the first set of experiments, each 
simulation receives 100 events with inter-event periods 
of 100 ms, and associated deadlines were set at 100 ms.  
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Fig. 11. Comparing variable depth/width  (a) 
Percentage of success, (b) WCET 

 
Figure 11 (a) shows the percentage of success for LI 

and HO models when depth is variable and width is 
fixed, and also when width is variable and depth is 
fixed, whereas Figure 11 (b) illustrates the worst-case 
response time for each case. We observe that the RT 
simulator was able to deliver all the outputs on time for 
models with 30 or fewer components, regardless the 
model type. However, when the size of the model is 35, 
HO models started missing a few deadlines. The pace of 
external events and the complexity of the model prevent 
a timely response to some of the external events. For a 
HO model with 35 components, the success was 79% 
and 86%. In contrast, LI models always met all their 
deadlines under the same circumstances (a result of the 
greater complexity of HO models). Figure 11 (b) illus-
trates that the worst-case response time is gradually de-
teriorated for HO mo dels as a result of the increased 
number of messages exchanged. LI models always had 
a worst-case response time of 10 ms in these condi-
tions, despite the size of the model. These results pro-
vide a reference about the conditions in which the en-
gine is capable of meeting the deadlines, focusing on a 
particular scenario (inter-event periods and associated 
deadlines) and the characteristics of the model (size and 
model type). In the next set of experiments, we executed 
larger LI and HO models (with between 25 to 50 comp o-
nents). We focused on the performance of the RT simu-
lator under a more stressful scenario. This test focuses 
on the cases where the simulator is unable to meet its 
deadlines due to highly overloaded conditions. External 

events (e i) arrive every 30 milliseconds and deadlines 
(di) are set at 60 ms after their arrival. 

An alternative analysis can be performed focusing 
on the surrounding environment; for instance, studying 
the effect of different inter-event periods (i.e., fre-
quency of event arrivals) on the execution performance. 
In the following set of experiments, events arrive at dif-
ferent pace (20 to 180 ms), and we analyze the behavior 
of the simulator under such circumstances. The charts 
show the results for 8x8 HO models receiving 100 
events with deadlines set at 1000 ms. 
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Fig. 12.  Worst-case execution time for HO 
models with variable inter-event period: 

 
Figure 12 shows that larger inter-event periods result 

on greater percentages of success. When the intervals 
between events become greater than 180 milliseconds, 
the simulator meets all the associated deadlines for the 
execution of this 8x8 model. 

In the last set of experiments, we contrasted the RT 
performance of the flat simulator against that of the hi-
erarchical simulator. We analyzed both simulators exe-
cuting HO models with variable depth and width, focus-
ing on complex models and examining their performance 
under demanding conditions. The next chart shows the 
results for models with fixed width of 9 and variable 
depth (from 6 to 15 levels) that received 100 events at a 
fixed arrival rate. 
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Fig. 13.  Comparison of hierarchical and flat: 
(a) % of success (b) Worst-case response time 

 
The flat approach allowed the simulation of a 13x9 

HO model (97 components) with minimum worst-case 
response times, while meeting all the deadlines. When 
using the flat approach, performance degradation is 
first noticed in the execution of a 14x9 model (105 com-
ponents). In contrast, even when simulating a smaller 
7x9 model, the hierarchical approach had an inferior per-
centage of success (87%) and showed worse response 
times. Figure 13 (b) shows that in larger mo dels , the dif-
ference becomes more noticeable in terms of the worst-
case response times, as a result of the greater overhead 
incurred in the simulation of deeper models. Our analy-
sis showed similar results when models with variable 
width were executed. Similarly to what was illustrated 
before, the flat coordinator simulated wider models 
more effectively. 

In general, the flat technique outperforms the hierar-
chical one, reducing the incurred overhead up to 50% 
and therefore providing improved response times and 
better percentage of success in the execution. Thus, the 
use of the non-hierarchical approach allows the simula-
tion of larger models with better performance results. 
These results are a consequence of the reduced number 
of messages exchanged in the flat simulation mecha-
nism. 
6. Conclusions 

Evaluating the performance of a simulation tool is 
typically a tedious and complex process, which requires 
the execution of a wide variety of models with different 
characteristics. Our main goal was to provide a means 

for evaluating the efficiency of existing simulation en-
gines with focus on DEVS-based tools, and facilitating 
a qualitative and objective comparison of different 
tools. 

We developed DEVStone, a synthetic model genera-
tor that supports the process of evaluating the per-
formance of simulation engines. DEVStone produces 
models that are similar to those existing in the real 
world, thus making it possible to: (i) create models with 
different sizes, shapes, and behavior; (ii) generate an 
arbitrarily large number of such models; and (iii) execute 
those models using the simulator(s) under study.  

DEVStone relies on executing a collection of mo dels 
with different characteristics. In order to emulate sev-
eral degrees of complexity in their structures, we identi-
fied three types of models that correspond to three in-
terconnection patterns. In addition, each atomic com-
ponent usually executes code in its transition func-
tions; we proposed the use of Dhrystone code to re-
semble the task to be performed by these comp onents. 

As a result, we have a systematic way to assess the 
performance of a simulation engine, reducing the time 
required to measure its efficiency. It is possible to ana-
lyze the efficiency of any DEVS simulator with relation 
to the size, the behavior and the structure of the model 
under execution. A precise performance characteriza-
tion of a simulator allows modelers to consider the ac-
tual overhead of the tool based on solid results, and 
then analyze the feasibility of executing timed models 
with specific timing constraints. 

Our framework provides a common metric to com-
pare the results that were obtained using the different 
simulation tools, and also enables an analysis of the ef-
ficiency of successive versions of the same simulator, 
such as upgrades or fixes. We used the CD++ toolkit to 
show how to apply the proposed benchmark. These ex-
periments allowed us to test the usefulness of the 
benchmark, and to thoroughly test CD++ (which is the 
first systematic effort to characterize the performance of 
DEVS modeling and simulation environments). Al-
though we restricted our case study to the existing 
CD++ simulation engines, the same ideas may hold for 
other DEVS-based simulators. Using DEVStone, we 
showed that hierarchical simulation techniques are ca-
pable to simulate models with low overhead, even for 
models with complex structure. By means of the pro-
posed framework, the performance of both virtual-time 
and RT hierarchical simulators was shown to be satis-
factory. Moreover, the results demonstrated that the 
flat simulation technique could improve the efficiency 
in some cases, especially when model structure is par-
ticularly large or complex. Regardless of the size and 



complexity of the models, the flat simulator outper-
formed the hierarchical one. In general, the charts illus-
trate that the overhead incurred by the flat simulator is 
reduced up to about 55% of the overhead incurred by 
the hierarchical approach. 
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