
DEVStone: a Benchmarking Technique for Studying Performance of DEVS
Modeling and Simulation Environments

Ezequiel Glinsky Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University
4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.
{eglinsky, gwainer}@sce.carleton.ca

Abstract

DEVS is a sound, formal modeling and simulation

(M&S) framework that supports hierarchical, modu-
lar model composition. DEVS-based M&S environ-
ments have been used successfully to understand, ana-
lyze, and develop a wide variety of systems. As the sys-
tems under study become larger and more complex, the
performance of the simulator becomes critical. Never-
theless, evaluating the performance of such simulators
is a complex process that requires the execution of
large numbers of models with different characteristics.
We present DEVStone, a synthetic benchmark devoted
to automate the evaluation of DEVS-based simulation
approaches, which generates models similar to those
existing in the real world. DEVStone facilitates per-
formance analysis for successive versions (e.g., up-
grades or fixes) of the same simulation engine, and
provides a common metric to compare different M&S
environments.

1. Introduction

DEVS (Discrete EVents systems Specification) [1] is
a sound formal framework for discrete-event modeling
based on generic dynamic systems concepts, which
supports provably correct, efficient, event-based, dis-
tributed simulation. A real system modeled with DEVS
is described as a composite of submodels that can be
behavioral (atomic) or structural (coupled). The frame-
work supports the construction of models in a hierar-
chical, modular fashion, allowing component reuse and
reducing development and testing time. There is a

common preconception that the hierarchical nature of
DEVS models may degrade the efficiency of model exe-
cution. These arguments are based primarily on intui-
tion, as no study has compared the efficiency of DEVS
simulators, nor the different versions of a particular
simulation engine. Instead of limiting our effort solely
to testing individual models, we developed a synthetic
benchmark to aid not only this but also future initia-
tives in the area. To do so, we introduced the
DEVStone benchmark, a synthetic generator that auto-
matically creates models according to our goals.
DEVStone generates models with different size, com-
plexity and behavior, resembling different kinds of ap-
plications. Hence, it is possible to analyze the efficiency
of a simulation engine with relation to the characteris-
tics of a category of models of interest. The tool can be
used to assess the efficiency of several DEVS simula-
tion engines, and it provides a common metric to com-
pare the results using different tools.

DEVS is a mathematical formalism with well-defined
concepts of hierarchical and modular model construc-
tion, coupling of components, and support for discrete
event model approximation of continuous systems. The
hierarchical nature of DEVS allows coupling existing
models in a mo dular fashion in order to build larger sys-
tems. An atomic DEVS model is:

M = < X, S, Y, δint, δext, λ, ta >
The model is in state s ∈ S for the time specified by

ta(s). When that time is consumed, the system outputs
the value λ(s) and changes immediately to the state s’ =
δint(s). If an external event x ∈ X is received before the
expiration time ta(s), the new state s’ of the system is
determined by δext(s, e, x), where e is the time elapsed

since the last transition. A DEVS coupled model is de-
scribed as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >
where X is the set of input events; Y is the set of

output events; D is an index for the components of the
coupled model, and ∀ i ∈ D, Mi is a basic DEVS (i.e., an
atomic or coupled model), Ii is the set of influencees of
model i. The influencees of a model define to which
model outputs must be sent. and ∀ j ∈ Ii, Zij is the i to j
translation function, which converts the outputs of a
model into inputs for other models.

Our particular implementation of DEVStone was
used to test the performance of CD++ [2], a tool that
implements DEVS theory. CD++ was revised and ex-
tended several times, and it supports stand-alone [2],
parallel [3] and Real-Time simulation [4]. CD++ and has
also been successfully used to model a variety of appli-
cations: urban traffic [5], [6], [7]; complex physical sys-
tems [8], [9]; computer architectures [10]; and different
artificial, and biological systems [9].

We used the synthetic generator to analyze the per-
formance of different simulation techniques in CD++,
which allowed us to show the feasibility of our ap-
proach. Moreover, the performance results permitted us
to characterize execution time of a standard DEVS simu-
lator. The benchmark can be used to determine which
directions and decisions should be taken when updat-
ing the tool’s simulation techniques. Furthermore,
DEVStone can be used to aid the measurement and im-
provement of other existing simulation tools.

2. Devstone: A synthetic model generator

When analyzing previous studies on the perform-
ance of DEVS environments, we can see that they were
only focused on performance results for a given tool,
and were limited to a given type of models of interest.
However, those studies do not provide a thorough
analysis for the execution of models with different char-
acteristics, neither do they give a common metric to
compare results among different DEVS simulators.

We propose a method to compare not only different
versions of a particular simulation engine but also dif-
ferent DEVS-based software. Varied model structures
permit obtaining prototypes representative of those
found in real world applications. In order to provide a
complete and thorough evaluation, we created the
DEVStone synthetic model generator, which produces a
variety of models with diverse structure and behavior
performing a mix of common operations. We focus in
the aspects that impact performance: the size of the
model and the workload carried out in the transition
functions. DEVStone produces models using various

parameters: type (different structure and interconnec-
tion schemes between the components), depth (number
of levels in the modeling hierarchy), width (number of
components in each intermediate coupled model), in-
ternal transition time (execution time spent by internal
transition functions), and external transition time (exe-
cution time spent by external transition functions).

We build an artificial coupled model with d coupled
components, all of which consist of w-1 atomic models,
with the exception of the lower level of the hierarchy,
which is composed of a single atomic model. In addi-
tion, internal and external transition functions are pro-
grammed to execute a fixed amount of time, consuming
CPU clocks by running Dhrystones [11], which con-
sists of a mix of instructions using integer arithmetics.
DEVStone uses three different types of models with
variations in their internal and external structure:

- LI, with a low level of interconnections;
- HI, with a high level of input couplings; and
- HO, HI models with numerous outputs.
In LI models, every coupled component includes

only one input and one output port. The input port is
connected to each component, and only one comp o-
nent generates an output through the output port in the
external component. Fig. 1 shows a sample LI model.

in

 Coupled Component #0

in

 in
 Coupled Component #1

Atomic Component #1
 (at level 1)

Atomic Component #2

 (at level 1)

out
 out

in

in

Fig. 1. Example of a LI model: (a) top level.

As we know the model structure and the time spent

by each component in executing transition functions,
we can compute the theoretical execution time for the
model. First, we devise the number of atomic and cou-
pled models in the structure, which is:

Atomic Models = (width – 1) * (depth – 1) + 1
Since models follow a predefined interconnection

pattern, we can anticipate message routes triggered by
external events and time spent in transition functions:

Internal Transitions = # Atomic Models
External Transitions = # Atomic Models

(1)

HI models have the same number of atomic comp o-
nents, but more interconnections. Each component k
connects its output to the input port of component k+1
(with the exception of one atomic component on each
level, which does not have any output port). Therefore,

Atomic Models = (w – 1) * (d – 1) + 1
Internal Transitions=Σ (i=1 .. w-1) i * (d–1)+1
#External Transitions=Σ (i=1 ..w-1) i * (d–1)+1

(2)

HO type models have a more complex interconnec-
tion scheme (two input and two output ports in each
level. The second input port in the coupled component
is connected to its first atomic component. That atomic
model connects its output to the second output of its
parent). The increased number of interconnections re-
sults in more transition functions, and consequently
more overhead. For this type,
Atomic Models = (w – 1) * (d – 1) + 1
Internal Transitions = Σ (i=1 .. w-1) i * (d–1)+ 1
External Transitions = Σ (i=1 .. w-1) i * (d–1)+1

(3)

DEVStone can be used in any simulator with capa-
bilities for defining and executing Dhrystone code. We
can use single-layered models to compare tools with
non-hierarchical structure. Likewise, if the chosen mo d-
eling technique does not support the execution of in-
ternal transitions, we can compare them with DEVS
models without internal transitions scheduled.

3. Performance of Virtual-time Simulators

CD++ has different simulation engines. A stand-
alone simulator is used in single-processor simulations,
while the parallel version (based on [12]) was built on
top of Warped [13], which provides different optimistic
synchronization algorithms and a non-synchronized
protocol (called NoTime). We will present the results
obtained when DEVStone was applied to characterize
the overhead of these simulators.

 Type Depth Width δint δext

E HI 3 6 50 ms 50 ms
F HI 6 3 50 ms 50 ms
G HI 5 5 50 ms 50 ms
H HI 6 6 50 ms 50 ms
I HO 3 6 100 ms 0 ms
J HO 6 3 0 ms 100 ms
K HO 5 5 50 ms 50 ms
L HO 6 6 50 ms 50 ms

Fig. 2. Simulation parameters

The first tests are devoted to compare the overhead

of three CD++ simulators: (i) original, (ii) parallel with
unsynchronized kernel, and (iii) parallel with optimistic
kernel. We compared the execution results with the
theoretical execution time for each type.These models
were executed using 10 external events at a constant
rate, each of them triggering a known number of exter-

nal and internal transition functions. We use the Dhry-
stone code to compute the time spent on each of these
functions, which is used to calculate the time required
to process a single event.

0
20
40
60
80

100
120

E F G H

Original CD++

Parallel NoTime
Parallel TimeWarp
Theoretical Ti

m
e

(s
ec

)

0
20
40
60
80

100
120

I J K L

Original CD++
Parallel NoTime
Parallel TimeWarp
Theoretical

T
im

e
(s

ec
)

0,00%
1,00%
2,00%
3,00%
4,00%
5,00%
6,00%

E F G H

Original CD++
Parallel NoTime
Parallel TimeWarp O

ve
rh

ea
d

(%
)

0,00%
1,00%
2,00%
3,00%
4,00%
5,00%
6,00%

I J K L

Original CD++

Parallel NoTime

Parallel TimeWarp

O
ve

rh
ea

d
(%

)

Fig. 3. Execution times with (a) HI, (b) HO;
Overhead (c)HI (d) HO.

We report the worst execution case from the group

(variation for the best execution cases was less than
1%, mainly due to overhead of the OS). The experi-
ments were executed in a single processor, allowing us
to measure the pure overhead incurred by the parallel
simulator. As expected, the original version provided
the best execution time, whereas the parallel unsyn-
chronized kernel (NoTime) version always outper-

formed the parallel optimistic (TimeWarp) version. The
amount of overhead for the original version is only be-
tween 1% and 3% in every case. Likewise, the overhead
of the parallel versions is below 5.5% for the most com-
plex problems (a promising result, as the amount of
speedup time achievable by these simulators is consid-
erable). When we analyze HI models E (3x6) and F (6x3),
we can see the greater impact over efficiency when exe-
cuting models with larger number of levels. Here, both
models execute the same number of transition functions
(F creates a larger number of intermediate coordinators).
Despite these results, we obtained worse overhead for
models with a very large number of components (ap-
proximately 10,000), due to the number of messages in-
terchanged. CD++ uses the abstract simulator pre-
sented in [11], which create a one-to-one correspon-
dence between models and execution engines (called
processors): simulators execute atomic models, and co-
ordinators execute coupled models.

 Coupled Model # 1 (TOP)

Atomic

Model # 1

Atomic
Model # 2

Atomic

Model # 3

Coupled Model # 2
Atomic

Model # 4

Atomic
Model # 5

Coordinator # 1

Coordinator # 2 Simulator # 1 Simulator # 2 Simulator # 3

Simulator # 4 Simulator # 5

Root Coordinator

Fig. 4. Sample model and processor hierar-
chy

The number of these intermediate coordinators can

be arbitrarily large depending on the model under
study. Fig. 5 shows the number of simulators, coordina-
tors, and the number of messages involved in the proc-
essing of a single external event for large models .

 R S T U

Components/level 100 100 150 150
of levels 100 100 75 75
Type LI HO LI HO
of atomic models 9.8K 9.8K 11K 11K

of simulators 9.8K 9.8K 11K 11K

of coupled models 99 99 74 74

of coordinators 99 99 74 74
of root-coordinators 1 1 1 1

of messages 79K 3.5M 89K 3M
Execution overhead 9.96% 10.8% 9.4% 10.3%
Fig. 5. Hierarchical simulation results

R and S have identical structure, resulting in a re-
markable difference in the number of messages in-
volved. The same for T and U: the overhead is approxi-
mately 10%. Model U has 12.50% more comp onents
than S, although the overhead incurred by CD++ on
executing the former is lower. The same happens with
models T and R. These results provided a hint to opti-
mize the simulation technique: reducing intermediate
coordinators would improve time spent routing mes-
sages. A new simulation technique flattens the simula-
tor [14], reducing the number of messages exchanged.
The idea is to create only one root coordinator and one
flat coordinator. The flat coordinator executes the δint,
δext and λ(s) functions for each atomic component, map-
ping the ports for all atomic and coupled comp onents in
the hierarchy.

 Root Coordinator

Flattened Coordinator

Atomic data #1 Atomic data #2 Atomic data #3 Atomic data #4 Atomic data #5
Fig. 6. Flat simulator approach for Fig.4

We applied DEVStone to this new version of CD++,

and compared the results with the hierarchical version.
Figure 7 shows the execution results for the parameters
presented in Figure 5. As simulators and coordinators
disappeared, and one flat coordinator is created regard-
less of the number of components, the resulting over-
head is close to 5%.

 R S T U

Components /level 100 100 150 150
of levels 100 100 75 75
Type LI HO LI HO
of atomic models 9.8K 9.8K 11K 11K

of simulators 0 0 0 0

of coupled mo dels 99 99 74 74
of coordinators 0 0 0 0
of root-coordinators 1 1 1 1

of flat coordinators 1 1 1 1
of messages per sin-
gle external event

4 9.8K 77 11K

Execution overhead 4.5% 5.6% 4.4% 5.2%
Fig. 7. Flat simulation results

Figure 8 compares both simulators, showing the dif-

ference between actual and theoretical execution times
for different models with variable depth (width 6), and
with variable width (depth 7). Each components has a
workload of 50 ms for the transition functions, and
models receive 100 events at a fixed frequency.

0
100
200 300
400
500
600
700
800 900

1000

10 11 12 13 14
Depth

Hierarchical
simulation
Flat
simulation

T
im

e
(m

s)

0
500

1000
1500
2000
2500
3000

5 6 7 8 9
Width

Hierarchical
simulation
Flat
simulation

T
im

e
(m

s)

0
0,05
0,1 0,15
0,2 0,25
0,3

0,35
0,4 0,45
0,5

10 11 12 13 14
Depth

Hierarchical
simulation
Flat
simulation

O
ve

rh
ea

d
(%

)

0
0,05
0,1 0,15
0,2 0,25
0,3

0,35
0,4 0,45
0,5

5 6 7 8 9
Width

Hierarchical
simulation
Flat
simulation

O
ve

rh
ea

d
(%

)

Fig. 8. Difference theoretical/ execution
times: (a) LI, (b) HO; Overhead comparison of
hierarchical and flat simulators: (c) LI, (d) HO

Regardless of the type of model (LI or HO) and the
structure (deeper or wider), we can see a clear improve-
ment in execution times when using the flat approach.

W hen executing a small LI model (10x6) the difference
between theoretical and execution time is reduced in
38.3%. For larger LI models the reduction remains stable
or even rises marginally (e.g., for the a 14x6 model, it is
39.6%). Similar results can be seen in the execution of
these HO models, which are more complex and have
approximately the same size. In general, the reduction
obtained for these HO models is in the range of 39.4%-
47.7%. The overhead is always less than 0.16% for the
hierarchical simulator, and 0.1% for the flat simulator.

Even though models in Figure 8 (a) are larger than
those in Figure 8 (b), the latter ones have more complex
structures that compensate the differences in size, re-
sulting in similar percentages of overhead. The flat
simulator reduces the overhead in 40%-56% depending
on the depth, width, and complexity of the model, al-
though it is important to note that the overhead is sta-
ble for both techniques.

0
100
200
300
400
500
600
700
800

6 7 8 9 10
Width

Hierarchical
simulation
Flat
simulation

Ti
m

e
(m

s)

0 500 1000 1500 2000
2500 3000 3500 4000 4500

10 11 12 13 14
Depth

Hierarchical
simulation
Flat
simulation

T
im

e
(m

s)

Fig. 9. Hierarchical/flat simulators: (a)LI (b)HO

In order to analyze the performance degradation

purely due to overhead in the simulation engine, we
executed several examples with empty transition func-
tions (total execution time is solely depending on the
message exchange). Figures 9 (a) and (b) show the exe-
cution of several LI models with variable width and
fixed depth of 8, and HO models with variable depth
and fixed width of 8 (i.e., models that have between 36
and 92 comp onents). Figure 9 (a) shows that regardless
of the model’s width, the flat simulator reduces the exe-
cution time in 52.4%-54.7%. Figure 9 (b) shows that for
HO models the improvement in performance becomes
more noticeable when the depth of the model increases.

The impact of the intermediate coordinators that are
eliminated from the hierarchy results in fewer messages
being exchanged, and more efficient simulation. The ob-
tained results are similar to those presented before; the
flat approach provides a reduction of 52%-58% in the
total execution time depending on the size and type of
the model

5. Performance analysis of RT simulators

CD++ was extended to allow RT execution [4]. In RT
systems, a correct answer after a deadline is regarded
as unsuccessful. RT CD++ allows the execution of
events triggered by the RT clock, enabling interaction
between the models and their environments. In order to
analyze the performance of the new simulator, we used
DEVStone to study the performance of different mo d-
els. We started comparing the virtual-time and RT tech-
niques. Our approach consisted in executing virtual-
time and RT simulations using DEVStone, and compar-
ing the time required to process a single event in virtual
time against their worst-case response.

Figure 10 shows a comparison for sample LI models
M (5x10), N (10x5), O (8x8), and P (10x10), with internal
and external functions executing 50 ms of Dhrystone
code. In all cases, models received 100 events at a con-
stant rate, and we measured the worst-case response
time. Since the new functionality that deals with dead-
lines adds a small amount of additional overhead in the
RT version, it was expected to observe some degrada-
tion in performance. Nevertheless, the experiments
showed that the added overhead is actually impercepti-
ble. In general, we see that the RT results are in the
same level of those obtained with the parallel unsyn-
chronized version (incurring overheads in the range of
2%-3.5%) and outperforming optimistic TimeWarp (with
overheads in the range of 3%-4.6%).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M N O P

T
im

e
(m

s) Parallel NoTime

Parallel TimeWarp
Theoretical

Real-Time

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

M N O P

O
ve

rh
ea

d
(%

) Parallel NoTime

Parallel
TimeWarp

Real-Time

Fig. 10. Comparing RT and virtual-time simula-
tors: (a) Execution times (b) overhead

We used DEVStone to measure the ability of CD++

to execute models with different structure under very
demanding situations. Simulations received a fixed
number of external events generated at a constant rate.
Each model was expected to deliver responses for each
event before a given deadline, and the percentage of
success and worst-case response time:

% success = (# events – # missed deadlines) * 100
 number of events

Worst-case response time = max (r1, r2, …, rN)
where ri is the response time for the i-th event, and

N is the number of events.
The models used in the following experiments had

different sizes ranging from 10 to 35 components in to-
tal (width and depth are in the range of 4 to 11). There is
no Dhrystone code generated in the internal or external
functions (all the time spent is overhead). The results
are grouped in four categories: (1) LI models with vari-
able depth, (2) LI models with variable width, (3) HO
models with variable depth, and (4) HO models with
variable width. In the first set of experiments, each
simulation receives 100 events with inter-event periods
of 100 ms, and associated deadlines were set at 100 ms.

0
20
40
60
80

100

10 15 20 25 30 35
Number of components in the model

%
 o

f s
uc

ce
ss

Variable depth
LI models
Variable width
LI models
Variable depth
HO models
Variable width
HO models

0
20
40
60
80

100
120
140
160

10 15 20 25 30 35
Number of components in the model

T
im

e
(m

s)

Variable depth
LI models
Variable width
LI models
Variable depth
HO models
Variable width
HO models

Fig. 11. Comparing variable depth/width (a)
Percentage of success, (b) WCET

Figure 11 (a) shows the percentage of success for LI

and HO models when depth is variable and width is
fixed, and also when width is variable and depth is
fixed, whereas Figure 11 (b) illustrates the worst-case
response time for each case. We observe that the RT
simulator was able to deliver all the outputs on time for
models with 30 or fewer components, regardless the
model type. However, when the size of the model is 35,
HO models started missing a few deadlines. The pace of
external events and the complexity of the model prevent
a timely response to some of the external events. For a
HO model with 35 components, the success was 79%
and 86%. In contrast, LI models always met all their
deadlines under the same circumstances (a result of the
greater complexity of HO models). Figure 11 (b) illus-
trates that the worst-case response time is gradually de-
teriorated for HO mo dels as a result of the increased
number of messages exchanged. LI models always had
a worst-case response time of 10 ms in these condi-
tions, despite the size of the model. These results pro-
vide a reference about the conditions in which the en-
gine is capable of meeting the deadlines, focusing on a
particular scenario (inter-event periods and associated
deadlines) and the characteristics of the model (size and
model type). In the next set of experiments, we executed
larger LI and HO models (with between 25 to 50 comp o-
nents). We focused on the performance of the RT simu-
lator under a more stressful scenario. This test focuses
on the cases where the simulator is unable to meet its
deadlines due to highly overloaded conditions. External

events (e i) arrive every 30 milliseconds and deadlines
(di) are set at 60 ms after their arrival.

An alternative analysis can be performed focusing
on the surrounding environment; for instance, studying
the effect of different inter-event periods (i.e., fre-
quency of event arrivals) on the execution performance.
In the following set of experiments, events arrive at dif-
ferent pace (20 to 180 ms), and we analyze the behavior
of the simulator under such circumstances. The charts
show the results for 8x8 HO models receiving 100
events with deadlines set at 1000 ms.

0
10
20
30
40
50
60
70 80
90

100

20 40 60 80 100 120 140 160 180
Inter- event period (ms)

%
 o

f s
uc

ce
ss

Fig. 12. Worst-case execution time for HO
models with variable inter-event period:

Figure 12 shows that larger inter-event periods result

on greater percentages of success. When the intervals
between events become greater than 180 milliseconds,
the simulator meets all the associated deadlines for the
execution of this 8x8 model.

In the last set of experiments, we contrasted the RT
performance of the flat simulator against that of the hi-
erarchical simulator. We analyzed both simulators exe-
cuting HO models with variable depth and width, focus-
ing on complex models and examining their performance
under demanding conditions. The next chart shows the
results for models with fixed width of 9 and variable
depth (from 6 to 15 levels) that received 100 events at a
fixed arrival rate.

0
10 20
30
40 50
60 70
80
90 100

6 7 8 9 10 11 12 13 14 15
Depth

Hierarchical
simulation
Flattened
simulation

%
 o

f s
uc

ce
ss

0
500

1000
1500
2000
2500
3000
3500

6 7 8 9 10 11 12 13 14 15
Depth

Hierarchical
simulation
Flattened
simulation

Ti
m

e
(m

s)

Fig. 13. Comparison of hierarchical and flat:
(a) % of success (b) Worst-case response time

The flat approach allowed the simulation of a 13x9

HO model (97 components) with minimum worst-case
response times, while meeting all the deadlines. When
using the flat approach, performance degradation is
first noticed in the execution of a 14x9 model (105 com-
ponents). In contrast, even when simulating a smaller
7x9 model, the hierarchical approach had an inferior per-
centage of success (87%) and showed worse response
times. Figure 13 (b) shows that in larger mo dels , the dif-
ference becomes more noticeable in terms of the worst-
case response times, as a result of the greater overhead
incurred in the simulation of deeper models. Our analy-
sis showed similar results when models with variable
width were executed. Similarly to what was illustrated
before, the flat coordinator simulated wider models
more effectively.

In general, the flat technique outperforms the hierar-
chical one, reducing the incurred overhead up to 50%
and therefore providing improved response times and
better percentage of success in the execution. Thus, the
use of the non-hierarchical approach allows the simula-
tion of larger models with better performance results.
These results are a consequence of the reduced number
of messages exchanged in the flat simulation mecha-
nism.
6. Conclusions

Evaluating the performance of a simulation tool is
typically a tedious and complex process, which requires
the execution of a wide variety of models with different
characteristics. Our main goal was to provide a means

for evaluating the efficiency of existing simulation en-
gines with focus on DEVS-based tools, and facilitating
a qualitative and objective comparison of different
tools.

We developed DEVStone, a synthetic model genera-
tor that supports the process of evaluating the per-
formance of simulation engines. DEVStone produces
models that are similar to those existing in the real
world, thus making it possible to: (i) create models with
different sizes, shapes, and behavior; (ii) generate an
arbitrarily large number of such models; and (iii) execute
those models using the simulator(s) under study.

DEVStone relies on executing a collection of mo dels
with different characteristics. In order to emulate sev-
eral degrees of complexity in their structures, we identi-
fied three types of models that correspond to three in-
terconnection patterns. In addition, each atomic com-
ponent usually executes code in its transition func-
tions; we proposed the use of Dhrystone code to re-
semble the task to be performed by these comp onents.

As a result, we have a systematic way to assess the
performance of a simulation engine, reducing the time
required to measure its efficiency. It is possible to ana-
lyze the efficiency of any DEVS simulator with relation
to the size, the behavior and the structure of the model
under execution. A precise performance characteriza-
tion of a simulator allows modelers to consider the ac-
tual overhead of the tool based on solid results, and
then analyze the feasibility of executing timed models
with specific timing constraints.

Our framework provides a common metric to com-
pare the results that were obtained using the different
simulation tools, and also enables an analysis of the ef-
ficiency of successive versions of the same simulator,
such as upgrades or fixes. We used the CD++ toolkit to
show how to apply the proposed benchmark. These ex-
periments allowed us to test the usefulness of the
benchmark, and to thoroughly test CD++ (which is the
first systematic effort to characterize the performance of
DEVS modeling and simulation environments). Al-
though we restricted our case study to the existing
CD++ simulation engines, the same ideas may hold for
other DEVS-based simulators. Using DEVStone, we
showed that hierarchical simulation techniques are ca-
pable to simulate models with low overhead, even for
models with complex structure. By means of the pro-
posed framework, the performance of both virtual-time
and RT hierarchical simulators was shown to be satis-
factory. Moreover, the results demonstrated that the
flat simulation technique could improve the efficiency
in some cases, especially when model structure is par-
ticularly large or complex. Regardless of the size and

complexity of the models, the flat simulator outper-
formed the hierarchical one. In general, the charts illus-
trate that the overhead incurred by the flat simulator is
reduced up to about 55% of the overhead incurred by
the hierarchical approach.

References
[1] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling

and Simulation. Academic Press. 2000.
[2] Wainer, G. “CD++: a toolkit to develop DEVS models”.

Software - Practice and Experience. vol. 32, pp. 1261-
1306. 2002.

[3] Troccoli, A.; Wainer, G. “Implementing Parallel Cell-
DEVS”. Proceedings of 36th IEEE/SCS Annual Simula-
tion Symposium. Orlando, USA. 2003.

[4] Glinsky, E.; Wainer, G. “Definition of RT simulation in
the CD++ toolkit”. Proc. of the Summer Computer
Simulation Conference. San Diego, CA. 2002.

[5] Davidson, A.; Wainer, G. “Specifying truck movement
in traffic models using Cell-DEVS”. Proc. of the 33rd An-
nual Simulation Symposium. Washington, DC. 2000.

[6] Lo Tartaro, M.; Torres, C.; Wainer, G. “Defining Mod-
els of Urban Traffic using the TSC Tool”. Proc. of the
Winter Simulation Conference. Washington, DC. 2001.

[7] Díaz, A.; Vázquez, V.; Wainer, G. “Application of the
ATLAS language in models of urban traffic”. Proc. of the
Annual Simulation Symposium. Seattle, WA. 2001.

[8] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of
complex physical systems using Cell-DEVS”. Proc. of
the Annual Simulation Symposium. Seattle, WA. 2001.

[9] Ameghino, J.; Wainer, G.; Glinsky, E. “Applying Cell-
DEVS in Models of Complex Systems”. Proc. of the
Summer Computer Simulation Conference. Montreal,
QC. 2003.

[10] Wainer, G.; S. Daicz, S.; De Simoni, L.; Wasserman, D.
“Using the ALFA-1 simulated processor for educational
purposes”. ACM Journal on Educational Resources in
Computing. 1(4). pp. 111-151. 2001.

[11] Weicker, R. P. “Dhrystone: A synthetic systems pro-
gramming benchmark”. Communications of the ACM,
volume 27, pages 1013-1030, 1984.

[12] Chow, A.; Zeigler, B. “Parallel DEVS: A parallel, hierar-
chical, modular modeling formalism”. Proc. of the Winter
Simulation Conference. Orlando, FL. 1994.

[13] Martin, D.; McBrayer, T.; Radhakrishan, R.; Wilsey, P.
“Time Warp Parallel Discrete Event Simulator”. Techni-
cal report. Computer Architecture Design Laboratory.
University of Cincinnati. USA. 1997.

[14] Kim, K.; Kang W.; Sagong, B.; Seo, H. “Efficient Dis-
tributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-Hierarchical

One”. Proc. of the 33rd Annual Simulation Symposium.
Washington DC, USA. 2000.

